Encapsulation of Organic Photonic Elements

Encapsulation of Organic Photonic Elements Y. Leterrier Laboratoire de Technologie des Composites et Polymères (LTC) Ecole Polytechnique Fédérale de L...
Author: Guest
4 downloads 0 Views 5MB Size
Encapsulation of Organic Photonic Elements Y. Leterrier Laboratoire de Technologie des Composites et Polymères (LTC) Ecole Polytechnique Fédérale de Lausanne (EFPL) CH-1015 Lausanne, Switzerland SwissLaser Net Workshop, Basel, June 25, 2008

Y. Leterrier - SwissLaser Net Workshop, Basel, June 25, 2008

Polymers are (too) permeable 104 LDPE

102 101

Solar modules 100 10-1 10-2

PS

PP PC HDPE ABS Food products

3

2

OTR (100 um; cm /m /day/bar)

103

PET PA6 PVC PEN Cellulose EVOH (wet) PVDC PAN LCP EVOH (dry)

OLED displays

10-3 10-4 10-7

10-5

10-3

10-1

101

103

2

WVTR (100 um; g/m /day) Crank & Park, ‘Diffusion in polymers’ Academic Press (1968) Chatam, Surf. Coat. Technol. (1996) Pauly, in ‘Polymer Handbook’ Wiley (1999) Y. Leterrier - SwissLaser Net Workshop, Basel, June 25, 2008

1

High-Barrier Strategies Barrier Improvement Factor: BIF = Ps/P

nanolaminates Inorganic film (10-1000 nm)

Polymer substrate

BIF > 105

BIF ~ 100

Organic-inorganic hybrids

BIF ?

BIF ~ 1’000

Y. Leterrier - SwissLaser Net Workshop, Basel, June 25, 2008

Nanosized inorganic coatings/polymer composites

h h c hs = + P Pc Ps

Coating permeability Pc, thickness hc Substrate permeability Ps, thickness hs 1000

OTR (cm3/day/m2/bar)

SiOx/PET films PET

100

Evaporation AlOx

10

Sputtering 1

Aluminized PET PECVD

0.1

0

100

200

300

400

500

Coating thickness (nm) Leterrier, Prog. Mater. Sci (2003) Y. Leterrier - SwissLaser Net Workshop, Basel, June 25, 2008

2

Defects in vapor-deposited inorganic films on polymers Critical coating thickness ranges between 8 and 15 nm

Defect dependent permeation

-15 Ep (PET)= 32.4±1.3 KJ/mole

-16 -17 -18 ln P

-19 -20

Ep (SiOx_PET)= 34.4 ± 2.1 KJ/mole

-21 -22 -23

SiOx/PET

-24 3.10 3.15 3.20 3.25 3.30 3.35 3.40 3.45 3.50 Temp (1/OK) x 103

Courtesy Tetra Pak

Roberts et al., J. Membrane Sci. (2002) Rochat, Leterrier, Månson, Fayet, Surf. Coat Technol. (2003, 2006) Y. Leterrier - SwissLaser Net Workshop, Basel, June 25, 2008

100

400

80

1 µm

50 nm

300

60

200

40

10 nm

100

20

0

2

500

3

120

[cm /m /day/bar]

600

-1

Crack density [mm ]

10 nm SiOx on PET @ 10% strain

Oxygen transmission rate

Effect of coating defects on failure of barrier

0 0

0.02

0.04

0.06

0.08

0.1

Strain

Rochat, Leterrier et al., J. Appl. Phys. (2003) Singh, Leterrier, Månson, Fayet, Surf. Coat. Technol. (2007) Y. Leterrier - SwissLaser Net Workshop, Basel, June 25, 2008

3

High-Barrier Strategies Barrier Improvement Factor: BIF = Ps/P

nanolaminates Polymer substrate

Inorganic film (10-1000 nm)

BIF > 105

BIF ~ 100

Organic-inorganic hybrids

BIF ?

BIF ~ 1’000

Y. Leterrier - SwissLaser Net Workshop, Basel, June 25, 2008

Why nanolaminate structures? Nanolaminates decouple defect structure

BIF > 105

WVTR (20°C) ~ 2·10-6 g/m2/day (Vitex Systems, CA)

Trophsa & Harvey, J. Phys. Chem. B (1997) Y. Leterrier - SwissLaser Net Workshop, Basel, June 25, 2008

4

Modeling of gas transport Barrier improvement obtained when adding a second inorganic layer

Trophsa & Harvey, J. Phys. Chem. B (1997) Schaepkens et al., J. Vac. Sci. Technol (2004) Y. Leterrier - SwissLaser Net Workshop, Basel, June 25, 2008

Nanolaminate encapsulation

Producer

Encapsulation Structure

Number of layers

WVTR (g.m-2.day)

Crack Onset Strain (%)

Vitex (Barix)

[acrylate/Al2O3] n

10

~ 1 × 10-6

0.8

Philips (NONON)

[SiNx/SiOx] n

‘12’ + topcoat

3.6 × 10-6

1.0

GE (graded UHB)

[SiNx/SiOx] n

‘5’

8.6 × 10-6

-

Applied Materials

(SiN/lacquer)2

4

~ 1 × 10-5

1.0

Y. Leterrier - SwissLaser Net Workshop, Basel, June 25, 2008

5

High-Barrier Strategies Barrier Improvement Factor: BIF = Ps/P

nanolaminates Polymer substrate

Inorganic film (10-1000 nm)

BIF > 105

BIF ~ 100

Organic-inorganic hybrids

BIF ?

BIF ~ 1’000

Y. Leterrier - SwissLaser Net Workshop, Basel, June 25, 2008

Why organic-inorganic hybrids? Organo-silanes reduce the severity of superficial defects (‘Griffith flaws’) R—Si—(OR’)3

Flaw

Physisorbed Chemisorbed layers Highly layers crosslinked region

Coating Substrate

Pluddemann, Silane Coupling Agents, Plenum Press (1990) Zinck et al., J. Mater. Sci. (1999). Haas et al., Surf. Coat. Technol. (1999) Bouchet et al., Surf. Coat Technol. (2005) Y. Leterrier - SwissLaser Net Workshop, Basel, June 25, 2008

6

Processing of organosilane-silica hybrids SiOx 12 nm PECVD from O2 diluted HMDSO on 12 µm thick PET web OTR ~ 2.1 cm3/m2/day/bar COS ~ 3.5%

NH2

Si(OC2H5)3

Gamma-aminopropyltriethoxysilane (γ-APS, Silquest A-1100TM)

1 - 20 %wt γ-APS/ethanol pH=11.4 and pH=8 (acetic acid)

Spin coating on SiOx/PET films 1000 rpm, 20 s

oligomerization: 12 h at 60°C 10 - 500 nm thick silane films Magni et al, J. Phys. D (2001) Bouchet, Leterrier et al., Surf. Coat. Technol. (2005, 2007) Y. Leterrier - SwissLaser Net Workshop, Basel, June 25, 2008

Defect analysis in organosilane-silica hybrids Amino-silane treatment reduces the size and population of macro-defects SiOx/PET RIE 12 min. Average defect radius 720 nm

γ-APS/SiOx/PET RIE 12 min. Average defect radius 330 nm

Singh, Leterrier et al., Surf. Coat. Technol. (2007) Y. Leterrier - SwissLaser Net Workshop, Basel, June 25, 2008

7

Mechanical integrity of organosilane-silica hybrids

γ-APS/SiOx/PET

10 nm SiOx/PET reference

5 µm

0%

Crack onset strain 3.5%

0%

5 µm

10%

5 µm

12%

5 µm

20%

5 µm

Crack onset strain > 6%

Rochat et al. Thin Solid Films (2003) Y. Leterrier - SwissLaser Net Workshop, Basel, June 25, 2008

Supertough high barrier encapsulation nanolaminates

Organic-inorganic hybrids

BIF > 105

COS ~ 5%

Supertough high barrier encapsulation

Stress state? Microcracking?

Y. Leterrier - SwissLaser Net Workshop, Basel, June 25, 2008

8

Origin of stress in polymer coatings

… Lack of dimensional stability … Void formation?

… Buckling and cracking

t

!(t) = 2 # G(t) 0

T

f "c "c dt + 2 # G($ s + )dT "t "T Tc

Cure Thermal stress (small for UVshrinkage curable polymers) stress Lange, Månson et al., Polymer (1995, 1997); Payne (1998) Y. Leterrier - SwissLaser Net Workshop, Basel, June 25, 2008

Towards low stress encapsulation A low-stress material combines:

 Tailored process temperature cycles  ‘Low profile’ additives

 reduced shrinkage ⇒ radiation curing  retarded modulus build-up ⇒ hyperbranched polymers

 Radiation curing …  Hyperbranched polymers

Y. Leterrier - SwissLaser Net Workshop, Basel, June 25, 2008

9

Low Stress UV Curable Hyperbranched Polymer Nanocomposites

HBP + 5 vol% SiO2 Tg: 68°C

Tg: 126°C

Tg: 28°C 100 nm

HBP + 20 vol% SiO2

Photoinitiators: 1-Hydroxy-cyclohexyl-phenyl-ketone 1:1 blend of 1-Hydroxy-cyclohexylphenyl-ketone and benzophenone

100 nm

Y. Leterrier - SwissLaser Net Workshop, Basel, June 25, 2008

Low Stress UV Curable Hyperbranched Polymer Nanocomposites

Microbattery, layer thickness 500 µm

SU8

Polyether HBP

FOM = (L x AR) / (Stress x Fab_Time) Resist

Layer thickness, L (µm)

Aspect ratio, AR

Residual stress (MPa)

Fabrication time (h)

FOM

Polyether HBP

850

7.7

2.4

0.5

5454

Polyester HBP

500

3.3

4.5

0.5

733

SU-8

250

11

25

3

37

Jin Y.-H., J. Micromech. Microeng., 17, 1147-1153 (2007). Schmidt et al., J. Micromech. Microeng. 18, 045022 (2008). Y. Leterrier - SwissLaser Net Workshop, Basel, June 25, 2008

10

High-Barrier Strategies Barrier Improvement Factor: BIF = Ps/P

nanolaminates Polymer substrate

Inorganic film (10-1000 nm)

BIF ~ 100 COS ~ 2%

BIF > 105 COS ~ 1%

Organic-inorganic hybrids BIF ~ 1000 COS ~ 5%

BIF ~ 1000 COS ~ 2%

Y. Leterrier - SwissLaser Net Workshop, Basel, June 25, 2008

Acknowledgements • • • • • • • • • • • • •

F. Demarco, G. Rochat, B. Singh, J. Bouchet, J.-A. Månson, LTC-EPFL Dr. J. Andersons, Inst. Polymer Mechanics, Riga (LV) Dr. Y.-H. Jin, Pr. YH Cho, KAIST (KR) Dr. P. Bouten, Philips Research Laboratories (NL) Dr. N. Rutherford, Vitex Systems (USA) Dr. D. James, Dr. S. Lundmark, Perstorp SC (S) Dr. P. Fayet, Tetra Pak Suisse SA, Plasma Technology (CH) Centre Interfacultaire de Microscopie Electronique (CIME-EPFL) Centre de Micro-Nano-Technologies (CMI-EPFL) Swiss Commission for Technology and Innovation (CTI) and the Top Nano 21 Swiss initiative (TNS 5940.2) Swiss National Science Foundation (SNF 200020-111706) Swiss Federal Office for Education and Science (OFES - IST-2001-34215) FLEXIDIS (EU-IST 2004-4354)

THANK YOU!

Y. Leterrier - SwissLaser Net Workshop, Basel, June 25, 2008

11