Fundamental Mechanics of Materials Equations

Fundamental Mechanics of Materials Equations Basic definitions 𝜎 π‘ π‘–π‘”π‘šπ‘Ž Average normal stress in an axial member πœ€ π‘’π‘π‘ π‘–π‘™π‘œπ‘› F 𝜏 π‘‘π‘Žπ‘’ avg β«½ A 𝛾 π‘”π‘Žπ‘šπ‘šπ‘Ž Av...
Author: Sylvia Charles
52 downloads 4 Views 1MB Size
Fundamental Mechanics of Materials Equations Basic definitions

𝜎 π‘ π‘–π‘”π‘šπ‘Ž Average normal stress in an axial member πœ€ π‘’π‘π‘ π‘–π‘™π‘œπ‘› F 𝜏 π‘‘π‘Žπ‘’ avg β«½ A 𝛾 π‘”π‘Žπ‘šπ‘šπ‘Ž Average direct shear stress 𝜈 𝑛𝑒 𝛿 π›₯ π‘‘π‘’π‘™π‘‘π‘Ž V avg β«½ 𝛼 π‘Žπ‘™π‘β„Žπ‘Ž AV πœ‘ π‘β„Žπ‘– Average bearing stress πœ” π‘œπ‘šπ‘’π‘”π‘Ž F b β«½ πœƒ π‘‘β„Žπ‘’π‘‘π‘Ž Ab Average normal strain in an axial member π›₯𝑑 π›₯𝑀 π›₯𝑑  ␧avg β«½ πœ€π‘‘π‘Ÿπ‘Žπ‘›π‘ π‘£π‘’π‘Ÿπ‘ π‘’ = π‘œπ‘Ÿ π‘œπ‘Ÿ L 𝑑 𝑀 𝑑 𝛾 = π‘β„Žπ‘Žπ‘›π‘”π‘’ 𝑖𝑛 π‘Žπ‘›π‘”π‘™π‘’ π‘“π‘Ÿπ‘œπ‘š 90Β°

Six rules for constructing shear-force and bending-moment diagrams Rule 1:

⌬V ⫽ P0

Rule 2:

⌬V ⫽ V2 ⫺ V1 ⫽

x2

∫x

w( x ) dx

1

Rule 3: Rule 4:

dV ⫽ w( x ) dx ⌬ M ⫽ M 2 ⫺ M1 ⫽

x2

∫x

V dx

1

Rule 5: Rule 6:

dM ⫽V dx ⌬M ⫽ ⫺M 0

Flexure

Average normal strain caused by temperature change ␧T β«½ ⌬ T Hooke’s Law (one-dimensional)  β«½ E ␧ and  β«½ G  Poisson’s ratio ␧lat ␯ β«½ ⫺␧ long

Flexure formula My Mc M x β«½ β«Ί or max β«½ where β«½ I I S Unsymmetric bending of arbitrary cross sections

Relationship between E, G, and Ξ½ E Gβ«½ 2(1 β«Ή  ) Definition of allowable stress   allow β«½ failure or  allow β«½ failure FS FS Factor of safety

Unsymmetric bending of symmetric cross sections M y z Mz y My I z tan β«½ x β«½ β«Ί Iy Iz Mz I y

 FS β«½ failure actual

or

 FS β«½  failure actual

Axial deformation Deformation in axial members FL FL β«½ or  β«½ βˆ‘ i i AE i Ai Ei Force-temperature-deformation relationship β«½

FL ⫹ ⌬TL AE

Torsion Maximum torsion shear stress in a circular shaft Tc  max β«½ J where the polar moment of inertia J is defined as   J β«½ [ R4 β«Ί r 4 ] β«½ [ D 4 β«Ί d 4 ] 2 32 π‘”π‘’π‘Žπ‘Ÿπ‘  Angle of twist in a circular shaft π‘Ÿ2 𝑇1 = π‘Ÿ1 𝑇2 TL TL π‘Ÿ1 πœ”1 = π‘Ÿ2 πœ”2 β«½ or β«½ βˆ‘ i i JG i Ji Gi Power transmission in a shaft π‘€π‘Žπ‘‘π‘‘π‘  = π‘π‘š/𝑠 P β«½ T

β„Žπ‘ = 6600 𝑖𝑛 βˆ™ 𝑙𝑏/𝑠

⎑ I z z β«Ί I yz y ⎀ ⎑⫺ I y β«Ή I yz z ⎀ βŽ₯ My β«Ή ⎒ y βŽ₯M x β«½ ⎒ 2 ⎒⎣ I y I z β«Ί I yz βŽ₯⎦ ⎒⎣ I y I z β«Ί I y2z βŽ₯⎦ z

Horizontal shear stress associated with bending

Sβ«½

I c π‘π‘œπ‘šπ‘π‘œπ‘ π‘–π‘‘π‘’ π‘π‘’π‘Žπ‘šπ‘  𝐸𝐡 𝑛= 𝐸𝐴 βˆ’π‘€π‘¦ 𝜎𝐴 = 𝑇 𝐼 βˆ’π‘›π‘€π‘¦ 𝜎𝐡 = 𝐼𝑇

VQ π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑄 = βˆ‘π‘¦οΏ½π‘– 𝐴𝑖 It Shear flow formula VQ qβ«½ I Shear flow, fastener spacing, and fastener shear relationship π‘‰π‘π‘’π‘Žπ‘š 𝑄 π‘›π‘‰π‘“π‘Žπ‘ π‘‘π‘’π‘›π‘’π‘Ÿ qs ⱕ n f Vf β«½ n f  f A f π‘ž= = or 𝑠 𝐼 For circular cross sections, 1 3 Qβ«½ d (solid sections) 12 2 1 Q β«½ [ R3 β«Ί r 3 ] β«½ [ D 3 β«Ί d 3 ] (hollow sections) 3 12 H β«½

Beam deflections Elastic curve relations between w, V, M, ΞΈ, and v for constant EI Deflection β«½ v dv Slope β«½ β«½ dx d 2v Moment M β«½ EI 2 dx dM d 3v Shear V β«½ β«½ EI 3 dx dx dV d4v Load w β«½ β«½ EI 4 dx dx

Fundamental Mechanics of Materials Equations Plane stress transformations

Generalized Hooke’s Law

Normal and shear stresses on an arbitrary plane

Normal stress/normal strain relationships 1 ␧x β«½ [ ␴x β«Ί ␯ (␴y β«Ή ␴z )] E 1 ␧y β«½ [ ␴y β«Ί ␯ (␴x β«Ή ␴z )] E 1 ␧z β«½ [ ␴z β«Ί ␯ (␴x β«Ή ␴y )] E Shear stress/shear strain relationships 1 1 1 β₯xy β«½ ␢ xy β₯ yz β«½ ␢ yz β₯zx β«½ ␢ zx G G G where

␴n ⫽ ␴x

cos 2 βͺ

⫹ ␴y

sin 2 βͺ

β«Ή 2 ␢ xy sin βͺ cos βͺ

␢ nt β«½ β«Ί(␴ x β«Ί ␴y )sin βͺ cos βͺ β«Ή ␢ xy ( cos 2 βͺ β«Ί sin 2 βͺ) or 𝜎π‘₯ + πœŽπ‘¦ 𝜎π‘₯ βˆ’ πœŽπ‘¦ + cos 2πœƒ + 𝜏π‘₯𝑦 sin 2πœƒ 2 2 𝜎π‘₯ + πœŽπ‘¦ 𝜎π‘₯ βˆ’ πœŽπ‘¦ πœŽπ‘‘ = βˆ’ cos 2πœƒ βˆ’ 𝜏π‘₯𝑦 sin 2πœƒ 2 2 𝜎π‘₯ βˆ’ πœŽπ‘¦ sin 2πœƒ + 𝜏π‘₯𝑦 cos 2πœƒ πœπ‘›π‘‘ = βˆ’ 2 Principal stress magnitudes πœŽπ‘› =

2 ␴x β«Ή ␴y βŽ› ␴x β«Ί ␴y ⎞⎟ 2 ⎟⎟ β«Ή ␢ xy β«Ύ ⎜⎜⎜ ⎝ 2 2 ⎠ Orientation of principal planes ␢ xy tan 2βͺp β«½ (␴x β«Ί ␴y ) 2 Maximum in-plane shear stress magnitude

␴ p1, p 2 ⫽

2 βŽ› ␴x β«Ί ␴y ⎞⎟ 2 ␢ max β«½ β«Ύ ⎜⎜ β«Ή ␢ xy ⎟ ⎜⎝ 2 ⎟⎠

␴avg ⫽

or

Gβ«½

␢ max ⫽

␴p1 ⫺ ␴p 2 2

␴x ⫹ ␴y

Pressure vessels Axial stress in spherical pressure vessel pr pd ␴a ⫽ ⫽ 2t 4t Longitudinal and hoop stresses in cylindrical pressure vessels pr pd pr pd ␴long ⫽ ␴hoop ⫽ ⫽ ⫽ 2t 4t t 2t

Plane strain transformations Normal and shear strain in arbitrary directions ␧n β«½ ␧x cos 2 βͺ β«Ή ␧y sin 2 βͺ β«Ή β₯xy sin βͺ cos βͺ β₯nt β«½ β«Ί2( ␧x β«Ί ␧y )sin βͺ cos βͺ β«Ή β₯xy (cos 2 βͺ β«Ί sin 2 βͺ)

␧x β«Ή ␧y βŽ› ␧x β«Ί ␧y ⎞⎟2 βŽ› β₯xy ⎞⎟2 ⎟ β«Ή ⎜⎜⎜ ⎟⎟ β«½ β«Ύ ⎜⎜⎜ ⎝ 2 ⎠ ⎝ 2 ⎟⎠ 2

πœ€π‘§ =

𝛾π‘₯𝑦 πœ€π‘₯ + πœ€π‘¦ πœ€π‘₯ βˆ’ πœ€π‘¦ sin 2πœƒ + cos 2πœƒ + 2 2 2 𝛾π‘₯𝑦 πœ€π‘₯ + πœ€π‘¦ πœ€π‘₯ βˆ’ πœ€π‘¦ sin 2πœƒ πœ€π‘‘ = βˆ’ cos 2πœƒ βˆ’ 2 2 2 πœ€π‘₯ βˆ’ πœ€π‘¦ 𝛾π‘₯𝑦 𝛾𝑛𝑑 =βˆ’ sin 2πœƒ + cos 2πœƒ 2 2 2 Principal strain magnitudes πœ€π‘› =

βˆ’πœˆ (πœ€ + πœ€π‘¦ ) 1βˆ’πœˆ π‘₯

or

Orientation of principal strains β₯xy tan 2βͺp β«½ ␧x β«Ί ␧y βŽ› ␧x β«Ί ␧y ⎞⎟2 βŽ› β₯xy ⎞⎟2 ⎜ ⎜⎜ ⎜⎝ 2 ⎟⎟⎠ β«Ή ⎜⎜⎝ 2 ⎟⎟⎠ β«Ή ␧y

2 Normal strain invariance ␧x ⫹ ␧y ⫽ ␧n ⫹ ␧t ⫽ ␧p1 ⫹ ␧p 2

Mises equivalent stress for plane stress 1/ 2

␴M ⫽ [ ␴2p1 ⫺ ␴ p1 ␴p 2 ⫹ ␴ 2p 2 ]

Column buckling Euler buckling load Pcr β«½

␴cr ⫽ or

β₯max β«½ ␧p1 β«Ί ␧p 2

πœŽπ‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘™βˆ’π‘œπ‘’π‘‘π‘ π‘–π‘‘π‘’ = 0 πœŽπ‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘™βˆ’π‘–π‘›π‘ π‘–π‘‘π‘’ = βˆ’π‘

Failure theories

␲ 2 EI ( KL )2

Euler buckling stress

Maximum in-plane shear strain β₯max β«½β«Ύ 2 ␧x ␧avg β«½

Normal stress/normal strain relationships for plane stress 1 ␧x β«½ ( ␴x β«Ί ␯␴y ) E E ␴x β«½ (␧x β«Ή ␯␧y ) 1 β«Ί ␯2 1 ␧y β«½ ( ␴y β«Ί ␯␴x ) or E E ␴y β«½ (␧y β«Ή ␯␧x ) 1 β«Ί ␯2 ␯ ␧z β«½ β«Ί (␴x β«Ή ␴y ) E Shear stress/shear strain relationships for plane stress 1 or β₯xy β«½ ␢ xy ␢ xy β«½ Gβ₯ xy G

2 Absolute maximum shear stress magnitude ␴ ⫺ ␴min ␢abs max ⫽ max 2 Normal, stress invariance ␴x ⫹ ␴y ⫽ ␴n ⫹ ␴t ⫽ ␴ p1 ⫹ ␴p 2

␧p1, p 2

E 2(1 ⫹ ␯ )

␲2 E ( KL r )2

Radius of gyration r2 β«½

I A

2 ] ⫽ [ ␴x2 ⫺ ␴x ␴y ⫹ ␴y2 ⫹ 3 ␢ xy

1/2 2

x =

Ξ£xi Ai Ξ£Ai

Ξ£yi Ai Ξ£Ai

y =

I = Ξ£ ( I c + d 2 A) Table A.1 Properties of Plane Figures 1. Rectangle yβ€²

6. Circle y

y βˆ’ x

A = bh bh3 12 hb3 Iy = 12 hb3 I yβ€² = 3

h 2 b x = 2 bh3 Ixβ€² = 3 y =

x

h

C

βˆ’ y

xβ€² b

Ix =

Ο€d 2 4 Ο€r 4 Ο€d 4 Ix = Iy = = 4 64

r

A = Ο€r 2 =

x

C

d

2. Right Triangle

7. Hollow Circle y

yβ€²

y

bh 2 h y = 3 b x = 3 bh3 Ixβ€² = 12 A=

βˆ’ x

h βˆ’ y

C

x xβ€²

b

bh3 36 hb3 Iy = 36 hb3 I yβ€² = 12 Ix =

Ο€ 2 (D βˆ’ d 2 ) 4 Ο€ I x = I y = ( R4 βˆ’ r 4 ) 4 Ο€ (D4 βˆ’ d 4 ) = 64

A = Ο€ ( R2 βˆ’ r 2 ) =

R

r

x

C

d

D

3. Triangle

8. Parabola

yβ€²

bh 2 h y = 3 (a + b) x = 3 bh3 Ixβ€² = 12

yβ€²

A=

a

y

βˆ’ x

h βˆ’ y

C

x xβ€²

y βˆ’ x

bh3 36 bh 2 (a βˆ’ ab + b 2 ) Iy = 36

h 2 xβ€² b2 2bh A= 3 3b x = 8 yβ€² =

Ix =

x

h

C

βˆ’ y xβ€²

b

y =

3h 5

y =

3h 10

Zero slope

b

4. Trapezoid

9. Parabolic Spandrel a

h x

βˆ’ y

C

(a + b)h A= 2 1 2a + b y = h 3 a+b h3 (a 2 + 4 ab + b 2 ) Ix = 36 (a + b)

(

yβ€²

)

y

βˆ’ x

h 2 xβ€² b2 bh A= 3 3b x = 4

yβ€² =

Zero slope

h βˆ’ y

C b

x xβ€²

b

5. Semicircle

10. General Spandrel A=

y, yβ€²

r

C βˆ’ y

x xβ€²

696

yβ€²

Ο€r 2

2 4r y = 3Ο€

I x β€² = I yβ€² =

Ix = Ο€r 4 8

( Ο€8 βˆ’ 98Ο€ )r

4

y

βˆ’ x

h n xβ€² bn bh h A= x n +1 βˆ’ y xβ€² n +1 x = b n+2 yβ€² =

Zero slope

C b

y =

n +1 h 4n + 2

SIMPLY SUPPORTED BEAMS Beam

Slope

Deflection 3

2

1

ΞΈ1 = βˆ’ΞΈ 2 = βˆ’

2

PL 16 EI

Pb( L2 βˆ’ b 2 ) ΞΈ1 = βˆ’ 6 LEI

4

vmax = βˆ’ 5

ML ΞΈ1 = βˆ’ 3EI ML ΞΈ2 = + 6 EI

3

PL 48 EI

Pa 2b 2 v=βˆ’ 3LEI

Pa ( L2 βˆ’ a 2 ) ΞΈ2 = + 6 LEI 7

vmax = βˆ’

ML2 9 3 EI

βŽ› 3⎞ at x = L ⎜⎜1 βˆ’ ⎟ 3 ⎟⎠ ⎝ 11

wL3 ΞΈ1 = βˆ’ΞΈ 2 = βˆ’ 24 EI 13

wa 2 ΞΈ1 = βˆ’ (2 L βˆ’ a ) 2 24 LEI

ΞΈ2 = + 16

wa 2 24 LEI

Px (3L2 βˆ’ 4 x 2 ) 48 EI for 0 ≀ x ≀ L

6

v=βˆ’

2

Pbx 2 2 (L βˆ’ b βˆ’ x2 ) 6 LEI for 0 ≀ x ≀ a

9

v=βˆ’

Mx (2 L2 βˆ’ 3Lx + x 2 ) 6 LEI

12

vmax

5wL4 =βˆ’ 384 EI

14

v=βˆ’

v=βˆ’

wx ( L3 βˆ’ 2 Lx 2 + x3 ) 24 EI

wx ( Lx3 βˆ’ 4aLx 2 + 2a 2 x 2 + 4a 2 L2 24 LEI

wa 3 v=βˆ’ (4 L2 βˆ’ 7 aL + 3a 2 ) βˆ’4a 3 L + a 4 ) for 0 ≀ x ≀ a 24 LEI wa 2 2 2 (2 x3 βˆ’ 6 Lx 2 + a 2 x + 4 L2 x βˆ’ a 2 L) v = βˆ’ at x = a (2 L βˆ’ a ) 24 LEI 3

7 w0 L 360 EI w0 L3 ΞΈ2 = + 45 EI

ΞΈ1 = βˆ’

v=βˆ’

at x = a 8

10

Elastic Curve

17

w0 L4 vmax = βˆ’0.00652 EI at x = 0.5193L

15 18

v=βˆ’

for a ≀ x ≀ L

w0 x (7 L4 βˆ’ 10 L2 x 2 + 3 x 4 ) 360 LEI

CANTILEVER BEAMS Beam

Slope

Deflection

Elastic Curve

20

19

ΞΈ max

PL2 =βˆ’ 2 EI

22

21

vmax

PL3 =βˆ’ 3EI

23

ΞΈ max = βˆ’

2

PL 8 EI

24

vmax = βˆ’

3

5 PL 48 EI

26

25

ΞΈ max = βˆ’

ML EI

28

ML2 =βˆ’ 2 EI

29

ΞΈ max

31

ΞΈ max

for 0 ≀ x ≀ L

2

for L ≀ x ≀ L 2

Mx 2 v=βˆ’ 2 EI 30

vmax

wL4 =βˆ’ 8 EI

32

w0 L3 =βˆ’ 24 EI

Px 2 v=βˆ’ (3L βˆ’ 2 x ) 12 EI PL2 (6 x βˆ’ L ) v=βˆ’ 48 EI

27

vmax

wL3 =βˆ’ 6 EI

Px 2 v=βˆ’ (3L βˆ’ x ) 6 EI

vmax

wx 2 (6 L2 βˆ’ 4 Lx + x 2 ) v=βˆ’ 24 EI 33

w0 L4 =βˆ’ 30 EI

w0 x 2 v=βˆ’ (10 L3 βˆ’ 10 L2 x + 5 Lx 2 βˆ’ x 3 ) 120 LEI