Extreme Scenarios and Flood Risk Management

CHR Workshop on Extreme Discharges April, 18-19, 2005, Bregenz Extreme Scenarios and Flood Risk Management Bruno Merz & Annegret Thieken Sektion Ing...
Author: Erika Winter
0 downloads 2 Views 3MB Size
CHR Workshop on Extreme Discharges April, 18-19, 2005, Bregenz

Extreme Scenarios and Flood Risk Management

Bruno Merz & Annegret Thieken Sektion Ingenieurhydrologie, GeoForschungsZentrum Potsdam Telegrafenberg, 14473 Potsdam, [email protected]

Contents

CHR Workshop on Extreme Discharges April, 18-19, 2005, Bregenz

¾ Which extreme scenarios are of interest ? ¾ How should extreme scenarios be considered in flood risk management ? ¾ How can extreme scenarios be quantified ? ¾ How can extreme scenarios be validated ?

CHR Workshop on Extreme Discharges April, 18-19, 2005, Bregenz

Who needs which (extreme) scenarios ? Use

Required Information

Flood design for dams

Site-specific statements about extreme discharges / hydrographs, e.g. 10000year flood

Building insurance

Building-specific statements about flood hazard, e.g. 10 – 200-year floods

Re-insurance

Probable Maximum Flood, large-scale events

Local disaster management

Local scenarios including extraordinary situations and implications for disaster management, e.g. disruption of infrastructure

Federal disaster management

Large-scale, extraordinary scenarios that cannot be handled by regional agencies

Large-scale flood scenarios Example ICPR Rhine Atlas

CHR Workshop on Extreme Discharges April, 18-19, 2005, Bregenz

T = 10 a

T = 100 a

extreme flood event

CHR Workshop on Extreme Discharges April, 18-19, 2005, Bregenz

Spatial heterogeneity of flood events Example August flood 2002

Example Rhine basin Re e s

Lippe

R uh r D sseldorf

Abflusspegel

Köln

R

La h

n

Sieg

h e N

e ah

G ro lsh e im

n

Trier

S ch we in fu rt

ai

M

e os

M

Worm s

Ma x a u

N ec k ar

CHR Workshop on Extreme Discharges April, 18-19, 2005, Bregenz

in

Ande rna c h K a lko fe n K o b le n z Co ch e m Ka ub Ma inz l

Strabburg

Rheinfelden

Aa re

Stuttgart

P lo ch in g e n

W rzburg

Januar 1948

November 1944 35 M axau

25

W o rms

20

M ainz Kaub

15

A nd ernach 10

Köln

5

R ees

Jährlichkeit [a]

Jährlichkeit [a]

35 30

0

30

M axau

25

W orms

20

M ainz

15

Kaub

W o rms M ainz Kaub A nd ernach

20

Köln

10

R ees

Jährlichkeit [a]

Jährlichkeit [a]

M axau

50

0

20 18 16 14 12 10 8 6 4 2 0

Mai 1983

M axau

50

W o r ms M ainz

40

Kaub

30

A nd er nach

20

Köln

10

R ees

Jährlichkeit [a]

Jährlichkeit [a]

W o r ms M ainz Kaub A nd er nach Köln R ees

300

60

0

2 50

M axau

200

W o r ms M ainz

150

Kaub

10 0

A nd er nach

50

R ees

0

Januar 1995 14 0 M axau

50

W o r ms

40

M ainz Kaub A nd er nach

20

Köln

10

R ees

Jährlichkeit [a]

70 60

Fluss

Pegel

Zeitreihe

Rhein Rhein Rhein Rhein Rhein Rhein Rhein Neckar Main Nahe Lahn Mosel

Maxau Worms Mainz Kaub Andernach Köln Rees Plochingen Schweinfurt Grolsheim Kalkofen Cochem

1922-1999 1937-1999 1931-1999 1931-1999 1931-1999 1880-1999 1931-1999 1919-1999 1845-1999 1845-1999 1936-1999 1901-1999

Köln

Dezember 1993

0

M axau

März 1988

70

Jährlichkeit [a]

CHR Workshop on Extreme Discharges April, 18-19, 2005, Bregenz

70

30

Rees

Februar 1980

60

30

Köln

5 0

Januar 1955

40

Andernach

10

Variation of return period

12 0

M axau

10 0

W o r ms

80

M ainz

60

Kaub A nd er nach

40

Köln

20

R ees

0

Variation of return period and „severity“ of floods

Coefficient of Variation [%]

CHR Workshop on Extreme Discharges April, 18-19, 2005, Bregenz

Data: 29 floods in the Rhine basin (1940-1999, 12 gauges)

Mean Return Period [a]

CHR Workshop on Extreme Discharges April, 18-19, 2005, Bregenz

Unusual events, failure situations

Failure Modes and Effects Analysis (FMEA)

Component

Damage Cause

Consequences

Possible Countermeasures

Flood retention basin

Volume of flood > available retention volume

Spillway discharges; moderate inundations downstream (industrial site, urban area)

Monitoring and early warning; damage-reducing measures downstream, e.g. mobile flood walls for particularly vulnerable objects

Flood retention basin

Volume of flood > available retention volume Flood peak > spillway capacity

Overtopping of dam; possibly dam break; severe inundation downstream

Monitoring and early warning; damage-reducing measures downstream, e.g. evacuation

Flood retention basin

Obstruction of the outlet due to sediment, driftwood etc.

Spillway discharges; moderate inundations downstream

Monitoring and clearance operations during floods

Industrial site

Inundation causes release of chemicals

Pollution downstream of chemical release

Flood proofing of chemical storages

Bridge (urban area)

Obstruction of the profile due to driftwood etc.

Backwater effects; local inundation in urban area

Monitoring and clearance operations during floods

Flood wall (urban area)

River water level > height of wall

Inundation in urban area

Damage-reducing measures in the urban area

Private households (urban area)

Leakage of flooded oil fuel storages due to buoyancy

Contamination in the respective household and in its neighbourhood

Flood proofing of oil fuel storages

River segments with high velocity in case of flood (urban area)

Erosion of river bed

Damage to foundation of buildings; loss of structural stability

Protection of erosion-prone river segments

Contents

CHR Workshop on Extreme Discharges April, 18-19, 2005, Bregenz

¾ Which extreme events are of interest ? ¾ How should extreme scenarios be considered in flood risk management ? ¾ How can extreme scenarios be quantified ? ¾ How can extreme scenarios be validated ?

CHR Workshop on Extreme Discharges April, 18-19, 2005, Bregenz

Expected annual flood damage [€/a] as risk indicator

Contents

CHR Workshop on Extreme Discharges April, 18-19, 2005, Bregenz

¾ Which extreme events are of interest ? ¾ How should extreme scenarios be considered in flood risk management ? ¾ How can extreme scenarios be quantified ? ¾ How can extreme scenarios be validated ?

Flood frequency analysis and uncertainty Annual maximum flood, 1880-1999, gauge Köln/Rhine 11000 10000

8000 7000

6800

6000

6600

5000 4000 3000 2000 1880

1900

1920

MHQ (für 30-Jahre s -S e g me nte ) [m 3 /s ]

Abflus s [m3 /s ]

CHR Workshop on Extreme Discharges April, 18-19, 2005, Bregenz

9000

6400

6200

6000

1940

1960

1980

2000

Hydrologis c he s Jahr

Mann-Kendall-Test: Hypothesis „no trend“ is rejected (α=0.05)

5800

5600

5400 1900

1910

1920

1930

1940

1950

1960

Hy dro lo g is c he s Jahr

1970

1980

1990

2000

Consideration of uncertainty

CHR Workshop on Extreme Discharges April, 18-19, 2005, Bregenz

• 2 time periods: 1880-1999, 1960-1999 • 7 distribution functions: Generalised Extreme Value, Gumbel, Log Pearson Typ 3, 3-parametric Lognormal, General Logistic, Exponential, General Pareto distribution • goodness-of-fit test: Kolmogorow-Smirnow (α=0.05) • Probability bounds as uncertainty estimation: Envelope, including all cdf that are not rejected • Best estimate: weighted flood frequency curve (weights based on agreement between empirical and theoretical values)

Uncertainty of extrapolation 1000

200

Return period [a]

CHR Workshop on Extreme Discharges April, 18-19, 2005, Bregenz

500

100 50

20 10

5 0.6

0.8

1

1.2

1.4

1.6

Discharge [m3/s]

1.8

2

2.2 x 10

4

Additional information

E xtre me H ochw asse r in E urop a (Sta ne sc u, 20 02 ) Ho ch wa sser Od ra S om m e r 1 99 7

100000

Ho ch wa sser Do na u/Elb e So m m er 20 02 E xtre me H ochw asse r in K öln - histo ris ch vor 18 80 (n a ch K ra h e, 19 97 ) E xtre me H ochw asse r in K öln - ge m es se n (1 88 0-19 99 )

Abflussspende [l/(s*km²)]

CHR Workshop on Extreme Discharges April, 18-19, 2005, Bregenz

10000

1000

100

10

1 1

10

100 1000 10000 Einzugsgebietsgröße [km²]

100000

1000000

CHR Workshop on Extreme Discharges April, 18-19, 2005, Bregenz

Flood frequency analysis and additional information

Linking process simulation and probabilistic methods (Example Lower Rhine) Gauge Rees

CHR Workshop on Extreme Discharges April, 18-19, 2005, Bregenz

Tributary Lippe Levee breach location Polder Mehrum Tributary Ruhr

Levee breach location Krefeld

Gauge Cologne © ICPR Atlas

Flood Frequency Curve Gauge Rees Discharge [m³/s] 4000 10000

6000

8000

observed discharges 1961 - 1995

1000

Return interval [a]

CHR Workshop on Extreme Discharges April, 18-19, 2005, Bregenz

extreme value statistics (Pearson III)

100

10

1

extreme value statistics (Gumbel) probabilistic model

10000

12000

14000

16000

Contents

CHR Workshop on Extreme Discharges April, 18-19, 2005, Bregenz

¾ Which extreme events are of interest ? ¾ How should extreme scenarios be considered in flood risk management ? ¾ How can extreme scenarios be quantified ? ¾ How can extreme scenarios be validated ?

Possibilities for validation Water balance sim ulation

Flood risk analysis

Decreasing repeatability of system states

CHR Workshop on Extreme Discharges April, 18-19, 2005, Bregenz

System state m ay be repeated m any tim es

System state cannot be repeated

Decreasing precision with which the system state can be identified System state is precisely m easureable

System state is only m easureable in vague term s

Decreasing relevance of available measurements to the phenomenon of interest M easured system state is the variable to be predicted

(Hall & Anderson, 2002, Blockley, 1980, modified)

M easured system state is not relevant to prediction

CHR Workshop on Extreme Discharges April, 18-19, 2005, Bregenz

Some aspects concerning model validation for extreme flood scenarios

¾ Possibilities for “validation”: ¾ Sensitivity analysis to identify important input / processes ¾ Probabilistic analysis to identify the effects of uncertainty on model results ¾ Comparison of alternative models ¾ Reporting on model assumptions and uncertainty ¾ Optimistic models may be dangerous ¾ Be aware: we tend to overestimate our knowledge

Conclusions

CHR Workshop on Extreme Discharges April, 18-19, 2005, Bregenz

¾ Lack of certain types of extreme scenarios: ¾ Large-scale flood events ¾ Unusual events, failure situations (blockage of weirs, human error in emergency management, etc.) ¾ Use of extreme scenarios in flood risk management: ¾ Risk awareness, ‘low frequency – high damage’ events ¾ Quantification of extreme scenarios: ¾ Integration of different sources of information (historical events, formal expert knowledge, etc.) ¾ Linking of process understanding and probabilistic methods ¾ Lack of methods for validation in data-sparse situations

Definition of ‘extreme events‘ 12

Community damage (household inventory) Meuse floods Wind et al., 1999

B

Schaden 1995 [kf ]

CHR Workshop on Extreme Discharges April, 18-19, 2005, Bregenz

10 8 6 4 2 0

0

2

4

6

8

Schaden 1993 [kf ]

10

12

¾ Extreme events are inherently contextual ¾ Extreme means ‘something rare, big, different’ ¾ ‘Extremeness’ implies an event’s behavior to cause change (Sarewitz & Pielke, 2000)

Choice / development of scenarios Schweregrad

CHR Workshop on Extreme Discharges April, 18-19, 2005, Bregenz

Eintretenswahrscheinlichkeit Häufig Schlimmstes erlebtes Ereignis (einmal innerhalb von 10 bis 50 Jahren: Wahrscheinlichkeit für die nächsten 25 Jahre ca. 100%)

Selten Schlimmstes Ereignis, an das man sich erinnern kann (einmal innerhalb von 50 bis 200 Jahren: Wahrscheinlichkeit für die nächsten 25 Jahre ca. 25%)

Sehr selten Schlimmstes vorstellbares Ereignis (einmal innerhalb von einigen 100 Jahren: Wahrscheinlichkeit für die nächsten 25 Jahre ca. 2%)

Bähler et al. (2001)

Normaler Verlauf (95%) Prozess verläuft, so wie man es auf Grund von Erfahrungen kennt. Alle Schutzmaßnahmen greifen. Die Einsatzkräfte können optimal eingesetzt werden. Keine Personen im Wirkungsraum.

Schwererr Verlauf (4%) Ausbreitung des Schadenprozesses weicht von den Erwartungen ab. Einzelne Schutzmaßnahmen funktionieren nicht. Erschwerte Einsatzverhältnisse. Unglücklich exponierte Personen werden erfasst.

Katastrophaler Verlauf (1%) Prozess verläuft sehr unüblich. Schutzmaßnahmen funktionieren nicht oder kommen zu spät. Schwierige Einsatzverhältnisse. Viele Personen exponiert und direkt betroffen (z.B. Direkttreffer)

Suggest Documents