Downloaded from UvA-DARE, the institutional repository of the University of Amsterdam (UvA)

Downloaded from UvA-DARE, the institutional repository of the University of Amsterdam (UvA) http://dare.uva.nl/document/487070 File ID Filename 4870...
6 downloads 2 Views 136KB Size
Downloaded from UvA-DARE, the institutional repository of the University of Amsterdam (UvA) http://dare.uva.nl/document/487070

File ID Filename

487070 References

SOURCE (OR PART OF THE FOLLOWING SOURCE): Type Dissertation Title Cell-based models Author C.V.T. Tamulonis Faculty Faculty of Science Year 2013 Pages xii, 214

FULL BIBLIOGRAPHIC DETAILS:   http://dare.uva.nl/record/447639

Copyright It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

References [1]

Losee, J., 1972. Historical Introduction to the Philosophy of Science. Oxford University Press.

[2]

Dampier, W. C., 1948. A History of Science and its Relations with Philosophy & Religion. Cambridge University Press.

[3]

Ten Tusscher, K. H. W. J., R. Hren, and A. V. Panfilov, 2007. Organization of ventricular fibrillation in the human heart. Circulation Research 100:e87–101.

[4]

Odell, G. M., and V. E. Foe, 2008. An agent-based model contrasts opposite effects of dynamic and stable microtubules on cleavage furrow positioning. Journal of Cell Biology 183:471–483.

[5]

Qi, A. S., X. Zheng, C. Y. Du, and B. S. An, 1993. A cellular automaton model of cancerous growth. Journal of Theoretical Biology 161:1–12.

[6]

Deutsch, A., and S. Dormann, 2005. Cellular Automata. In Cellular Automaton Modeling of Biological Pattern Formation, Birkhäuser Boston, Boston, MA, 59– 101.

[7]

Wolfram, S., 1984. Universality and complexity in cellular automata. Physica D: Nonlinear Phenomena 10:1–35.

[8]

Ermentrout, G. B., and L. Edelstein-Keshet, 1993. Cellular Automata Approaches to Biological Modeling. Journal of Theoretical Biology 160:97–133.

[9]

Moreira, J., and A. Deutsch, 2002. Cellular automation models of tumor development: a critical review. Advances in Complex Systems 5:247–268.

[10]

Deutsch, A., and S. Dormann, 2005. Cellular Automaton Modeling of Biological Pattern Formation. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston.

198

References

199

[11]

Hoekstra, A., J. Kroc, and P. A. Sloot, 2010. Introduction to Modeling of Complex Systems Using Cellular Automata. In J. Kroc, P. M. A. Sloot, and A. G. Hoekstra, editors, Understanding Complex Systems, Springer Berlin Heidelberg, 1–16.

[12]

Hoekstra, A., A. Caiazzo, E. Lorenz, J.-L. Falcone, and B. Chopard, 2010. Complex Automata: Multi-scale Modeling with Coupled Cellular Automata. In J. Kroc, P. M. A. Sloot, and A. G. Hoekstra, editors, Understanding Complex Systems, Springer Berlin Heidelberg, 29–57.

[13]

Young, D. A., 1984. A local activator-inhibitor model of vertebrate skin patterns. Mathematical Biosciences 72:51–58.

[14]

Longo, D., S. M. Peirce, T. C. Skalak, L. A. Davidson, M. Marsden, B. Dzamba, and D. W. DeSimone, 2004. Multicellular computer simulation of morphogenesis: blastocoel roof thinning and matrix assembly in Xenopus laevis. Developmental Biology 271:210–222.

[15]

Deutsch, A., 2007. Lattice-gas Cellular Automaton Modeling of Developing Cell Systems. In W. Alt, F. Adler, M. Chaplain, A. Deutsch, A. Dress, D. Krakauer, R. T. Tranquillo, A. R. A. Anderson, M. A. J. Chaplain, and K. A. Rejniak, editors, Mathematics and Biosciences in Interaction, Birkhäuser Basel, 29–51.

[16]

Kaiser, D., 2003. Coupling Cell Movement to Multicellular Development in Myxobacteria. Nature Reviews Microbiology 1:45–54.

[17]

Dworkin, M., 1996. Recent advances in the social and developmental biology of the myxobacteria. Microbiological Reviews 60:70–102.

[18]

Sozinova, O., Y. Jiang, D. Kaiser, and M. Alber, 2006. A three-dimensional model of myxobacterial fruiting-body formation. Proceedings of the National Academy of Sciences USA 103:17255–17259.

[19]

Sozinova, O., Y. Jiang, D. Kaiser, and M. Alber, 2005. A three-dimensional model of myxobacterial aggregation by contact-mediated interactions. Proceedings of the National Academy of Sciences USA 102:11308–11312.

[20]

Alber, M. S., M. A. Kiskowski, and Y. Jiang, 2004. Two-stage aggregate formation via streams in myxobacteria. Physical Review Letters 93:068102.

[21]

Alber, M., 2004. Lattice gas cellular automation model for rippling and aggregation in myxobacteria. Physica D: Nonlinear Phenomena 191:343–358.

200

References

[22]

Kiskowski, M. A., Y. Jiang, and M. S. Alber, 2004. Role of streams in myxobacteria aggregate formation. Physical Biology 1:173–183.

[23]

Steinberg, M. S., 1963. Reconstruction of Tissues by Dissociated Cells. Science 141:401–408.

[24]

Beysens, D. A., G. Forgacs, and J. A. Glazier, 2000. Cell sorting is analogous to phase ordering in fluids. Proceedings of the National Academy of Sciences USA 97:9467–9471.

[25]

Foty, R. A., C. Pfleger, G. Forgacs, and M. S. Steinberg, 1996. Surface tensions of embryonic tissues predict their mutual envelopment behavior. Development 122:1611–1620.

[26]

Graner, F., and J. A. Glazier, 1992. Simulation of biological cell sorting using a two-dimensional extended Potts model. Physical Review Letters 69:2013–2016.

[27]

Phillips, H. M., and M. S. Steinberg, 1978. Embryonic tissues as elasticoviscous liquids. I. Rapid and slow shape changes in centrifuged cell aggregates. Journal of Cell Science 30:1–20.

[28]

von Dassow, M., and L. A. Davidson, 2009. Natural variation in embryo mechanics: gastrulation in Xenopus laevis is highly robust to variation in tissue stiffness. Developmental Dynamics 238:2–18.

[29]

von Dassow, M., J. A. Strother, and L. A. Davidson, 2010. Surprisingly simple mechanical behavior of a complex embryonic tissue. PLoS One 5:e15359.

[30]

Leith, A. G., and N. S. Goel, 1971. Simulation of movement of cells during self-sorting. Journal of Theoretical Biology 33:171–188.

[31]

Goel, N., R. D. Campbell, R. Gordon, R. Rosen, H. Martinez, and M. Ycas, 1970. Self-sorting of isotropic cells. Journal of Theoretical Biology 28:423–468.

[32]

Steinberg, M. S., 1975. Adhesion-guided multicellular assembly: a commentary upon the postulates, real and imagined, of the differential adhesion hypothesis, with special attention to computer simulations of cell sorting. Journal of Theoretical Biology 55:431–443.

[33]

Glazier, J. A., and F. Graner, 1993. Simulation of the differential adhesion driven rearrangement of biological cells. Physical Review E: Statistical physics, plasmas, fluids, and related interdisciplinary topics 47:2128.

References

201

[34]

Zajac, M., G. L. Jones, and J. A. Glazier, 2003. Simulating Convergent Extension by Way of Anisotropic Differential Adhesion . Journal of Theoretical Biology 222:247–259.

[35]

Balter, A., R. M. H. Merks, N. J. Popławski, M. Swat, and J. A. Glazier, 2007. The Glazier-Graner-Hogeweg Model: Extensions, Future Directions, and Opportunities for Further Study. In W. Alt, F. Adler, M. Chaplain, A. Deutsch, A. Dress, D. Krakauer, R. T. Tranquillo, A. R. A. Anderson, M. A. J. Chaplain, and K. A. Rejniak, editors, Mathematics and Biosciences in Interaction, Birkhäuser Basel, 151–167.

[36]

Merks, R., and J. Glazier, 2005. A cell-centered approach to developmental biology. Physica A: Statistical Mechanics and Its Applications 352:113–130.

[37]

Zajac, M., G. L. Jones, and J. A. Glazier, 2000. Model of Convergent Extension in Animal Morphogenesis. Physical Review Letters 85:2022–2025.

[38]

Höfer, T., J. A. Sherratt, and P. K. Maini, 1995. Dictyostelium discoideum: cellular self-organization in an excitable biological medium. Proceedings of the Royal Society B: Biological Sciences 259:249–257.

[39]

Savill, N., and P. Hogeweg, 1997. Modelling Morphogenesis: From Single Cells to Crawling Slugs. Journal of Theoretical Biology 184:229–235.

[40]

Marée, A. F., and P. Hogeweg, 2001. How amoeboids self-organize into a fruiting body: multicellular coordination in Dictyostelium discoideum. Proceedings of the National Academy of Sciences USA 98:3879–3883.

[41]

Hester, S. D., J. M. Belmonte, J. S. Gens, S. G. Clendenon, and J. A. Glazier, 2011. A Multi-cell, Multi-scale Model of Vertebrate Segmentation and Somite Formation. PLoS Computational Biology 7:e1002155.

[42]

Larson, D. E., R. I. Johnson, M. Swat, J. B. Cordero, J. A. Glazier, and R. L. Cagan, 2010. Computer simulation of cellular patterning within the Drosophila pupal eye. PLoS Computational Biology 6:e1000841.

[43]

Poplawski, N. J., A. Shirinifard, U. Agero, J. S. Gens, M. Swat, and J. A. Glazier, 2010. Front instabilities and invasiveness of simulated 3D avascular tumors. PLoS One 5:e10641.

[44]

Vasiev, B., A. Balter, M. Chaplain, J. A. Glazier, and C. J. Weijer, 2010. Modeling gastrulation in the chick embryo: formation of the primitive streak. PLoS One 5:e10571.

202

References

[45]

Marmottant, P., A. Mgharbel, J. Käfer, B. Audren, J.-P. Rieu, J.-C. Vial, B. van der Sanden, A. F. M. Marée, F. Graner, and H. Delanoë-Ayari, 2009. The role of fluctuations and stress on the effective viscosity of cell aggregates. Proceedings of the National Academy of Sciences USA 106:17271–17275.

[46]

Shirinifard, A., J. S. Gens, B. L. Zaitlen, N. J. Pop awski, M. Swat, and J. A. Glazier, 2009. 3D multi-cell simulation of tumor growth and angiogenesis. PLoS One 4:e7190.

[47]

Merks, R. M. H., E. D. Perryn, A. Shirinifard, and J. A. Glazier, 2008. Contactinhibited chemotaxis in de novo and sprouting blood-vessel growth. PLoS Computational Biology 4:e1000163.

[48]

Glazier, J. A., A. Balter, and N. J. Popławski, 2007. Magnetization to Morphogenesis: A Brief History of the Glazier-Graner-Hogeweg Model. In W. Alt, F. Adler, M. Chaplain, A. Deutsch, A. Dress, D. Krakauer, R. T. Tranquillo, A. R. A. Anderson, M. A. J. Chaplain, and K. A. Rejniak, editors, Mathematics and Biosciences in Interaction, Birkhäuser Basel, 79–106.

[49]

Purcell, E. M., 1977. Life at low Reynolds number. American Journal of Physics 45:3–11.

[50]

Odell, G. M., G. Oster, P. Alberch, and B. Burnside, 1981. The mechanical basis of morphogenesis. I. Epithelial folding and invagination. Developmental Biology 85:446–462.

[51]

Merks, R. M. H., M. Guravage, D. Inzé, and G. T. S. Beemster, 2011. VirtualLeaf: an open-source framework for cell-based modeling of plant tissue growth and development. Plant Physiology 155:656–666.

[52]

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 2007. Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press.

[53]

Angelani, L., R. Di Leonardo, and G. Ruocco, 2009. Self-starting micromotors in a bacterial bath. Physical Review Letters 102:048104.

[54]

Drasdo, D., 2007. Center-based Single-cell Models: An Approach to Multicellular Organization Based on a Conceptual Analogy to Colloidal Particles. In W. Alt, F. Adler, M. Chaplain, A. Deutsch, A. Dress, D. Krakauer, R. T. Tranquillo, A. R. A. Anderson, M. A. J. Chaplain, and K. A. Rejniak, editors, Mathematics and Biosciences in Interaction, Birkhäuser Basel, 171–196.

References

203

[55]

Drasdo, D., and G. Forgacs, 2000. Modeling the interplay of generic and genetic mechanisms in cleavage, blastulation, and gastrulation. Developmental Dynamics 219:182–191.

[56]

Drasdo, D., and S. Höhme, 2005. A single-cell-based model of tumor growth in vitro: monolayers and spheroids. Physical Biology 2:133–147.

[57]

Galle, J., M. Loeffler, and D. Drasdo, 2005. Modeling the effect of deregulated proliferation and apoptosis on the growth dynamics of epithelial cell populations in vitro. Biophysical Journal 88:62–75.

[58]

Higham, D. J. T., 2001. An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations. SIAM Review 43:525–546.

[59]

Burrage, K., P. M. Burrage, and T. Tian, 2004. Numerical methods for strong solutions of stochastic differential equations: an overview. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 460:373–402.

[60]

Palsson, E., and H. G. Othmer, 2000. A model for individual and collective cell movement in Dictyostelium discoideum. Proceedings of the National Academy of Sciences USA 97:10448–10453.

[61]

Schaller, G., and M. Meyer-Hermann, 2005. Multicellular tumor spheroid in an off-lattice Voronoi-Delaunay cell model. Physical Review E: Statistical physics, plasmas, fluids, and related interdisciplinary topics 71:051910.

[62]

Goodman, J., and J. O’Rourke, 1997. Handbook of discrete and computational geometry. CRC Press.

[63]

de Berg, M., O. Cheong, and M. van Kreveld, 2008. Computational geometry. algorithms and applications. Springer-Verlag New York Inc.

[64]

Tanemura, M., T. Ogawa, and N. Ogita, 1983. A new algorithm for threedimensional voronoi tessellation. Journal of Computational Physics 51:191–207.

[65]

Honda, H., and G. Eguchi, 1980. How much does the cell boundary contract in a monolayered cell sheet? Journal of Theoretical Biology 84:575–588.

[66]

Honda, H., M. Tanemura, and T. Nagai, 2004. A three-dimensional vertex dynamics cell model of space-filling polyhedra simulating cell behavior in a cell aggregate. Journal of Theoretical Biology 226:439–453.

[67]

Honda, H., 1978. Description of cellular patterns by Dirichlet domains: The two-dimensional case. Journal of Theoretical Biology 72:523–543.

204

References

[68]

Schaller, G., and M. Meyer-Hermann, 2004. Kinetic and dynamic Delaunay tetrahedralizations in three dimensions. Computer Physics Communications 162:9– 23.

[69]

Honda, H., N. Motosugi, T. Nagai, M. Tanemura, and T. Hiiragi, 2008. Computer simulation of emerging asymmetry in the mouse blastocyst. Development 135:1407–1414.

[70]

Nagai, T., and H. Honda, 2009. Computer simulation of wound closure in epithelial tissues: cell-basal-lamina adhesion. Physical Review E: Statistical physics, plasmas, fluids, and related interdisciplinary topics 80:061903.

[71]

Weliky, M., S. Minsuk, R. Keller, and G. Oster, 1991. Notochord morphogenesis in Xenopus laevis: simulation of cell behavior underlying tissue convergence and extension. Development 113:1231–1244.

[72]

Weliky, M., and G. Oster, 1990. The mechanical basis of cell rearrangement. I. Epithelial morphogenesis during Fundulus epiboly. Development 109:373–386.

[73]

Tamulonis, C., M. Postma, H. Q. Marlow, C. R. Magie, J. de Jong, and J. Kaandorp, 2011. A cell-based model of Nematostella vectensis gastrulation including bottle cell formation, invagination and zippering. Developmental Biology 351:217–228.

[74]

Jamali, Y., M. Azimi, and M. R. K. Mofrad, 2010. A sub-cellular viscoelastic model for cell population mechanics. PLoS One 5.

[75]

Chen, H. H., and G. W. Brodland, 2000. Cell-level finite element studies of viscous cells in planar aggregates. Journal of Biomechanical Engineering 122:394– 401.

[76]

Brodland, G. W., D. Viens, and J. H. Veldhuis, 2007. A new cell-based FE model for the mechanics of embryonic epithelia. Computer Methods in Biomechanics and Biomedical Engineering 10:121–128.

[77]

Hutton, D., 2003. Fundamentals of Finite Element Analysis. Engineering Series. McGraw-Hill.

[78]

Davidson, L. A., M. A. R. Koehl, R. Keller, and G. F. Oster, 1995. How do sea urchins invaginate? Using biomechanics to distinguish between mechanisms of primary invagination. Development 121:2005–2018.

[79]

Conte, V., J. J. Muñoz, B. Baum, and M. Miodownik, 2009. Robust mechanisms of ventral furrow invagination require the combination of cellular shape changes. Physical Biology 6:016010.

References

205

[80]

Dupin, M. M., I. Halliday, C. M. Care, L. Alboul, and L. L. Munn, 2007. Modeling the flow of dense suspensions of deformable particles in three dimensions. Physical Review E: Statistical physics, plasmas, fluids, and related interdisciplinary topics 75:066707.

[81]

Zhang, J., P. C. Johnson, and A. S. Popel, 2007. An immersed boundary lattice Boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows. Physical Biology 4:285–295.

[82]

Fenech, M., D. Garcia, H. J. Meiselman, and G. Cloutier, 2009. A particle dynamic model of red blood cell aggregation kinetics. Annals of Biomedical Engineering 37:2299–2309.

[83]

Liu, Y., and W. K. Liu, 2006. Rheology of red blood cell aggregation by computer simulation. Journal of Computational Physics 220:139–154.

[84]

Rejniak, K. A., and A. R. A. Anderson, 2008. A computational study of the development of epithelial acini: I. Sufficient conditions for the formation of a hollow structure. Bulletin of Mathematical Biology 70:677–712.

[85]

Bagchi, P., P. C. Johnson, and A. S. Popel, 2005. Computational fluid dynamic simulation of aggregation of deformable cells in a shear flow. Journal of Biomechanical Engineering 127:1070–1080.

[86]

Dembo, M., D. C. Torney, K. Saxman, and D. Hammer, 1988. The reactionlimited kinetics of membrane-to-surface adhesion and detachment. Proceedings of the Royal Society B: Biological Sciences 234:55–83.

[87]

Zhu, C., 1991. A thermodynamic and biomechanical theory of cell adhesion. Part I: General formulism. Journal of Theoretical Biology 150:27–50.

[88]

Jadhav, S., C. D. Eggleton, and K. Konstantopoulos, 2005. A 3-D computational model predicts that cell deformation affects selectin-mediated leukocyte rolling. Biophysical Journal 88:96–104.

[89]

Hammer, D. A., and S. M. Apte, 1992. Simulation of cell rolling and adhesion on surfaces in shear flow: general results and analysis of selectin-mediated neutrophil adhesion. Biophysical Journal 63:35–57.

[90]

Bagchi, P., 2007. Mesoscale simulation of blood flow in small vessels. Biophysical Journal 92:1858–1877.

[91]

Newman, T. J., 2005. Modeling multicellular systems using subcellular elements. Mathematical Biosciences and Engineering 2:613–624.

206

References

[92]

Newman, T., 2007. Modeling Multicellular Structures Using the Subcellular Element Model. In W. Alt, F. Adler, M. Chaplain, A. Deutsch, A. Dress, D. Krakauer, R. T. Tranquillo, A. R. A. Anderson, M. A. J. Chaplain, and K. A. Rejniak, editors, Mathematics and Biosciences in Interaction, Birkhäuser Basel, 221–239.

[93]

van Liedekerke, P., E. Tijskens, H. Ramon, P. Ghysels, G. Samaey, and D. Roose, 2010. Particle-based model to simulate the micromechanics of biological cells. Physical Review E: Statistical physics, plasmas, fluids, and related interdisciplinary topics 81:061906.

[94]

Monaghan, J. J., 2005. Smoothed particle hydrodynamics. Reports on Progress in Physics 68:1703–1759.

[95]

Tamulonis, C., M. Postma, and J. Kaandorp, 2011. Modeling filamentous cyanobacteria reveals the advantages of long and fast trichomes for optimizing light exposure. PLoS One 6:e22084.

[96]

Kreft, J. U., C. Picioreanu, J. W. Wimpenny, and M. C. van Loosdrecht, 2001. Individual-based modelling of biofilms. Microbiology 147:2897–2912.

[97]

Walker, D. C., G. Hill, S. M. Wood, R. H. Smallwood, and J. Southgate, 2004. Agent-based computational modeling of wounded epithelial cell monolayers. IEEE Transactions on Nanobioscience 3:153–163.

[98]

Darling, J. A., A. R. Reitzel, P. M. Burton, M. E. Mazza, J. F. Ryan, J. C. Sullivan, and J. R. Finnerty, 2005. Rising starlet: the starlet sea anemone, Nematostella vectensis. BioEssays 27:211–221.

[99]

Putnam, N. H., M. Srivastava, U. Hellsten, B. Dirks, J. Chapman, A. Salamov, A. Terry, H. Shapiro, E. Lindquist, V. V. Kapitonov, J. Jurka, G. Genikhovich, I. V. Grigoriev, S. M. Lucas, R. E. Steele, J. R. Finnerty, U. Technau, M. Q. Martindale, and D. S. Rokhsar, 2007. Sea Anemone Genome Reveals Ancestral Eumetazoan Gene Repertoire and Genomic Organization. Science 317:86–94.

[100] Byrum, C. A., and M. Q. Martindale, 2004. Gastrulation in the Cnidaria and the Ctenophora. In Gastrulation: From Cells to Embryo, CSHL Press. [101] Kraus, Y., and U. Technau, 2006. Gastrulation in the sea anemone Nematostella vectensis occurs by invagination and immigration: an ultrastructural study. Development Genes and Evolution 216:119–132.

References

207

[102] Magie, C. R., M. Daly, and M. Q. Martindale, 2007. Gastrulation in the cnidarian Nematostella vectensis occurs via invagination not ingression. Developmental Biology 305:483–497. [103] Fritzenwanker, J. H., G. Genikhovich, Y. Kraus, and U. Technau, 2007. Early development and axis specification in the sea anemone Nematostella vectensis. Developmental Biology 310:264–279. [104] Shook, D., and R. Keller, 2003. Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. Mechanisms of Development 120:1351–1383. [105] Keller, R., L. A. Davidson, and D. R. Shook, 2003. How we are shaped: the biomechanics of gastrulation. Differentiation 71:171–205. [106] Marlow, H. Q., and M. Q. Martindale, 2007. Embryonic development in two species of scleractinian coral embryos: Symbiodinium localization and mode of gastrulation. Evolution & Development 9:355–367. [107] Martin, A., M. Kaschube, and E. Wieschaus, 2008. Pulsed contractions of an actin–myosin network drive apical constriction. Nature 457:495–499. [108] Hardin, J., and R. Keller, 1988. The behaviour and function of bottle cells during gastrulation of Xenopus laevis. Development 103:211–230. [109] Kimberly, E. L., and J. Hardin, 1998. Bottle cells are required for the initiation of primary invagination in the sea urchin embryo. Developmental Biology 204:235– 250. [110] Vasioukhin, V., C. Bauer, M. Yin, and E. Fuchs, 2000. Directed actin polymerization is the driving force for epithelial cell-cell adhesion. Cell 100:209–219. [111] Jacinto, A., W. Wood, T. Balayo, M. Turmaine, A. Martinez-Arias, and P. Martin, 2000. Dynamic actin-based epithelial adhesion and cell matching during Drosophila dorsal closure. Current Biology 10:1420–1426. [112] Martin, P., and S. M. Parkhurst, 2004. Parallels between tissue repair and embryo morphogenesis. Development 131:3021–3034. [113] Chauhan, B. K., A. Disanza, S. Y. Choi, S. C. Faber, M. Lou, H. E. Beggs, G. Scita, Y. Zheng, and R. A. Lang, 2009. Cdc42- and IRSp53-dependent contractile filopodia tether presumptive lens and retina to coordinate epithelial invagination. Development 136:3657–3667.

208

References

[114] Davidson, L. A., S. D. Joshi, H. Y. Kim, M. von Dassow, L. Zhang, and J. Zhou, 2010. Emergent morphogenesis: elastic mechanics of a self-deforming tissue. Journal of Biomechanics 43:63–70. [115] Rauzi, M., P. Verant, T. Lecuit, and P.-F. Lenne, 2008. Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis. Nature Cell Biology 10:1401–1410. [116] Pouille, P.-A., and E. Farge, 2008. Hydrodynamic simulation of multicellular embryo invagination. Physical Biology 5:015005. [117] Fritzenwanker, J. H., and U. Technau, 2002. Induction of gametogenesis in the basal cnidarian Nematostella vectensis(Anthozoa). Development Genes and Evolution 212:99–103. [118] Lecuit, T., and P.-F. Lenne, 2007. Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nature Reviews Molecular Cell Biology 8:633–644. [119] Garnett, H. M., 1980. A scanning electron microscope study of the sequential changes in morphology occuring in human fibroblasts placed in suspension culture. Cytobios 27:7–18. [120] Davidson, L. A., G. F. Oster, R. E. Keller, and M. A. Koehl, 1999. Measurements of mechanical properties of the blastula wall reveal which hypothesized mechanisms of primary invagination are physically plausible in the sea urchin Strongylocentrotus purpuratus. Developmental Biology 209:221–238. [121] Whitton, B. A., and M. Potts, 2000. Introduction to the Cyanobacteria. In The Ecology of Cyanobacteria, Springer, 1–11. [122] Rippka, R., J. Deruelles, J. Waterbury, M. Herdman, and R. Stanier, 1979. Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria. Journal of General Microbiology 111:1–61. [123] Stal, L., 2000. Cyanobacterial Mats and Stromatolites. In B. A. Whitton, and M. Potts, editors, The Ecology of Cyanobacteria, Kluwer Academic Publishers, 61–120. [124] McBride, M. J., 2001. BACTERIAL GLIDING MOTILITY: Multiple Mechanisms for Cell Movement over Surfaces. Annual Review of Microbiology 55:49–75. [125] Reichenbach, H., 1981. Taxonomy of the Gliding Bacteria. Annual Review of Microbiology 35:339–364.

References

209

[126] Hoiczyk, E., and W. Baumeister, 1998. The junctional pore complex, a prokaryotic secretion organelle, is the molecular motor underlying gliding motility in cyanobacteria. Current Biology 8:1161–1168. [127] Hoiczyk, E., 2000. Gliding Motility in Cyanobacteria: Observations and Possible Explanations. Archives of Microbiology 174:11–17. [128] Bhaya, D., N. Watanabe, T. Ogawa, and A. R. Grossman, 1999. The role of an alternative sigma factor in motility and pilus formation in the cyanobacterium Synechocystis sp. strain PCC6803. Proceedings of the National Academy of Sciences USA 96:3188–3193. [129] Hoiczyk, E., and W. Baumeister, 1995. Envelope structure of four gliding filamentous cyanobacteria. Journal of Bacteriology 177:2387–2395. [130] Halfen, L. N., and R. W. Castenholz, 1971. Gliding Motility in the Blue-Green Alga Oscillatoria Princeps. Journal of Phycology 7:133–145. [131] Hader, D., and U. Burkart, 1982. Enhanced Model for Photophobic Responses of the Blue-Green Alga, Phormidium uncinatum. Plant and Cell Physiology 23:1391– 1400. [132] Häder, D.-P., 1987. Photomovement. In The Cyanobacteria, Elsevier Science Publishers B. V. [133] Gabai, V., 1985. A one-instant mechanism of phototaxis in the cyanobacterium Phormidium uncinatum. FEMS Microbiology Letters 30:125–129. [134] Donkor, V., and D.-P. Hader, 1991. Effects of solar and ultraviolet radiation on motility, photomovement and pigmentation in filamentous, gliding cyanobacteria. FEMS Microbiology Letters 86:159–168. [135] Donkor, V., D. Amewowor, and D.-P. Häder, 1993. Effects of tropical solar radiation on the motility of filamentous cyanobacteria. FEMS Microbiology Ecology 12:143–148. [136] Garcia-Pichel, F., M. Mechling, and R. W. Castenholz, 1994. Diel Migrations of Microorganisms within a Benthic, Hypersaline Mat Community. Applied and Environmental Microbiology 60:1500–1511. [137] Fourcans, A., A. Sole, E. Diestra, A. Ranchou-Peyruse, I. Esteve, P. Caumette, and R. Duran, 2006. Vertical migration of phototrophic bacterial populations in a hypersaline microbial mat from Salins-de-Giraud (Camargue, France). FEMS Microbiology Ecology 57:367–377.

210

References

[138] Richardson, L., and R. W. Castenholz, 1987. Diel Vertical Movements of the Cyanobacterium Oscillatoria Terebriformis in a Sulfide-Rich Hot-Spring Microbial Mat. Applied and Environmental Microbiology 53:2142–2150. [139] Nultsch, W., and D. Hader, 1988. Photomovement of Motile Microorganisms II. Photochemistry and Photobiology 47:837–869. [140] Checcucci, G., A. Sgarbossa, and F. Lenci, 2004. Photomovements of Microorganisms: An Introduction. In CRC Handbook of Organic Photochemistry and Photobiology, 2nd Edition, CRC Press. [141] Nultsch, W., 1962. Der Einfluss des Lichtes auf die Bewegung der Cyanophyceen – II. Mitteilung PHOTOKINESIS BEI PHORMIDIUM AUTUMNALE. Planta 57:613–623. [142] Nultsch, W., H. Schuchart, and M. Höhl, 1979. Investigations on the phototactic orientation of Anabaena variabilis. Archives of Microbiology 122:85–91. [143] Hader, D., 1988. Signal perception and amplification in photoresponses of cyanobacteria. Biophysical Chemistry 29:155–159. [144] Nultsch, W., 1962. Der Einfluss des Lichtes auf die Bewegung der Cyanophyceen – III. Mitteilung Photophobotaxis von Phormidium Uncinatum. Planta 58:647–663. [145] Burkart, U., and D.-P. Häder, 1980. Phototactic attraction in light trap experiments: A mathematical model. Journal of Mathematical Biology 10:257–269. [146] Hader, D., and U. Burkart, 1978. Mathematical model for photophobic accumulations of blue-green algae in light traps. Journal of Mathematical Biology 5:293–304. [147] Hangarter, R., and H. Gest, 2004. Pictorial Demonstrations of Photosynthesis. Photosynthesis Research 80:421–425. [148] Wu, Y., A. D. Kaiser, Y. Jiang, and M. S. Alber, 2009. Periodic reversal of direction allows Myxobacteria to swarm. Proceedings of the National Academy of Sciences USA 106:1222–1227. [149] Wu, Y., Y. Jiang, D. Kaiser, and M. Alber, 2007. Social interactions in myxobacterial swarming. PLoS Computational Biology 3:e253. [150] Harvey, C. W., F. Morcos, C. R. Sweet, D. Kaiser, S. Chatterjee, X. Liu, D. Z. Chen, and M. Alber, 2011. Study of elastic collisions of Myxococcus xanthus in swarms. Physical Biology 8:026016.

References

211

[151] Janulevicius, A., M. C. M. van Loosdrecht, A. Simone, and C. Picioreanu, 2010. Cell flexibility affects the alignment of model myxobacteria. Biophysical Journal 99:3129–3138. [152] Ginelli, F., F. Peruani, M. Bär, and H. Chaté, 2010. Large-scale collective properties of self-propelled rods. Physical Review Letters 104:184502. [153] Feynman, R., 1970. The Feynman Lectures on Physics, Vol. 2. Addison Wesley Longman . [154] Murvanidze, G., and A. Glagolev, 1982. Electrical nature of the taxis signal in cyanobacteria. Journal of Bacteriology 150:239–244. [155] Hader, D.-P., 1977. Influence of electric fields on photophobic reactions in bluegreen algae. Archives of Microbiology 114:83–86. [156] Lamont, H., 1969. Sacrificial cell death and trichome breakage in an oscillatoriacean blue-green alga: the role of murein. Archives of Microbiology 69:237–259. [157] Glagoleva, T. N., A. N. Glagolev, M. V. Gusev, and K. A. Nikitina, 1980. Protonmotive force supports gliding in cyanobacteria. FEBS Letters 117:49–53. [158] Häder, D.-P., 1978. Evidence of electrical potential changes in photophobically reacting blue-green algae. Archives of Microbiology 118:115–119. [159] Ramsing, N., and L. Prufert-Bebout, 1994. Motility of Microcoleus chthonoplastes subjected to different light intensities quantified by digital image analysis. NATO ASI Series G Ecological Sciences 35:183–183. [160] Adams, D., and P. Duggan, 1999. Tansley Review No. 107. Heterocyst and akinete differentiation in cyanobacteria. New Phytologist 144:3–33. [161] Wolk, C., A. Ernst, and J. Elhai, 2004. Heterocyst Metabolism and Development. The Molecular Biology of Cyanobacteria 769–823. [162] Severina, I. I., V. P. Skulachev, and D. B. Zorov, 1988. Coupling membranes as energy-transmitting cables. II. Cyanobacterial trichomes. Journal of Cell Biology 107:497–501. [163] Jørgensen, B., 1977. Distribution of colorless sulfur bacteria (Beggiatoa spp.) in a coastal marine sediment. Marine Biology 41:19–28. [164] Kamp, A., H. Røy, and H. Schulz-Vogt, 2008. Video-supported Analysis of Beggiatoa Filament Growth, Breakage, and Movement. Microbial Ecology 56:484– 491.

212

References

[165] Nelson, D., and R. W. Castenholz, 1982. Light Responses of Beggiatoa. Archives of Microbiology 131:146–155. [166] Adamec, F., D. Kaftan, and L. Nedbal, 2005. Stress-Induced Filament Fragmentation of Calothrix Elenkinii (Cyanobacteria) is Facilitated by Death of HighFluorescence Cells. Journal of Phycology 41:835–839. [167] Firtel, R. A., and R. Meili, 2000. Dictyostelium: a Model for Regulated Cell Movement During Morphogenesis. Current Opinion in Genetics and Development 10:421–427. [168] Shepard, R. N., and D. Y. Sumner, 2010. Undirected Motility of Filamentous Cyanobacteria Produces Reticulate Mats. Geobiology 8:179–190. [169] Allwood, A. C., M. R. Walter, B. S. Kamber, C. P. Marshall, and I. W. Burch, 2006. Stromatolite Reef From the Early Archaean Era of Australia. Nature 441:714–718. [170] Walter, M. R., J. Bauld, and T. D. Brock, 1976. Microbiology and Morphogenesis of Columnar Stromatolites (Conophyton, Vacerrilla) from Hot Springs in Yellowstone National Park. In M. R. Walter, editor, Stromatolites, Elsevier, 273– 310. [171] Jones, B., R. Renaut, M. Rosen, and K. Ansdell, 2002. Coniform Stromatolites from Geothermal Systems, North Island, New Zealand . Palaios 17:84–103. [172] Wharton, R., B. Parker, and G. Simmons, 1983. Distribution, Species Composition and Morphology of Algal Mats in Antarctic Dry Valley Lakes. Phycologia 22:355–365. [173] Allwood, A. C., J. P. Grotzinger, A. H. Knoll, I. W. Burch, M. S. Anderson, M. L. Coleman, and I. Kanik, 2009. Controls on Development and Diversity of Early Archean Stromatolites. Proceedings of the National Academy of Sciences USA 106:9548–9555. [174] Grotzinger, J., and A. Knoll, 1999. STROMATOLITES IN PRECAMBRIAN CARBONATES: Evolutionary Mileposts or Environmental Dipsticks? Annu. Rev. Earth Planet. Sci. 27:313–358. [175] Petroff, A. P., M. S. Sim, A. Maslov, M. Krupenin, D. H. Rothman, and T. Bosak, 2010. Biophysical Basis for the Geometry of Conical Stromatolites. Proceedings of the National Academy of Sciences USA 107:9956–9961. [176] C, P., M. C. van Loosdrecht, and J. J. Heijnen, 1998. A new combined differential-discrete cellular automaton approach for biofilm modeling: application for growth in gel beads. Biotechnology and Bioengineering 57:718–731.

References

213

[177] Peruani, F., T. Klauss, A. Deutsch, and A. Voss-Boehme, 2011. Traffic jams, gliders, and bands in the quest for collective motion of self-propelled particles. Physical Review Letters 106:128101. [178] Lowe, C., 2003. Dynamics of filaments: modelling the dynamics of driven microfilaments. Philosophical Transactions of the Royal Society. Series B, Biological Sciences 358:1543–1550. [179] Bergou, M., M. Wardetzky, S. Robinson, B. Audoly, and E. Grinspun, 2008. Discrete elastic rods. SIGGRAPH ’08: SIGGRAPH 2008 papers 27:63. [180] Wolgemuth, C., 2005. Force and flexibility of flailing myxobacteria. Biophysical Journal 89:945–950. [181] Hess, B., H. Bekker, H. Berendsen, and J. Fraaije, 1997. LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry 18:1463–1472. [182] Robinson, W. B., A. E. Mealor, S. E. Stevens Jr, and M. Ospeck, 2007. Measuring the Force Production of the Hormogonia of Mastigocladus laminosus. Biophysical Journal 93:699–703. [183] Wiggins, C., D. Riveline, A. Ott, and R. Goldstein, 1998. Trapping and wiggling: Elastohydrodynamics of driven microfilaments. Biophysical Journal 74:1043– 1060. [184] Boal, D., and R. Ng, 2010. Shape analysis of filamentous Precambrian microfossils and modern cyanobacteria. Paleobiology 36:555–572. [185] White, D., M. Dworkin, and D. Tipper, 1968. Peptidoglycan of Myxococcus xanthus: Structure and Relation to Morphogenesis. Journal of Bacteriology 95:2186–2197. [186] Hoiczyk, E., and A. Hansel, 2000. Cyanobacterial Cell Walls: News from an Unusual Prokaryotic Envelope. Journal of Bacteriology 182:1191–1199. [187] Lan, G., C. Wolgemuth, and S. Sun, 2007. Z-ring force and cell shape during division in rod-like bacteria. Proceedings of the National Academy of Sciences USA 104:16110–16115. [188] Yao, X., M. Jericho, D. Pink, and T. Beveridge, 1999. Thickness and Elasticity of Gram-Negative Murein Sacculi Measured by Atomic Force Microscopy. Journal of Bacteriology 181:6865–6875.

214

References

[189] Wu, Y., Y. Jiang, A. D. Kaiser, and M. Alber, 2011. Self-organization in bacterial swarming: lessons from myxobacteria. Physical Biology 8:055003. [190] Castenholz, R., 1967. 215:1285–1286.

Aggregation in a Thermophilic Oscillatoria.

Nature

[191] Castenholz, R. W., 1968. The Behavior of Oscillatoria Terebriformis in Hot Springs. Journal of Phycology 4:132–139. [192] Karr, J. R., J. C. Sanghvi, D. N. Macklin, M. V. Gutschow, J. M. Jacobs, B. Bolival, N. Assad-Garcia, J. I. Glass, and M. W. Covert, 2012. A whole-cell computational model predicts phenotype from genotype. Cell 150:389–401. [193] Agarwal, P., 1995. Cellular segregation and engulfment simulations using the cell programming language. Journal of Theoretical Biology 176:79–89. [194] Adleman, L. M., 1994. Molecular computation of solutions to combinatorial problems. Science 266:1021–1024.

Suggest Documents