Damped Second-Order Systems

6.002 CIRCUITS AND ELECTRONICS Damped Second-Order Systems 6.002 Fall 03 1 Damped Second-Order Systems 5V 5V 2KΩ 50Ω 2KΩ S C A B + – ...
Author: Emery Hodge
1 downloads 1 Views 526KB Size
6.002

CIRCUITS AND ELECTRONICS

Damped Second-Order Systems

6.002

Fall 03

1

Damped Second-Order Systems 5V

5V

2KΩ

50Ω

2KΩ

S

C

A

B

+ –

large loop

CGS

Remember this Demo Our old friend, the inverter, driving another. The parasitic inductance of the wire and the gate-to-source capacitance of the MOSFET are shown [Review complex algebra appendix in Agarwal & Lang for next class]

6.002

Fall 03

2

Damped Second-Order Systems 5V

5V

50Ω

2KΩ

2KΩ

S

C A

B

+ –

large loop

Relevant circuit:

5V + –

6.002

Fall 03

2KΩ

CGS

L B CGS

3

Observed Output

2kΩ

5 vA 0

t

vB 2kΩ

t

0

vC 0

t

Now, let’s try to speed up our inverter by closing the switch S to lower the effective resistance 6.002

Fall 03

4

Observed Output

~50Ω

5 vA 0

t

vB 50Ω

0

t

vC 0

t

Huh! 6.002

Fall 03

5

In the last lecture, we started by analyzing the simpler LC circuit to build intuition

i (t )

L

vI (t )

6.002

+ –

Fall 03

C

+ v(t ) –

6

In the last lecture…

We solved d 2v 1 1 + v = vI 2 dt LC LC

For input VI

vI

0

t

And for initial conditions v(0) = 0 i(0) = 0 [ZSR]

6.002

Fall 03

7

In the last lecture… Total solution v(t ) = VI − VI cosω t o

where 1 LC

ωo =

v(t ) 2VI

LC

VI

vI

0

t i (t )

L v I (t )

6.002

+ –

Fall 03

C

+

v (t )



8

Today, we will close the loop on our observations in the demo by analyzing the RLC circuit R

L

vI (t ) + –

i (t ) C

+ v(t ) –

v(t ) 2VI

LC

VI

vI

0

add R

t

Damped sinusoids with R – remember demo!

See A&L Section 13.6 6.002

Fall 03

9

Let’s analyze the RLC network vA

vI (t )

L

i (t )

+ v(t ) –

R

+ –

C

Node method: vA :

1 t vA − v ∫ (vI − v A ) dt = L −∞ R vA − v dv =C R dt

v:

Recall element rules L:

vL = L t

di dt

1 vL dt = i ∫ L −∞ d 2 v R dv 1 1 + + v= vI 2 dt L dt LC LC

6.002

Fall 03

C:

dvC iC = C dt

v, i state variables 10

Let’s analyze the RLC network vA

vI (t ) + –

L

i (t )

R C

+ v(t ) –

Node method: 1 t vA − v ∫ (v I − v A ) dt = L −∞ R

vA :

vA − v dv =C R dt

v:

1 d 2v ( vI − v A ) = C 2 L dt 1 d 2v ( vI − v A ) = 2 dt LC

dv v A = RC + v dt dv 1 d 2v ( vI − RC − v ) = 2 LC dt dt d 2 v R dv 1 1 + + v = vI 2 dt L dt LC LC

6.002

Fall 03

11

Solving Recall, the method of homogeneous and particular solutions: 1

Find the particular solution.

2

Find the homogeneous solution. L 4 steps

3

The total solution is the sum of the particular and homogeneous. Use initial conditions to solve for the remaining constants.

v = vP (t ) + vH (t )

6.002

Fall 03

12

Let’s solve d 2 v R dv 1 1 + + v = vI 2 dt L dt LC LC

For input VI

vI

0

t

And for initial conditions v(0) = 0 i(0) = 0 [ZSR]

6.002

Fall 03

13

1

Particular solution d 2 vP R dvP 1 1 + + vP = VI 2 dt L dt LC LC

vP = VI

6.002

Fall 03

is a solution.

14

2

Homogeneous solution

Solution to

1 d 2 vH R dvH + + vH = 0 2 dt LC dt L

Recall, vH : solution to homogeneous equation (drive set to zero)

Four-step method: A Assume solution of the form vH = Ae st , A, s = ? B

Form the characteristic equation f(s)

C Find the roots of the characteristic equation

s1 , s2

D General solution

vH = A1e s1t + A2 e s2t 6.002

Fall 03

15

2

Homogeneous solution 1 d 2 vH R dvH + + vH = 0 2 dt LC dt L

Solution to

A Assume solution of the form vH = Ae st , A, s = ? so,

As2est +

R 1 Asest + Aest = 0 L LC characteristic equation

R 1 s + s+ =0 L LC

B

2

s + 2αs + ω 2

2

o

ωo =

=0

α=

C Roots

1 LC

R 2L

s1 = −α + α 2 − ω 2 o s2 = −α − α 2 − ω 2 o

D

General solution

vH = A1e 6.002

Fall 03

⎛⎜ −α + α 2 −ω 2 o ⎞⎟ t ⎝ ⎠

+ A2 e

⎛⎜ −α − α 2 −ω 2 o ⎞⎟ t ⎝ ⎠

16

3

Total solution v(t ) = vP (t ) + vH (t )

v(t ) = VI + A1e

⎛⎜ −α + α 2 −ω 2 o ⎞⎟ t ⎝ ⎠

+ A2 e

⎛⎜ −α − α 2 −ω 2 o ⎞⎟ t ⎝ ⎠

Find unknowns from initial conditions. v(0) = 0 : 0 = VI + A1 + A2

i (0) = 0 : dv i (t ) = C dt

( CA (− α −

) )e

= CA1 − α + α 2 − ω 2 o e 2

so,

(

α −ω 2

2

o

⎛⎜ −α + α 2 −ω 2 o ⎞⎟ t ⎝ ⎠

⎛⎜ −α − α 2 −ω 2 o ⎝

) (

+

⎞⎟ t ⎠

0 = A1 − α + α 2 − ω 2 o + A2 − α − α 2 − ω 2 o

)

Mathematically: solve for unknowns, done. 6.002

Fall 03

17

Let’s stare at this a while longer… ⎛ α 2 −ω 2 o −αt ⎜⎝

v(t ) = VI + A1e e

⎞⎟ t ⎠

⎛ − α 2 −ω 2 o −αt ⎜⎝

+ A2 e e

⎞⎟ t ⎠

3 cases: α > ωo

Overdamped

v(t ) = VI + A1e

α < ωo

−α1t

v(t ) = VI + A1e e −αt

= VI + A1e e

α = ωo 6.002

+ A2 e

−α 2 t

v t

Underdamped ⎛ j ω 2 o −α 2 ⎞⎟ t −αt ⎜⎝ ⎠

= VI + K1e

VI vI

−αt

jω d t

⎛⎜ − j ω 2 −α 2 ⎞⎟ t o −αt ⎝ ⎠

+ A2 e e −αt − jωd t

+ A2e e

cosωd t + K 2e

−αt

sin ωd t

ωd = ω 2 o − α 2 e jωd t = cosωd t + j sin ωd t

Critically damped Later…

Fall 03

18

Let’s stare at underdamped a while longer…

α < ωo

Underdamped contd…

v(t ) = VI + K1e−αt cosωd t + K 2e−αt sin ωd t v(0) = 0 : K1 = −VI

dv i (0) = 0 : i (t ) = C dt

= −CK1αe−αt cosωd t − CK 2ωd e−αt sin ωd t − CK1αe−αt sin ωd t + CK 2ωd e−αt cosωd t

0 = − K1α + K 2ωd Vα K2 = − 1

ωd

v(t ) = VI − VI e

−αt

α −αt cosωd t − VI e sin ωd t ωd

Note: For R = 0

⇒α = 0

v(t ) = VI − VI cosωot Same as LC as expected 6.002

Fall 03

19

Let’s stare at underdamped a while longer…

α < ωo

Underdamped contd…

v(t ) = VI − VI e

−αt

α −αt cosωd t − VI e sin ωd t ωd

Remember, scaled sum of sines (of the same frequency) are also sines! -- Appendix B.7

ωo −αt ⎛ α v(t ) = VI − VI e cos⎜⎜ ωd t − tan −1 ωd ωd ⎝

⎞ ⎟⎟ ⎠

v(t ) 2VI

LC

VI

vI

0

6.002

add R

t Fall 03

20

α < ωo

Underdamped contd…

v(t ) = VI − VI e

−αt

α −αt cosωd t − VI e sin ωd t ωd

Remember, scaled sum of sines (of the same frequency) are also sines! -- Appendix B.7

ωo −αt ⎛ −1 α v(t ) = VI − VI e cos⎜⎜ ωd t − tan ωd ωd ⎝

⎞ ⎟⎟ ⎠

v(t ) 2VI

LC

VI

vI

0

add R

t v

α = ωo

Critically damped

underdamped criticallydamped overdamped

t

Section 13.2.3

6.002

Fall 03

21

Remember this? Closed the loop… 5 vA 0

t

vB 50Ω

0

t

vC 0

t

See example 12.9 on page 664 of the A&L textbook for inverter-pair analysis 6.002

Fall 03

22

Intuitive Analysis See Sec. 12.7 of A&L textbook ωo −αt ⎛ −1 α ⎜ v ( t ) V V e cos t tan ω = − − Underdamped I I ⎜ d ωd ωd ⎝

v(t )

e −αt

⎞ ⎟⎟ ⎠

“ringing”

VI

0



t

ωd

Characteristic equation

s2 +

R 1 s+ =0 L LC

s 2 + 2αs + ω 2 o = 0

ωd : Oscillation frequency α : Governs rate of decay

ωd = ω 2 o − α 2

VI : Final value v(0) : Initial value

Q= 6.002

ωo : Quality factor (approximately 2α the number of cycles of ringing) Fall 03

23

Intuitive Analysis See Sec. 12.7 of A&L textbook Ringing stops after Q cycles V I

v(t ) VI

v(0)

i (0) is –ve so v(t) must drop

?

0 period



t

ωd

Characteristic equation

s2 +

R 1 s+ =0 L LC

s 2 + 2αs + ω 2 o = 0

ωd = ω 2 o − α 2

i(t )

L

vI +– 6.002

Q=

R C

Fall 03

+ v(t ) –

ωo 2α

given i (0) -ve v(0) +ve 24

Suggest Documents