Frequency and Period Measurement

Frequency and Period Measurement l ω transmitter receiver t vt l= 2 Frequency Counter Display Memory Strobe Input Input Signal Processor D...
Author: Brandon Kelly
1 downloads 0 Views 594KB Size
Frequency and Period Measurement l

ω transmitter

receiver

t

vt

l= 2

Frequency Counter

Display

Memory

Strobe Input

Input Signal Processor

Decade counter

Reset Gate

Time base

Input Gate Output

N f = t

t

N pulses

Time Base Crystal Oscillator Circuit (OSC)

Frequency Divider

Time base signal

•Non-compensated OSC •Temp. compensated OSC •Oven-type OSC

Quartz crystal High Q ~ 10000

symbol

Equivalent circuit

4-bit Binary Counter A

State decoder ABCD

B C D

Time base

Crystal Oscillator Circuit (OSC)

10 Hz 100 Hz 1 kHz

Frequency Divider

1s 0.1 s 0.01 s

Time base signal

Logic Diagram of a time base for a frequency counter

“0000” State 0

Reset

“0010” 2

Open gate

“1100” 12

Close gate

“1110” 14

Store

ABCD

ABCD

ABCD

Input Signal Processing

Output (Digital) Comparator Input (Analog)

Input (Analog)

Amplifier

Amplifier

Comparator (Schmitt Trigger)

Output (Digital)

Schmitt Trigger: Comparator with Hysteresis Vo

Vref

+

Vin

V(1)

Trigger level (Vref)

Vo

output

V(0) Vin

Vref

Vo

R2

R3

R1

+ Vin

V(1)

Vo

Vref VTH VTL V(0) VTL VTH

Vin

output

Period Measurement

Time base f = 1 MHz

Time base f = 1 MHz 1 µs

1 µs X pulses counted

T Digital measurement of time period T = (X pulses)(1 µs) = X µs

Y pulses counted

PW Digital measurement of pulse width PW = Y µs

Period Measurement (between pulses) start Signal A

Input Signal Proccessor

Gate

S

Count Counter

Q stop

Signal B

Input Signal Proccessor

R

1 MHz

Control circuit 100 kHz

A (start) B (stop) Gate CLK Count

Core system S 0 1 kHz 0 1 10 kHz 1

CLK

t

R Q 0 Not use 1 1 0 0 1 No change

Period Measurement (pulse duration) Vref

start

+

stop

Vref Amp

A

+

C S

B

D R

Q

Gate

S 0 0 1 1

R Q 0 No change 1 0 0 1 1 Not use

Comparator start

A B C D

stop

input

Control circuit

Gate Counter

CLK

Period Measurement (pulse period) V(1)

A Input High-pass filter

A B C D

B

+ -

J

C

K

SET

CLR

Q

D Gate

Q

Comparator V(1) = 5 V V(0) = 0 V +2.5 V -2.5 V V(1) = 5 V V(0) = 0 V V(1) = 5 V V(0) = 0 V

Measurement Error 1) Gating error (± 1 count) Frequency measurement If fin = 10 Hz, Gate time = 1 s Display count: 10±1 counts If fin = 1000 Hz, Gate time = 1 s Display count: 1000±1 counts

5 pulses 6 pulses

Gate open

If fx < fo Period measurement if fx > fo Frequency measurement

fc: clock frequency fx: unknown frequency Period meas.: the number of pulses (Np) Np = fc/fx Frequency meas.: with 1 s gate time the number of pulses (Nf) Nf = f x The crossover frequency (fo) Np = Nf fc/fo = fo; fo =√fc

Measurement Error 2) Time-base Error •Oscillator calibration errors •Short-term crystal stability errors (voltage transient, shock, vibrate, temperature) •Long-term crystal stability errors (aging, deterioration of crystal) National Institute of Standards and Technology, 60 kHz ∆F Loran-C, a navigation signal at 100 kHz

Slope~ 10-6deg Receiver

Fequency Multiplier

Phase Detector

Local Frequency Source

Recorder

Slope~ 10-9deg

Adjustment

10

20

30

40

50

Time (weeks)

Ex A frequency counter with an accuracy of ± 1 LSD ± (1×10-6) is employed to measure frequencies of 100 Hz, 1 MHz, and 100 MHz. Calculate the percentage measurement error in each case. At f = 100 Hz error = ± (1 count ± 100 Hz × 10-6) = ± (1 count ± 1 × 10-4 count) ≈ ± 1 count % error = ±

  1 × 100%     100 Hz

= ± 1% At f = 1000 Hz error = ± (1 count ± 1 MHz × 10-6) = ± (1 count ± 1 count) = ± 2 count % error = ±

  2 × 100%     1 MHz

= ± 2 × 10-4 %

At f = 100 MHz error = ± (1 count ± 100 MHz × 10-6) = ± (1 count ± 100 count) = ± 101 count % error = ±

  101 × 100%     100 MHz

= ± 1.01 × 10-4 % Time base error

Time base output

Low frequency

High frequency

Low frequency error ± 1 pulse High frequency error ± X pulse

Measurement Error 3) Trigger Level Error (Noise) -Use large signal amplitudes and fast rise time Trigger level

Trigger level ∆T Noisy signal

Cleaned signal

Maximum accuracy could be obtained by 1) use period measurement if fx < fc use frequency measurement if fx > fc 2) Calibrate regularly to prevent long-term stability error 3) Reduce trigger level error in time measurement by using large signal and fast rise time

Hysteresis band UTP LTP

'clean' sine wave crosses the hystereis band twice during each cycle triggering counting circuits once per cycle

Noisy sine wave crosses the hystereis band more than twice during each cycle - produce counting error

Attenuated noisy wave form crosses the hystereis band twice during each cycle

UTP LTP

PW Measured PW

A low amplitude input pulse can produce errors in pulse width measurement

PW Measured PW

Amplification of the input pulse minimizes the pulse width measurement

Ex จงหา resolution และคาความถี่สูงสุดที่สามารถแสงผลไดในเครื่องวัด ความถี่ที่มีการแสดงผลแบบ 7 หลัก ถาเวลาของสัญญาณเกตถูกตั้งไวที่ 1 วินาที (resolution = 1 Hz, Max. freq. = 9,999,999 Hz) Ex เครื่องวัดความถี่เครื่องหนึ่งมีความผิดพลาดจากการนับ ±1 ครั้ง (±1 count) และมีความผิดพลาดจากฐานเวลา 5 สวนในลานสวน (ppm: part per million) จงหาคาเปอรเซ็นตความผิดพลาดเมื่อใชวัดความถี่ 1 kHz ความผิดพลาดรวมเทากับผลรวมของความผิดพลาดทั้งสอง ความผิดพลาด = ± (1 count + 1 kHz x 5 ppm) = ± (1 count + 0.005 count) คาเปอรเซ็นตความผิดพลาด = ± 1.005 1000 x 100 = 0.1%

Specifications of a freq./period Measurement Frequency mode Range: DC to 50 MHz Gate time: Manual 1 ms to 100 s in decade step Automatic up 1 s gate time Period mode Range: 1 µs to 1 s unit in µs Duration mode Range: Inputs:

100 ns to 104 s 2 channels for start signal and 1 channel for stop signal

Extending the frequency range of a counter ™Prescaler (upto 1.5 GHz) 10 - 100 MHz

÷10

1-10 MHz

10 MHz Frequency Counter

Reduce resolution but can be improved by extending gate time

™Heterodyne Technique frequency selector

100 MHz

Harmonic Generator

Input Signal (f2)

Tuned Cavity

100 MHz – 5GHz (f1)

Counter

Low Pass Filter

f1 ± f2

Amp.

f1 - f2

Homodyne and Heterodyne technique ½ {cos [2π( f2- f1 )]t + cos [2π( f2+ f1 )]t}

sin2π f1 t

sin2π f2 t

If f1 = f2; Homodyne 1

1

0.8

Time domain

0.5 0.6 0.5

1

1.5

0.4

2

-0.5

0.2

-1

0

Amplitude

Amplitude

Frequency domain

0.5

f1

f

0

difference

1

1.5

2

sum

2f1

f

Homodyne and Heterodyne technique If f1 ≠ f2; Heterodyne Time domain

1

0.75 0.5

0.5

0.25 0.5

1

1.5

2

-0.25

0.5

1

1.5

2

-0.5

-0.5

-0.75

0

Amplitude

Frequency domain

Amplitude

-1

f1

f2

f

0

f2 - f1

f1 + f2

f

Automatic Heterodyne Unit Ex input freq. 2.1 GHz

1.0 GHz

A

500 MHz

1.5 ± 2.1 =3.6, 0.6 GHz 2.0 ± 2.1 =4.1, 0.1 GHz

1.5 GHz ft = 500 MHz 2.0 GHz

Harmonic Generator

Switch 2.5 GHz

To 500 MHz Counter

Low Pass Filter

Level Detector

3.0 GHz X5

Control logic

3.5 GHz 100 MHz from Frequency Counter

f

Level Detector Input 500 MHz - 4 GHz

Accuracy ™Prescaler Displayed freq. = Accuracy ∝ t

fin t N

fin: input freq. N : divider of prescaler t : gate time

exactly the same as the counter without a prescaler

™Heterodyne Technique Q Gate time, t = fc

Q : Time-base Divisor fc : Time-base Clk freq. N : Harmonic number

Input freq., fin = f in′ ± Nf c Q Q = f in′ ± NQ = f in′ t ± NQ Displayed freq. = fin fc fc Accuracy ∝ t; (NQ is constant)

Computing Counter Input

Gate

Input Signal Processing

A Counter

B Counter

Precision Clock

Time Base

Computer

Count in A Input freq. = Count in B

Input time =

Count in A Clk freq.

Period/ Frequency Display

9 Opening and Closing gate are controlled from either the input signal or the internal clock. 9 Computer will help to determine whether freq./period will be performed.

Suggest Documents