Electric Car. History

11/22/2010 Electric Car where the technology stands challenges examples Lecture prepared with the able assistance of Eric Klem, TA in 2009 History ...
0 downloads 2 Views 477KB Size
11/22/2010

Electric Car where the technology stands challenges examples

Lecture prepared with the able assistance of Eric Klem, TA in 2009

History

• 1834: First electric vehicle • 1859: Rechargeable lead‐acid  batteries invented • 1890’s: Electric vehicles  outnumbered other vehicles 10 to 1 • 1912: 38,842 EVs on road

Karen Endicott

1

11/22/2010

The Demise of the EV • 1910: First mass production of gasoline engines while EV’ss were still hand‐made while EV were still hand made

• 1913: First electric starter on a gasoline engine Until this point, many people could not hand‐start  gasoline engines

• 1990’s: Renewed interest drops after a few years – Range issue Range issue

Energy Flow in an Electric Vehicle Coal Plants

Nuclear

Renewable Sources

Power Grid At fixed installations

Battery Charger

Onboard Vehicle

Batteries

Motor Controller Motor Controller

Electric Motor

Vehicle Driveline

2

11/22/2010

Power Source – The Electric Grid • Electric vehicles typically charge off the grid. • P Power plant and transmission efficiency need to be  l t dt i i ffi i dt b considered.

or

Is the electric car: a Zero-Emission Vehicle or an Elsewhere-Emission Vehicle???

Solar Panels on an EV? • Typical power required to drive vehicle – 18kW

• Required area of solar panels – 1450ft2 (using Evergreen panels)

• This assumes ideal conditions – Sunny weather – Correct panel angle – No shading

• Panels are much more efficient at fixed sites.

3

11/22/2010

Chargers • There exists a wide variety of battery chargers  on the market. th k t • Chargers are typically 90% efficient. • Most chargers are flexible and can take many  different inputs (AC, DC, varied voltages).

www.manzanitamicro.com

Charging Limitations

• Battery bank holding 260 Ah at 120 V – 260 Ah x 120 V = 31.2 kWh capacity • Average household plug 120V, 15A – 120 V x 15 A = 1.8 kW • Charge Time – 31.2 kWh/1.8 kW = 17.33 hours – > 17 hours to recharge a totally depleted pack.

http://wheels.blogss.nytimes.com/tag/rocky-mountain-institute/

Example

(Ah = amp x hour; 1 amp x 1 V = 1 W; 1000 Ah x 1 V = 1 kWh)

4

11/22/2010

Best‐Case Scenario • Use an outlet plug with 220V, 30A – 220 V x 30 A = 6.6 kW

• Time to charge – 31.2 kWh/6.6 kW = 4.73 hours • Note: Note: Charging at this rate is significantly less  Charging at this rate is significantly less efficient and is not possible with all batteries.

Comparison with  Internal Combustion Engine

Electric Vehicle Internal  Combustion  Engine

Charge Time

Driving Time

5 hours

2 hours

0.08 hours

7 hours

Conclusion: The electric vehicle (EV) has a major handicap.

5

11/22/2010

Energy Storage • Batteries • Ultra‐Capacitors

• Other – Hydrogen tank – Metal hydride

Controllers • Purpose = to provide to the electric motor an  amount of power corresponding to the  t f di t th driver’s input. • Many AC and DC controllers are available. • Efficiencies are high (~90%).

6

11/22/2010

Why an electric motor? Because the internal‐combustion engine is so bad…

(http p://www.fueleconomy.gov/feg/atv.shtml)

No idling 1.04% body skin 1 04% underfloor 1.04% & wheel wells 0.52% throughflow

Direct drive – No driveline losses If more efficient, this number smaller

A Comparison of Two Engines Internal‐combustion engine Only 33% efficient at best (needs a radiator) Air emissions Peaky torque‐rpm curve (needs a transmission) Power loss in idle Irreversible energy conversion Big and heavy (250 hp in 600 lbs = 0.7 kW/kg) Noisy

Electric motor 90‐95% efficient (no need for a radiator) Zero direct emissions Broad torque‐rpm curve (does not need a transmission) No idle Regenerative braking Small and light (75 kW in 13 kg = 5.8 kW/kg) Quiet

So, why don’t we have electric motors in our automobiles today? Because we do not have good enough batteries to store the electricity on board of the vehicle !

7

11/22/2010

Batteries: Important Considerations • Cost – Different technologies have different costs • NiMH (Nickel  NiMH (Nickel – Metal Hydrides) cost an estimated $450/kWhr Metal Hydrides) cost an estimated $450/kWhr (= $14,040 for previous example)

• Weight – Lead acid batteries ~0.035 kWh/kg (31.2 kWh/0.035 kWh/kg = 891kg = 1,964 lbs for previous example)

• Discharge/Charge rate – Limits maximum power Limits maximum power – Limits minimum charging time

• Lifetime – # rated cycles http://electricauto.com/hist_comp_01.html

Battery Comparison 100000

Ultra-Capacitors

10000

Internal-Combustion Engine

Specific Power (W/kg)

Lead-acid Li-ion

1000

Li-polymer Nickel-Cadmium Nickel-metal hydride Sodium-Sulfur Zinc-Bromine Military

100

Super Capacitor Internal Combustion Engine

10

1 1

10

100 Energy Density (Wh/kg)

1000

10000

Compilation by Ryan Rosston ‘04

8

11/22/2010

Batteries: cont’d • Most common technology is Lead‐Acid – Cheap to purchase – Reliable and long lasting

• Most promising technology is Lithium‐Ion M t ii t h l i Lithi I – Considerably more expensive – Better power delivery

Lithium‐Ion Batteries • Developed by materials engineers • Development started in 1970’s‐80’s • 1991: Sony started commercial production. • Use a lithium anode • Use porous carbon at the cathode

9

11/22/2010

Li‐ion Battery Reactions At positive electrode (cathode): LiCoO2 ↔ Li1-xCoO2 + xLi+ + xe– At negative electrode (anode): 6C + xLi+ + xe– ↔ C6Lix Overall reaction: LiCoO2 + 6C ↔ Li1-xCoO2 + C6Lix → reaction is charging g g ← reaction is discharging • Danger of overcharging – Synthesis of cobalt oxide • Danger of overdischarging ‐ Creates lithium oxide

A123 Battery

• Most advanced commercial Li‐ion battery • Standard battery found in DeWalt cordless tools – Production just meets the DeWalt demand,   making it hard to get these batteries • Uses nanophosphate electrode

10

11/22/2010

Ultra‐Capacitors Battery Comparison 100000

10000



Pros – Extremely quick energy delivery – Quick recharging Cons – Low energy density gy y – Takes up a lot of volume

Lead-acid

Specific Power (W/kg)



1000

Li-ion Li-polymer

100

Nickel-Cadmium

10

1 1

10

100 1000 Energy Density (Wh/kg)

10000

Example of a capacitor‐based vehicle

Doug Fraser

11

11/22/2010

Fuel Cells • Could replace batteries in electric vehicle – Hydrogen produces electricity onboard.

• Quick “recharge” possible – Hydrogen can be transferred relatively quickly.

• Technological/cost hurdles to be overcome

Example – Goals Assume: • Normal N l4 4-seatt car – Note: If an efficient car design is used, the vehicle will have a much improved range.

• Typical driving style • Ability to travel 400 miles per charge • Li-ion Li ion batteries Question: What is the required battery weight?

12

11/22/2010

400‐mile range EV Assume an energy density of 180 Wh per kg of batteries Non-battery weight of vehicle

1100

kg

B tt Battery weight i ht

1000

k kg

Total vehicle weight

2100

kg

Average power consumption

0.018

kW/kg

37.8

kW

40

mph

400

miles

10

hours

Energy needed on board

378

kWh

Energy available onboard

180

kWh

Power needed on board Average driving speed Desired range Driving time

Conclusion: Not possible with a 2200 lbs battery pack !

Try more batteries to see if that can do it… Assume an energy density of 180 Wh per kg of batteries Non-battery weight of vehicle

1100

kg

Battery weight

10000

kg

Total vehicle weight

11100

kg

Average power consumption

0.018

kW/kg

Power needed on board

199.8

kW

40

mph

400

miles

10

hours

Energy needed on board

1998

kWh

Energy available onboard

1800

kWh

Average driving speed Desired range Driving time

Even with 22,000lbs of batteries, it isn’t possible

13

11/22/2010

Now try a 200‐mile range EV Assume an energy density of 180 Wh per kg of batteries Non-battery weight of vehicle

1100

kg

Battery weight

1100

kg

Total vehicle weight

2200

kg

Average power consumption

0.018

KW/kg

Power needed onboard

39.6

kW

Average driving speed

40

mph

200

miles

5

hours

Energy needed onboard

198

kWh

Energy available onboard

198

kWh

Desired range Driving time

It’s now possible!  However, it is quite expensive and heavy. To make this feasible, a more efficient car should be designed.

Tesla Roadster • Up to 244‐mile range 1000 lbs of Li‐ion ion batteries  batteries • 1000 lbs of Li (energy equivalent of 8  liters gasoline) • Minimum recharge time  = 4 hours • Aerodynamic body • Low rolling resistance tires • Composite body work • > $100,000

http://www.carforums.net/reviews/makes/pictures/tesla‐roadster.jpg

14

11/22/2010

GM Volt • 161 horsepower Only 40‐mile mile range range • Only 40 (ok for 78% of trips) • Recharge time:  8 hours at 110V or 4 hrs at 220V y y • Aerodynamic body • Low rolling resistance tires

• $32,780 

Areas for Future Improvement in EV’s • Batteries: Making lighter batteries that have  hi h higher power outputs t t • Charging: Reducing recharge times • Vehicle efficiency: Other vehicle systems can  be improved upon (true for all vehicles) • Aerodynamics, rolling resistance, weight Aerodynamics rolling resistance weight

• Reasonable price

15