EE101: Op Amp circuits (Part 6)

EE101: Op Amp circuits (Part 6) M. B. Patil [email protected] www.ee.iitb.ac.in/~sequel Department of Electrical Engineering Indian Institute of ...
Author: Horace Russell
12 downloads 0 Views 917KB Size
EE101: Op Amp circuits (Part 6)

M. B. Patil [email protected] www.ee.iitb.ac.in/~sequel Department of Electrical Engineering Indian Institute of Technology Bombay

M. B. Patil, IIT Bombay

Sinusoidal oscillators

xi

xf

Amplifier

x′i

β xo

A x′i

xo

Frequency−sensitive network

Consider an amplifier with feedback.

M. B. Patil, IIT Bombay

Sinusoidal oscillators

xi

xf

Amplifier

x′i

β xo

A x′i

xo

Frequency−sensitive network

Consider an amplifier with feedback. xo = A xi0 = A (xi + xf ) = A (xi + βxo )

M. B. Patil, IIT Bombay

Sinusoidal oscillators

xi

xf

Amplifier

x′i

β xo

A x′i

xo

Frequency−sensitive network

Consider an amplifier with feedback. xo = A xi0 = A (xi + xf ) = A (xi + βxo ) xo A → Af ≡ = . xi 1 − Aβ

M. B. Patil, IIT Bombay

Sinusoidal oscillators

xi

xf

x′i

β xo

Amplifier

A x′i

xo

Frequency−sensitive network

Consider an amplifier with feedback. xo = A xi0 = A (xi + xf ) = A (xi + βxo ) xo A → Af ≡ = . xi 1 − Aβ Since A and β will generally vary with ω, we re-write Af as, A (jω) → Af (jω) = . 1 − A (jω) β (jω)

M. B. Patil, IIT Bombay

Sinusoidal oscillators

xi

xf

x′i

β xo

Amplifier

A x′i

xo

Frequency−sensitive network

Consider an amplifier with feedback. xo = A xi0 = A (xi + xf ) = A (xi + βxo ) xo A → Af ≡ = . xi 1 − Aβ Since A and β will generally vary with ω, we re-write Af as, A (jω) → Af (jω) = . 1 − A (jω) β (jω) As A (jω) β (jω) → 1, Af (jω) → ∞, and we get a finite xo even if xi = 0.

M. B. Patil, IIT Bombay

Sinusoidal oscillators

xi

xf

x′i

β xo

Amplifier

A x′i

xo

Frequency−sensitive network

Consider an amplifier with feedback. xo = A xi0 = A (xi + xf ) = A (xi + βxo ) xo A → Af ≡ = . xi 1 − Aβ Since A and β will generally vary with ω, we re-write Af as, A (jω) → Af (jω) = . 1 − A (jω) β (jω) As A (jω) β (jω) → 1, Af (jω) → ∞, and we get a finite xo even if xi = 0. In other words, we can remove xi and still get a non-zero xo . This is the basic principle behind sinusoidal oscillators.

M. B. Patil, IIT Bombay

Sinusoidal oscillators

xi

xf

x′i

β xo

Amplifier

A x′i

xo

Frequency−sensitive network

M. B. Patil, IIT Bombay

Sinusoidal oscillators

xi

xf

x′i

β xo

Amplifier

A x′i

xo

Frequency−sensitive network

* The condition, A (jω) β (jω) = 1, for a circuit to oscillate spontaneously (i.e., without any input), is known as the Barkhausen criterion.

M. B. Patil, IIT Bombay

Sinusoidal oscillators

xi

xf

x′i

β xo

Amplifier

A x′i

xo

Frequency−sensitive network

* The condition, A (jω) β (jω) = 1, for a circuit to oscillate spontaneously (i.e., without any input), is known as the Barkhausen criterion. * For the circuit to oscillate at ω = ω0 , the β network is designed such that the Barkhausen criterion is satisfied only for ω0 , i.e., all components except ω0 get attenuated to zero.

M. B. Patil, IIT Bombay

Sinusoidal oscillators

xi

xf

x′i

β xo

Amplifier

A x′i

xo

Frequency−sensitive network

* The condition, A (jω) β (jω) = 1, for a circuit to oscillate spontaneously (i.e., without any input), is known as the Barkhausen criterion. * For the circuit to oscillate at ω = ω0 , the β network is designed such that the Barkhausen criterion is satisfied only for ω0 , i.e., all components except ω0 get attenuated to zero. * The output xo will therefore have a frequency ω0 (ω0 /2π in Hz), but what about the amplitude?

M. B. Patil, IIT Bombay

Sinusoidal oscillators

Amplifier

xo gain limiter

β xo

Frequency−sensitive network

M. B. Patil, IIT Bombay

Sinusoidal oscillators

Amplifier

xo gain limiter

β xo

Frequency−sensitive network

* A gain limiting mechanism is required to limit the amplitude of the oscillations.

M. B. Patil, IIT Bombay

Sinusoidal oscillators

Amplifier

xo gain limiter

β xo

Frequency−sensitive network

* A gain limiting mechanism is required to limit the amplitude of the oscillations. * Amplifier clipping can provide a gain limiter mechanism. For example, in an Op Amp, the output voltage is limited to ±Vsat , and this serves to limit the gain as the magnitude of the output voltage increases.

M. B. Patil, IIT Bombay

Sinusoidal oscillators

Amplifier

xo gain limiter

β xo

Frequency−sensitive network

* A gain limiting mechanism is required to limit the amplitude of the oscillations. * Amplifier clipping can provide a gain limiter mechanism. For example, in an Op Amp, the output voltage is limited to ±Vsat , and this serves to limit the gain as the magnitude of the output voltage increases. * For a more controlled output with low distortion, diode-resistor networks are used for gain limiting, as we shall see.

M. B. Patil, IIT Bombay

Sinusoidal oscillators

Amplifier

xo gain limiter

β xo

Frequency−sensitive network

M. B. Patil, IIT Bombay

Sinusoidal oscillators

Amplifier

xo gain limiter

β xo

Frequency−sensitive network

* Up to about 100 kHz, an Op Amp based amplifier and a β network of resistors and capacitors can be used.

M. B. Patil, IIT Bombay

Sinusoidal oscillators

Amplifier

xo gain limiter

β xo

Frequency−sensitive network

* Up to about 100 kHz, an Op Amp based amplifier and a β network of resistors and capacitors can be used. * At higher frequencies, an Op Amp based amplifier is not suitable because of frequency response and slew rate limitations of Op Amps.

M. B. Patil, IIT Bombay

Sinusoidal oscillators

Amplifier

xo gain limiter

β xo

Frequency−sensitive network

* Up to about 100 kHz, an Op Amp based amplifier and a β network of resistors and capacitors can be used. * At higher frequencies, an Op Amp based amplifier is not suitable because of frequency response and slew rate limitations of Op Amps. * For high frequencies, transistor amplifiers are used, and LC tuned circuits or piezoelectric crystals are used in the β network.

M. B. Patil, IIT Bombay

Wien bridge oscillator

Amplifier

xo

R

amplifier

β xo

Frequency−sensitive network

C

A

Z1

C R

Z2

β network

M. B. Patil, IIT Bombay

Wien bridge oscillator

Amplifier

xo

R

amplifier

β xo

Frequency−sensitive network

C

A

Z1

C R

Z2

β network

Assuming Rin → ∞ for the amplifier, we get Z2 R k (1/sC ) sRC A(s) β(s) = A =A =A . Z1 + Z2 R + (1/sC ) + R k (1/sC ) (sRC )2 + 3sRC + 1

M. B. Patil, IIT Bombay

Wien bridge oscillator

Amplifier

xo

R

amplifier

β xo

C

A

Frequency−sensitive network

Z1

C R

Z2

β network

Assuming Rin → ∞ for the amplifier, we get Z2 R k (1/sC ) sRC A(s) β(s) = A =A =A . Z1 + Z2 R + (1/sC ) + R k (1/sC ) (sRC )2 + 3sRC + 1 For A β = 1 (and with A equal to a real positive number), jωRC must be real and equal to 1/A. −ω 2 (RC )2 + 3jωRC + 1

M. B. Patil, IIT Bombay

Wien bridge oscillator

Amplifier

xo

R

amplifier

β xo

C

A

Frequency−sensitive network

Z1

C R

Z2

β network

Assuming Rin → ∞ for the amplifier, we get Z2 R k (1/sC ) sRC A(s) β(s) = A =A =A . Z1 + Z2 R + (1/sC ) + R k (1/sC ) (sRC )2 + 3sRC + 1 For A β = 1 (and with A equal to a real positive number), jωRC must be real and equal to 1/A. −ω 2 (RC )2 + 3jωRC + 1 →

ω=

1 ,A=3 RC

M. B. Patil, IIT Bombay

Wien bridge oscillator

|H|

1

V1

R

C

0.1

V2 0.01 90

C R

0

6

C = 1 nF

H

R = 158 kΩ

−90

101

102

103

104

105

f (Hz)

H(jω) =

V2 (jω) jωRC = . V1 (jω) −ω 2 (RC )2 + 3jωRC + 1

M. B. Patil, IIT Bombay

Wien bridge oscillator

|H|

1

V1

R

C

0.1

V2 0.01 90

C R

0

6

C = 1 nF

H

R = 158 kΩ

−90

101

102

103

104

105

f (Hz)

H(jω) =

V2 (jω) jωRC = . V1 (jω) −ω 2 (RC )2 + 3jωRC + 1

Note that the condition ∠H = 0 is satisfied only at one frequency, ω0 = 1/RC , i.e., f0 = 1 kHz. At this frequency, |H| = 0.33, i.e., β(jω) = 1/3.

M. B. Patil, IIT Bombay

Wien bridge oscillator

|H|

1

V1

R

C

0.1

V2 0.01 90

C R

0

6

C = 1 nF

H

R = 158 kΩ

−90

101

102

103

104

105

f (Hz)

H(jω) =

V2 (jω) jωRC = . V1 (jω) −ω 2 (RC )2 + 3jωRC + 1

Note that the condition ∠H = 0 is satisfied only at one frequency, ω0 = 1/RC , i.e., f0 = 1 kHz. At this frequency, |H| = 0.33, i.e., β(jω) = 1/3. For A β = 1 → A = 3, as derived analytically.

M. B. Patil, IIT Bombay

Wien bridge oscillator

|H|

1

V1

R

C

0.1

V2 0.01 90

C R

0

6

C = 1 nF

H

R = 158 kΩ

−90

101

102

103

104

105

f (Hz)

H(jω) =

V2 (jω) jωRC = . V1 (jω) −ω 2 (RC )2 + 3jωRC + 1

Note that the condition ∠H = 0 is satisfied only at one frequency, ω0 = 1/RC , i.e., f0 = 1 kHz. At this frequency, |H| = 0.33, i.e., β(jω) = 1/3. For A β = 1 → A = 3, as derived analytically. SEQUEL file: ee101 osc 1.sqproj M. B. Patil, IIT Bombay

Wien bridge oscillator

gain limiter

Block diagram

Implementation

Output voltage

100 k R3 1.5 10 k Amplifier

xo gain limiter

β xo

Frequency−sensitive network

R1 amplifier

22.1 k R 2

Vo

R

Vo

C 0

158 k 1 nF C R

−1.5 0

Ref.: S. Franco, "Design with Op Amps and analog ICs"

1 t (msec)

2

β network

SEQUEL file: wien_osc_1.sqproj

M. B. Patil, IIT Bombay

Wien bridge oscillator

gain limiter

Block diagram

Implementation

Output voltage

100 k R3 1.5 10 k Amplifier

xo gain limiter

β xo

Frequency−sensitive network

22.1 k R 2

R1 amplifier

Vo

R

Vo

C 0

158 k 1 nF C R

−1.5 0

Ref.: S. Franco, "Design with Op Amps and analog ICs"

1 t (msec)

2

β network

SEQUEL file: wien_osc_1.sqproj

* ω0 =

1 1 = → f0 = 1 kHz. RC (158 k) × (1 nF)

M. B. Patil, IIT Bombay

Wien bridge oscillator

gain limiter

Block diagram

Implementation

Output voltage

100 k R3 1.5 10 k Amplifier

xo gain limiter

β xo

Frequency−sensitive network

22.1 k R 2

R1 amplifier

Vo

R

Vo

C 0

158 k 1 nF C R

−1.5 0

Ref.: S. Franco, "Design with Op Amps and analog ICs"

1 t (msec)

2

β network

SEQUEL file: wien_osc_1.sqproj

* ω0 =

1 1 = → f0 = 1 kHz. RC (158 k) × (1 nF)

* Since the amplifier gain is required to be A = 3, we must have 1 +

R2 = 3 → R2 = 2 R1 . R1

M. B. Patil, IIT Bombay

Wien bridge oscillator

gain limiter

Block diagram

Implementation

Output voltage

100 k R3 1.5 10 k Amplifier

xo gain limiter

β xo

Frequency−sensitive network

22.1 k R 2

R1 amplifier

Vo

R

Vo

C 0

158 k 1 nF C R

−1.5 0

Ref.: S. Franco, "Design with Op Amps and analog ICs"

1 t (msec)

2

β network

SEQUEL file: wien_osc_1.sqproj

* ω0 =

1 1 = → f0 = 1 kHz. RC (158 k) × (1 nF)

R2 = 3 → R2 = 2 R1 . R1 * For gain limiting, diodes have been used. With one of the two diodes conducting, R2 → R2 k R3 , and the gain reduces. * Since the amplifier gain is required to be A = 3, we must have 1 +

M. B. Patil, IIT Bombay

Wien bridge oscillator

gain limiter

Block diagram

Implementation

Output voltage

100 k R3 1.5 10 k Amplifier

xo gain limiter

β xo

Frequency−sensitive network

22.1 k R 2

R1 amplifier

Vo

R

Vo

C 0

158 k 1 nF C R

−1.5 0

Ref.: S. Franco, "Design with Op Amps and analog ICs"

1 t (msec)

2

β network

SEQUEL file: wien_osc_1.sqproj

* ω0 =

1 1 = → f0 = 1 kHz. RC (158 k) × (1 nF)

R2 = 3 → R2 = 2 R1 . R1 * For gain limiting, diodes have been used. With one of the two diodes conducting, R2 → R2 k R3 , and the gain reduces. * Since the amplifier gain is required to be A = 3, we must have 1 +

* Note that there was no need to consider loading of the β network by the amplifier because of the large input resistance of the Op Amp. That is why β could be computed independently.

M. B. Patil, IIT Bombay

Phase-shift oscillator

A

V

C1

C3

C2 R1

I

B

R2

SEQUEL file: ee101_osc_4.sqproj

Phase-shift oscillator

A

V

C1

C3

C2 R1

I

B

R2

SEQUEL file: ee101_osc_4.sqproj

Let R1 = R2 = R = 10 k, G = 1/R, and C1 = C2 = C3 = C = 16 nF .

Phase-shift oscillator

A

V

C1

C3

C2 R1

I

B

R2

SEQUEL file: ee101_osc_4.sqproj

Let R1 = R2 = R = 10 k, G = 1/R, and C1 = C2 = C3 = C = 16 nF . Using nodal analysis, sC (VA − V ) + GVA + sC (VA − VB ) = 0

(1)

sC (VB − VA ) + GVB + sCVB = 0

(2)

Phase-shift oscillator

A

V

C1

C3

C2 R1

I

B

R2

SEQUEL file: ee101_osc_4.sqproj

Let R1 = R2 = R = 10 k, G = 1/R, and C1 = C2 = C3 = C = 16 nF . Using nodal analysis, sC (VA − V ) + GVA + sC (VA − VB ) = 0

(1)

sC (VB − VA ) + GVB + sCVB = 0

(2)

Solving (1) and (2), I =

1 (sRC )3 V. R 3 (sRC )2 + 4 sRC + 1

Phase-shift oscillator 10−2

A

V

C1

C3

C2 R1

|I(s)/V(s)| (A/V)

I

B

10−10 270

R2 6

180

(I(s)/V(s)) (deg)

SEQUEL file: ee101_osc_4.sqproj 90

102

101

103

104

105

f (Hz)

Let R1 = R2 = R = 10 k, G = 1/R, and C1 = C2 = C3 = C = 16 nF . Using nodal analysis, sC (VA − V ) + GVA + sC (VA − VB ) = 0

(1)

sC (VB − VA ) + GVB + sCVB = 0

(2)

Solving (1) and (2), I =

1 (sRC )3 V. R 3 (sRC )2 + 4 sRC + 1 M. B. Patil, IIT Bombay

Phase-shift oscillator 10−2

A

V C1

C3

C2 R1

|I(s)/V(s)| (A/V)

I

B

10−10

270

R2 6

180

(I(s)/V(s)) (deg)

SEQUEL file: ee101_osc_4.sqproj 90

101

102

103

104

105

f (Hz)

(R1 = R2 = R = 10 k, and C1 = C2 = C3 = C = 16 nF .) β(jω) =

I (jω) 1 (jωRC )3 = . V (jω) R 3(jωRC )2 + 4 jωRC + 1

M. B. Patil, IIT Bombay

Phase-shift oscillator 10−2

A

V C1

C3

C2 R1

|I(s)/V(s)| (A/V)

I

B

10−10

270

R2 6

180

(I(s)/V(s)) (deg)

SEQUEL file: ee101_osc_4.sqproj 90

101

102

103

104

105

f (Hz)

(R1 = R2 = R = 10 k, and C1 = C2 = C3 = C = 16 nF .) β(jω) =

I (jω) 1 (jωRC )3 = . V (jω) R 3(jωRC )2 + 4 jωRC + 1

For β(jω) to be a real number, the denominator must be purely imaginary. 1 1 → 3(ωRC )2 + 1 = 0, i.e., 3(ωRC )2 = 1 → ω ≡ ω0 = √ → f0 = 574 Hz . 3 RC

M. B. Patil, IIT Bombay

Phase-shift oscillator 10−2

A

V C1

C3

C2 R1

|I(s)/V(s)| (A/V)

I

B

10−10

270

R2 6

180

(I(s)/V(s)) (deg)

SEQUEL file: ee101_osc_4.sqproj 90

101

102

103

104

105

f (Hz)

(R1 = R2 = R = 10 k, and C1 = C2 = C3 = C = 16 nF .) β(jω) =

I (jω) 1 (jωRC )3 = . V (jω) R 3(jωRC )2 + 4 jωRC + 1

For β(jω) to be a real number, the denominator must be purely imaginary. 1 1 → 3(ωRC )2 + 1 = 0, i.e., 3(ωRC )2 = 1 → ω ≡ ω0 = √ → f0 = 574 Hz . 3 RC Note that, at ω = ω0 , √ 1 (j/ 3)3 1 −6 β(jω0 ) = = −8.33 × 10 . √ =− R 4 j/ 3 12 R M. B. Patil, IIT Bombay

Phase-shift oscillator

I A

V C1

B

R2

A

V C3

C2 R1

I C1

Rf

B

C3

C2 R1

β network

R2

current−to−voltage converter

Note that the functioning of the β network as a stand-alone circuit (left figure) and as a feedback block (right figure) is the same, thanks to the virtual ground provided by the Op Amp.

M. B. Patil, IIT Bombay

Phase-shift oscillator

I A

V C1

B

A

V C3

C2 R1

I

R2

C1

Rf

B

C3

C2 R1

β network

R2

current−to−voltage converter

Note that the functioning of the β network as a stand-alone circuit (left figure) and as a feedback block (right figure) is the same, thanks to the virtual ground provided by the Op Amp. V (jω) = −Rf I (jω) → Aβ(jω) = −Rf

I (jω) Rf (jωRC )3 =− . V (jω) R 3(jωRC )2 + 4 jωRC + 1

M. B. Patil, IIT Bombay

Phase-shift oscillator

I A

V C1

B

A

V C3

C2 R1

I

R2

C1

Rf

B

C3

C2 R1

β network

R2

current−to−voltage converter

Note that the functioning of the β network as a stand-alone circuit (left figure) and as a feedback block (right figure) is the same, thanks to the virtual ground provided by the Op Amp. V (jω) = −Rf I (jω) → Aβ(jω) = −Rf

I (jω) Rf (jωRC )3 =− . V (jω) R 3(jωRC )2 + 4 jωRC + 1

1 1 I (jω) 1 As seen before, at → ω = ω0 = √ , we have =− . V (jω) 12 R 3 RC

M. B. Patil, IIT Bombay

Phase-shift oscillator

I A

V C1

B

A

V C3

C2 R1

I

R2

C1

Rf

B

C3

C2 R1

β network

R2

current−to−voltage converter

Note that the functioning of the β network as a stand-alone circuit (left figure) and as a feedback block (right figure) is the same, thanks to the virtual ground provided by the Op Amp. V (jω) = −Rf I (jω) → Aβ(jω) = −Rf

I (jω) Rf (jωRC )3 =− . V (jω) R 3(jωRC )2 + 4 jωRC + 1

1 1 I (jω) 1 As seen before, at → ω = ω0 = √ , we have =− . V (jω) 12 R 3 RC For the circuit to oscillate, we need Aβ = 1 → Rf (1/12 R) = 1, i.e., Rf = 12 R

M. B. Patil, IIT Bombay

Phase-shift oscillator

I A

V C1

B

A

V C3

C2 R1

I

R2

C1

Rf

B

C3

C2 R1

β network

R2

current−to−voltage converter

Note that the functioning of the β network as a stand-alone circuit (left figure) and as a feedback block (right figure) is the same, thanks to the virtual ground provided by the Op Amp. V (jω) = −Rf I (jω) → Aβ(jω) = −Rf

I (jω) Rf (jωRC )3 =− . V (jω) R 3(jωRC )2 + 4 jωRC + 1

1 1 I (jω) 1 As seen before, at → ω = ω0 = √ , we have =− . V (jω) 12 R 3 RC For the circuit to oscillate, we need Aβ = 1 → Rf (1/12 R) = 1, i.e., Rf = 12 R In addition, we employ a gain limiter circuit to complete the oscillator design.

M. B. Patil, IIT Bombay

Phase-shift oscillator

Block diagram

Implementation

3k

gain limiter 3k

V CC

6

1k

Amplifier

xo gain limiter

β xo

Output voltage

V EE

1k

Frequency−sensitive network

C1

16 nF

C2 R1

10 k Ref.: Sedra and Smith, "Microelectronic circuits"

Vo

β network 16 nF

16 nF

C3 R2

10 k

0

125 k R f

Vo amplifier (i−to−v converter)

−6 0

1

2 t (msec)

3

4

SEQUEL file: phase_shift_osc_1.sqproj

1 1 ω0 = √ → f0 = 574 Hz, T = 1.74 ms . 3 RC

M. B. Patil, IIT Bombay

Inverting amplifier, revisited

1k

Vs

R1

R2

Vo RL

SEQUEL file: inv_amp_ac.sqproj

Inverting amplifier, revisited

1k

Vs

R1

R2

Vo RL

SEQUEL file: inv_amp_ac.sqproj

* As seen earlier, AV = −R2 /R1 → |AV | should be independent of the signal frequency.

Inverting amplifier, revisited

1k

Vs

R1

R2

Vo RL

SEQUEL file: inv_amp_ac.sqproj

* As seen earlier, AV = −R2 /R1 → |AV | should be independent of the signal frequency. * However, a measurement with a real Op Amp will show that |AV | starts reducing at higher frequencies.

Inverting amplifier, revisited

40 50 k

Vs

R1

R2

25 k

Vo

AV (dB)

1k

20

10 k

R2 = 5 k

RL SEQUEL file: inv_amp_ac.sqproj

0

101

102

103

104

105

106

f (Hz)

* As seen earlier, AV = −R2 /R1 → |AV | should be independent of the signal frequency. * However, a measurement with a real Op Amp will show that |AV | starts reducing at higher frequencies.

Inverting amplifier, revisited

40 50 k

Vs

R1

R2

25 k

Vo

AV (dB)

1k

20

10 k

R2 = 5 k

RL SEQUEL file: inv_amp_ac.sqproj

0

101

102

103

104

105

106

f (Hz)

* As seen earlier, AV = −R2 /R1 → |AV | should be independent of the signal frequency. * However, a measurement with a real Op Amp will show that |AV | starts reducing at higher frequencies. * If |AV | is increased, the gain “roll-off” starts at lower frequencies.

Inverting amplifier, revisited

40 50 k

Vs

R1

R2

25 k

Vo

AV (dB)

1k

20

10 k

R2 = 5 k

RL SEQUEL file: inv_amp_ac.sqproj

0

101

102

103

104

105

106

f (Hz)

* As seen earlier, AV = −R2 /R1 → |AV | should be independent of the signal frequency. * However, a measurement with a real Op Amp will show that |AV | starts reducing at higher frequencies. * If |AV | is increased, the gain “roll-off” starts at lower frequencies. * This behaviour has to do with the frequency response of the Op Amp which we have not considered so far.

M. B. Patil, IIT Bombay

Frequency response of Op Amp 741

ideal

Vi

Vo

Gain (dB)

100

Op Amp 741

−20 dB/decade

0

10−1

f (Hz)

106

The gain of the 741 Op Amp starts falling at rather low frequencies, with fc ' 10 Hz!

M. B. Patil, IIT Bombay

Frequency response of Op Amp 741

ideal

Vi

Vo

Gain (dB)

100

Op Amp 741

−20 dB/decade

0

10−1

f (Hz)

106

The gain of the 741 Op Amp starts falling at rather low frequencies, with fc ' 10 Hz! The 741 Op Amp (and many others) are designed with this feature to ensure that, in typical amplifier applications, the overall circuit is stable (and not oscillatory).

M. B. Patil, IIT Bombay

Frequency response of Op Amp 741

ideal

Vi

Vo

Gain (dB)

100

Op Amp 741

−20 dB/decade

0

10−1

f (Hz)

106

The gain of the 741 Op Amp starts falling at rather low frequencies, with fc ' 10 Hz! The 741 Op Amp (and many others) are designed with this feature to ensure that, in typical amplifier applications, the overall circuit is stable (and not oscillatory). In other words, the Op Amp has been internally compensated for stability.

M. B. Patil, IIT Bombay

Frequency response of Op Amp 741

ideal

Vi

Vo

Gain (dB)

100

Op Amp 741

−20 dB/decade

0

10−1

f (Hz)

106

The gain of the 741 Op Amp starts falling at rather low frequencies, with fc ' 10 Hz! The 741 Op Amp (and many others) are designed with this feature to ensure that, in typical amplifier applications, the overall circuit is stable (and not oscillatory). In other words, the Op Amp has been internally compensated for stability. The gain of the 741 Op Amp can be represented by, A0 A(s) = , 1 + s/ωc with A0 ≈ 105 (i.e., 100 dB), ωc ≈ 2π × 10 rad/s.

M. B. Patil, IIT Bombay

Frequency response of Op Amp 741

ideal

Vo

Vi

Gain (dB)

100

Op Amp 741

−20 dB/decade

0

10−1

f (Hz)

106 ωt

A(jω) =

A0 . 1 + jω/ωc

For ω  ωc , we have A(jω) ≈

A0 . jω/ωc

M. B. Patil, IIT Bombay

Frequency response of Op Amp 741

ideal

Vo

Vi

Gain (dB)

100

Op Amp 741

−20 dB/decade

0

10−1

f (Hz)

106 ωt

A(jω) =

A0 . 1 + jω/ωc

For ω  ωc , we have A(jω) ≈

A0 . jω/ωc

|A(jω)| becomes 1 when A0 = ω/ωc , i.e., ω = A0 ωc .

M. B. Patil, IIT Bombay

Frequency response of Op Amp 741

ideal

Vo

Vi

Gain (dB)

100

Op Amp 741

−20 dB/decade

0

10−1

f (Hz)

106 ωt

A(jω) =

A0 . 1 + jω/ωc

For ω  ωc , we have A(jω) ≈

A0 . jω/ωc

|A(jω)| becomes 1 when A0 = ω/ωc , i.e., ω = A0 ωc . This frequency, ωt = A0 ωc , is called the unity-gain frequency. For the 741 Op Amp, ft = A0 fc ≈ 105 × 10 = 106 Hz.

M. B. Patil, IIT Bombay

Frequency response of Op Amp 741

ideal

Vo

Vi

Gain (dB)

100

Op Amp 741

−20 dB/decade

0

10−1

f (Hz)

106 ωt

A(jω) =

A0 . 1 + jω/ωc

For ω  ωc , we have A(jω) ≈

A0 . jω/ωc

|A(jω)| becomes 1 when A0 = ω/ωc , i.e., ω = A0 ωc . This frequency, ωt = A0 ωc , is called the unity-gain frequency. For the 741 Op Amp, ft = A0 fc ≈ 105 × 10 = 106 Hz. Let us see how the frequency response of the 741 Op Amp affects the gain of an inverting amplifier. M. B. Patil, IIT Bombay

Inverting amplifier, revisited

R2

R2 Vs

R1

Vs

Vo

R1

R2 Vs

Ro Vi Ri

AV (s) Vi

Vo

R1 Vi

AV (s) Vi

Vo

M. B. Patil, IIT Bombay

Inverting amplifier, revisited

R2

R2 Vs

R1

Vs

Vo

R1

R2 Vs

Ro Vi Ri

AV (s) Vi

Vo

R1 Vi

AV (s) Vi

Vo

Assuming Ri to be large and Ro to be small, we get R2 R1 −Vi (s) = Vs (s) + Vo (s) . R1 + R2 R1 + R2

M. B. Patil, IIT Bombay

Inverting amplifier, revisited

R2

R2 Vs

R1

Vs

Vo

R1

R2 Vs

Ro Vi Ri

AV (s) Vi

Vo

R1 Vi

AV (s) Vi

Vo

Assuming Ri to be large and Ro to be small, we get R2 R1 −Vi (s) = Vs (s) + Vo (s) . R1 + R2 R1 + R2 Using Vo (s) = AV (s) Vi (s), Vo (s) R2 1 » „ « – „ « =− R1 + R2 1 R1 + R2 s Vs (s) R1 1+ + R1 A0 R1 A0 ωc

M. B. Patil, IIT Bombay

Inverting amplifier, revisited

R2

R2 Vs

R1

Vs

Vo

R1

R2 Vs

Ro Vi Ri

AV (s) Vi

Vo

R1 Vi

AV (s) Vi

Vo

Assuming Ri to be large and Ro to be small, we get R2 R1 −Vi (s) = Vs (s) + Vo (s) . R1 + R2 R1 + R2 Using Vo (s) = AV (s) Vi (s), Vo (s) R2 1 » „ « – „ « =− R1 + R2 1 R1 + R2 s Vs (s) R1 1+ + R1 A0 R1 A0 ωc R2 1 ωc A0 ωt ≈− , with ωc0 = = . R1 1 + s/ωc0 1 + R2 /R1 1 + R2 /R1

M. B. Patil, IIT Bombay

Inverting amplifier, revisited

1k

Vs

R1

R2

Vo RL

SEQUEL file: inv_amp_ac.sqproj

Inverting amplifier, revisited

1k

Vs

R1

R2

Vo RL

SEQUEL file: inv_amp_ac.sqproj

R2 1 ωt Vo (s) =− ωc0 = , (ft = 1 MHz). Vs (s) R1 1 + s/ωc0 1 + R2 /R1

Inverting amplifier, revisited

1k

Vs

R1

R2

R2

5k

gain (dB) 14

fc ′ (kHz) 167

Vo RL

SEQUEL file: inv_amp_ac.sqproj

R2 1 ωt Vo (s) =− ωc0 = , (ft = 1 MHz). Vs (s) R1 1 + s/ωc0 1 + R2 /R1

Inverting amplifier, revisited

40

Vs

R1

R2

R2

5k

gain (dB) 14

fc ′ (kHz) 167

Vo

AV (dB)

1k

20

R2 = 5 k

RL SEQUEL file: inv_amp_ac.sqproj

0

101

102

103

104 f (Hz)

R2 1 ωt Vo (s) =− ωc0 = , (ft = 1 MHz). Vs (s) R1 1 + s/ωc0 1 + R2 /R1

105

106

Inverting amplifier, revisited

40

Vs

R1

R2

R2

Vo

gain (dB)

fc ′ (kHz)

5k

14

167

10 k

20

91

AV (dB)

1k

20

R2 = 5 k

RL SEQUEL file: inv_amp_ac.sqproj

0

101

102

103

104 f (Hz)

R2 1 ωt Vo (s) =− ωc0 = , (ft = 1 MHz). Vs (s) R1 1 + s/ωc0 1 + R2 /R1

105

106

Inverting amplifier, revisited

40

Vs

R1

R2

R2

Vo

gain (dB)

fc ′ (kHz)

5k

14

167

10 k

20

91

AV (dB)

1k

20

10 k R2 = 5 k

RL SEQUEL file: inv_amp_ac.sqproj

0

101

102

103

104 f (Hz)

R2 1 ωt Vo (s) =− ωc0 = , (ft = 1 MHz). Vs (s) R1 1 + s/ωc0 1 + R2 /R1

105

106

Inverting amplifier, revisited

40

Vs

R1

R2

R2

Vo RL

gain (dB)

fc ′ (kHz)

5k

14

167

10 k

20

91

25 k

28

38

SEQUEL file: inv_amp_ac.sqproj

AV (dB)

1k

20

10 k R2 = 5 k

0

101

102

103

104 f (Hz)

R2 1 ωt Vo (s) =− ωc0 = , (ft = 1 MHz). Vs (s) R1 1 + s/ωc0 1 + R2 /R1

105

106

Inverting amplifier, revisited

40

Vs

R1

R2

R2

5k

Vo RL

gain (dB) 14

fc ′ (kHz) 167

10 k

20

91

25 k

28

38

SEQUEL file: inv_amp_ac.sqproj

25 k AV (dB)

1k

20

10 k R2 = 5 k

0

101

102

103

104 f (Hz)

R2 1 ωt Vo (s) =− ωc0 = , (ft = 1 MHz). Vs (s) R1 1 + s/ωc0 1 + R2 /R1

105

106

Inverting amplifier, revisited

40

Vs

R1

R2

R2

5k

Vo RL

gain (dB) 14

fc ′ (kHz) 167

10 k

20

91

25 k

28

38

50 k

34

19.6

SEQUEL file: inv_amp_ac.sqproj

25 k AV (dB)

1k

20

10 k R2 = 5 k

0

101

102

103

104 f (Hz)

R2 1 ωt Vo (s) =− ωc0 = , (ft = 1 MHz). Vs (s) R1 1 + s/ωc0 1 + R2 /R1

105

106

Inverting amplifier, revisited

40

50 k

R1

5k

Vo RL

gain (dB) 14

fc ′ (kHz) 167

10 k

20

91

25 k

28

38

50 k

34

19.6

SEQUEL file: inv_amp_ac.sqproj

25 k AV (dB)

1k

Vs

R2

R2

20

10 k R2 = 5 k

0

101

102

103

104

105

106

f (Hz)

R2 1 ωt Vo (s) =− ωc0 = , (ft = 1 MHz). Vs (s) R1 1 + s/ωc0 1 + R2 /R1

M. B. Patil, IIT Bombay