High Performance Building Guidelines

Fall       14   High  Performance  Building  Guidelines   2nd  Edition         JHU  High  Performance  Building  Standards   Introduction ...
21 downloads 0 Views 978KB Size
Fall  

 

 

14  

High  Performance  Building  Guidelines   2nd  Edition  

 

   

JHU  High  Performance  Building  Standards  

Introduction   This  guide  was  assembled  with  input  from  each  of  the  Johns  Hopkins  University’s   Schools,  Divisions  and  Campuses.    It  will  assist  designers,  project  managers  and   maintenance  technicians  to  improve  sustainable  energy  designs,  their  implementation   and  operations.    This  will  more  clearly  communicate  our  energy  and  water  reduction   goals  for  construction,  building  materials,  equipment  and  systems,  and  operational  and   maintenance  needs  to  both  internal  stakeholders  and  to  our  design  consultants.  The   Office  of  Sustainability  has  collaborated  with  our  campus  Design  and  Construction,   Project  Management  and  Facilities  Operations  staff  to  identify  areas  needing  improved   sustainable  choices.     Improving  our  sustainable  efforts  challenges  each  of  us  to  identify  and  implement  the   most  environmentally  friendly,  financially  sound  and  socially  acceptable  solutions  for   our  institution.  These  initiatives  will  reduce  our  Greenhouse  Gas  emissions,  water   consumption  and  waste  generation.    Many  of  these  opportunities  will  result  in  more   efficient  buildings,  equipment  and  systems,  intended  to  save  energy  and  operating   expenses.    No  initiatives  should  compromise  the  user’s  comfort,  productivity  or  safety.               Questions  or  comments  about  this  guide?    Please  contact  Ed  Kirk,  the  University  Energy  Manager  at   443-­‐997-­‐2343  or  [email protected].    

 

2    

   

JHU  High  Performance  Building  Standards  

Table  of  Contents   1.

2.

3.

4.

5.

6.

7.

8.

Guiding  Principles   a. Using  this  Guide   b. Energy  Reduction     c. Greenhouse  Gas  Reduction  Goals   d. LEED  and  Building  Energy  Codes   Tools  and  Benchmarks   a. Financial  Evaluation   b. Metering  &  Measuring  Performance   c. Energy  Modeling   d. Audits  and  Inspections   e. Commissioning   f. LEED,  Energy  Star,  IGCC  and  Energy  Code   g. Utility  Incentives  and  Rebates   Building  Envelope   a. Roofing   b. Windows  and  Doors   c. Thermal  Insulation   Mechanical  Equipment  and  Systems   a. Heating  and  Hot  Water   b. Ventilation  and  Cooling   c. Domestic  Water   d. Elevator   e. CHP   f. Controls  (BAS,  BMS,  ATC,  EMS)   g. Dashboards     Electrical  Equipment  and  Systems   a. Service,  Transformers  and  Distribution   b. Emergency  Power   c. Lighting   d. Lighting  Controls   e. Plug  Loads   Specific  Space  Types   a. Data  Centers   b. Research  spaces   c. Cooking  Facilities   d. Mechanical  and  Electrical  spaces   e. Tel/Data  Closets   f. Mobile  Equipment   Renewable  Energy   a. Solar  PV   b. Solar  Thermal   c. Wind   d. Bio  Fuels   References  

3    

   

JHU  High  Performance  Building  Standards  

 

Guiding  Principles   Using  this  Guide:    The  information  contained  here  is  intended  to  apply  to  all  projects  that  touch   building  systems  that  consume  energy  or  water,  regardless  of  project  budget  or  square  foot  impact.     Using  progressive  ways  of  providing  for  capacity,  redundancy,  reliability  and  future  flexibility,  so  every   project  or  renovation  moves  JHU  toward  its  overall  goals.  Verify  through  proper  installation,  set-­‐up  and   commissioning  that  the  thermal  envelope  and  all  building  components  and  systems  are  working   optimally.   Energy  &  Water  Reduction  Goals:    Each  project  should  set  a  goal  to  be  designed  to  use  30%  less   energy  and  water  than  allowed  by  the  latest  published  codes.    Projects  effecting  energy  use  should   perform  some  sort  of  energy  modeling  and  use  Life  Cycle  Cost  Analysis,  when  possible,  to  compare   project  options,  enabling  design  teams  to  make  informed  decisions.    All  project  options  that  pay  for   themselves  in  less  than  half  their  life  expectancy  should  be  brought  to  the  design  team’s  attention  for   serious  consideration.    This  means  that  financial  analysis  that  considers  total  cost  of  ownership  (Life   Cycle  Cost  Analysis)  must  be  performed.  Do  not  allow  systems  to  become  overly  complex,  costly  to   install  or  difficult  to  maintain.    Build  in  the  ability  for  automatic  tune-­‐ups,  fault  detection  and   performance  verification  using  “dashboards”  and  smart  phone  apps.    Ensure  a  healthy,  productive  and   safe  environment  for  the  building’s  occupants.       Greenhouse  Gas  Reduction:  Our  University  goal  to  reduce  our  GHGs  by  51%  by  2025  need  to  be   measurable.    Real-­‐time    metering  is  required  on  all  energy  and  water  systems  to  regularly  verify   performance  and  progress  toward  our  reduction  goals.     LEED  and  Building  Energy  Codes:    We  wish  to  create  the  healthiest,  most  productive  work   environments  possible.    When  conflicts  occur  between  building  and  energy  code  requirements,  we   insist  upon  open  dialogue  amongst  the  design  team  and  the  JHU  owner  representatives  so  we  are  sure   we  are  meeting  the  end  user’s  needs,  the  intent  of  the  codes  and  not  just  the  letter  of  the  codes.    

4    

   

JHU  High  Performance  Building  Standards  

Tools  and  Benchmarks   Financial  Evaluation:    Energy  code  enhancements  have  forced  designers  and  operators  to  pay  more   attention  to  project  budgeting.    Even  more  important  than  a  project’s  initial  design  and  construction   funding,  and  regardless  of  size,  are  energy  code  limits  and  impacts  to  operating  costs  over  their   expected  life.    While  the  use  of  first  cost  estimating  is  a  simple  tool  when  developing  initial  project   budgets,  today’s  budgets  must  include  energy  code  compliance.    Life  Cycle  Cost  Analysis  must  be  used   for  “Value  Engineering”  cost  cutting  options  that  could  impact  energy  and  water  use,  storm  water   mitigation  or  other  long  term  environmental  factors.       Measuring  Performance:    Each  building  requires  utility  metering  to  track  energy  and  resource  use.    At   a  minimum  metering  is  required  for  electrical,  gas,  oil,  water,  steam  and  chilled  water.    For  new   construction  and  major  renovations,  and  where  applicable  to  major  alterations  to  the  system   infrastructure,  sub-­‐metering  is  also  needed  on  domestic  hot  water  make-­‐up,  irrigation,  cooling  tower,   boiler  make-­‐up,  gray  water  system  inputs,  lighting,  HVAC  and  building  equipment,  and  plug  loads.       Energy  Modeling:  Full  modeling  is  required  for  all  new  construction  and  major  renovations.    Some   energy  modeling  is  also  required  for  any  renovations  that  alter  mechanical  or  electrical  systems.     Energy  modeling  should  reflect  how  the  spaces  and  systems  will  operate  once  occupied.    Models  are   the  tool  needed  to  perform  Value  Engineering  or  for  obtaining  utility  rebates.  The  Energy  Use  Intensity   (EUI)  calculation  from  energy  model  will  be  compared  to  similar  space  use  types.    If  planning  a   renovation,  model  should  show  existing  pre-­‐renovation  consumption,  the  latest  ASHRAE  90.1  code   limit  and  estimated  post-­‐renovation  consumption.       Listed  below  are  some  Energy  Use  Intensities  (EUI)  in  site  KBTU/gsf/yr.  This  table  will  assists  the  design   team  to  understand  what  limits  exist  to  beat  JHU’s  goal  of  30%  less  energy  use.    

Building  Type  

 

JHU  ’09  Avg  EUI  

       ASHRAE  90.1  2010        JHU    30%.    Surface  should  strive  for  3  year  aged  Solar  Reflective  index  of  >  64  per  ASTM   E  1980.  When  re-­‐roofing  we  ask  that  the  following  considerations  be  met:   • • • • • • •

Roofing  system  minimum  value  of  R-­‐30,  except  within  3  feet  of  roof  drains.   Roofing  have  a  minimum  pitch  of  1/4  inch  per  foot  and  zero  standing  water.   Minimum  curb  and  flashing  heights  of  9  inches.   The  entire  roofing  system  have  an  expected  life  (not  to  be  confused  with  warranty)  of  30   years.   The  roof  design  and  equipment  lay-­‐out  will  allow  for  renewable  energy,  storm  water   mitigation  or  heat  island  mitigation.   The  roof  can  withstand  foot  traffic  of  typical  tradesmen,  severe  weather  events  and  bird   activity  without  reducing  it's  life.   Tear-­‐off  must  be  recycled  and  new  roofing  system  must  use  sustainable  and  recyclable   materials.  

Exterior  walls  average  insulation  R-­‐20  including  window  and  door  values.         Windows  and  Doors:  Storefronts  and  Glazing  with  a     • • • •

low  E  30%  loading.    Upsize  distribution  wiring   where  appropriate.  Include  harmonics  mitigation  plan.  Peer  review  of  EE  design  by  power  system   optimization  expert.    Perform  electrical  audit  and  correct  identified  load  and  harmonics  deficiencies   one  year  after  spaces  have  been  occupied.     Transformers:    Use  only  energy  efficient  ones  rated  for  digital/electronic  loads  with  harmonic   mitigation.    Ensure  they  are  phase  balanced  and  loaded  to  minimum  30%  of  rated  capacity  off  peak   and  50-­‐70%  during  occupied  times.    Measure  loads  once  spaces  are  fitted  out  and  spaces  are  occupied,   but  no  later  than  12  months  after  Substantial  Completion.    Correct  or  replace  oversized  transformers   as  needed.  Since  2008  transformers  must  meet  NEMA  TP-­‐1  standards  for  energy  efficiency.    The   transformers  must  also  meet  the  DOE’s  CSL-­‐3  energy  efficiency  standards  and  have  harmonic   mitigation  features.    Transformers  must  have  full  rated  efficiency  at  1/6  load.    Specify  transformers  so   they  operate  at  50%  or  higher  load  when  the  building  is  fully  occupied  and  meet  the  intent  of  NEC.     Remember,  transformers  are  designed  to  be  loaded  to  110-­‐120%  for  short  durations  (an  hour  or  less)   and  work  best  in  the  70-­‐90%  range.  Bottom  line,  the  more  the  EE  designer  knows  about  the  electrical   equipment  and  loads  being  served  by  the  transformer  the  better  job  they  can  do  designing  for  most   efficient  and  reliable  operation.     Electrical  Distribution:    Control  or  mitigate  system  harmonics.   Emergency  Power:    Use  Natural  Gas  generators  for  all  future  installations  with  BACT  to  allow  for   optimizing  their  use  beyond  just  power  outages.    Consider  CHP  units  and  fuel  cells  for  this  role  when   performing  your  LCCA.  Consider  energy  efficiency  when  choosing  equipment  and  components  (crank   case  heaters,  thermal  recovery,  electric  conversion,  etc.)   12    

   

JHU  High  Performance  Building  Standards  

Lighting:  Employ  day  light  into  >75%  of  occupied  spaces,  use  Sola-­‐tube  for  interior  spaces  where   possible.  Consider  Photo-­‐Luminescent  Exit  Signs.  Use  only  LED  lighting  and  with  efficacy  >  100   lumens/watt.  Use  fixtures  that  deliver  proper  light  levels  efficiently  to  the  work  surface.  Use  the  best   qualities  of  light  possible.    Do  not  over  illuminate  spaces.  Use  dark  sky  compliant  designs  for  interior   and  exterior  lighting.  Use  lighting  layouts  with  the  lowest  watts/square  foot  to  meet  work  surface  light   levels.  Provide  photometric  calcs  for  all  spaces.  Move  day  light  to  work  spaces  with  enhanced  window   use  and  with  effective  use  of  light  tubes  or  skylights  (Solatubes  preferred)   Lighting  Controls:  Provide  a  detailed  sequence  of  operation  and  schematic  on  drawings  for  easy   interpretation  of  installing  contractor.  Provide  occupancy  lighting  control  (100%  of  facility  spaces)  and   step  dimming  (vacancy  controls)  in  office,  meeting,  classroom  and  similar  spaces.    Automatically   control  artificial  light  output  anywhere  glazing,  skylights  or  Sola-­‐tubes  exist.  Automatically  turn  lights   and  equipment  off  when  no  occupants  are  present.         DOE  recommended  Lighting  Power  Density  (watts/sf)  targets  (2012)  and  desired  foot  candle  levels.     Goal:    to  achieve  30%  better  than  ASHRAE  90.1  2010  and  IES  2012    

 

 

 

 

 

w/sf  

 

F.C.  base  

F.C.  max    

F.C.  Unocc  

Office   (off,  50%,  100%)    

0.7  

 

20  

 

30  

 

0  

 

Conference/Meeting  Room  

0.8  

 

20  

 

35  

 

0  

 

Corridor    

 

 

0.45  

 

10  

 

15  

 

0**  

 

Restroom  

 

 

0.4  

 

10  

 

15  

 

0  

 

Mechanical  Room  

 

0.5  

 

10  

 

15  

 

0.5*,  ***  

 

Stairwell    

 

 

0.45  

 

10  

 

15  

 

0*  

 

Lobby    

 

 

0.35  

 

10  

 

20  

 

0**  

 

Research  labs  (Labs  21)  

 

1.4  

 

50  

 

75  

 

0  

 

Classroom/lecture  hall  

 

0.7  

 

20  

 

30  

 

0  

 

Dining    

 

 

0.6  

 

5  

 

20  

 

0  

 

Auditorium  

 

 

0.7  

 

5  

 

20  

 

0  

 

Parking/Garage    

 

0.2  

 

1  

 

1.5  

 

0.5*  

 

Residence  

 

 

0.6  

 

20  

 

30  

 

0  

 

Athletic  spaces    

 

1.0  

 

25  

 

65  

 

0  

 

Exterior  Walkways  

 

0.7/lf  

 

1  

 

5  

 

1  

 

13    

   

JHU  High  Performance  Building  Standards  

   *    Occ  sensors  on  individual  fixtures  recommended.    Total  darkness  not  recommended  for  retrofits.      **  Some  night  lighting  may  be  allowed  for  a  “welcoming”  experience  when  approaching  these  areas.      ***  Fail  safe  Occ  sensors  should  be  used  for  lighting  around  mechanical  or  electrical  equipment.  

    Electric  Hand  Driers  or  Paper  Towels?  If  electric  hand  driers  are  used,  they  must    effectively  dry  hands   in     0.5MW.  Ensure  design  choices  to  meet  capacity,  reliability  and  redundancy  do  not  reduce  operational   energy  efficiency.     Research  Spaces:  Follow  guidelines  in  Labs  21  and  High  Performance  Labs.  Use  occupancy  controls  for   lights  and  air  flow.  Design  research  spaces  for  six  air  changes  occupied  and  four  when  unoccupied  and   under  negative  pressure  to  the  adjacent  spaces.  Monitoring  for  toxic  compounds  can  allow  as  low  as   two  air  changes  when  unoccupied  by  controlling  supply  and  exhaust  air  accordingly.  Use  only  ultra-­‐high   14    

   

JHU  High  Performance  Building  Standards  

efficiency  or  high  performance  fume  hoods  and  chemical  storage  cabinets.  Retrofit  existing  fume   hoods  with  baffles  and  recertify  to  perform  to  today’s  VAV  High  Performance  standards.  Eliminate   General  Exhaust  in  lab  spaces  and  use  VAV  for  both  SA  and  Hood  Exhaust.  Annually,  decommission,   clearly  label  and  close  exhaust  damper  on  lab  hoods  not  in  use.    Purchase  only  high  efficient  ULT   freezers  and  arrange  equipment  rooms  similar  to  modern  data  center  designs  (pull  heat  away  from  the   machines).  Purchase  research  equipment  that  is  also  best  in  class  for  energy  efficiency.  General  lighting   at  no  more  than  50  foot  candles.    Use  task  lighting  as  needed  to  meet  70  FC.  Decouple  ventilation  from   heating  and  cooling  systems.  Design  lab  space  plug  loads  for  average  of  0.5-­‐1.0  W/SF  and  lighting  loads   for  0.5  W/SF.  Employ  Dedicated  OA  Systems  and  Chilled  beam  techniques  to  minimize  wasted  energy.     Electrical  Closets,  machine  and  mechanical  rooms:    Do  not  use  heating  units  or  air  conditioning  units   (except  in  lab  equipment  spaces  when  recovering  and  reusing  the  BTUs).    Use  thermostatically   controlled  fans  or  dampers  to  remove  the  heat  to  an  exhaust  system  where  it  can  be  recaptured  and   reused  as  needed.  Alarm  spaces  for  temperatures  above  95F  and  below  40F  as  appropriate.   Tel/Data  Closets:    Understand  the  expected  heat  output.  Do  not  use  air  conditioning  units  for  rooms   with  only  routers,  switches  and  terminal  blocks.  Use  open  plenum  or  thermostatically  controlled   exhaust  fans  to  remove  heat  as  needed.  These  rooms  should  be  designed  to  operate  below  85F  and   can  use  adjacent  space  air  as  make-­‐up  to  their  exhaust  fan.   Mobile  Equipment:  Purchase  the  most  energy  efficient  options  available.    Use  lowest  emissions   vehicles.  Use  most  sustainable  or  renewable  fuel  type.     Trash,  Recycling  and  Compost:  Ensure  there  are  accommodations  for  trash,  recycling  and  compostable   bins  anywhere  waste  is  generated.    Work  with  Operations  to  ensure  areas  will  accommodate  bin  size   and  type  changes  in  the  future.    Ensure  primary  compost  collection  in  restrooms  and  areas  where  food   is  prepped,  served  or  consumed.  Require  hauler  to  share  weight  data  separately  for  trash,  recycling   and  compost.      

Renewable  Energy   Solar  PV:  PPA  model,  but  ensure  space  is  preserved  on  roof  for  future  system.  Systems  can  be  placed   on  roofs,  ground,  parking  canopies  and  parking  garage  roofs.     Solar  Thermal:  PPA  model.  Ensure  optimal  roof  space  is  preserved  for  future  system.    Size  to  preheat   the  chosen  building    system’s  lowest  thermal  load.   Solar  Thermal  Hybrid:    PPA  model,  but  ensure  space  is  preserved  on  roof  for  future  system.  Size  to   preheat  and  pre-­‐cool  the  chosen  system’s  lowest  thermal  load.   15    

   

JHU  High  Performance  Building  Standards  

Urban  Wind:    For  new  construction  evaluate  roof  mount  options.  Preserve  ideal  roof  space  for  future   installations.   Bio  Fuels:  When  possible,  consider  alternatives  to  fossil  fuels  for  vehicles  and  equipment.    

References   International  Green  Construction  Code,  2012:     http://publicecodes.cyberregs.com/icod/igcc/2012/index.htm?bu=IC-­‐P-­‐2012-­‐000023&bu2=IC-­‐P-­‐2012-­‐ 000019   ANSI/ASHRAE/IES  Standard  90.1,  2013:   https://www.ashrae.org/resources-­‐-­‐publications/bookstore/standard-­‐90-­‐1   International  Energy  Construction  Code,  2012:   http://publicecodes.cyberregs.com/icod/iecc/2012/   ANSI/ASHRAE/USGBC/IES  189.1  2014:   http://publicecodes.cyberregs.com/icod/igcc/2012/icod_igcc_2012_ashrae189p1-­‐2011_par001.htm  

16