Grundkonzepte der Optik Sommersemester 2014

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-06-28s.docx 1 Grundkonzepte der Optik Sommersemester 2014 Prof. Thom...
Author: Allyson Hill
1 downloads 0 Views 4MB Size
Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-06-28s.docx

1

Grundkonzepte der Optik Sommersemester 2014 Prof. Thomas Pertsch Abbe School of Photonics, Friedrich-Schiller-Universität Jena

Table of content 0.  Introduction ................................................................................................ 4  1.  Ray optics - geometrical optics ................................................................ 15  1.1  1.2  1.3  1.4  1.5 

Introduction ........................................................................................................... 15  Postulates ............................................................................................................. 15  Simple rules for propagation of light ..................................................................... 16  Simple optical components................................................................................... 16  Ray tracing in inhomogeneous media (graded-index - GRIN optics) .................. 20  1.5.1  Ray equation .............................................................................................. 20  1.5.2  The eikonal equation.................................................................................. 22  1.6  Matrix optics .......................................................................................................... 22  1.6.1  The ray-transfer-matrix .............................................................................. 23  1.6.2  Matrices of optical elements ...................................................................... 23  1.6.3  Cascaded elements ................................................................................... 24 

2.  Optical fields in dispersive and isotropic media ....................................... 25  2.1  Maxwell’s equations.......................................................................................... 25  2.1.1  Adaption to optics ...................................................................................... 25  2.1.2  Temporal dependence of the fields ........................................................... 28  2.1.3  Maxwell’s equations in Fourier domain ..................................................... 29  2.1.4  From Maxwell’s equations to the wave equation ....................................... 30  2.1.5  Decoupling of the vectorial wave equation ................................................ 31  2.2  Optical properties of matter .................................................................................. 32  2.2.1  Basics......................................................................................................... 33  2.2.2  Dielectric polarization and susceptibility .................................................... 36  2.2.3  Conductive current and conductivity .......................................................... 37  2.2.4  The generalized complex dielectric function.............................................. 39  2.2.5  Material models in time domain ................................................................. 43  2.3  The Poynting vector and energy balance ............................................................. 44  2.3.1  Time averaged Poynting vector ................................................................. 44  2.3.2  Time averaged energy balance ................................................................. 46  2.4  Normal modes in homogeneous isotropic media ................................................. 49  2.4.1  Transversal waves ..................................................................................... 50  2.4.2  Longitudinal waves .................................................................................... 51  2.4.3  Plane wave solutions in different frequency regimes ................................ 52  2.4.4  Time averaged Poynting vector of plane waves ........................................ 58  2.5  The Kramers-Kronig relation ................................................................................ 58  2.6  Beams and pulses - analogy of diffraction and dispersion ................................... 61  2.7  Diffraction of monochromatic beams in homogeneous isotropic media .............. 63  2.7.1  Arbitrarily narrow beams (general case) .................................................... 64  2.7.2  Fresnel- (paraxial) approximation .............................................................. 70  2.7.3  The paraxial wave equation ....................................................................... 75  2.8  Propagation of Gaussian beams .......................................................................... 76  2.8.1  Propagation in paraxial approximation ...................................................... 77  2.8.2  Propagation of Gauss beams with q-parameter formalism ....................... 82  2.8.3  Gaussian optics ......................................................................................... 82  2.8.4  Gaussian modes in a resonator ................................................................. 85 

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-06-28s.docx

2

2.9  Dispersion of pulses in homogeneous isotropic media ........................................ 91  2.9.1  Pulses with finite transverse width (pulsed beams) ................................... 91  2.9.2  Infinite transverse extension - pulse propagation ...................................... 97  2.9.3  Example 1: Gaussian pulse without chirp.................................................. 98  2.9.4  Example 2: Chirped Gaussian pulse ....................................................... 101 

3.  Diffraction theory .................................................................................... 105  3.1  Interaction with plane masks ..............................................................................105  3.2  Propagation using different approximations .......................................................106  3.2.1  The general case - small aperture ........................................................... 106  3.2.2  Fresnel approximation (paraxial approximation) ..................................... 106  3.2.3  Paraxial Fraunhofer approximation (far field approximation) .................. 107  3.2.4  Non-paraxial Fraunhofer approximation .................................................. 109  3.3  Fraunhofer diffraction at plane masks (paraxial) ................................................109  3.4  Remarks on Fresnel diffraction...........................................................................114 

4.  Fourier optics - optical filtering ............................................................... 116  4.1  Imaging of arbitrary optical field with thin lens ...................................................116  4.1.1  Transfer function of a thin lens ................................................................ 116  4.1.2  Optical imaging using the 2f-setup .......................................................... 117  4.2  Optical filtering and image processing ...............................................................119  4.2.1  The 4f-setup ............................................................................................. 119  4.2.2  Examples of aperture functions ............................................................... 122  4.2.3  Optical resolution ..................................................................................... 123 

5.  The polarization of electromagnetic waves ............................................ 126  5.1  Introduction .........................................................................................................126  5.2  Polarization of normal modes in isotropic media ................................................126  5.3  Polarization states ..............................................................................................127 

6.  Principles of optics in crystals ................................................................ 129  6.1  6.2  6.3  6.4 

Susceptibility and dielectric tensor .....................................................................129  The optical classification of crystals ...................................................................131  The index ellipsoid ..............................................................................................132  Normal modes in anisotropic media ...................................................................133  6.4.1  Normal modes propagating in principal directions .................................. 134  6.4.2  Normal modes for arbitrary propagation direction ................................... 135  6.4.3  Normal surfaces of normal modes ........................................................... 140  6.4.4  Special case: uniaxial crystals ................................................................. 142 

7.  Optical fields in isotropic, dispersive and piecewise homogeneous media ............................................................................................................. 145  7.1  Basics .................................................................................................................145  7.1.1  Definition of the problem .......................................................................... 145  7.1.2  Decoupling of the vectorial wave equation .............................................. 146  7.1.3  Interfaces and symmetries ....................................................................... 147  7.1.4  Transition conditions ................................................................................ 148  7.2  Fields in a layer system  matrix method .........................................................148  7.2.1  Fields in one homogeneous layer ............................................................ 148  7.2.2  The fields in a system of layers ............................................................... 150  7.3  Reflection – transmission problem for layer systems .........................................152  7.3.1  General layer systems ............................................................................. 152  7.3.2  Single interface ........................................................................................ 159  7.3.3  Periodic multi-layer systems - Bragg-mirrors - 1D photonic crystals....... 166  7.3.4  Fabry-Perot-resonators ............................................................................ 173  7.4  Guided waves in layer systems ..........................................................................179  7.4.1  Field structure of guided waves ............................................................... 179  7.4.2  Dispersion relation for guided waves ....................................................... 180 

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-06-28s.docx

3

7.4.3  Guided waves at interface - surface polariton ......................................... 182  7.4.4  Guided waves in a layer – film waveguide .............................................. 184  7.4.5  how to excite guided waves ..................................................................... 188  This script originates from the lecture series “Theoretische Optik” given by Falk Lederer at the FSU Jena for many years between 1990 and 2012. Later the script was adapted by Stefan Skupin and Thomas Pertsch for the international education program of the Abbe School of Photonics.

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-06-28s.docx

4

0. Introduction Einführung  'optique' (Greek)  lore of light  'what is light'?  Is light a wave or a particle (photon)?

D.J. Lovell, Optical Anecdotes

 Light is the origin and requirement for life  photosynthesis  90% of information we get is visual

A)

What is light?

Was ist Licht  electromagnetic wave ( c  3  108 m / s )  amplitude and phase  complex description  polarization, coherence Spectrum of Electromagnetic Radiation Region

Wavelength Wavelength [nm] [m] (nm=10-9m)

Frequency [Hz] (THz=1012Hz)

Energy [eV]

Radio

> 108

> 10-1

< 3 x 109

< 10-5

Microwave

108 - 105

10-1 – 10-4

3 x 109 - 3 x 1012

10-5 - 0.01

Infrared

105 - 700

10-4 - 7 x 10-7

3 x 1012 - 4.3 x 1014

-7

-7

4.3 x 10

14

14

- 7.5 x 10

0.01 - 2

Visible

700 - 400

7 x 10 - 4 x 10

Ultraviolet

400 - 1

4 x 10-7 - 10-9

7.5 x 1014 - 3 x 1017

3 - 103

2-3

X-Rays

1 - 0.01

10-9 - 10-11

3 x 1017 - 3 x 1019

103 - 105

Gamma Rays

< 0.01

< 10-11

> 3 x 1019

> 105

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-06-28s.docx

5

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-06-28s.docx

 laser  artificial light source with new and unmatched properties (e.g. coherent, directed, focused, monochromatic) Laser  künstliche Lichtquelle mit neuen Eigenschaften, z.B. kohärent, gerichtet, fokussierbar, monochromatisch  applications of laser: fiber-communication, DVD, surgery, microscopy, material processing, ...

Fiber laser: Limpert, Tünnermann, IAP Jena, ~10kW CW (world record)

C)

Propagation of light through matter

Ausbreitung von Licht durch Materie  light-matter interaction (G: Licht-Materie-Wechselwirkung)

B)

Origin of light

Ursprung des Lichts  atomic system  determines properties of light (e.g. statistics, frequency, line width)  optical system  other properties of light (e.g. intensity, duration, …)  invention of laser in 1958  very important development

dispersion ↓ frequency spectrum

diffraction ↓ spatial frequency

absorption ↓ center of frequency spectrum

scattering ↓ wavelength

Dispersion ↓ Frequenzspektrum

Diffraktion ↓ Raum frequenz

Absorption ↓ Mitte des Frequenzspektrums

Streuung ↓ Wellenlänge

 matter is the medium of propagation  the properties of the medium (natural or artificial) determine the propagation of light  light is the means to study the matter (spectroscopy)  measurement methods (interferometer)

Schawlow and Townes, Phys. Rev. (1958).

6

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-06-28s.docx

 design media with desired properties: glasses, polymers, semiconductors, compounded media (effective media, photonic crystals, meta-materials)

7

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-06-28s.docx

E)

Optical telecommunication

Optische Telekommunikation  transmitting data (Terabit/s in one fiber) over transatlantic distances

Two-dimensional photonic crystal membrane.

D)

Light can modify matter

Licht kann Materie modifizieren  light induces physical, chemical and biological processes  used for lithography, material processing, or modification of biological objects (bio-photonics)

Hole “drilled” with a fs laser at Institute of Applied Physics, FSU Jena.

1000 m telecommunication fiber is installed every second.

8

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-06-28s.docx

F)

Optics in medicine and life sciences

Optik in Medizin und Lebenswissenschaften

9

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-06-28s.docx

G)

Light sensors and light sources

Lichtsensoren und Lichtquellen  new light sources to reduce energy consumption

 new projection techniques

Deutscher Zukunftspreis 2008 - IOF Jena + OSRAM

10

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-06-28s.docx

H)

Micro- and nano-optics

Mikro- und Nanooptik  ultra small camera

Insect inspired camera system develop at Fraunhofer Institute IOF Jena

11

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-06-28s.docx

I)

Relativistic optics

Relativistische Optik

12

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-06-28s.docx

J)

13

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-06-28s.docx

 electromagnetic optics and wave optics  no quantum optics  advanced lecture

Schematic of optics

Einteilung der Optik

K) quantum optics

electromagnetic optics wave optics

Literature

 Fundamental 1. Saleh, Teich, 'Fundamenals of Photonics', Wiley (1992) in German: "Grundlagen der Photonik" Wiley (2008) 2. Hecht, 'Optic', Addison-Wesley (2001) in German: "Optik", Oldenbourg (2005) 3. Mansuripur, 'Classical Optics and its Applications', Cambridge (2002) 4. Menzel, 'Photonics', Springer (2000) 5. Lipson, Lipson, Tannhäuser, 'Optik'; Springer (1997) 6. Born, Wolf, 'Principles of Optics', Pergamon 7. Sommerfeld, 'Optik'

geometrical optics

 geometrical optics   k²



u (r )   U (, ; z )exp i  x  y   d d .

k



In analogy to the frequency we call spatial frequencies. Now we plug this expression into the scalar Helmholtz equation  u (r )  k 2    u (r )  0

This way we can transfer the Helmholtz equation in two spatial dimensions into Fourier space

 d2 2 2 2  2  k     U (, ; z )  0,  dz  2 d 2  2   U (, ; z )  0.  dz  This equation is easily solved and yields the general solution

U (, ; z )  U1 (, )exp i (, ) z   U 2 (, )exp -i (, ) z  ,

β

We see immediately that in the half-space z  0 the solution  exp  iz  grows exponentially. Because this does not make sense, this component of the solution must vanish U 2 (, )  0 . In fact, we will see later that U 2 (, ) corresponds to backward running waves, i.e., light propagating in the opposite direction. We therefore find the solution:

U (, ; z )  U1 (, )exp i (, ) z   U (, ;0)exp i (, ) z   U 0 (, )exp i (, ) z  Furthermore the following boundary condition holds: U ( , ;0)  U 0 ( , ). In spatial space, we can find the optical field for z  0 by inverse Fourier transform: 

u (r )   U (, ; z )exp i  x  y   d d . 

depending on  (, )  k 2 ()   2  2 .



u (r )   U 0 (, )exp i  ,   z  exp i  x  y   d d . 

We can identify two types of solutions: A) Homogeneous waves

 2  0,   2  2  k 2 , i.e., k real  homogeneous waves γ k α

k β

B) Evanescent waves

  0,      k , i.e., k complex, because   kz imaginary. Then, we have k = k   ik  , with k  = e x   e y and k  = e z . 2

2

2

2

 k'  k''  evanescent waves

For homogeneous waves (real  ) the red term above causes a certain phase shift for the respective plane wave during propagation. Hence, we can formulate the following result: Diffraction is due to different phase shifts in propagation direction for the different normal modes according to their different spatial frequencies , .

The initial spatial frequency spectrum or angular spectrum at z  0 forms the initial condition of the initial value problem and follows from u0 ( x, y )  u ( x, y ,0) by Fourier transform:

 1  U 0 ( , )     2 

2





u0 ( x, y ) exp  i  x  y  dxdy,



As mentioned above the wave-vector components ,  are the so-called spatial frequencies. Another common terminology is “direction cosine” for the quantities  / k ,  / k , because of the direct link to the angle of the respective

Script "Grundkonzepte der Optik", FSU Jena, Prof. T. Pertsch, GdO13_Script_2014-06-28s.docx

67

pane wave. For example  / k  cos  x gives the angle of the plane wave's propagation direction with the x -axis. Scheme for calculation of beam diffraction We can formulate a general scheme to describe the diffraction of beams: 1. initial field: u0 ( x, y ) 2.

initial spectrum: U 0 (, ) by Fourier transform

3.

propagation: by multiplication with exp i  ,   z 

4.

new spectrum: U (, ; z )  U 0 (, )exp i  ,   z 

5.

new field distribution: u ( x, y, z ) by Fourier back transform



u (r )   U (, ; z ) exp i  x   y   d d . 

The resulting field distribution is a superposition of homogeneous and evanescent plane waves ('plane-wave spectrum') which obey the dispersion relation 





u (r )   U 0 (, )exp i x  y    ,   z  d d . 

Let us now discuss the complex transfer function H (, ; z )  exp[i (, ) z ] , which describes the beam propagation in Fourier space. For z = const. (finite propagation distance) it looks like:

A) homogeneous waves  2  2  k 2



phase

Obviously, H (, ; z )  exp i  ,   z  acts differently on homogeneous and evanescent waves:





exp i  ,   z   1, arg exp i  ,   z   0

 Upon propagation the homogeneous waves are multiplied by the phase factor exp i k 2   2  2 z   







exp i  ,   z   exp    2  2  k 2 z  , arg exp i  ,   z   0  

 Upon propagation the evanescent waves are multiplied by an amplitude factor