Around the World with a Solar Powered Aircraft1. 2. 3. 4. 5. 6.

Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

www.solarimpulse.com

Solar Power, Basics Flying Power, Basics Solar Powered AC History Technology Status Solar Impulse Program, Summary

Primary Energy Collection Parameters Earth Rotational Axis

Sun Radiation (W/m²), Oberpfaffenhofen 1000

800

Sun light Summer

600

400 Winter

200

4

8

12 16 Day Time (hrs)

Source: B.Keidel Dissertation

Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

20

24

Lattitude, Time of the year, Time of the day, Altitude (Clouds, humidity), Cell Temperature Cell Orientation

www.solarimpulse.com

Solar Energy Collection

Energy (W) Collected

Theoretical Limit of SC efficiency: ~28 %, monocristaline Silizium ~29 % Gallium Arsenid ~20% for high tech application ~14 % for ground based systems (e.g.solar roof)

Solar Cell Cost

Energy collected is proportional to solar cell area! Solar Cell Area (m²) Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

www.solarimpulse.com

Contents

1. 2. 3. 4. 5. 6.

Solar Power, Basics Flying Power, Basics Solar Powered AC History Technology Status and Challenges Manned Solar Powered AC, SI Summary

Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

www.solarimpulse.com

Available Solar Power

radiation on horizontal surface [W/m²]

Solar constant 1300W/m² extraterrestrial At flight altitudes approx. 1000W/m² noon peak 1000 900

Solar Power Collection

800 700

Energy Storage Required:

600

Potential Energy, Battery

500 400 300 200

Average Solar Power ~260 W/m²

100 0 0

3

6

9

12

15

h sunrise to sunset Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

www.solarimpulse.com

18

21

24

Power Train Schematic And Typical Losses/Efficiencies

Solar Cells, 20% Converter 98,5% MPPT ~95%

Electric Lines 99,5% Motor 93%

Battery Manager 99,5%

Batteries 96.5%

Propeller 85% Other consumers

From solar energy to propeller ~ 85% losses!! MPPT= Maximum Power Point Tracker

Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

www.solarimpulse.com

Wing Loading and Power Loading For Horizontal Flight → P = D *V Power = Drag *Velocity  → D = CD * 2ρ *V ^ 2 * S Drag  →V = 2 Velocity 

2 W 1 * * ρ S CL

ρ P = CD * 2 *V ^3 * S

P 2 W  CD = 2 *  ^3 / 2 * ρ S  S CL^3 / 2 W P CL ρ =  ^ (2 / 3) *  ^ (1 / 3) * S S CD ^ (2 / 3) 2

Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

www.solarimpulse.com

Design Space 9,00

Wingloading, kg/m² L/D=37

Design Point

35 33

8,00

31 29

7,00 Max. Solarpower available Aspect Ratio

6,00 0,02

0,025

0,03

Hannes Ross, IBR , 20.01.2011 www.solarimpulse.com Solar Power, KW/m² DGLR, RAeS, VDI, @HAW Hamburg

0,035

Contents

1. 2. 3. 4. 5. 6.

Solar Power, Basics Flying Power, Basics Solar Powered AC History Technology Status and Challenges Manned Solar Powered AC, SI Summary

Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

www.solarimpulse.com

Solar Powered AC since 1974

Ray Boucher‘s „Sunrise1“, 1974

Gossamer Condor, P. McReady, 1979

Alan Cocconi, 2005 48 hours

Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

www.solarimpulse.com

Qinetic, Zephyr 1 week, 2010

Solar Aircraft History Solar Challenger 1981 McReady

2001 Aerovironment 30’000 m, 21 KW 2000

E. Raymond 400 km

262 km, 5 hrs, 2.5 KW 1980

1990

Solair 1 1983 Günter Rochelt

> 5 hrs, 2.2 KW Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

Unmanned Helios

Sunseeker 1990

Icare 2 1996

Voit-Nitschmann 350 km, 3.5 KW

www.solarimpulse.com

Contents

1. 2. 3. 4. 5. 6.

Solar Power, Basics Flying Power, Basics Solar Powered AC History Technology Status and Challenges Manned Solar Powered AC, SI Summary

Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

www.solarimpulse.com

Technological Challenges For manned ac with flight time >24 hr’s

Propulsion • high specific power solar array >20% • high specific energy batteries > 200 Wh/kg • high efficiency electric motors • high efficiency propeller • thermal control systems for batteries, engines Structures • lightweight composite structures • acceptable aero-elastic characteristics Systems with Low Power Consumption •

FCS, ECS, Communication, Navigation,

Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

www.solarimpulse.com

Solar Cell Efficiency 22

Stand 2008

20

2004 Source: ZAE Bayern

Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

www.solarimpulse.com

2006

2008

Lithium-Ion Battery Development

US$/Wh

Wh/l

Wh/kg

Source: www.battery university.com

Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

www.solarimpulse.com

Helios, normal wing bending at 1g

Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

www.solarimpulse.com

Helios Accident High Aspect Ratio and low wing loading result in high wing span elastic structure

Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

www.solarimpulse.com

Contents 1. 2. 3. 4.

Solar Power, Basics Flying Power, Basics Solar Powered AC History Technology Status and Challenges 5. Manned Solar Powered AC: The Solar Impulse Project 6. Summary

Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

www.solarimpulse.com

March 1999

Bertrand Piccard decided to launch into a new futuristic enterprise: to fly round the world in a solar-powered aeroplane Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

www.solarimpulse.com

Solar Impulse Program Initiated 2001 by Bertrand Piccard and André Borschberg Objective: Develop a manned solar powered aircraft which can fly around the world with solarpower only Feasibility Study 2002-2003 Approach: Develop a „Demonstrator“ aircraft to show a 24hr energy neutral day and night Cycle  HB-SIA Develop the „Record“ aircraft, capable of crossing Atlantic, Pacific in 4 to 5 day`s and fly around the world in 5 to 6 legs Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

www.solarimpulse.com

Relative Flight Power Required and Solarpower generated=f(Altitude) 1,9 1,8

Relative Values

1,7

Power Required Solar Power Available

1,6 1,5 1,4 1,3 1,2

Flying at low altitude requires less energy

1,1 1 0

2

4

6

Altitude (km) Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

www.solarimpulse.com

8

10

12

Mission Profile Max cruise altitude

3

Altitude

4

1

2 Min night altitude

5

0

24 1. 2. 3. 4. 5.

Fly at minimum night altitude Climb Cruise at at max altitude,if power is available Descent at idle power Fly at minimum night altitude

Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

www.solarimpulse.com

Design/Scaling Program Requirements Assumptions Design Experience Creativity

Baseline aircraft Design data

Performance

Require ments met?

Yes

Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

www.solarimpulse.com

Iteration

no

Mission Parameter (1)

Altitude

Alt*5 [km] SOLP [Kw]

Solarpower

PBAT [Kw] PTOT [Kw]

Power required Battery Power

0

4

8

12

16 Daytime

Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

www.solarimpulse.com

Daytime

20

24

Refined Baseline, W/S=8.05, AR=18.36 Mission Parameter (2) 300

Collected Solar Energy

Energy (KWh), 10 ALT(km)

Alt*10 [km]

SOLENAC [Kwh]

250

ENBATAC [Kwh]

ENTOTAC [Kwh]

Required Flight Energy

ENWASTEAC [Kwh]

200 150

Battery energy 100 50

Altitude

0 0

4

Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

8

12

Daytime (h)

Daytime (h) www.solarimpulse.com

16

20

24

Optimum Design Solutions

Weight, Span, AR

2,5 AR(relative)

2

Span (relative) Weight (relative)

1,5 1 0,5 0,6

0,8

1 Wing Area

Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

www.solarimpulse.com

1,2

1,4

Size Comparison

© Solar Impulse/EPFL Claudio Leonardi

Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

1

Operational Performance L/D 70 60 50

Solar Powered Airplanes

Sailplanes

40 Ultral Light Sailplanes

30 20

Commercial Airplanes Sport/Utiliy AC

10

Military Aircraft 100

200

Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

300

400

500

Velocity, km/hr www.solarimpulse.com

600

700

800

Design Characteristics Thrust/Weight 1,3 1,2 1,1 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1

Military Aircraft

Solar ac = 0,03 Commercial AC

Motorgliders

100

200

300

400

500

Wingloading,(kp/m²) Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

www.solarimpulse.com

600

700

Load Limit Tests

Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

www.solarimpulse.com

Cockpit Structure: CFC sandwich and foam shell

© Solar Impulse/Stéphane Gros

Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

www.solarimpulse.com

Low Cost „Windtunnel“ Testing

MPPT´s

Gear Cooling Fan

Engine Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

www.solarimpulse.com

Initial Ground Vibration Test, 3

Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

www.solarimpulse.com

Wing Assembly 3

Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

www.solarimpulse.com

Solar Cell Attachment

Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

www.solarimpulse.com

Instrument Panel

Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

www.solarimpulse.com

Finally: Lift-off, 7.April 2010

Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

www.solarimpulse.com

In The Air

Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

www.solarimpulse.com

First Landing

Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

www.solarimpulse.com

Demonstration of a 24 Hour Neutral Energy Cycle

26 hour flight 7th/8th July 2010

Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

www.solarimpulse.com

Swiss Flights to Genf, Zürich

Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

www.solarimpulse.com

Program Schedule

It is a long term project: 2003 2003 2004-2006 2007-2009

Feasibility study at the EPFL de Lausanne Announcement of challenge on 28 November Concept the final Development Design and Manufacturing of the prototype A/C, test of the airplane, 2009 June Unveiling of Prototype, initial test flights 2010 April First flight in Payerne 2010 7/8 July 26 hour record flight, from Payerne 2011----------------------------------------------------------------- time now 2011-2012 Design, construction, start ground tests 2013 Flight test, Missions of several days 2014 Crossing continents, Atlantic and tour of the world five/six legs, each about 5 days long Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

www.solarimpulse.com

Because of the Sponsors: A low cost program!

Main Partners

Official Partners Official Supporters Official Suppliers Scientific and aeronautical partnerships Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

www.solarimpulse.com

Design of the Record Aircraft To fly around The World

Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

www.solarimpulse.com

Principle Design Window

Wing Loading Aspect Ratio

Weight Wingspan Design Point Payload

Max Wing Chord

Wing Area • For a given payload the minimum weight is achieved with the highest AR Limited by the maximum tolerable wingspan!! • The more stringent the design mission is, the more will the design window Hannes IBR , higher 20.01.2011 ShiftRoss, towards weight www.solarimpulse.com and larger wing area!! DGLR, RAeS, VDI, @HAW Hamburg

Solarimpulse: ONE TEAM

Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

www.solarimpulse.com

END

Hannes Ross, IBR , 20.01.2011 DGLR, RAeS, VDI, @HAW Hamburg

www.solarimpulse.com