High Frequency Characterization of Transistors J. Prasad

High Frequency Characterization of Transistors J. Prasad [email protected] J. Prasad SPara 1 Process Engineer VP Engineering This process change...
Author: Isaac Anderson
29 downloads 0 Views 4MB Size
High Frequency Characterization of Transistors J. Prasad [email protected]

J. Prasad

SPara

1

Process Engineer

VP Engineering

This process change should have improved Ft and Fmax !

I didn’t see any change. Actually Fmax was lower!

VP Technology

J. Prasad

Microwave Test Engineer

SPara

2

1.1THz Test System from Cascade Microtech/Keysight

International Microwave Symposium, San Francisco, May 22-27, 2016 J. Prasad

SPara

3

What is High Frequency Characterization?

Large Signal Characterization

Small Signal Characterization

This talk

Pin vs Pout PAE P1dB OIP3 IIP3 Load Pull Source Pull

fT fmax NFmin Rn Zs opt GA Re Rb Rs Rd

Non-Linear Measurements

Linear Measurements

J. Prasad

SPara

4

OUTLINE • • • • • • • • • • • • •

J. Prasad

Introduction S-parameters Smith Chart Vector Network Analyzer Calibration De-embedding Examples of measured data Gain and Stability Ft and Fmax from S-parameters Mason’s Gain Transistor Specmanship Parameter extraction/wafer maps Conclusion

SPara

5

BIPOLAR FIGURES OF MERIT Approximate

gm fT  2  C  C  W2 C  C jE  g m 2 Dn

Exact

N AB  WEW  W 2 W WDC     reC jE   re  ree  rc  C jC   2 fT N DE  2 Dn  2 Dn vm 2vsat ---------------- ------------ -----1

e

b

thermionic emission velocity

C  C jC

f max 

J. Prasad

fT 8 rbb 'C

c kT  5 106 cm/sec for Si. 2 m * saturation velocity vm 

vsat  107 cm/sec for Si.

f max 

fT 8 rbb 'C

SPara

6

Ft VARIATION WITH FREQUENCY (Bipolar)

h21( BJT ) 

 1  j

Microwave Engineers find Ft by plotting h21 vs frequency!

f fT

 DC  100 fT  50 GHz

20log(h21)

h21 BJT angle

h21 (BJT) 0

50

-10 -20

h21 BJT angle (deg)

h21 BJT (dB)

40

30

20dB/dec 20

-30 -40 -50 -60 -70

10

-80

0 0.01

0.1

1 Freq (GHz)

J. Prasad

10

50

100

-90 0.01

0.1

1

10

100

Freq (GHz)

SPara

7

MOS FIGURES OF MERIT Exact

Approximate

fT 

gm 2  Cgs  Cgb  Cgd 

fT 

gm 2 Cgs

fT 

gm   R  RS 2 (Cgs  Cgd ) 1  D ro  

   C g ( R  R )  C  gd m D S p   C p : parasitic cap

Cgd & Cgb are small in sat

f max 

J. Prasad

fT 8 RG Cgd

f max 

SPara

fT 2 g ds ( RG  RS )  2 fT RG Cgd

8

Ft VARIATION WITH FREQUENCY (MOS)

1 f j fT

h21( MOS )  Note that this goes to infinity!

fT  50 GHz

Phase is constant

h21 MOS

h21 MOS angle

80

0

70 -20

50

H21 MOS angle

h21 MOS (dB)

60

40 30

-40

-60

20 -80

10 0 0.01

-90 0.1

1

10

-100 0.01

100

Freq (GHz)

J. Prasad

0.1

1

10

100

Freq (GHz)

SPara

9

S- PARAMETERS

J. Prasad

SPara

10

Why S-Parameters?

• • • • • • • • • •

At HF, difficult to measure currents and voltages Difficult to create open and shorts Everything behaves like Transmission lines with reflections S-parameters are very easy to understand and use S-parameters exist for any network Can easily relate to gain, loss, reflection and power Can predict the performance of cascaded networks From S-parameters, one can convert to Z, Y or H parameters Needed for SPICE model parameter extraction Some CAD programs need S-parameters for circuit design

J. Prasad

SPara

11

Two Port Parameters 1 + V1 _

I2

I1 Device

2 + _ V2

V1  h11 I1  h12V2

V1  z11 I1  z12 I 2

I 2  h21 I1  h22V2

V2  z21 I1  z22 I 2

I1  g11V1  g12 I 2 V2  g 21V1  g 22 I 2

I1  y11V1  y12V2 I 2  y21V1  y22V2

V1  AV2  BI 2 I1  CV2  DI 2

J. Prasad

SPara

12

S-Parameters Defined 2

1 a1

Device

b2

b1

S11  S 21  S12  S 22  J. Prasad

b1 a1 b2 a1 b1 a2 b2 a2

b1  S11a1  S12 a2

a2

b2  S21a1  S22 a2

Input reflection coefficient with output terminated in Zo a2  0

Forward transmission coefficient with output terminated in Zo a2  0

Reverse transmission coefficient with input terminated in Zo a1  0

Output reflection coefficient with input terminated in Zo a1  0

SPara

13

S-Parameters in terms of impedances and voltages Z1 ZO + VS

_

Z2 2

1 + Device

V1 _

+ V2 _

ZO

ZO : Characteristic impedance (50W)

Z1  Z 0 S11  Z1  Z 0 Z2  Z0 S 22  Z2  Z0

J. Prasad

S 21 

2V2 VS

S12 

2V1 VS SPara

G.Gonzalez, Microwave Transistor Amplifiers, Prentice Hall 1984 14

S-Parameters for a 6dB pad Z1 ZO + VS

S11 

_

Z2 2

1 + V1 _

+ 6dB Pad

Z1  Z 0 Z1  Z 0

Z  Z0 S 22  2 Z2  Z0

0

J. Prasad

0.5

S=

2V2 S 21  VS S12 

ZO

V2 _

0.5

0

2V1 VS SPara

15

Z-Parameters for a 6dB pad Z1 ZO + VS

50

1

16.6

Z2 2

+ V1 _

_

16.6

+ V2 _

66.9

ZO 50

6 dB pad

83.5

0

66.9

Z=

0.5

S= 66.9

0.5

83.5

0

Looking at Z - parameters one can not quickly infer this is a 6dB Pad!

J. Prasad

SPara

16

SIGNAL FLOW GRAPHS

a1 S21

S11

a1 S21

b2

S11 b1 S12

a2

b1  S11a1  S12 a2 b2  S21a1  S22 a2

b2

S22

S22

S22 b1 S12

J. Prasad

a1 S21

b2

L a2

S

S11 b1 S12

a2

in

S S  in  S11  12 21 L 1  S22 L

SPara

out  S22 

out

S12 S21 S 1  S11 S

17

INTRODUCTION TO SMITH CHART

J. Prasad

SPara

Smith Chart Story

18

Mapping of resistances – Smith Chart-1 L 

Z L  Z0 Z L  Z0

S 

Z S  Z0 Z S  Z0

𝑗∞



0

Convert all impedances to reflection coefficient and plot it. That is Smith Chart! ZO = 50W

−𝑗∞

0

-1 0

25

50W

+1 100

200

oo

Pure resistances map along the x-axis between -1 and + 1 J. Prasad

SPara

19

Mapping of reactances – Smith Chart-2 y

Z  Z0 L  L Z L  Z0 S 

Radius=1

j50

ZO = 50W

Z S  Z0 Z S  Z0

j100

j25

Inductive

j200 j10

Z L (W)

L

0

1180o

0

1157.4

o

j25

1126.9

o

j50

1 90o

j100

1 53.1

j200

1 28.1

j10

j J. Prasad

oo

50

x

-j10

-j200

Capacitive -j100

-j25 o

-j50

o

10

o

Note that magnitude is always 1 but angle varies. Pure reactance maps along the circumference of a unit circle. SPara

20

Mapping of impedances – Smith Chart-3 Z  Z0 L  L Z L  Z0 S 

ZO = 50W

Z S  Z0 Z S  Z0

Z L (W)

y

Unit circle: Radius=1

j50

X=const circle 50+j50

L

Inductive o

50+j50

0.45 63.4

50  j 50

0.45 -63.4

0.45

50 o

63.4o

oo x

0 Capacitive

-j50

R=const circle

All impedances (R+jX) with R>0 will map inside a unit circle. If R is negative (R< 0), it will map outside the unit circle.

J. Prasad

SPara

21

The Glorious Smith Chart

J. Prasad

SPara

22

How to measure S-parameters? - The Vector Network Analyzer

J. Prasad

SPara

23

E 8361C PNA Series NETWORK ANALYZER 10MHz – 67GHz

You will also need a 4155 Semiconductor Parameter Analyzer for biasing.

J. Prasad

SPara

24

VECTOR NETWORK ANALYZER BLOCK DIAGRAM

J. Prasad

SPara

25

What is Calibration?

J. Prasad

SPara

26

CALIBRATION

Short the leads and adjust the ZERO OHMS pot so that the meter reads zero. We have zeroed out resistance of the test leads.

J. Prasad

SPara

27

CALIBRATION

Short the leads and write down the reading R1. Connect the resistor Rx and take the reading R2. Unknown resistor Rx = R2 – R1

J. Prasad

SPara

28

I-V curves

4155/4156 Parameter Analyzer

Measure & gen I-V curves

Measure 0.1W resistor

Multimeter

Calibrate

Output file

Measure

Output data

Measure

Output data

1 term error correction: short

Capacitance Measurement

Capacitance Meter 4980

Calibrate

2 term error correction: short and open

J. Prasad

SPara

29

4980A CAPACITANCE METER (20Hz – 2MHz)

CALIBRATION Short the leads and write down the series resistance Rs. Open the leads and write down the stray capacitance Cp. The instrument does the correction for the series resistance. Then it subtracts the stray capacitance from the measured data.

J. Prasad

SPara

30

One-Port Measurement using Network Analyzer

1-port S-parameter

8361C Network Analyzer

Calibrate

Measure

S-parameter data

3 term error correction: short, open and load

J. Prasad

SPara

31

One-Port Error Correction

J. Prasad

SPara

32

One / Two-Port Measurement using Network Analyzer

1-port S-parameter

8361C Network Analyzer

Calibrate

Measure

S-parameter data

3 term error correction: short, open and load

2-port [S] package

8361C Network Analyzer

Calibrate

Measure

S-parameter data

12 term error correction: short , open, load and thru

J. Prasad

SPara

33

TWO PORT CALIBRATION

J. Prasad

SPara

34

J. Prasad

SPara

35

J. Prasad

SPara

36

THRU CALIBRATION FOR GROUP DELAY

f Phase (rad) w

RFin

S

S

G

D

RFout

f w 1   360o f

Group delay t g  

delayed signal S

J. Prasad

S

SPara

37

J. Prasad

SPara

38

TRL CALIBRATION At low frequencies, the lines become long. So, we need different TRL structures for different frequency bands for wide band characterization. Use SOLT for lower freq.

THRU

REFLECT

LINE

Glenn Engen, Cletus Hoer, MTT-27 (12), Dec 1979 J. Prasad

SPara

39

RF MICROWAVE PROBES (CASCADE MICROTECH)

J. Prasad

SPara

40

CALIBRATION USING IMPEDANCE STANDARD SUBSTRATES

The purpose of Cal is to bring the reference plane to the probe tips

J. Prasad

SPara

41

BEFORE CALIBRATION

AFTER CALIBRATION

j50

j50

oo

50 0

0

-j50

J. Prasad

oo

50

-j50

SPara

42

DE- EMBEDDING

J. Prasad

SPara

43

1-port S-parameter

8361C Network Analyzer

Measure

Calibrate

S-parameter data

3 term error correction: short, open and load

2-port [S] Package

8361C Network Analyzer

Measure

Calibrate

S-parameter data

12 term error correction: short , open, load and thru

On-wafer 2-port [S]

8361C Network Analyzer

Calibrate

Measure

De-embed

[S] data of device

12 term error correction: short , open, load and thru

J. Prasad

SPara

44

S

S

S

S

G

D

Cpad 100-600 fF G

D

Cdevice

100 devices

1- 6 fF S

S

S

S A device array alleviates this problem to some extent

Pad capacitance far exceeds Single device capacitance Device

Y3

G

DUT

Y2

Y1

S

S J. Prasad

D

SPara

45

1-Step De-Embedding

G

Device

OPEN

Y3

Y3

DUT

Y1 S

 S open   y open  S device   y device  y DUT   y device   y open  y DUT   S DUT J. Prasad

G

D Y2

D Y2

Y1

S

S

S

Measure on- wafer OPEN Measure DEVICE Use the equations on the left

DE- EMBEDS PAD CAPACITANCE ONLY !

SPara

46

2- Step De - Embedding

Device S

S

G

D

Y3

G

S

Z2

Z1 Y1

D

DUT

Z3

S

S

S

Y2

DE- EMBEDS • Pad Capacitance • Series Impedance

J. Prasad

SPara

47

2- Step De - Embedding

G

Device

OPEN

Y3

Y3 D

DUT

Z1 Y1

S

S THRU

Y3

Y3 G

D

D Z2

Z1

Z2 Z3

Y2

Z3

SHORT

Z1

J. Prasad

Z2

Y1

S

G

S

D Z1

Y2

Z3

S

Y1

G

Z2

Y1

Y2

S

S

SPara

Z3

Y2 S

48

Device

2- Step De - Embedding

Y3

G

 S open   y open Y S  S short   z short  S device   y device  y dev _ no _ pad   y device   y open  y dev _ no _ pad   z dev _ no _ pad  z DUT   z dev _ no _ pad   z short  z DUT   S DUT Whoa!

1

J. Prasad

SPara

D

DUT

Z2

Z1 Z3

Y2 S

DUT with Pad capacitance and series elements

49

High Frequency Performance of 0.18um CMOS

Ft=50GHz, Fmax=45GHz

Measurement: 0.5-50GHz

RF Characteristics of 0.18-m CMOS Transistors: Kwangseok Han, Jeong-hu Han, Minkyu Je and Hyungcheol Shin Department of Electrical Engineering and Computer Science, Korea Advanced Institute of Science and Technology, Taejon 305-701 J. Prasad

SPara

50

IMPERFECT on-wafer SHORT

J. Prasad

SPara

51

Layout with minimum inductance and reflections

E

E

B

C

E

E Small octagonal pads to reduce capacitance and reflections

J. Prasad

SPara

52

Definitions of Gain and Stability

J. Prasad

SPara

53

DEFINITIONS OF GAIN

J. Prasad

SPara

54

Ft and Fmax of 65nm CMOS

Limiting Factors of RF Performance Improvement as Down-scaling to 65-nm Node MOSFETs H. L. Kaoa*, B. S. Lina, C. C. Liaob, M. H. Chenc, C. H. Wuc, and Albert Chinb a Dept. of Electronic Engineering, Chang Gung Univ., Tao-Yuan, Taiwan, ROC b Nano-Sci. Tech. Ctr, EE. Dept., Nat’l Chiao-Tung Univ., UST, Hsinchu, Taiwan, ROC c Dept. of MicroElectronics Engineering, Chung Hua Univ., Hsinchu, Taiwan, ROC

J. Prasad

SPara

55

CIRCUIT FOR MEASURING MAXIMUM AVAILABLE GAIN & Fmax

in ZS + VS

_

out 2

1 + V1 _

Device

+ V 2_

ZL

We vary ZS and ZL so as to provide a simultaneous conjugate match. This maximizes the input power and delivers maximum output power to the load. This will give us MAG. If we do this at each frequency, we can generate a plot of MAG vs frequency. From this plot, we can determine the frequency at which the power gain will become unity. This is Fmax.

J. Prasad

SPara

56

THE EFFECT OF LOAD IMPEDANCE IN = 1 circle

S11  0.65  95

j50

S12  0.0440 S 21  5.00115 unstable

S 22  0.80  35

in  S11 

S12 S21 L 1  S22 L

53o 0 50



-j50 J. Prasad

SPara

57

THE EFFECT OF SOURCE IMPEDANCE j50

S11  0.65  95 S12  0.0440 S 21  5.00115

OUT = 1 circle

S 22  0.80  35

out  S22 

S12 S21 S 1  S11 S

unstable

127o 0 50



-j50 J. Prasad

SPara

58

OUTPUT STABILITY CIRCLE & UNCONDITIONAL STABILITY

j50

conditionally stable

j50

unconditionally stable

IN >1

IN >1

unstable

0

50



-j50

0

K1 MAG defined Simultaneous conjugate match possible

For unconditional stability 𝐾 > 1 𝑎𝑛𝑑 ∆ < 1

J.M.Rolett, IRE Trans CT, CT-9(1), pp 29-32, Mar 1962, J. Prasad

W.Ku, Proc IEEE 54(11), pp 1617-1618, Nov 1966

SPara

59

GAIN EQUATIONS in S- Domain

Maximum Available Gain

Use only for K>1

Maximum Stable Gain

Use only for K1 over some frequency range [S]DUT over frequency [S]DUT over frequency No

K > 1 and D 1 and D

Suggest Documents