Determination of Aerodynamic Burden in Rail Tunnels using Measurements and Simulation

1 Dr. Johannes Rodler Dr. Bernd Hagenah Gruner GmbH, Wien (A) P_ROJ_Graz 2012 Tunnel Safety and Ventilation Graz, 23. / 24. April 2012 Determinat...
Author: Lynn Butler
36 downloads 0 Views 1MB Size
1

Dr. Johannes Rodler Dr. Bernd Hagenah Gruner GmbH, Wien (A)

P_ROJ_Graz 2012

Tunnel Safety and Ventilation

Graz, 23. / 24. April 2012

Determination of Aerodynamic Burden in Rail Tunnels using Measurements and Simulation

Contents

> Scope of work > Approval of rolling stock > Pressure loads in rail way tunnel > Guidelines > OEBB - requirements

2

> EN14067 - rail way / aerodynamics > Measurement 1:1 scale > Measurement site / setup > Measurement device > Measurement results P_ROJ_Graz 2012

Tunnel Safety and Ventilation

Graz, 23. / 24. April 2012

> TSI - Technical Specifications of Interoperability

> Calculation results > Conclusion

3 P_ROJ_Graz 2012

Graz, 23. / 24. April 2012

Tunnel Safety and Ventilation

Pressure Variations in Railway Tunnels

vtr = 230 km/h Ltr = 400 m

Impact of Pressure Variations in Tunnel

> Pressure load on infrastructure > Built in Components > Equipment e.g. Doors / Dampers > Pressure load on trains > Railcar Body, Windows, Doors

4

>

Passengers >  individual perception!

> comfort criteria (max. pressure variations in a given time interval) >

P_ROJ_Graz 2012

Tunnel Safety and Ventilation

Graz, 23. / 24. April 2012

 special attention in mixed traffic situations

Sonic boom part of energy is emitted at the portal in form of a micro pressure wave 1

2

3

Guidelines > UIC - International Union of Railways > UIC - Codex 779-11 - Determination of railway tunnel cross-sectional areas on the basis of aerodynamic considerations  comfort criteria

> ÖBB-Infrastruktur - Anforderungskatalog an Triebfahrzeuge für die Zulassung im Netz der OEBB

5

> vtr > 160 km/h  evidence of conformity > TSI SRT (2008) > technical specifications of interoperability relating to safety in railway tunnels  aerodynamic criteria > EN 14067 Bahnanwendungen - Aerodynamik > Teil 3: Aerodynamik im Tunnel P_ROJ_Graz 2012

Tunnel Safety and Ventilation

Graz, 23. / 24. April 2012

> Impact on the oncoming or overtaking train

> Teil 5: Anforderungen und Prüfverfahren für Aerodynamik im Tunnel

6

P_ROJ_Graz 2012

Tunnel Safety and Ventilation

Graz, 23. / 24. April 2012

Aerodynamic Criterion / Pressure Signature

∆pN

frontal wave of the train nose entering the tunnel

∆pfr

tunnel passage (friction)

∆pT

rear wave generated by train tail entering the tunnel

∆pHp

passage of the train nose

Characteristic Limits

Requirements for an interoperable train passing through a tunnel tube at a speed of vtr< 250 km/h

7

P_ROJ_Graz 2012

Tunnel Safety and Ventilation

Graz, 23. / 24. April 2012

Train type

Reference case

Criteria of the reference case

vtr [km/h]

Atu [m²]

pN [Pa]

pN+pFr [Pa]

pN+pFr+pT [Pa]

vtr, max < 250 km/h

200

53,6

≤ 1750

≤ 3000

≤ 3700

vtr, max ≤ 250 km/h

250

63,0

≤ 1600

≤ 3000

≤ 4100

STADLER KISS WESTbahn / Measurements

The authorization of new rolling stock on Austrian railway sections demands investigations on:

> Aerodynamic characteristics (TSI - pressure signature)

8

> Safeguard on field service personnel against aerodynamic impact > Aerodynamic impact on passengers on the platforms

Extensive measurements were carried out from 26th to 29th of August 2011 on "Westbahn" line. P_ROJ_Graz 2012

Tunnel Safety and Ventilation

Graz, 23. / 24. April 2012

> Pressure drop during cross passage of the train nose

KISS WESTbahn / Measurements on the platform > 150 m 90 m

90 m

> 20 m

Meteorologie Luftgeschwindigkeit

Luftgeschwindigkeit

3m

9

3m

0.56 m

1.2 m

USA

P_ROJ_Graz 2012

Tunnel Safety and Ventilation

Graz, 23. / 24. April 2012

Trigger

Trigger

KISS WESTbahn / Measurements near the track

4m

3m 2.5 m 3.3 m 3.0 m 2.7 m

Druckmessung

2.4 m 2.1 m

USA

0.75 m ±0.25 m

0.5 m

ca. 3m

0.2 m

DA

P_ROJ_Graz 2012

10

1.5 m

Graz, 23. / 24. April 2012

Tunnel Safety and Ventilation

1.8 m

Meteorologie

KISS WESTbahn / Measurements in the Tunnel

Tunnelabschnitt

Länge [m]

Querschnitt [m2]

Wandreibung λ

Melker Tunnel

1845

78

0.02

P_ROJ_Graz 2012

11

Graz, 23. / 24. April 2012

Tunnel Safety and Ventilation

c * Ltr  x1 xp  c  vtr

Measurements / Measurement Site (550 m from Portal)

DAQ P_ROJ_Graz 2012

12

Druckmessplatte

Trigger

Graz, 23. / 24. April 2012

Tunnel Safety and Ventilation

USA

Pressure Measurement

Value

Measured area

-6895 to +6895 Pa

Maximal error

0.33 %

Resonance frequency

70 kHz

0 - 10V 12.7 mm 2.26

150 mm

Parameters

perforation 1 mm signal amplifier

0 - 10V

P_ROJ_Graz 2012

13

Graz, 23. / 24. April 2012

Tunnel Safety and Ventilation

150 mm

coupling volume

Sample Rate 300 Hz !

P_ROJ_Graz 2012

14

Graz, 23. / 24. April 2012

Tunnel Safety and Ventilation

Measurements / Measurement started with Trigger

Measurement Results

vwind ≥ 3.5 m/s

198.9 km/h ≥ vtrain ≥ 201.6 km/h

1800 1600 1400 1200 1000

vwind ≤ 1.2 m/s

400 200 0

Zeit [s]

2.00

1.00

0.00

-1.00

-2.00

-3.00

-10.00

-1200

-4.00

-1000

-5.00

-800

-6.00

-600

-7.00

-400

-8.00

PRESS - Messung2 PRESS - Messung4 PRESS - Messung6 PRESS - Messung8 PRESS - Messung10 PRESS - Messung14 PRESS - Messung16 -9.00

Druck [Pa]

600

-200

P_ROJ_Graz 2012

15

Graz, 23. / 24. April 2012

Tunnel Safety and Ventilation

800

Calculation with ThermoTun

ThermoTun is a computer programme by Prof. Vardy accepted worldwide for the simulation of trains in tunnels and of tunnel systems. The correctness is confirmed by extended measurement campaigns.

- Pressure variations of trains passing tunnels and on rolling stocks, - Traction power requirements for trains in railway tunnels, - Averaged air speed in the railway tunnel tube, - Distribution and concentration of pollutants and smoke in railway tunnels.

P_ROJ_Graz 2012

16

Graz, 23. / 24. April 2012

Tunnel Safety and Ventilation

The following, aerodynamically relevant, unsteady values can be determined (among others):

Calculation Results

1.5 Measurement Messfahrt Berechnung Calculation

pstat [kPa] 0.5

0 0 P_ROJ_Graz 2012

17

Graz, 23. / 24. April 2012

Tunnel Safety and Ventilation

1

2

4

6 t [s]

8

10

Calculation Results

2.5

∆pT = 0.76 kPa

2 ∆pFr = 1.03 kPa

pstat [kPa]

1.5

1

0.5 Berechnung für ATunnel = 53.6 m2 Calculation for P_ROJ_Graz 2012

18

Graz, 23. / 24. April 2012

Tunnel Safety and Ventilation

∆pN = 1.34 kPa

0 0

2

4

6 t [s]

8

10

Calculation Results

Source of pressure drop

actual

1.7 kPa

1.34 kPa

Tunnel passage (friction) ∆pFr

1.03 kPa

Rear wave ∆pT

0.76 kPa

Sum ∆pN + ∆pFr + ∆pT

P_ROJ_Graz 2012

19

Graz, 23. / 24. April 2012

Tunnel Safety and Ventilation

Frontal wave ∆pN

reference

3.7 kPa

3.13 kPa

Summary

>

The approval of new rolling stock demands 1:1 scale

measurements of the pressure loads in rail way tunnels > The requirements for an interoperable train passing through a tunnel tube are given for specific cross-sectional areas

> The approval of the new STADLER KISS WESTbahn in the Austrian rail network were carried out based on extensive 1:1 scale measurements > The simulation of pressure loads for specific cross-sectional P_ROJ_Graz 2012

20

(validation based on measurements) are accepted

Graz, 23. / 24. April 2012

Tunnel Safety and Ventilation

> Calculation of the pressure loads with simulation software

areas were done with TermoTun software

P_ROJ_Graz 2012

21

Thank you for your attention!

Graz, 23. / 24. April 2012

Tunnel Safety and Ventilation

Determination of Aerodynamic Burden in Rail Tunnels using Measurements and Simulationby Gruner

Suggest Documents