Flow of Particulate Solids in Bunkers and Flow Problems

F 4.1 Flow of Particulate Solids in Bunkers and Flow Problems Funnel or Core Flow Mass Flow Mass Flow with Funnel Flow Effect (Expanded Flow) angle ...
Author: Peter Taylor
78 downloads 2 Views 9MB Size
F 4.1

Flow of Particulate Solids in Bunkers and Flow Problems Funnel or Core Flow Mass Flow Mass Flow with Funnel Flow Effect (Expanded Flow) angle of repose ϕb ϕb

3

7

3 2 2

5

height 4 levels of free bulk 5 surface

6

6

7

7

4

6

5

velocity profiles

5 4

4 2

3 2 Θ

8

Θ1

6

plug flow

3

1 1 8

8 7

8

Θ

1

Θ2

11

Numbers show the sequence of discharge of bulk layers Channelling,

Piping, Ratholing

dead zones

Bridging, Arching

dead zones

Θ Θ

Θ

F 4.2

F 4.3

F 4.4

Dynamics of Force Balance at Cohesive Powder Bridge B

h

Θ dFT

dFG

slot length l

dh B

Θ

VF W

dFf dFV

´ dFV

1

b

´

1

F = 0 = - dFG + dFT + dFV + dFf dFG = b. g.b.dhB. l dFV =

'.sin . dhB. cos .2l

Wall force

1

dFT = dFG .

dFf =

Dead weight of powder bridge

Eu .

a g

3 . f .u2 .(1 - ) 4 .d . 2

Force of inertia

. b. l. dh

B

Drag force of penetrating fluid

Apparatus Design of Silo Hopper to Avoid Bridging F 4.5 1. Mass Flow - Avoid Channelling: Hopper angle = f(wall friction angle friction e) see diagrams F 4.6 and F 4.7

W

, effektive angle of internal

- Avoid Bridging: 1.1 Free Flowing Bulk Solid (avoid machanical blocking of coarse lumps or rocks): (1a) (1b)

slot width (1c) bmin

article size k = 0.6 ... 1.4 shape dependent parameter

1.2 Cohesive Powder (avoid cohesive bridges): - Effective wall stress at arch:

´=

- Flow factor (diagram F 4.11):

ff = f( e,

=

+

´

(2) , )

W

W

bmin

(3) (4)

b

1

/ff

1

·g·b

´

1

σc,crit

critical uniaxial compressive strength

ρb,crit g

bulk density at σ1,crit gravitational acceleration

F 4.6

Bounds between Mass and Core Flow axisymmetric Flow (conical hopper) effective angle of internal friction e = 70° 60° 50° 40° 30°

45

in deg

30

angle of wall friction

35

w

40 Core Flow

25 20 Mass Flow

15 10 5 0

0

10 20 30 hopper angle versus vertical

1 1 - sin 180° - arccos 2 2 sin

select

e e

-

40 in deg

W

50

- arc sin sin sin

W e

60

F 4.7

Bounds between Mass and Core Flow Plane Flow (wedge-shaped hopper) 55

effective angle of internal friction e = 70° 60° 50° 40° 30°

50

angle of wall friction

w

in deg

45

Core Flow

40 35 30 25 20 Mass Flow

15 10 5 0

0

10 20 30 hopper angle versus vertical

50° - e 7,73° 15,07°

40 in deg

50

60

arc tan 60,5° +

with

W

e

3° and

60°

1-

W

42,3° + 0,131° · exp(0,06 ·

e

)

F 4.8

- Conical Hopper (axisymmetric stress field) Cone

Pyramid

max

max wall

bmin

b

mi n

shape factor m = 1

-

[ 3a ]

Wedge-shaped Hopper (plane stress field) vertical front walls

D

max

b min

lm

in

>3

b min

·b

lm

in >3

mi

n

shape factor m = 0

·b

mi

n

F 4.9

inclined front walls

B L 1max

2max

1,5

b

mi

n

b min 3b

mi

n

lm

in

>6

1,5

·b

mi

n

b

mi

n

F 4.10

uniaxial compressive strength

unconfined yield strength

effective wall stress

'

c

Arching/Flow Criterion of a Cohesive Powder in a Convergent Hopper

'=

1

1

c

/ ff

c

= a1 ·

1

+

c,0

c,crit '

'

c,crit

c

flow

bmin

'

'

c

stable arch

1

c,0

0

major principal stress during consolidation (steady-state flow)

1

'

1

Ascertainment of Approximated Flow Factor (angle of wall friction

W

F 4.11

= 10° - 30°)

flow factor ff

2

1,5

conical hopper

wedge-shaped hopper 1 20

30

40 50 effective angle of internal friction

60 e in deg

70

F 4.12

F 4.13

b

Consolidation Functions of a Cohesive Powder for Hopper Design for Reliable Flow b,crit

bulk density

bulk density

b,st

* b,0

b

1 0 90°

angles of internal friction e, st, i

effective angle of internal friction

stationary angle of internal friction

angle of internal friction

st

= const.

i

≈ const.

c

1

unconfined yield strength

' effective wall stress

e

uniaxial compressive strength c

'= 1

1 / ff

= a1 ·

1

+

c

c,0

bmin

c,crit

ff = 1

'

'

c,st c,0 1

0

1

1

=

bmin,st c,st

major principal stress during consolidation (steady-state flow)

1

F 4.14

b

Consolidation Functions of Cohesive Powders for Hopper Design b,crit

bulk density

b,st

b=

*

* b,0

)n

· (1 +

b,0

0 10

discharge flow rate vs in m/s

1,5

calculated (Tomas) measured (Carleton)

1,4 1,3

b = 0,156 m = 10°

1,2 1,1 1,0

b = 0,036 m = 10°

0,9 0,8

b = 0,036 m = 15°

0,7

b = 0,0167 m = 10°

0,6 0,5 0,4 0,3 b = 0,0103 m = 10°

0,2 0,1 0 5 10

-2

2

5

10-1

2 5

10

0

2

particle size d in mm

5

101

2

5

102

F 4.28

F 4.29

Equipment for Filling of Silos

- to avoid segregation

F 4.30

F 4.31

Methods to Control the Level of Silos

1. Pressure gauges

2. Mechanical plumb

3. Revolving blade devices

5. Conductivity measurement 4. Membrane pressure switch

7. Radiometric measurement

6. Capacity measurement

8. Ultra-sonic measurement

F 4.32

Revolving Blade Level Indicator LS 40 LS 40/A - 0,1 to LS 40/A - 3,0

rated length

rated length

LS 40/B - 0,25 to LS 40/B - 6,0

normal edition with protection pipe from carbon (St) or stainless steel (N)

LS 40/C - 0,25 to LS 40/C - 1,0

LS 40/C - 0,4 - 0,14

installation at inclined wall

blade type

N

145

0,14 C

material

St 0,14

N St

0,36

N St

installation length in m

type

0,25 0,5 1,0 0,25 0,5 1,0

C - 0,25 - 0,14 - N C - 0,5 - 0,14 - N C - 1,0 - 0,14 - N C - 0,25 - 0,14 - St C - 0,5 - 0,14 - St C - 1,0 - 0,14 - St C - 0,4 - 0,14 - N C - 0,4 - 0,14 - St

145

∅10

360

110

0,11

N St

0,4 bended protection pipe

C - 0,4 - 0,36 - N C - 0,4 - 0,36 - St C - 0,4 - 0,11 - N C - 0,4 - 0,11 - St

F 4.33

Hopper Locks

horizontal gate

vertical gate

ball valve

discharge chute with claw lever lock

horizontal rotary slide-valve

double rotary slide-valve

rotary disk valve

lock with swivel chute

F 4.34

Hopper gates Size in mm b1 d1 h1 h2 l1 kg 250 250 120 86 1097 315 315 1230 400 410 315 140 100 1420 500 515 1630 630 630 1925 800 800 400 160 114 2652 1000 1000 180 132 3100

l2 982 1115 1305 1515 1810 2362 2810

l3

Mass in

180 218 265 318 380 465 570

70 92 123 147 221 393 570

Hopper gates with drive Size in mm

h1

h2

250 120 136 315 118 400 140 500 119 630 160 111 800 1000 180 101 b1 see table above

l1 1245 1450 1735 2050 2405 2915 3530

l2

l3

905 1045 1235 1445 1685 2025 2435

180 217 265 317 380 465 570

Mass P in kg in kW 200 230 0.55 260 325 0.75 410 535 1.1 785