Does non-native white sweetclover impact Alaskan floodplain plant communities?

Does non-native white sweetclover impact Alaskan floodplain plant communities? B.T.R.E. Spellman Lord Blaine T. Spellman and Tricia L. Wurtz Invasi...
Author: Leonard Bond
0 downloads 0 Views 3MB Size
Does non-native white sweetclover impact Alaskan floodplain plant communities?

B.T.R.E. Spellman Lord

Blaine T. Spellman and Tricia L. Wurtz

Invasive Species Ecological Impacts Research conducted outside Alaska • Invasive plants displace native species and alter native plant communities and ecosystem processes (Levine et al. 2003) • Invasive species can displace native seedlings and mature plants

Research within Alaska • Prior to our study, no data existed on the ecological impacts of invasive plants within Alaska • Research regarding invasive plant impacts to natural habitats was a stated need for land managers of Alaska (CNIPM 2005)

1

White Sweetclover (Melilotus alba) • biennial legume • grows 0.5 to 1.5 m in height • common along roads in Alaska • invasive along several river floodplains in Alaska B.T. Spellman

Sweetclover Distribution

Conn et al. (in press)

Distribution of sweetclover along roadsides in Alaska.

Conn et al. (in press)

Sweetclover along the Nenana River. locations of our floodplain study sites.

mark

2

Early Stages of Glacial Floodplain Succession Key Characteristics: 1) high disturbance 2) limited nutrients (i.e. Nitrogen) 3) sparsely vegetated 4) vegetation is shade intolerant B.T. Spellman

Teklanika River within Denali National Park and Preserve

3

Model of Plant Population Dynamics (Hedysarum alpinum)

Seed production

NPS.GOV NPS.GOV

RECRUITMENT

Germination

B.T. Spellman

Overall Question and Hypothesis Question: • How does sweetclover affect the seedlings of native floodplain plants? Hypothesis • We predicted that sweetclover would reduce native seedling recruitment through competition

4

Experiments 1) Sweetclover removal experiment – determined the impact sweetclover has on native floodplain plant recruitment 2) Sweetclover shading experiment – determined if competition for light explained results observed from the removal experiment 3) Seedling competition experiment – determined competitive interactions between seedlings of sweetclover and two common floodplain legumes

Removal Methods • Experiment conducted along the Nenana and Healy River floodplains during the summer of 2006 and 2007

Conn et al. (in press)

• Each year and site had 12 unique patches of sweetclover (>10 m2); sweetclover cover in patches ranged between 30-90% cover

Distribution of sweetclover along the Nenana River. mark locations of our floodplain study sites.

5

Removal Methods

control

sweetclover -

vegetation -

Removal Methods In September, • Measured variables % native seedling survival and # of native seedlings that survived • In 2007, seedlings were identified to functional group B.T. Spellman

Functional Groups – Tree/Shrub, Forb, Legume, Graminoid

6

Removal Experiment Results % native survivorship

1

0.75

0.5

b

b

sweetclover -

vegetation -

a

0.25

0 control

Mean percent survivorship (± SE) of native seedlings at a control and two treatments. Different letters indicate statistically significant differences p>.05.

Removal Experiment Results 15

# of native seedlings * (2 m 2)-1

b b

10

a 5

0 control

sweetclover -

vegetation -

Mean count of native seedlings (± SE) at a control and two treatments. Different letters indicate statistically significant differences p>.05.

7

Removal Experiment Results native seedling richness and abundance # of native species treatment control sweetclover vegetation -

Tree/shrub 2 2 3

Forb 5 7 6

Legume 2 3 3

Graminoid 3 4 2

Total 12 16 14

Combined count from all plots in 2007

abundance of native species treatment control sweetclover vegetation -

Tree/shrub 0.5 6.3 2.6

Forb 7.8 10.3 15.6

Legume 1.6 2.8 1.6

Graminoid 8.1 16.1 2.5

Total 18.1 35.5 22.3

Mean within control and removal plots in 2007

Removal Experiment Conclusions 1) Plots with sweetclover had significantly higher native seedling mortality and fewer native seedling recruits. 2) Plots with sweetclover had fewer native species and had fewer native seedlings within all functional groups. Can these results be explained through shading by sweetclover? B.T. Spellman

8

Sweetclover Shading along the Healy River 100 H 2

P e rc e n t O b s tru c te d P A R

R = 0.85

MH

80 M

60 ML

40

20

C

0 B.T. Spellman

0

20

40

60

80

100

Sweetclover Percent Cover

Species used in Shading Experiment Chamerion latifolium

B.T. Spellman

river beauty Salix alaxensis

B.T. Spellman

feltleaf willow

Hedysarum boreale spp. mackenzii

B.T. Spellman

northern sweetvetch

Hedysarum alpinum

B.T. Spellman

eskimo potato Alnus incana spp. tenuifolia

B.T. Spellman

thinleaf alder

9

Shading Methods 100 H 2

Percent O b stru cted PA R

R = 0.85

MH

80 M

60 ML

40

20

C

0 0

20

40

60

80

100

Sweetclover Percent Cover

Shading Results

B.T. Spellman

B.T. Spellman

10

Shading Results Overwintering survival of S. alaxensis

% seedling survivorship

1

0.75

0.5

0.25

0 control

medium-low

medium

medium-high

High

Shading Conclusions 1) Sweetclover shaded 1 to 94% of the available light along the Healy River floodplain. 2) Shading stressed and led to increased mortality of Alaskan floodplain species. 3) Depending on a species’ tolerance to shading, sweetclover may have major or minor impacts to Alaskan plant populations.

11

Overall Conclusions •

Sweetclover impacts Alaskan floodplain plant communities through altering native seedling recruitment.



Competition for light can stress and lead to increased mortality of common Alaskan floodplain plant species.

Management Implications endemic species Both species were found along floodplain study sites and may warrant conservation efforts. B.T. Spellman

Salix setchelliana

B.T. Spellman

Lupinus kuschei

12

Acknowledgments Research Support and Guidance: Mark Winterstein, Gretchen Garcia, Katie Villano, Rachel Lord, Heather McIntyre, Morgan Skidmore, Andrea Chin, Jeff Conn, John Fox, Dana Thomas, and the DNR Plant Material Center

Funding provided by: 1) USDA Forest Service PNW Research Station 2) Cooperative Institute for Arctic Research “UAF Center for Global Change Student Grant” 3) Center for Invasive Plant Management “Seed Grant” 4) Denali National Park & Preserve’s Murie Science and Learning Center “Discover Denali Research Fellowship”

Works Cited Conn, J. S., Beattie, K. L., Shephard, M. A., Carlson, M. L., Lapina, I., Hebert, M., Gronquist, R., Densmore, R., Rasy, M., (in review): Alaska Melilotus invasions: distribution, origin, and susceptibility of plant communities. Arctic, Alpine, and Antarctic Research. Tilman, D. 1997. Community invasibility, recruitment limitation, and grassland biodiversity. Ecology, 78: 81-92. Yurkonis, K. A., Meiners, S. J., and Wachholder, B. E., 2005: Invasion impacts diversity through altered community dynamics. Journal of Ecology, 93: 1053-1061.

13