Final Displacement with Avg. Velocity. Final Displacement with Velocity and Acceleration 1. Final Velocity without Time

CHEAT SHEET PHYS1205: Integrated Physics Final Displacement with Avg. Velocity Vector Multiplication/Division by a Scalar – Only magnitude is multip...
Author: Barry Payne
1 downloads 2 Views 9MB Size
CHEAT SHEET PHYS1205: Integrated Physics

Final Displacement with Avg. Velocity

Vector Multiplication/Division by a Scalar – Only magnitude is multiplied or divided. Direction is reversed for negative scalars.

1 π‘₯! = π‘₯! + Β  (𝑣!" + 𝑣!" )𝑑 2

University of Newcastle

Final Displacement with Velocity and Acceleration

1

1D Motion

Vector – A measurement with both magnitude and direction (e.g. Displacement) Scalar – A measurement with only magnitude (e.g. distance)

1 π‘₯! = π‘₯! + 𝑣!" 𝑑 + π‘Ž! 𝑑 ! 2

Vector Components β€’

Length 𝐴 =

Final Velocity without Time ! ! 𝑣!" = 𝑣!" + 2π‘Ž! π‘₯! βˆ’ π‘₯!

β€’

βˆ†π‘₯ βˆ†π‘‘

Objects in Freefall – Acceleration is –g (9.8m/s )

Instantaneous Velocity 𝑣!"#$

2

Vectors and 2D Motion

Vector Addition – Tip to Tail 𝑑π‘₯ = 𝑑𝑑

πœƒ = Β  tan!!

βˆ†π‘£ βˆ†π‘‘

Instantaneous Acceleration π‘Ž!"#$ =

𝑑π‘₯ 𝑑𝑑

Final Velocity

𝐴!

𝐴 = 𝐴 x𝚀 + 𝐴 yπš₯ Projectile Motion β€’

Vector Subtraction – From the negative to the positive, or add the negative (𝐴 βˆ’ 𝐡 = 𝐴 + (βˆ’π΅))

𝐴!

Unit Vectors:

Position 1 π‘Ÿ! = π‘Ÿ! + 𝑣! 𝑑 + 𝑔𝑑 ! 2

Average Acceleration π‘Ž!"# =

!

Direction

2

Average Velocity 𝑣!"# =

!

𝐴! + 𝐴!  

β€’

Initial Horizontal Velocity 𝑣!" = 𝑣! cos πœƒ

β€’

Initial Vertical Velocity 𝑣!" = 𝑣! sin πœƒ

𝑣!" = 𝑣!" + π‘Ž! 𝑑

Learn your uni course in one day. Check spoonfeedme.com for free video summaries, notes and cheat sheets by top students.

CHEAT SHEET Uniform Circular Motion β€’

Equilibrium

β€’

Kinetic Energy

Kinetic Friction

𝐾𝐸 = 𝐹 = πœ‡! 𝑁

!

π‘Ž! + π‘Ž!

!

β€’

π›΄π‘Š = π›₯𝐾𝐸

𝐹 ≀ πœ‡! 𝑁 2πœ‹π‘Ÿ 𝑣

𝑣! 𝐹 = π‘šπ‘Ž! = π‘š π‘Ÿ

π‘Ÿ!" = π‘Ÿ!" + 𝑣!" 𝑑

Force and Motion st

Newton’s 1 Law - In the absence of external forces, when viewed from an inertial reference frame, an object at rest will remain at rest and an object in motion continues in motion with a constant velocity

𝛴𝐹 = π‘šπ‘Ž

4

𝐹!" = Β  βˆ’πΉ!"

Gravitational π‘ˆ = π‘šπ‘”π›₯𝑦 Elastic

Work, Energy and Power

Scalar/Dot Product 𝐴 βˆ™ 𝐡 = π΄π΅π‘π‘œπ‘ πœƒ Work β€’

Same Direction as Displacement π‘Š = πΉβˆ†π‘Ÿ

β€’

Different Direction to Displacement

π‘ˆ=

β€’

Non-conservative Force - Work done dependent on the motion of the object (e.g. Friction) Conservation of Energy β€’

π‘Š!"# =

!! !!

Mechanical Energy 𝐸!"#! = 𝐾𝐸 + π‘ˆ

β€’

Work by Varying Force

1 ! π‘˜π‘₯ 2

Conservative Force - Work done is independent of the path taken by an object (e.g. Gravity)

π‘Š = πΉβˆ†π‘Ÿπ‘π‘œπ‘ πœƒ

rd

Newton’s 3 Law - If two objects interact, the force that object one is exerting on object 2 is equal and opposite to that object two is exerting on object one

β€’

β€’

nd

Newton’s 2 Law - Net Force is the product of Mass and Acceleration

Potential Energy

Circular Motion Dynamics

Relative Velocity

1 π‘šπ‘£ ! 2

Work-Kinetic Energy Theorem

Static Friction

Period 𝑇=

3

𝐹! = βˆ’π‘˜π‘₯

Friction

𝑣! π‘Ÿ

Overall Acceleration |π‘Ž| =

β€’

𝛴𝐹 = 0

Centripetal Acceleration π‘Ž! =

β€’

Hooke’s Law

Total Energy 𝐸!"! = 𝐾𝐸 + π‘ˆ + 𝐸!"#

𝐹! 𝑑π‘₯

Learn your uni course in one day. Check spoonfeedme.com for free video summaries, notes and cheat sheets by top students.

CHEAT SHEET β€’

Non-Conservative Force Absent

β€’

Conservation of KE (Elastic Collisions)

βˆ†πΈ!"#! = 0 β€’

𝐾𝐸! = 𝐾𝐸!

Non-Conservative Force Present

β€’

Perfectly Inelastic

βˆ†πΈ!"! = 0

π‘š! 𝑣!! + π‘š! 𝑣!! = (π‘š! + π‘š! )𝑣!

Power

β€’ π‘‘π‘Š πœ‘= 𝑑𝑑

5

Perfectly Elastic π‘š! 𝑣!! + π‘š! 𝑣!! = π‘š! 𝑣!! + π‘š! 𝑣!! 1 1 1 1 π‘š 𝑣! + π‘š 𝑣! = π‘š 𝑣! + π‘š 𝑣! 2 ! !! 2 ! !! 2 ! !! 2 ! !!

Momentum 6 𝑝 = π‘šπ‘£

Definition

Final Angular Displacement πœƒ! = Β  ΞΈ! + Ο‰t + Ξ±t ! Final Angular Velocity without Time Ο‰!! = πœ”!! + Β 2Ξ±(ΞΈ! βˆ’ ΞΈ! ) 1 ΞΈ! = ΞΈ! + (Ο‰! + Ο‰! )t 2

Arc Length

Kinetic Energy of Rotation 𝐾! =  

Translational Velocity

For Constant Force For Non-Constant Force 𝐼=

!!

𝑣 = πœ”π‘Ÿ Translational Acceleration

𝐼 = 𝐹𝑑

𝐹. 𝑑𝑑

!!

β€’

𝐼 =  

Average Angular Velocity πœ”!"#

Conservation of Momentum (All Collisions) 𝑝! = 𝑝!

πœ”π’Šπ’π’”π’•

π‘‘πœƒ = 𝑑𝑑

Instantaneous Angular Acceleration

π‘š! π‘Ÿ!!

General

π‘Ž = π›Όπ‘Ÿ βˆ†πœƒ = βˆ†π‘‘

πœ”! 2

Moment of Inertia

β€’

Instantaneous Angular Velocity

Collisions β€’

πœ”! = πœ”! + Β Ξ±t

𝑠 = π‘Ÿπœƒ

𝐼 = βˆ†π‘

β€’

Final Angular Velocity

Rotation

Impulse

β€’

π‘‘πœ” 𝑑𝑑

Final Angular Displacement with Avg. Velocity

Momentum

β€’

𝛼!"#$ =

β€’

πœŒπ‘Ÿ !  𝑑𝑉

Sphere 𝐼=

2 π‘šπ‘Ÿ ! 5

𝐼=

1 π‘šπ‘Ÿ ! 2

Cylinder

Learn your uni course in one day. Check spoonfeedme.com for free video summaries, notes and cheat sheets by top students.

CHEAT SHEET β€’

7

Disk 𝐼 = π‘šπ‘Ÿ !

Parallel Axis Theorem

Waves, Oscillations and SHM

Wave Number

β€’

𝐸!"#! =

Wave Equation

Torque

β€’

𝑣 = Β  Β±πœ” 𝐴! βˆ’ π‘₯ !

𝜏 = π‘ŸπΉπ‘ π‘–π‘›πœ™ β€’

Using Perpendicular Distance

β€’

𝑣=

Net Torque π›΄πœ = 𝐼𝛼 and 𝐸! = π‘šπ‘

β€’

β€’

β€’

𝑇 = 2πœ‹

General Equation Acceleration

Angular Momentum

𝐼 π‘‘π‘šπ‘”

𝑇 = 2πœ‹ π‘Ž! = βˆ’πœ” ! π‘₯

β€’

Angular Frequency

The Conservation of Momentum πœ”=

𝐿! = 𝐿! β€’

π‘˜ π‘š

Period

Frequency

8

Sound and EM Waves

Bulk Modulus 𝐡=βˆ’

𝑇= β€’

𝐿 𝑔

Physical Pendulum

o

π‘₯ 𝑑 = π΄π‘π‘œπ‘ (πœ”π‘‘ + πœ™) β€’

𝐿 = πΌπœ”

β€’

𝑇 πœ‡

SHM and Circular Motion – Uses SHM formulae for each direction of movement SHM and the Pendulum o Period

Simple Harmonic Motion

!

Angular Momentum

β€’

Speed of Wave on a String

𝜏 = 𝐹𝑑

1 ! π‘˜π΄ 2

Velocity

𝑦 π‘₯, 𝑑 = 𝐴𝑠𝑖𝑛 π‘˜π‘₯ βˆ’ πœ”π‘‘ + πœ™

Using Radius

πœ” 1 = 2πœ‹ 𝑇

Energy

2πœ‹ π‘˜= πœ†

𝐼 = 𝐼!" ×𝑀𝐷 !

β€’

𝑓=

2πœ‹ πœ”

βˆ†π‘ƒ βˆ†π‘‰/𝑉

Sound Wave Displacement 𝑠 π‘₯, 𝑑 = 𝑠!"# cos Β (π‘˜π‘₯ βˆ’ πœ”π‘‘)

Learn your uni course in one day. Check spoonfeedme.com for free video summaries, notes and cheat sheets by top students.

CHEAT SHEET Sound Wave Pressure β€’

β€’

Including Bulk Modulus

𝐼=

βˆ†π‘ƒ = 𝐡𝑠!"# sin Β (π‘˜π‘₯ βˆ’ πœ”π‘‘) β€’

β€’

Without Bulk Modulus

𝐼≑

Formula

π‘ƒπ‘œπ‘€π‘’π‘Ÿ!"# 4πœ‹π‘Ÿ !

𝑦 = 2𝐴𝑠𝑖𝑛 π‘˜π‘₯ cos Β (πœ”π‘‘) β€’

Amplitude π‘Žπ‘šπ‘ = 2𝐴𝑠𝑖𝑛(π‘˜π‘₯)

β€’

𝑣 + 𝑣! 𝑓 𝑣 βˆ’ 𝑣!

β€’

𝑇! 273

β€’ β€’

EM Waves

β€’

Electrical Component 𝐸 = 𝐸! sin Β (π‘˜π‘₯ βˆ’ πœ”π‘‘) Magnetic Component 𝐡 = 𝐡! sin Β (π‘˜π‘₯ βˆ’ πœ”π‘‘)

When a pulse hits a fixed boundary, reflection is inverted When a pulse hits a free boundary, reflection is not inverted When a pulse moves from a light to a heavy string the reflected pulse is inverted When a pulse moves from a heavy to a light string, the reflection is not inverted

𝑦 = 2𝐴𝑠𝑖𝑛 π‘˜π‘₯ βˆ’ πœ”π‘‘ +

πœ™ πœ™ cos 2 2

π‘›πœ† Β (π‘€β„Žπ‘’π‘Ÿπ‘’  𝑛 = 0, 1, 2 … ) 2

Antinodes π‘›πœ† Β π‘€β„Žπ‘’π‘Ÿπ‘’  𝑛 = 1, 3, 5 … ) 4

Boundary Conditions on a String 𝑓! =

𝑛 𝑇 2𝐿 πœ‡

Standing Waves in an Air Column β€’

Superposition

Interference

Nodes

π‘₯=

Reflection of a Pulse

β€’

Intensity of a Sound Wave

Formula

π‘₯= 𝑓′ =

Dependence on Temperature 𝑣 = Β 331 1 +

β€’

β€’

Doppler Effect 𝐡 𝜈 =   𝜌

β€’

Standing Waves on a String

𝐼 𝛽 = 10 log 𝐼!

Speed of Sound

β€’

!

Sound Levels in Decibels

π‘š 𝜌= 𝑉

β€’

βˆ†π‘ƒ!"# 2𝜌𝜈

In Three Dimensions

βˆ†π‘ƒ!"# = πœŒπ‘£πœ”π‘ !"# Density

π‘π‘Žπ‘‘β„Ž Β π‘‘π‘–π‘“π‘“π‘’π‘Ÿπ‘’π‘›π‘π‘’ Γ—2πœ‹ = π‘β„Žπ‘Žπ‘ π‘’ Β π‘‘π‘–π‘“π‘“π‘’π‘Ÿπ‘’π‘›π‘π‘’ πœ†

Per Unit Area

Closed Pipe 𝑓! =

β€’

π‘›πœˆ Β (π‘€β„Žπ‘’π‘Ÿπ‘’  𝑛 = 1, 3, 5 … ) 4𝐿

Open Pipe 𝑓! =

π‘›πœˆ Β (π‘€β„Žπ‘’π‘Ÿπ‘’  𝑛 = 1, 2, 3 … ) 2𝐿

Learn your uni course in one day. Check spoonfeedme.com for free video summaries, notes and cheat sheets by top students.

CHEAT SHEET β€’

End Effects 𝐿=

β€’

Equation of Continuity

π‘›πœ† βˆ’ 2 Β Γ—  𝑒𝑛𝑑  𝑒𝑓𝑓𝑒𝑐𝑑𝑠 2

𝑣! 𝐴! = 𝑣! 𝐴!

Image Formation β€’

Magnification π‘š=βˆ’

β€’

9

Fluids

1 1 𝑝! + 𝑝𝑣!! + 𝑝𝑔𝑦! = 𝑝! + 𝑝𝑣!! + 𝑝𝑔𝑦! 2 2

Fluids at Rest β€’

Density 𝑝=

β€’

π‘š 𝑉

10

𝐹 𝐴

𝑝! = 𝑝 βˆ’ 1π‘Žπ‘‘π‘š

Total Internal Reflection

β€’

𝑛! πœƒ! = sin!! 𝑛!

β€’

β€’

Barometers 𝑝!"#$% = π‘π‘”β„Ž

β€’

β€’

Focal Length 1 π‘Ÿ 2

β€’

Archimedes Principle 𝐹! = 𝑝! 𝑉! 𝑔

Fluids in Motion

β€’

𝑃𝑓 π‘ƒβˆ’π‘“

Thin lens equation in P 𝑖𝑓 π‘–βˆ’π‘“

Magnification in terms of P and f π‘š=

Manometers 𝑝!"#$% = 1π‘Žπ‘‘π‘š + π‘π‘”β„Ž

Thin Lens Equation in i

𝑃= 𝑓=

1 1 βˆ’ π‘Ÿ! π‘Ÿ!

Focal Length (convex lens)

𝑖=

Spherical Mirrors β€’

Focal Length

1 π‘›βˆ’1 = 𝑓 π‘Ÿ!

𝑛! π‘ π‘–π‘›πœƒ! = 𝑛! π‘ π‘–π‘›πœƒ! Β (𝑆𝑛𝑒𝑙𝑙 ! 𝑠 Β πΏπ‘Žπ‘€)

Pressure in Liquids Gauge Pressure

β€’

β€’

Refraction

𝑝 = 𝑝! + 𝑝𝑔𝑑 β€’

Thin Lens Equations 1 = π‘›βˆ’1 𝑓

Ray Optics

Pressure 𝑃=

β€’

Bernoulli’s Equation

𝑖 𝑝

𝑓 π‘ƒβˆ’π‘“

Image Distance (thin lens equation) 1 1 1 + = 𝑃 𝑖 𝑓

β€’

Magnification in terms of i and f π‘š=

π‘–βˆ’π‘“ 𝑓

Learn your uni course in one day. Check spoonfeedme.com for free video summaries, notes and cheat sheets by top students.

CHEAT SHEET Thin Lens Images

β€’

Lens

P

Real?

Orientation

m

Convex

F

Yes

↓

↑

= 2F

Yes

↓

-

> 2F

Yes

↓

↓

F

No

↑

↑

= 2F

No

↑

-

> 2F

No

↑

↓

Concave

π‘š!"! = π‘š! π‘š!

π‘š!" = βˆ’

11

Distances of Dark Fringes

𝑓!" 𝑓!"

𝑦′! = β€’

βˆ†π‘¦ =

Path Difference β€’

Constructive

β€’

Angles for Dark Fringes πœƒ! =

Destructive π›₯π‘Ÿ = π‘š +

β€’

1 πœ† Β (π‘€β„Žπ‘’π‘Ÿπ‘’ Β π‘š = 1, 2, 3 … ) 2

Angles for Bright Fringes πœƒ! =

Simple Magnifying Lens π‘š! =

25 𝑓

Compound Microscope π‘š=βˆ’

𝑠 25 Γ— 𝑓!" 𝑓!"

β€’

π‘šπœ† 𝑑

Distances of Bright Fringes πΏπ‘šπœ† 𝑦! = 𝑑

β€’

πœ†πΏ 𝑑

Interference of Light in Single Slit

π›₯π‘Ÿ = π‘šπœ† Β (π‘€β„Žπ‘’π‘Ÿπ‘’ Β π‘š = 1, 2, 3 … ) β€’

1 πΏπœ† 2 𝑑

π‘š+

Distances Between Fringes

Wave Optics

Optical Instruments

β€’

β€’

β€’

𝑦! =

Angles for Dark Fringes πœƒβ€²! =

π‘š+ 𝑑

1 πœ† 2

β€’

π‘πœ† π‘Ž

Distances for Dark Fringes

Interference of Light in Double Slit

Two Lens System

β€’

Refracting Telescope

π‘πœ†πΏ π‘Ž

Width of Central Maximum 𝑀=

2πœ†πΏ π‘Ž

Circular Aperture Diffraction 𝑀=

2.44πœ†πΏ 𝐷

Interferometer 𝑑=

π‘πœ† 2

Learn your uni course in one day. Check spoonfeedme.com for free video summaries, notes and cheat sheets by top students.

CHEAT SHEET 12

Charge

Ohm’s Law

Charge

Coulomb’s Law

𝐼= πΎπ‘ž! π‘ž! 𝐹= π‘Ÿ!

Power and Energy β€’

Electrical Field β€’

Power delivered by an emf 𝑃!"# = 𝐼𝛦

Vector Equation 𝐸=

β€’

π›₯𝑉 𝑅

β€’

𝐹 π‘ž

Electrical Field of a Point Charge 𝐸=

πΎπ‘ž π‘Ÿ!

Electrical Potential π‘ˆ!"!# = π‘‰π‘ž

14

-19

e = -1.60 Γ— 10

β€’

K = 8.99 Γ— 10 Nm /C

β€’

V = J/C

9

C 2

2

Electrical Circuits

Power Dissipated by a Resistor π›₯𝑉! 𝑃! = 𝑅

-

β€’

!

β€’

A = C/s

β€’

Ξ© = V/A

Β 

Units and Constants

Particle Kinematics in One Dimension β€’

g = 9.8m/s

2

Particle Dynamics

13

Electrical Circuits Definition 𝐼= β€’

N = kg.m/s

2

Work and Energy

Current β€’

β€’

π›₯π‘ž π›₯𝑑

Conservation of Charge 𝛴𝐼!" = 𝛴𝐼!"#

2

β€’

J = Nm = kg.m /s

β€’

W = J/s

β€’

1Hp = 746W

Fluids β€’

Pa = N/m

2

Learn your uni course in one day. Check spoonfeedme.com for free video summaries, notes and cheat sheets by top students.