February 11, 2013 SBSE Training program. Part 1: Introduction & Fundamentals Part 2: Optimization of SBSE

February 11, 2013 | SBSE Training program 14h00 17h30 : Part 1: Introduction & Fundamentals Part 2: Optimization of SBSE Coffee Break Part 3: Applic...
Author: Elwin Bryan
1 downloads 0 Views 6MB Size
February 11, 2013 | SBSE Training program 14h00 17h30 :

Part 1: Introduction & Fundamentals Part 2: Optimization of SBSE

Coffee Break Part 3: Application Overview Part 4: Extending SBSE to more polar solutes

Frank DAVID, RIC

Stir Bar Sorptive Extraction A Decade of Exciting Applications

Frank David RIC and Ghent University, Belgium

Part 1: Introduction & Fundamentals • Origin of SBSE • From SPME to SBSE • How to calculate a theoretical recovery?

Why Sample Preparation ? (EXIT) • Extraction: remove solutes from matrix • Enrichment: concentrate solutes (enrichment factor X) • Isolation: selective extraction / clean-up / purification • Transformation: – Derivatization – Pyrolysis

Why SBSE? • • • •

Extraction: remove from matrix Enrichment: concentrate Isolation: selective extraction/purification Transformation: – Derivatization – Pyrolysis

State-of-the-Art Sample Prep • • • •

Automation Miniaturization: small sample size “Solventless” (avoid contamination) “On-line” – or On-site sampling or On-site Analysis ?

SBSE

Open Tubular Trapping of Volatiles Living

15 µm df PDMS 2D-GC Dim 1: desorb Intermediate trapping Dim 2: analyze

Bicchi, D’Amato, David, Sandra FFJ 1988

Harvested

Solid Phase Micro-Extraction (SPME) J. Pawliszyn, 1990

(Kfs = Kfa*Kas)

Stir Bar Sorptive Extraction Sandra, Baltussen and David [1999] • Origin: Publication on the SPME extraction of PCBs. – Authors found very low recoveries for compounds with Ko/w values of up to 1010 – Repeating the SPME experiments : • Similar SPME recoveries were obtained • However, more than 80 % of the spiked analytes were adsorbed on the (Teflon) stir bar • Idea: Extraction of aqueous samples with a PDMS coated stir bar

Magnetic Stir Bar Coated with SPME-type Material (PDMS) Magnet

Glass

PDMS l = 10 mm, df = 0.5 mm df = 1.0 mm l = 20 mm, df = 0.5 mm df = 1.0 mm SPME : max. 0.5 µl

24 µl 63 µl 47 µl 126 µl

Easy to use

 Add stir bar to vial  Stir  Remove stir bar with tweezers.  Rinse briefly in distilled water  Dry with lint-free tissue

 Drop bar into thermal desorber  Thermally extract ( liquid extraction )  CGC analysis

Stir Bar Sorptive Extraction (SBSE)

Best Sorptive Extraction Medium

PDMS  Best GC stationary phase (apolar)

CH3 Si

O

CH3

 Decomposition products very specific and not related

with solutes of interest  Retention indices available for a wide number of

compounds  PDMS/water distribution ~ octanol/water distribution,

Ko/w values can be applied (if not available log P can be calculated using KOWIN)

SBSE (SPME) - Theory Equilibrium

CSBSE mSBSE Vw mSBSE KPDMS/w   x  x   Kow Cw mw VSBSE mw Recovery

mSBSE m0

 Kow         Kow  1     

mSBSE= amount on PDMS m0= initial amount Kow = octanol - water partitioning  = phase ratio

SBSE - Theory

Recovery (%)

Recovery of SBSE vs. SPME as a function of analyte polarity. 100 90 80 70 60 50 40 30 20 10 0

SBSE

1

10

100

SPME

1000 K(o/w)

10000

100000

Estimation of Recovery : Thiobencarb Sample volume: 10 mL Log Ko/w 3.8971 → Ko/w = 103.8971 = 7890 SBSE Twister:24 μL PDMS 1/β:0.0024

SPME Fiber:0.5 μL PDMS 1/β:0.00005

0.0024×7890×100 0.0024×7890 + 1

0.00005×7890×100 0.00005×7890 + 1

95 %

28 %

Comparison of recovery: SBSE vs SPME Sample volume: 10 mL

Recovery (%)

Thiobencarb 100 90 80 70 60 50 40 30 20 10 0

SBSE

SPME

Thiobencarb 1

10

100 1000 K(o/w)

10000

100000

SBSE - Extraction of PAHs Abundance 10000 8000 6000 4000 2000 0 5.00 240000 200000 160000 120000 80000 40000 0 5.00

5

3 2

1

7.50

4

7

6

10.00

SBSE 8

12.50

14.00 8

7

2 3

1 7.50

4

10.00 Time (min)

5 6 12.50

SPME 100 fold concentration

14.00

Recovery prediction  Kow      mSBSE  Recovery (%)  x100  x100 m0  Kow  1       EXCEL sheet 1 Gerstel Twister calculator

SBSE: advantages & limitations • Extraction and concentration: – Extremely high enrichment factor possible – In TD-GC: “what is in coating can go to detector”

• Purification (Selectivity) • Multi-residue analysis possible – Sample capacity

• Polar solutes? – No/little enrichment on PDMS – solutions ???

Part 2: SBSE optimization • Extraction: – Sample volume – Stir bar volume – Extraction time – Sample adjustment: pH, salt, organic modifier

• Desorption: thermal or liquid? • Conditioning and re-use of stir bars

Extraction

A

C

B

D

Optimization of Extraction (1) • What is maximum recovery (%) under equilibrium conditions? – Sample Volume – Stir bar volume – Log P (Kow)

• More volume = more extracted ?

EXCEL sheet 1

EXCEL sheet 2

Recovery of SBSE and SPME as a function of Kow. (sample volume SBSE 1 & SPME: 10 mL) 120

Recovery (%)

100

80

60

SBSE 1

40 SPME 1

20

0 0

1

2

3 log Kow

4

5

6

7

Optimization of Extraction (2) • Real recovery < ( 3.5).

Can Twisters be re-used? • Yes (they are also too expensive for single use) • How many times? – Depends on sample type – Importance of rinsing before desorption. – Water analysis: re-use > 50 times • Recondition: solvent + thermal – Beware of swelling, PDMS + O2 = death • Keep track!!! – Complex (highy loaded) samples versus clean water samples

Method Development summary (1) • Verification of analyte log Kow: Based on literature data or using a Kowin calculator, the log Kow for the target solutes can be checked. If log Kow>2, SBSE on PDMS can be used. For lower log Kow values, in-situ derivatization, salt addition or another stir bar coating might be needed.

• The (maximum) extraction efficiency can be calculated. Sample volume and stir bar dimensions can be selected for optimal recovery and enrichment.

Method Development summary (2) • Thermal desorption-GC-MS suitability test: If TD-GCMS is used, a tube can be spiked with the target solutes and thermal desorption, cryo-trapping, injection and analysis can be performed. In this way, the suitability of the analytical equipment is checked and thermal desorption, GC and MS parameters can be optimized. At this stage, it can also be checked if the solutes are thermostable (for thermal desorption and GC analysis), if they are well focused, etc. • Measurement of practical extraction efficiency in function of time: A series of spiked samples are analysed with increasing extraction times and the response for the target solutes is measured.

Method Development summary (3) • Finally the method can be optimized and validated using different spiking levels. Linearity, limit of detection and repeatability can be measured. • Recently some papers described the use of experimental design in SBSE method development

Part 3: Applications • Environmental: semi-volatiles (GC amenable) – Water > air > soil/sediment

• Food: flavor & fragrance, off-odours, contaminants,… • Consumer products: allergens, leachables,… • Life Science: biological fluids, target & nontarget (metabolomics) mode

Musty odour in Drinking Water (each 100 ppq:6 pg/60 mL,240 min stirring) 1000 950 900 850 800 750 700 650 600 550 500 450 400 350 300 250 200 150 100 50 0

Time-->

2,4,6-TCA m/z 197 m/z 95

Geosmin m/z 112 2-MIB, m/z 95

m/z 197

m/z 112

11.00

12.00

13.00

14.00

15.00

16.00

17.00

18.00

TCA in Water

D. Benanou, presented at 27th ISCC, Riva del Garda, Italy, May 2004

Concentration (ng/l)

2,2 2,0 1,8

1,6 1,4

stored in vials at 4 ºC

1,2 1,0

0

1

2

3 4 5 DAYS of STORAGE

6

On-site SBSE !

7

8

SBSE-TD-GC-MS - On-site SBSE D. Benanou, presented at 27th ISCC, Riva del Garda, Italy, May 2004

“On-TAP” sampling Veolia Environnement, Paris, France

Glass Jacket

Magnetic Stir Bar

PDMS

Abundance T IC :b a d -2 .D \d a ta .m s

9500000 9000000 8500000 8000000 7500000

Forensic analysis Water from bath

7000000 6500000 6000000 5500000 5000000 4500000

Soap F&F: -alpha methyl ionone -Mango aroma -Patchouli alcohol -Methyl dihydrojasmonate -Hexyl cinnamaldehyde

4000000 3500000 3000000 2500000 Abundance 2000000

1500000

T I C : lo n g 2 .D \d a t a .m s

9500000 1000000 9000000

500000

8500000

0 8000000 8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

12.00

14.00

16.00

18.00

20.00

22.00

Time--> 7500000 7000000 6500000 6000000

Lung

5500000 5000000 4500000 4000000 3500000 3000000 2500000 2000000 1500000 1000000 500000 0 8.00 Time-->

10.00

Determination of Tributyltin in Water Samples at the Quantification Level Set by the European Union (0.2 ng/L) SBSE

TDU

2DGC

QQQ

GC-MS/MS: Interference Detected @ TBT Abundance (x 101) 12 10

Blank

TBT (d27)

8 6

TBT

4 2 13.1

13.2

13.3

13.4

13.5

13.6

13.7

13.8

13.9

Time, min

12 10

0.2 ppt

8 6 4 2 13.1

13.2

13.3

13.4

8 7 6 5 4 3 2 1

13.5

13.6

13.7

13.8

13.9

Time, min

13.9

Time, min

TBT

2 ppt

13.1

13.2

13.3

13.4

13.5

13.6

13.7

13.8

Abundance (x 102)

GC-GC-MS/MS: TBT resolved from interferences – LOQ < 0.05 ppt TBT

5 4

2 ppt

3

interference

2

1

5

Abundance (x 101)

0.2 ppt

4

0.2 ppt

5

TBT

3 4

2 3

1

2

5

1

blank

4 32.6

3

32.8

33

33.2

33.4

33.6

33.8

Time, min

2 1

31.7

32.1

32.5

32.9

33.3

33.7

34.1

34.5

34.9

Time, min

Wine Analysis using SBSE-GC-MS Prof De Revel, Univ Bordeaux

Multi-residue methods • 2007 : Off-flavours

IBMP,

EP,

EG, TCA, TeCA, PCA, TBA, Géosmine

• 2010 : Markers of wine aroma (fruity) Abundance

4000000 3500000

C13-norisoprenoides and lactones

3000000 2500000 2000000 1500000 1000000 500000

Time -->

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

• 2010 : Pesticide residues O

Cl

O

Cl S

Abundance

O

107 10000 9000

N

8000 7000 6000

Cl

3000

122

77 2000 1000

39

10

51

65

91

27

15 m/z -->

20

30

40

50

60

70

80

90

100

110

120

P Cl

5000 4000

130

N

O

O

O

Cl

Vinclozoline

Chlorpyriphos

Multiresidue Analysis of Wine Defects Céline Franc, Frank David, Gilles de Revel , JCA 2009 IBMP-d3 IBMP 22.3 ng/L

Abundance 2500000

TCA-d5

Abundance

EG-d5

TCA 5.4 ng/L

Abundance

Geosmin 46.4 ng/L

Abundance

5500

TBA 9.9 ng/L

12000

8500 2500

EG 56 µg/L

5000 0

2000000

TeCA 10.3 ng/L

0 0

24.50

24.70

10000

33.40

34.00

34.60

Geo-d5

24.90

EP 126 µg/L

PCA 29.0 ng/L

5000

Abundance

44.00

45.00

46.00

47.00

48.00

47.00

48.00

30000

1000000

15000

38.00 38.40 38.80 39.20 39.60

0 Time--> 24.00

25.00

26.00

27.00

31.00

33.00

35.00

37.00

39.00

44.00

45.00

46.00

Transfer of SBSE-GC-MS methods into 8 laboratories

RIC lab. / Agilent Tech.

Pauillac

Fronsac

Saint-Laurent-du-Médoc

Cenon

Blanquefort

ISVV – Villenave d’Ornon

Floirac

Abundance

4000000

Cestas

3500000 3000000 2500000 2000000 1500000 1000000 500000

Time -->

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

Martillac

• method transfer • training by l’ISVV

Abundance 107 10000 9000 8000 7000 6000 5000 4000 3000

122

77 2000 1000

39

10

51

65

91

27

15 m/z -->

20

30

40

50

60

70

80

90

100

110

120

130

• Validation by Round Robin tests

• 2007 : Off-flavours • 2010 : Pesticides

Application : Round-Robin test SBSE-GC-MS « off-flavors" 2009 : inter-laboratory test, 8 compounds – 9 laboratoires

 CONFIDENCE in RESULTS Volatile phenols nombre de laboratoires retenus valeur assignée m écart-type s* limites de surveillance limites d'action

: : : : :

9 187,6 34,4 118,8 84,4

; ,

256,4 290,8

Répartition des résultats des laboratoires Abundance

4000000 3500000 3000000 2500000

325,2

2000000 1500000 1000000 500000

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

Concentration

Time -->

290,8

Action

256,4

Surveillance

222,0

m

187,6 153,2

Abundance 107 10000 9000 8000

118,8

7000 6000

Surveillance

5000 4000 3000

122

77 2000 1000

39

10

65

91

27

15 m/z -->

51

20

30

40

50

60

70

80

90

100

110

120

130

84,4

Action

50,0 1

2

3

4

5

N° du laboratoire

6

7

8

9

Château Léoville Las Cases 2d Cru Classé - Saint Julien

Application: IBMP in grapes (2008) 90

Cabernet Sauvignon Merlot Cabernet Franc

75

ng/l

60

45

30

15 Seuil de perception

0 5-juil.

15-juil.

25-juil.

4-août

14-août

24-août

3-sept.

13-sept.

23-sept.

3-oct.

- Augmentation de l’IBMP entre la fermeture de grappe (début juillet) et la véraison (début août). - Ensuite, dégradation plus ou moins rapide lors de la maturation du raisin en fonction des conditions climatiques du millésime.

QC on solid material 2 extraction methods 1- « Passive Extraction » :

10 corks – leaching during 24h in 500ml wine simulant (10 % Ethanol) Leaching of Haloanisoles

SBSE extraction for leachable haloanisoles: - 100ml « extract (10 % Ethanol) » - IS: TCA-d5 (10ng/l), - 2 h extraction with 20 mm x 0.5 mm stir bar

QC on solid material 2 extraction methods 2- « Active Extraction » by ASE (Dionex) : Cork + wood (for barrels)

Solvent extraction (Acetone/Methanol) at high pressure (100 bars) and tempearture (max 180°C) Total haloanisoles and halophenols SBSE for Total haloanisoles & halophenols: - ASE extract (Acetone/Methanol) - IS : TCA-d5 (10ng/l) forhaloanisoles, TCP-d2 (200 ng/l) for halophenols. - In-situ derivatization with acetic anhydride - 2 h extraction with 20 mm x 0.5 mm stir bar

SBSE procedure for vegetables and fruit 15 g sample + 15 mL ACN (=QuEChERS)

Ultra-Turrax + ultrason (15 min)

1 mL extract + 10 mL water SBSE: 60 min TD-RTL-CGC-MS

P. Sandra, B. Tienpont and F. David J. Chromatogr., 1000 (2003) 299309 Modified ratio water/organic Multi-Twister extraction N. Ochiai, K. Sasamoto, H. Kanda, T. Yamagami, F. David, B. Tienpont and P. Sandra J. Sep. Sci 28 (2005) 1083-1092

Comparison of Sensitivity of QuEChERS – SBSE 15 g sample 15 mL ACN 10 µg/kg = 150 ng / 30 mL = 5 ng/mL

QuEChERS

SBSE

6 mL + salt 1 mL + d-SPE

1 mL Dilute in 10 mL

Inject 1 µL

TD + INJ

5 pg OC SIM (SQ)

5 ng SCAN

QQQ (MRM)

Conc 10 x (LVI) SCAN (50 pg)

Even with 10% recovery, sensitivity SBSE > QuEChERS

Analysis of Baby Food by SBSE-TD-GC-MSD (mixed vegetables, rice, chicken). Detection of piperonylbutoxide Abundance (*10-1) 1(00

A

O

1200

O

O

O

O 1

1000

Non-spiked

800

600

400

Spiked - 2 ppb

200

0 5.00

7.00

9.00

11.00 13.00 15.00 17.00 19.00 21.00 23.00 25.00 27.00 29.00 31.00 33.00 35.00 Time (min)

SBSE for solid samples? • YES !!! • Preliminary extraction with water miscible solvent • Dilute with water • SBSE – Good recovery – Selective (extraction + clean-up)

PAHs in sediment • • • •

Wet sample: 15 g or Dry sample (lyophylized): 3 g + 12 g water Add 15 mL acetonitrile Add “Quechers Salt” (MgSO4) + Shake/centrifuge Test 1: QuEChERS clean up + GC-QQQ – 1 mL clean-up on PSA (QuEChERS) – Centrifuge – Inject 1 µL (equivalent of 1/1000 part of clean-up) • Test 2: SBSE + TD-GC-QQQ – 100 µL + 900 µL acetone (dilute 1/10) – 10 µL in 10 mL water (total dilution: 1/10,000) – SBSE + TD-GC-MS (same equivalent as liquid injection)

Sample 1 (wet) MRM 252-250 (benzofluoranthenes, benzo(a)pyrene) liquid

SBSE

Sample 2 (dry) MRM 252-250 (benzofluoranthenes, benzo(a)pyrene) liquid

SBSE

Determination of PAHs in Sea Food Weigh 3g fish tissue into 50mL centrifuge tube

E. Pfannkoch, Gerstel US

Add IS, 12mL water, vortex 1 min

Add 15mL acetonitrile, vortex 1 min Add Agilent QuEChERS salt packet, cap and shake P/N 5982-5755 Centrifuge @4700 RPM 5 min Transfer 1 mL of ACN layer for cleanup step

dSPE cleanup, centrifuge

SBSE cleanup and concentration

Transfer to vial, LC/MS or GC/MS

Transfer Twister to tube, GC/MS

Part 4: Analysis of Polar Solutes • Derivatization – In-situ (in aqueous matrix) • Acylation (phenols), chloroformate (-COOH, -NH2)

– Post-extraction (during desorption)

• Sequential SBSE – Several extractions using different conditions – Combined desorption

• New phases

Analysis of chlorophenols • • • • •

10 mL water sample 0.5 g K2CO3 and 0.5 mL acetic anhydride SBSE using a 10 mm x 0.5 mm df PDMS stir bar TD in splitless mode GC-MS: – 30 m x 0.25 mm i.d. x 0.25 µm df HP-5MS – MS in selected ion monitoring (SIM) mode. • • • • •

mono-chlorophenols (as acetates) (ion 128, 3 isomers), dichlorophenols (ion 164, 6 isomers, 2 isomers not separated), trichlorophenols (ion 196, 5 isomers), tetrachlorophenol (ion 232, 1 isomer) pentachlorophenol (ion 266).

Analysis of chlorophenols (10 ppt in water)

Acetylated OH-PAH in urine of a fireman peak area 20000000

R2 = 0,999

3

Abundance (*10-3)

15000000

800

10000000 600

5000000

4

0 0

400

20 40 60 80 concentration (µg/L)

100

200

OH-PAH

EIC: m/z 218, 144, 158, 172

5

2

0

1

100

OH-pyrene 0 4.00

6.00

8.00

10.00

12.00

14.00

16.00

Time (min)

18.00

20.00

22.00

24.00

26.00

28.00

30.00

1

1-hydroxypyrene

2

1-naphthol

3

2-naphthol

4

3-methylnaphthol

5

5,7-dimethyl-1-naphthol.

SBSE or HSSE of aldehydes/ketones F

F R1 O

CH

F

2

F

NH

+

2

C=O R2

F

Carbonyl compounds

O-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine (PFBHA)

F

F R1 or R2 CH

F

O

N=C

2

F

F

PFBHA derivative isomers

R2 or R1

Derivatization in HSSE with pentafluorobenzyl hydroxylamine (PFBHA) - BEER Abundance

Nonanal (+/-550 ppt)

6400

5600

4800

4000

2-Octenal

2-Nonenal

(150 ppt)

(+/-75 ppt)

3200

2,4-Decadienal

(25 ppt) 2400

BLANK

. .

. .

..

1600

SPIKED 800

1 ppb

19.00

20.00

21.00

22.00

23.00

24.00

25.00

Time, min

SBSE procedures for biological samples Urine 5 (1) mL

Blood/bile 1mL, 1g stomach content

1mL NH4OAc + 10 µL -glucuronidase, 90 min @ 37°C Acetylation: 0.5 g K2CO3 + 0.5 mL AA

Ethylchloroformate: 2.5 mL EtOH/PYR (2:1) + 0.1 mL ECF

+ 10 mL water

SBSE: 60 min TD-CGC-MS

+ 1 mL MeOH + 10 mL water

SBSE in metabolomics • Analysis of 1 mL urine A

b u n d a n c e

1 5 0 0 0 0 0

T

I C

:

T I C : 1 0 0 9 0 8 _ u r in e _ b la n k . D \ d a t a . m s 1 0 0 9 0 8 _ u r in e _ g lu c u r o n id a s e _ 2 0 u L . D \ d a t a . m

s

( * )

With Noglucuronidase glucuronidase

1 4 0 0 0 0 0 1 3 0 0 0 0 0 1 2 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 9 0 0 0 0 0 8 0 0 0 0 0

7 0 0 0 0 0 6 0 0 0 0 0

5 0 0 0 0 0 4 0 0 0 0 0

3 0 0 0 0 0 2 0 0 0 0 0

1 0 0 0 0 0 0

8 . 0 0 T

im

e -- >

1 0 . 0 0

1 2 . 0 0

1 4 . 0 0

1 6 6 .. 0 0 0 0 1

1 8 8 .. 0 0 0 0 1

22 00 .. 00 00

22 22 .. 00 00

22 44 .. 00 00

22 66 .. 00 00

Metabolomic Workflow référence

n

Analyse compréhensive n

Data matrix

malade Non-targeted Global view

PC2

Interprétation biologique PC1 PC3

Data analysis

Urine analysis: 4 individuals x 5 samples + QC

Controle

Sequential Stir Bar Sorptive Extraction

However, SBSE has a limitation for recovery of hydrophilic compounds because SBSE is based on distribution between PDMS and water. Salt addition allows to improve recovery of hydrophilic compounds. ⇒ Negative effect for recovery of hydrophobic compounds …..

120

Recovery (%)

Stir Bar Sorptive Extraction (SBSE) is developed base on Solid Phase Micro Extraction (SPME) and can provide higher sensitivity to analysis of chemical compounds in aqueous sample.

Theoretical recovery 100

NaCl 30 %

80 60 40 20 0 0

2.00

4.00 6.00 LogKow

8.00

10.00

Recovery of 88 pesticides by SBSE

Sequential SBSE!

N. Ochiai et al, J. Chromatography 1200 (2008) 72.

Sequential SBSE Procedure 30% NaCl

SBSE 1h@1500 rpm

Solutes: LogKow > 4

SBSE 1h@1500 rpm

Solutes: LogKow < 4

Two Twisters are Simultaneously desorbed

Sequential SBSE for Multi-residue pesticide analysis Theoretical recovery

Recovery (%)

120 100 80 60

LogKow > 2.5

40 20 0

0

2.00

4.00 6.00 LogKow

8.00

Recovery of 88 of pesticides by Sequential Recovery 88 pesticides by SBSE SBSE

10.00

New phases for coating • SPME: different fibers available (PDMS, PDMS/carbon, DVB, CW, acrylate)

• • • •

What about SBSE? Thermal desorption or liquid desorption ? Immersion or Headspace sampling ? More material = bleeding more critical Attempts: polyacrylate, polyurethane, carbon, sol-gel, monoliths, MIPs, RAM,…

New phases for coating - criteria • Should be used with thermal desorption – Low bleed – Bleed does not interfere with solutes

• Liquid desorption = SPE – Compare enrichment factor!!!

• Should be significantly better than PDMS (and compared to it)

Development of New Phase Twister Development of Ethylene glycol modified silicone “EG Silicon Twister”

4-Vinyphenol

p-Vinylguaiacol

2-formyl pyrrole

Malto 2-acetyl pyrrole

Guaiacol

Furfuryl alcohol

5-methyl furfural

Furfuryl acetate

Acetol acetate

2-Ethyl-6-methyl pyrazine

2,5-Dimethyl pyrazine

Methyl pyrazine

Comparison between EG Silicon Twister and PDMS Twister for HSSE of coffee powder EG Silicon Twister HSSE 1h @60ºC

PDMS Twister HSSE 1h@60ºC

Comparison of TICs for coffee sample SBSE vs Seq SBSE (PDMS-PDMS) vs Seq SBSE (PDMS-EGS) SBSE PDMS (2 h)

Vunyl methoxy phenol

Ethyl maltol

Furfuryl ether

2-acetylpyrrole

Guaiacol

Furfuryl methyl disulfide

5-Methylfurfural

Furfural

Sequential SBSE PDMS - PDMS (20 % NaCl)

Sequential SBSE PDMS - EGS (20 % NaCl)

From: N. Ochiai et al, Gerstel KK

Comparison of recovery of phenolic compounds between EG Silicon and PDMS Vanillin (logKow: 1.05) (x 10)

EGS PDMS

Guaiacol (logKow: 1.34) Phenol (logKow: 1.51) p-cresol (logKow: 2.06) p-Vinyl guaiacol (logKow: 2.24) p-Vinyl phenol (logKow: 2.41) 0

2

4 Intensity (x 106)

6

8

Comparison of recovery of nitrogen heterocyclic compounds between EG Silicon and PDMS Methyl pyrazine (logKow: 0.49)

EGS 2-Acetyl pyrrole (logKow: 0.56)

PDMS

2-Formyl pyrrole (logKow: 0.60) Pyridine (logKow: 0.80) 2,5-Dimethyl pyrazine (logKow: 1.03) 4,5-Dimethyl oxazole (logKow: 1.31) x10 3,4-Dimethyl isoxazole (logKow: 1.31) x10 5-Methyl pyrazine (logKow: 1.53) 2,4,5-trimethyl oxazole (logKow: 1.86) Indole (logKow: 2.05) 0

1

2 Intensity (x 106)

3

4

Comparison of recovery of alcohols between EG Silicon and PDMS Furfuryl alcohol (logKow: 0.45)

EGS Benzyl alcohol (logKow: 1.08)

PDMS

Linalool (logKow: 3.38) x100

0

2

Intensity (x 106)

4

6

Sequential SBSE for odor analysis 30% NaCl

SBSE 1h@800 rpm

SBSE 1h@800 rpm

Pyridine, Pyrazine,

Phenol, Pyrrole,

Oxazole, etc…

Alcohol (aromatic, Heterocyclic), etc…

N. Ochiai et al, J. Chromatography 1200 (2008) 72.

Comparison of recovery of phenolic compounds between EG Silicon, PDMS and Seq-SBSE PDMS-EGS

Vanillin (logKow: 1.05) (x 10)

EGS Guaiacol (logKow: 1.34)

PDMS

Phenol (logKow: 1.51) p-cresol (logKow: 2.06) p-Vinyl guaiacol (logKow: 2.24) p-Vinyl phenol (logKow: 2.41) 0

2

4 Intensity (x 106)

6

8

Comparison of recovery of nitrogen hetrocyclic compounds between EG Silicon, PDMS and Seq-SBSE Methyl pyrazine (logKow: 0.49)

PDMS-EGS

2-Acetyl pyrrole (logKow: 0.56)

EGS

2-Formyl pyrrole (logKow: 0.60)

PDMS

Pyridine (logKow: 0.80) 2,5-Dimethyl pyrazine (logKow: 1.03) 4,5-Dimethyl oxazole (logKow: 1.31) x10 3,4-Dimethyl isoxazole (logKow: 1.31) x10 5-Methyl pyrazine (logKow: 1.53) 2,4,5-trimethyl oxazole (logKow: 1.86) Indole (logKow: 2.05) 0

1

2 Intensity (x 106)

3

4

Comparison of recovery of alcohols between EG Silicon, PDMS and Seq-SBSE PDMS-EGS EGS Furfuryl alcohol (logKow: 0.45)

PDMS

Benzyl alcohol (logKow: 1.08)

Linalool (logKow: 3.38) x100

0

2

4

Intensity (x 106)

6

Conclusions • SBSE is a mature sample preparation technique: automated – miniaturized – solventless • High enrichment factor • Reduced risk of contamination • On-site samplking/extraction • Wide application area: QC – contaminants – metabolomics • Complementary to SPME (immersion versus headspace) • Still looking for new phases

Reviews - E. Baltussen, Sandra P. , David F., Cramers, C.A. J. Microcol. Sep. 11 (1999) 737. - David, F., Sandra, P. Stir bar sorptive extraction for trace analysis Journal of Chromatography A, 1152 (1-2) (2007), pp. 54-69. - Sánchez-Rojas, F., Bosch-Ojeda, C., Cano-Pavón, J.M. A review of stir bar sorptive extraction Chromatographia, 69 (SUPPL. 1), (2009) pp. S79-S94 - Lancas, F.M., Queiroz, M.E.C., Grossi, P., Olivares, I.R.B. Recent developments and applications of stir bar sorptive extraction Journal of Separation Science, 32 (5-6), (2009) pp. 813-824. - Prieto, A., Basauri, O., Rodil, R., Usobiaga, A., Fernández, L.A., Etxebarria, N., Zuloaga, O. Stir-bar sorptive extraction: A view on method optimisation, novel applications, limitations and potential solutions Journal of Chromatography A, 1217 (16),(2010) pp. 2642-2666.

• From David, F.; In Comprehensive Sampling and Sample Preparation, • Volume 4; Pawliszyn, J.; Mondello, L.; Dugo, P.; Eds; Elsevier, Academic Press: Oxford, • UK, pp 473–493, 2012. • ISBN: 9780123813732 • © 2012 Elsevier Inc. All rights reserved. • Academic Press

Experimental design - Prieto, A., Zuloaga, O., Usobiaga, A., Etxebarria, N., Fernández, L.A. Use of experimental design in the optimisation of stir bar sorptive extraction followed by thermal desorption for the determination of brominated flame retardants in water samples Analytical and Bioanalytical Chemistry, 390 (2) (2008) pp. 739-748. - MacNamara, K., Leardi, R., McGuigan, F. Comprehensive investigation and optimisation of the main experimental variables in stir-bar sorptive extraction (SBSE)thermal desorption-capillary gas chromatography (TD-CGC) Analytica Chimica Acta, 636 (2) (2009) pp. 190-197.

Multi-extraction/desorption • N. Ochiai, K. Sasamoto, H. Kanda, T. Yamagami, F. David, B. Tienpont and P. Sandra, J. Sep. Sci. 28 (2005) 1083. (fruits/vegetables) • N. Ochiai, K. Sasamoto, H. Kanda, S.Nakamura, Fast screening of pesticide multiresidues in aqueous samples by dual stir bar sorptive extraction-thermal desorption-low thermal mass gas chromatography-mass spectrometry Journal of Chromatography A, 1130 (1 SPEC. ISS.), (2006) pp. 83-90.

Derivatization • Kawaguchi, M., Ito, R., Saito, K., Nakazawa, H. Novel stir bar sorptive extraction methods for environmental and biomedical analysis Journal of Pharmaceutical and Biomedical Analysis, 40 (3), (2006) pp. 500-508.

Relevant Websites • http://www.sbsetechnicalmeeting.com/ (website of technical meeting on SBSE, also includes presentations) • http://logkow.cisti.nrc.ca/logkow/index.jsp (log Kow database) • http://epa.gov/oppt/exposure/pubs/episuite.htm (to download log Kow calculator) • http://www.gerstel.com/en/index_e.htm (commercial information on SBSE & equipment, also application notes)