Contents. Theoretical Properties

Contents Part I: 1 2 Historical introduction to finite fields Roderick Gow . . . . . . . . . . Introduction to finite fields . . . . . . . . . . . . ...
Author: Hillary Sherman
48 downloads 2 Views 961KB Size
Contents Part I: 1 2

Historical introduction to finite fields Roderick Gow . . . . . . . . . . Introduction to finite fields . . . . . . . . . . . . . . . . . . . . . . . . .

2 3

Panario . . . .

2.1

2.2

Basic properties of finite fields Gary L. Mullen and Daniel 2.1.1 Basic definitions . . . . . . . . . . . . . . . . . . 2.1.2 Fundamental properties of finite fields . . . . . . 2.1.3 Extension fields . . . . . . . . . . . . . . . . . . 2.1.4 Trace and norm functions . . . . . . . . . . . . . 2.1.5 Bases . . . . . . . . . . . . . . . . . . . . . . . 2.1.6 Linearized polynomials . . . . . . . . . . . . . . 2.1.7 Miscellaneous results . . . . . . . . . . . . . . . 2.1.7.1 The finite field polynomial Φ function 2.1.7.2 Lagrange interpolation . . . . . . . . 2.1.7.3 Discriminants . . . . . . . . . . . . . 2.1.7.4 Jacobi logarithms . . . . . . . . . . . 2.1.7.5 Field-like structures . . . . . . . . . . 2.1.7.6 Galois rings . . . . . . . . . . . . . . 2.1.8 Finite field related books . . . . . . . . . . . . . 2.1.8.1 Textbooks . . . . . . . . . . . . . . . 2.1.8.2 Finite field theory . . . . . . . . . . . 2.1.8.3 Applications . . . . . . . . . . . . . . 2.1.8.4 Algorithms . . . . . . . . . . . . . . . 2.1.8.5 Conference proceedings . . . . . . . . Tables David Thomson . . . . . . . . . . . . . . . . . .

Part II: 3

Introduction

3.2

3.3

3.4

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

3 3 4 7 10 11 13 13 13 14 14 15 15 16 19 19 19 19 20 20 21

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

24 24 25 26 27 28 29 29 31 31 32 35 35 35 39 39

Theoretical Properties

Irreducible polynomials 3.1

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Counting irreducible polynomials Joseph L.Yucas 3.1.1 Prescribed trace or norm . . . . . . . . . 3.1.2 Prescribed coefficients over the binary field 3.1.3 Self-reciprocal polynomials . . . . . . . . 3.1.4 Compositions of powers . . . . . . . . . . 3.1.5 Translation invariant polynomials . . . . 3.1.6 Normal replicators . . . . . . . . . . . . Construction of irreducibles Melsik Kyuregyan . . 3.2.1 Construction by composition . . . . . . . 3.2.2 Recursive Constructions . . . . . . . . . Reducible polynomials Daniel Panario . . . . . . 3.3.1 Composite polynomials . . . . . . . . . . 3.3.2 Swan-type theorems . . . . . . . . . . . . Weights of irreducible polynomials Omran Ahmadi 3.4.1 Basic definition . . . . . . . . . . . . . .

3.4.2 Existence results . . . . . . . . . . . . . . . . . . . . 3.4.3 Non-existence results . . . . . . . . . . . . . . . . . . 3.4.4 Conjectures . . . . . . . . . . . . . . . . . . . . . . . Prescribed coefficients Stephen D. Cohen . . . . . . . . . . . . 3.5.1 One prescribed coefficient . . . . . . . . . . . . . . . . 3.5.2 Prescribed trace and norm . . . . . . . . . . . . . . . 3.5.3 More prescribed coefficients . . . . . . . . . . . . . . 3.5.4 Further exact expressions . . . . . . . . . . . . . . . . Multivariate polynomials Xiang-dong Hou . . . . . . . . . . . 3.6.1 Counting formulas . . . . . . . . . . . . . . . . . . . 3.6.2 Asymptotic formulas . . . . . . . . . . . . . . . . . . 3.6.3 Results for the vector degree . . . . . . . . . . . . . . 3.6.4 Indecomposable polynomials and irreducible polynomials 3.6.5 Algorithms for gcd . . . . . . . . . . . . . . . . . . .

4

5

6

. . . . . . . . . . . .

. . . . . 39 . . . . . 41 . . . . . 41 3.5 . . . . . 43 . . . . . 43 . . . . . 44 . . . . . 45 . . . . . 47 3.6 . . . . . 50 . . . . . 50 . . . . . 51 . . . . . 51 . . . . . 53 . . . . . . 54 Primitive polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.1 Introduction to primitive polynomials Gary L. Mullen and Daniel Panario 56 4.2 Prescribed coefficients Stephen D. Cohen . . . . . . . . . . . . . . . . . . 60 4.2.1 Approaches to results on prescribed coefficients . . . . . . . . . . 60 4.2.2 Existence theorems for primitive polynomials . . . . . . . . . . . 61 4.2.3 Existence theorems for primitive normal polynomials . . . . . . . 63 4.3 Weights of primitive polynomials Stephen D. Cohen . . . . . . . . . . . . 66 4.4 Elements of high order Jos´e Felipe Voloch . . . . . . . . . . . . . . . . . 69 4.4.1 Elements of high order from elements of small orders . . . . . . . 69 4.4.2 Gao’s construction and generalization . . . . . . . . . . . . . . . 69 4.4.3 Iterative constructions . . . . . . . . . . . . . . . . . . . . . . . 70 Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.1 Duality theory of bases Dieter Jungnickel . . . . . . . . . . . . . . . . . . 71 5.1.1 Dual bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.1.2 Self-dual bases . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.1.3 Weakly self-dual bases . . . . . . . . . . . . . . . . . . . . . . . 74 5.1.4 Binary bases with small excess . . . . . . . . . . . . . . . . . . . 76 5.1.5 Almost weakly self-dual bases . . . . . . . . . . . . . . . . . . . 77 5.2 Normal bases Shuhong Gao and Qunying Liao . . . . . . . . . . . . . . . 80 5.3 Optimal and low complexity normal bases Shuhong Gao and David Thomson 81 5.4 Completely normal bases Dirk Hachenberger . . . . . . . . . . . . . . . . 82 5.4.1 The complete normal basis theorem . . . . . . . . . . . . . . . . 82 5.4.2 A reduction to extensions of prime power degree . . . . . . . . . 83 5.4.3 The class of completely basic extensions . . . . . . . . . . . . . . 83 5.4.4 Module structures and the notion of additive orders . . . . . . . . 84 5.4.5 Cyclotomic modules and complete generators . . . . . . . . . . . 85 5.4.6 A decomposition theory for complete generators . . . . . . . . . . 86 5.4.7 The class of regular extensions . . . . . . . . . . . . . . . . . . . 88 5.4.8 Complete generators for regular cyclotomic modules . . . . . . . 89 5.4.9 Construction of complete generators . . . . . . . . . . . . . . . . 90 5.4.10 Towards a primitive complete normal basis theorem . . . . . . . . 92 5.4.11 Sequences of completely normal elements . . . . . . . . . . . . . 93 5.4.12 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Exponential and character sums . . . . . . . . . . . . . . . . . . . . . . 96 6.1 Gauss, Jacobi, and Kloosterman sums Ronald J. Evans . . . . . . . . . . 96 6.1.1 Properties of Gauss and Jacobi sums over Fq . . . . . . . . . . . 96 6.1.2 Evaluations of Jacobi and Gauss sums of small orders . . . . . . . 105

6.2

6.3

6.4

7

Equations over finite fields

. . . . . . . . . . . . . . . . . . . . . . 7.2 . . . . . 7.3 . . . . . Permutation polynomials . . . . . . . . . . . . . . . . 8.1 One variable Gary L. Mullen and Qiang Wang . . . . . 8.1.1 Basics . . . . . . . . . . . . . . . . . . . . . . 8.1.2 Criteria . . . . . . . . . . . . . . . . . . . . . 8.1.3 Enumeration and distribution of PPs . . . . . 8.1.4 Construction of PPs . . . . . . . . . . . . . . 8.1.5 PPs from permutations of multiplicative groups 8.1.6 PPs from permutations of additive groups . . . 8.1.7 Other types of PPs . . . . . . . . . . . . . . . 8.1.8 Dickson and Reversed Dickson PPs . . . . . . 8.1.9 Miscellaneous PPs . . . . . . . . . . . . . . . 8.2 Several variables Rudolf Lidl and Gary L. Mullen . . . 7.1

8

6.1.3 Prime ideal divisors of Gauss and Jacobi sums . . . . . . . . 6.1.4 Kloosterman sums over Fq . . . . . . . . . . . . . . . . . . . 6.1.5 Gauss and Kloosterman sums over finite rings . . . . . . . . . More general exponential and character sums Antonio Rojas Le´ on . . 6.2.1 One variable character sums . . . . . . . . . . . . . . . . . . 6.2.2 Additive character sums . . . . . . . . . . . . . . . . . . . . 6.2.3 Multiplicative character sums . . . . . . . . . . . . . . . . . 6.2.4 Generic estimates . . . . . . . . . . . . . . . . . . . . . . . . 6.2.5 More general types of character sums . . . . . . . . . . . . . Some-products theorems and applications Moubariz Z. Garaev . . . . 6.3.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.2 The sum-product estimate and its variants . . . . . . . . . . 6.3.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . Some applications of character sums Alina Ostafe and Arne Winterhof 6.4.1 Applications of a simple character sum identity . . . . . . . . 6.4.2 Applications of Gauss and Jacobi sums . . . . . . . . . . . . 6.4.3 Applications of the Weil bound . . . . . . . . . . . . . . . . . 6.4.4 Applications of Kloosterman sums . . . . . . . . . . . . . . . 6.4.5 Incomplete character sums . . . . . . . . . . . . . . . . . . . 6.4.6 Other character sums . . . . . . . . . . . . . . . . . . . . . . 6.4.7 Other applications and links to other chapters . . . . . . . . . General forms Daqing Wan . . . . . . . . . . . . . . 7.1.1 Affine hypersurfaces . . . . . . . . . . . . . . 7.1.2 Projective hypersurfaces . . . . . . . . . . . 7.1.3 Toric hypersurfaces . . . . . . . . . . . . . . 7.1.4 Artin-Schreier hypersurfaces . . . . . . . . . 7.1.5 Kummer hypersurfaces . . . . . . . . . . . . 7.1.6 p-Adic estimates . . . . . . . . . . . . . . . Quadratic forms Robert Fitzgerald . . . . . . . . . . 7.2.1 Basic definitions . . . . . . . . . . . . . . . . 7.2.2 Quadratic forms over finite fields . . . . . . . 7.2.3 Trace forms . . . . . . . . . . . . . . . . . . 7.2.4 Applications . . . . . . . . . . . . . . . . . . Diagonal equations Francis Castro and Ivelisse Rubio 7.3.1 Preliminaries . . . . . . . . . . . . . . . . . 7.3.2 Solutions of diagonal equations . . . . . . . . 7.3.3 Generalizations of diagonal equations . . . . 7.3.4 Waring’s problem in finite fields . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

108 110 115 119 119 119 123 124 125 128 128 128 130 135 135 137 141 144 145 147 149 151 151 151 153 154 154 156 157 159 159 160 161 163 164 164 164 167 168 171 171 171 172 173 176 177 180 180 182 183 186

8.3

9

Value sets of polynomials Gary L. Mullen and Michael 8.3.1 Large value sets . . . . . . . . . . . . . . . . 8.3.2 Small value sets . . . . . . . . . . . . . . . . 8.3.3 General polynomials . . . . . . . . . . . . . 8.3.4 Lower bounds . . . . . . . . . . . . . . . . . 8.3.5 Examples . . . . . . . . . . . . . . . . . . . 8.3.6 Further value set papers . . . . . . . . . . . Exceptional polynomials Michael E. Zieve . . . . . . 8.4.1 Fundamental properties . . . . . . . . . . . . 8.4.2 Classification results . . . . . . . . . . . . . 8.4.3 Low-degree exceptional polynomials . . . . . 8.4.4 Potpourri . . . . . . . . . . . . . . . . . . .

E. Zieve . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Special functions over finite fields . . . . . . . . . . . . . . . . . . . 9.1 Boolean functions Claude Carlet . . . . . . . . . . . . . . . . . . . . 9.1.1 Representation of Boolean functions . . . . . . . . . . . . . . 9.1.2 The Walsh transform . . . . . . . . . . . . . . . . . . . . . . 9.1.3 Parameters of Boolean functions . . . . . . . . . . . . . . . . 9.1.4 Boolean functions and cryptography . . . . . . . . . . . . . . 9.1.5 Constructions of cryptographic Boolean functions . . . . . . . . . 9.1.6 Boolean functions and error correcting codes . . . . . . . . . . . 9.1.7 Boolean functions and sequences . . . . . . . . . . . . . . . . . . 9.2 PN and APN functions Pascale Charpin . . . . . . . . . . . . . . . . . . 9.2.1 Functions from F2n into F2m . . . . . . . . . . . . . . . . . . . . 9.2.2 Perfect Nonlinear (PN) functions . . . . . . . . . . . . . . . . . . 9.2.3 Almost Perfect Nonlinear (APN) and Almost Bent (AB) functions 9.2.4 APN permutations . . . . . . . . . . . . . . . . . . . . . . . . . 9.2.5 Properties of stability . . . . . . . . . . . . . . . . . . . . . . . 9.2.6 Coding theory point of view . . . . . . . . . . . . . . . . . . . . 9.2.7 Quadratic APN functions . . . . . . . . . . . . . . . . . . . . . 9.2.8 APN monomials . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.3 Bent and related functions Alexander Kholosha and Alexander Pott . . . 9.3.1 Definitions and Examples . . . . . . . . . . . . . . . . . . . . . . 9.3.2 Basic properties of bent functions . . . . . . . . . . . . . . . . . 9.3.3 Constructions of bent functions . . . . . . . . . . . . . . . . . . 9.3.4 Bent functions and other combinatorial objects . . . . . . . . . . 9.3.5 Special classes of bent functions . . . . . . . . . . . . . . . . . . 9.3.6 Hyper bent, normal and self-dual bent functions . . . . . . . . . 9.3.7 Constructions using PN and s-plateaued functions . . . . . . . . 9.3.8 p-ary bent functions in univariate form . . . . . . . . . . . . . . 9.4 κ-polynomials and related algebraic objects Robert Coulter . . . . . . . . 9.4.1 Definitions and preliminaries . . . . . . . . . . . . . . . . . . . . 9.4.2 Pre-semifields, semifields and isotopy . . . . . . . . . . . . . . . . 9.4.3 Semifield constructions . . . . . . . . . . . . . . . . . . . . . . . 9.4.4 Semifields and nuclei . . . . . . . . . . . . . . . . . . . . . . . . 9.5 Planar functions and commutative semifields Robert Coulter . . . . . . . 9.5.1 Definitions and preliminaries . . . . . . . . . . . . . . . . . . . . 9.5.2 Constructing affine planes using planar functions . . . . . . . . . 9.5.3 Examples, constructions and equivalence . . . . . . . . . . . . . . 9.5.4 Classification results, necessary conditions and the Dembowski-Ostrom Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.5.5 Planar DO polynomials and commutative semifields of odd order .

189 189 189 190 190 191 191 193 193 193 194 194 196 196 197 198 199 201 202 204 204 205 205 206 207 208 209 210 210 212 214 214 216 217 219 219 221 221 222 225 225 226 227 228 230 230 230 231 232 233

. . . . . . . . . . . . . . . . . . . . . . . . . . . 9.7 . . . . . . . . . . . . . . . . . . . . . . Sequences over finite fields . . . . . . . . . . . . . . . . . . . . . . . . . 10.1 Finite field transforms Gary McGuire . . . . . . . . . . . . . . . . . . . . 10.1.1 Basic definitions and Important Examples . . . . . . . . . . . . . 10.1.2 Functions between two groups . . . . . . . . . . . . . . . . . . . 10.1.3 Sequence and Matrix Formulation . . . . . . . . . . . . . . . . . 10.1.4 Discrete Fourier Transform . . . . . . . . . . . . . . . . . . . . . 10.1.5 Further Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.1.5.1 Fourier Spectrum . . . . . . . . . . . . . . . . . . . . 10.1.5.2 Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . 10.1.5.3 Characteristic Functions . . . . . . . . . . . . . . . . 10.1.5.4 Gauss Sums . . . . . . . . . . . . . . . . . . . . . . . 10.1.5.5 Uncertainty Principle . . . . . . . . . . . . . . . . . . 10.2 LFSRs and maximum length sequences Solomon Golomb . . . . . . . . . 10.3 Correlation and autocorrelation of sequences Tor Helleseth . . . . . . . . 10.3.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3.2 Autocorrelation of sequences . . . . . . . . . . . . . . . . . . . . 10.3.3 Sequence families with low crosscorrelation . . . . . . . . . . . . 10.3.4 Quaternary sequences . . . . . . . . . . . . . . . . . . . . . . . . 10.3.5 Aperiodic correlation . . . . . . . . . . . . . . . . . . . . . . . . 10.3.6 The merit factor . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3.7 Partial period correlation . . . . . . . . . . . . . . . . . . . . . . 10.3.8 The Hamming correlation . . . . . . . . . . . . . . . . . . . . . 10.4 Linear complexity of sequences and multisequences Wilfried Meidl and Arne Winterhof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.4.1 Linear complexity measures . . . . . . . . . . . . . . . . . . . . 10.4.2 Analysis of the linear complexity . . . . . . . . . . . . . . . . . . 10.4.3 Average behaviour of the linear complexity . . . . . . . . . . . . 10.4.4 Some sequences with large nth linear complexity . . . . . . . . . 10.4.4.1 Explicit sequences . . . . . . . . . . . . . . . . . . . . 10.4.4.2 Recursive nonlinear sequences . . . . . . . . . . . . . . 10.4.4.3 Legendre sequence and related bit sequences . . . . . . 10.4.4.4 Elliptic curve sequences . . . . . . . . . . . . . . . . . 10.4.5 Related measures . . . . . . . . . . . . . . . . . . . . . . . . . . 10.4.5.1 Kolmogorov complexity . . . . . . . . . . . . . . . . . 10.4.5.2 Lattice test . . . . . . . . . . . . . . . . . . . . . . . 9.6

10

Dickson polynomials Qiang Wang and Joseph L. Yucas . . . . . . 9.6.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.6.2 Factorization . . . . . . . . . . . . . . . . . . . . . . . . 9.6.2.1 a-reciprocals of polynomials . . . . . . . . . . . 9.6.2.2 Φa and Ψa . . . . . . . . . . . . . . . . . . . . 9.6.2.3 Factors of Dickson polynomials . . . . . . . . . 9.6.2.4 a-cyclotomic polynomials . . . . . . . . . . . . 9.6.3 Dickson polynomial of the (k + 1)-th kind . . . . . . . . . 9.6.4 Multivariate Dickson polynomials . . . . . . . . . . . . . Schur’s conjecture and exceptional covers Michael D. Fried . . . . 9.7.1 Rational function definitions . . . . . . . . . . . . . . . . 9.7.2 MacCluer’s Theorem and Schur’s Conjecture . . . . . . . 9.7.3 Fiber product of covers . . . . . . . . . . . . . . . . . . . 9.7.4 Combining exceptional covers; the (Fq , Z) exceptional tower 9.7.5 Exceptional rational functions; Serre’s Open Image Theorem 9.7.6 Davenport pairs and Poincar´e series . . . . . . . . . . . .

. . . . . . . . . . . . .

235 235 236 237 237 238 239 239 241 243 243 244 247 249 250 253 256 256 256 258 259 260 261 261 261 261 262 262 263 264 264 264 266 268 268 269 269 269 270 270 273 275 277 277 278 278 279 280 280 280

10.4.5.3 Correlation measure of order k . . . . . . . . . 10.4.5.4 Discrepancy . . . . . . . . . . . . . . . . . . . 10.5 Algebraic dynamical systems over finite fields Igor Shparlinski . . . 10.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 10.5.2 Background and Main Definitions . . . . . . . . . . . . . 10.5.3 Degree growth . . . . . . . . . . . . . . . . . . . . . . . . 10.5.4 Linear independence and other algebraic properties of iterates 10.5.5 Multiplicative independence of iterates . . . . . . . . . . . 10.5.6 Trajectory length . . . . . . . . . . . . . . . . . . . . . . 10.5.7 Irreducibility of iterates . . . . . . . . . . . . . . . . . . . 10.5.8 Diameter of partial trajectories . . . . . . . . . . . . . . .

11

12

. . . . . .

. . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1 Computational techniques Christophe Doche . . . . . . . . . . . . . . . . 11.2 Basic polynomial counting Daniel Panario . . . . . . . . . . . . . . . . . 11.2.1 Classical counting results . . . . . . . . . . . . . . . . . . . . . . 11.2.2 Flajolet’s analytic combinatorics approach . . . . . . . . . . . . . 11.2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2.4 Relations to algorithms . . . . . . . . . . . . . . . . . . . . . . . 11.3 Algorithms for irreducibility testing and constructing irreducible polynomials Mark Giesbrecht . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.3.1 Testing irreducibility of univariate polynomials . . . . . . . . . . Early Irreducibility Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rabin’s irreducibility test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.3.2 Constructing irreducible polynomials: randomized algorithms . . . 11.3.3 Constructing Irreducible Polynomials: Deterministic Algorithms . 11.4 Factorization of univariate polynomials Joachim von zur Gathen . . . . . 11.5 Factorization of multivariate polynomials Erich Kaltofen and Gr´egoire Lecerf 11.5.1 Factoring dense multivariate polynomials . . . . . . . . . . . . . 11.5.1.1 Separable factorization . . . . . . . . . . . . . . . . . 11.5.1.2 Squarefree factorization . . . . . . . . . . . . . . . . . 11.5.1.3 Bivariate irreducible factorization . . . . . . . . . . . . 11.5.1.4 Reduction from any number to two variables . . . . . . 11.5.2 Factoring sparse multivariate polynomials . . . . . . . . . . . . . 11.5.2.1 Ostrowski’s theorem . . . . . . . . . . . . . . . . . . . 11.5.2.2 Irreducibility tests based on indecomposability of polytopes . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.5.2.3 Sparse bivariate Hensel lifting driven by polytopes . . . 11.5.2.4 Convex-dense bivariate factorization . . . . . . . . . . 11.5.3 Factoring straight-line programs and black boxes . . . . . . . . . 11.6 Primary decomposition of ideals over finite fields Shuhong Gao . . . . . . 11.7 Grobner bases and solving polynomial systems over finite fields Shuhong Gao 11.8 Discrete logarithms over finite fields Andrew Odlyzko . . . . . . . . . . . 11.9 Standard models for finite fields Hendrik Lenstra and Bart de Smit . . . . Curves over finite fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.1 Introduction to function fields and curves Arnaldo Garcia and Henning Stichtenoth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.1.1 Valuations and places . . . . . . . . . . . . . . . . . . . . . . . . 12.1.2 Divisors and Riemann–Roch theorem . . . . . . . . . . . . . . . 12.1.3 Extensions of function fields . . . . . . . . . . . . . . . . . . . . 12.1.4 Differentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.1.5 Function fields and curves . . . . . . . . . . . . . . . . . . . . .

280 281 282 282 282 283 285 286 286 287 288 290 290 291 291 291 292 293 294 294 294 295 295 297 300 301 301 301 302 303 305 306 306 307 307 308 308 312 313 314 315 316 316 317 319 323 330 332

12.2 Elliptic curves Joseph Silverman . . . . . . . . . . . . . . . . . . . . . . 12.2.1 Weierstrass equations . . . . . . . . . . . . . . . . . . . . . . . . 12.2.2 The group law . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.2.3 Isogenies and endomorphisms . . . . . . . . . . . . . . . . . . . . 12.2.4 The number of points in E(Fq ) . . . . . . . . . . . . . . . . . . 12.2.5 Twists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.2.6 The torsion subgroup and the Tate module . . . . . . . . . . . . 12.2.7 The Weil pairing and the Tate pairing . . . . . . . . . . . . . . . 12.2.8 The endomorphism ring and automorphism group . . . . . . . . . 12.2.9 Ordinary and supersingular elliptic curves . . . . . . . . . . . . . 12.2.10 The zeta function of an elliptic curve . . . . . . . . . . . . . . . 12.2.11 The elliptic curve discrete logarithm problem . . . . . . . . . . . 12.3 Hyperelliptic curves Michael John Jacobson, Jr. and Renate Scheidler . . 12.3.1 Hyperelliptic equations . . . . . . . . . . . . . . . . . . . . . . . 12.3.2 The degree zero divisor class group . . . . . . . . . . . . . . . . . 12.3.3 Divisor class arithmetic over finite fields . . . . . . . . . . . . . . 12.3.4 Endomorphisms and supersingularity . . . . . . . . . . . . . . . 12.3.5 Class number computation . . . . . . . . . . . . . . . . . . . . . 12.3.6 The Tate-Lichtenbaum pairing . . . . . . . . . . . . . . . . . . . 12.3.7 The hyperelliptic curve discrete logarithm problem . . . . . . . . 12.4 Rational points on curves Arnaldo Garcia and Henning Stichtenoth . . . . 12.4.1 Rational places . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.4.2 The Zeta function of a function field . . . . . . . . . . . . . . . . 12.4.3 Bounds for the number of rational places . . . . . . . . . . . . . 12.4.4 Maximal function fields . . . . . . . . . . . . . . . . . . . . . . . 12.4.5 Asymptotic bounds . . . . . . . . . . . . . . . . . . . . . . . . . 12.5 Towers Arnaldo Garcia and Henning Stichtenoth . . . . . . . . . . . . . . 12.5.1 Introduction to towers . . . . . . . . . . . . . . . . . . . . . . . 12.5.2 Examples of towers . . . . . . . . . . . . . . . . . . . . . . . . . 12.6 (t, m, s)-nets and (t, s)-sequences Harald Niederreiter . . . . . . . . . . . 12.6.1 (t, m, s)-nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.6.2 Digital (t, m, s)-nets . . . . . . . . . . . . . . . . . . . . . . . . 12.6.3 Constructions of (t, m, s)-nets . . . . . . . . . . . . . . . . . . . 12.6.4 (t, s)-sequences and (T, s)-sequences . . . . . . . . . . . . . . . . 12.6.5 Digital (t, s)-sequences and digital (T, s)-sequences . . . . . . . . 12.6.6 Constructions of (t, s)-sequences and (T, s)-sequences . . . . . . 12.7 Zeta functions and L-functions Lei Fu . . . . . . . . . . . . . . . . . . . 12.7.1 Zeta functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.7.2 L-functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.7.3 The case of curves . . . . . . . . . . . . . . . . . . . . . . . . . 12.8 P-adic estimates of zeta functions and L-functions R´egis Blache . . . . . . 12.8.1 Lower bounds for the first slope . . . . . . . . . . . . . . . . . . 12.8.2 Uniform lower bounds for Newton polygons . . . . . . . . . . . . 12.8.3 Variation of Newton polygons in a family . . . . . . . . . . . . . 12.8.4 The case of curves, and abelian varieties . . . . . . . . . . . . . . 12.9 Computing the number of rational points and zeta functions Daqing Wan 12.9.1 Point counting: sparse input . . . . . . . . . . . . . . . . . . . . 12.9.2 Point counting: dense input . . . . . . . . . . . . . . . . . . . . . 12.9.3 Computing zeta functions: general case . . . . . . . . . . . . . . 12.9.4 Computing zeta functions: curve case . . . . . . . . . . . . . . .

13

Miscellaneous theoretical topics

. . . . . . . . . . . . . . . . . . . . . .

334 334 336 338 341 342 343 344 347 348 350 350 352 352 353 355 357 358 359 360 361 361 362 363 365 366 368 368 370 373 373 374 376 378 380 381 384 384 388 391 394 395 396 398 400 403 403 404 405 406 407

13.1 Relations between integers and polynomials over finite fields Gove Effinger 13.1.1 The density of primes . . . . . . . . . . . . . . . . . . . . . . . . 13.1.2 Primes in arithmetic progression . . . . . . . . . . . . . . . . . . 13.1.3 Twin primes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.1.4 The generalized Riemann hypothesis . . . . . . . . . . . . . . . . 13.1.5 The Goldbach problem . . . . . . . . . . . . . . . . . . . . . . . 13.1.6 The Waring problem . . . . . . . . . . . . . . . . . . . . . . . . 13.2 Matrices over finite fields Dieter Jungnickel . . . . . . . . . . . . . . . . . 13.2.1 Matrices of specified rank . . . . . . . . . . . . . . . . . . . . . . 13.2.2 Matrices of specified order . . . . . . . . . . . . . . . . . . . . . 13.2.3 Matrix representations of finite fields . . . . . . . . . . . . . . . . 13.2.4 Circulant and orthogonal matrices . . . . . . . . . . . . . . . . . 13.2.5 Symmetric and skew-symmetric matrices . . . . . . . . . . . . . 13.2.6 Hankel and Toeplitz matrices . . . . . . . . . . . . . . . . . . . . 13.2.7 Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.3 Linear algebra over finite fields Jean-Guillaume Dumas and Cl´ement Pernet 13.3.1 Dense matrix multiplication . . . . . . . . . . . . . . . . . . . . 13.3.1.1 Tiny finite fields . . . . . . . . . . . . . . . . . . . . . 13.3.1.2 Word size prime fields . . . . . . . . . . . . . . . . . . 13.3.1.3 Large finite fields . . . . . . . . . . . . . . . . . . . . 13.3.1.4 Large matrices: subcubic time complexity . . . . . . . 13.3.2 Dense Gaussian elimination and echelon forms . . . . . . . . . . 13.3.2.1 Building blocks . . . . . . . . . . . . . . . . . . . . . 13.3.2.2 PLE decomposition . . . . . . . . . . . . . . . . . . . 13.3.2.3 Echelon forms . . . . . . . . . . . . . . . . . . . . . . 13.3.3 Minimal and characteristic polynomial of a dense matrix . . . . . 13.3.4 Blackbox iterative methods . . . . . . . . . . . . . . . . . . . . . 13.3.4.1 Minimal Polynomial and the Wiedemann algorithm . . 13.3.4.2 Rank, Determinant and Characteristic Polynomial . . . 13.3.4.3 System solving and the Lanczos algorithm . . . . . . . 13.3.5 Sparse and structured methods . . . . . . . . . . . . . . . . . . . 13.3.5.1 Reordering . . . . . . . . . . . . . . . . . . . . . . . . 13.3.5.2 Structured matrices and displacement rank . . . . . . 13.3.6 Hybrid methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.3.6.1 Hybrid sparse-dense methods . . . . . . . . . . . . . . 13.3.6.2 Block-iterative methods . . . . . . . . . . . . . . . . . 13.4 Classical groups over finite fields Zhe-Xian Wan . . . . . . . . . . . . . . 13.4.1 Linear groups over finite fields . . . . . . . . . . . . . . . . . . . 13.4.2 Symplectic groups over finite fields . . . . . . . . . . . . . . . . . 13.4.3 Unitary groups over finite fields . . . . . . . . . . . . . . . . . . 13.4.4 Orthogonal groups over finite fields of characteristic not two . . . 13.4.5 Orthogonal groups over finite fields of characteristic two . . . . . 13.5 Carlitz and Drinfeld modules David Goss . . . . . . . . . . . . . . . . . . 13.5.1 Quick review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.5.2 Drinfeld modules: definition and analytic Theory . . . . . . . . . 13.5.3 Drinfeld modules over finite fields . . . . . . . . . . . . . . . . . 13.5.4 The reduction theory of Drinfeld modules . . . . . . . . . . . . . 13.5.5 The A-module of rational points . . . . . . . . . . . . . . . . . . 13.5.6 The invariants of a Drinfeld module . . . . . . . . . . . . . . . . 13.5.7 The L-series of a Drinfeld module . . . . . . . . . . . . . . . . . 13.5.8 Special values . . . . . . . . . . . . . . . . . . . . . . . . . . . .

407 408 409 409 410 411 412 415 415 416 417 418 421 422 423 425 425 425 427 427 428 428 428 429 430 431 432 432 432 433 433 433 434 435 435 435 437 437 439 441 443 446 448 448 449 451 451 452 452 453 454

13.5.9 13.5.10 13.5.11 13.5.12

Part III: 14

Measures and symmetries . . Multizeta . . . . . . . . . . Modular theory . . . . . . . Transcendency results . . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

455 456 456 458

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

461 462 463 463 464 465 466 467 468 468 468 469 470 471 473 474 476 476 477 477 479 480 482 483 484 485 487 487 489 491 494 496 496 498 500 502 502 502 505 507 508 509 510

Applications

Combinatorial

14.1 Latin squares Gary L. Mullen . . . . . . . . . . . . . . . . . . . . . . 14.1.1 Prime powers . . . . . . . . . . . . . . . . . . . . . . . . . . 14.1.2 Non-prime powers . . . . . . . . . . . . . . . . . . . . . . . . 14.1.3 Frequency squares . . . . . . . . . . . . . . . . . . . . . . . . 14.1.4 Hypercubes . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.1.5 Connections to affine and projective planes . . . . . . . . . . 14.1.6 Other finite field constructions for MOLS . . . . . . . . . . . 14.2 Lacunary polynomials over finite fields Simeon Ball and Aart Blokhuis 14.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.2.2 Lacunary polynomials . . . . . . . . . . . . . . . . . . . . . . 14.2.3 Directions and the R´edei polynomial . . . . . . . . . . . . . . 14.2.4 Sets of points determining few directions . . . . . . . . . . . . 14.2.5 Lacunary polynomials and blocking sets . . . . . . . . . . . . 14.2.6 Lacunary polynomials and blocking sets in planes of prime order 14.2.7 Lacunary polynomials and multiple blocking sets . . . . . . . 14.3 Affine and projective planes Gary Ebert and Leo Storme . . . . . . . 14.3.1 Projective planes . . . . . . . . . . . . . . . . . . . . . . . . 14.3.2 Affine planes . . . . . . . . . . . . . . . . . . . . . . . . . . 14.3.3 Translation planes and spreads . . . . . . . . . . . . . . . . . 14.3.4 Nest planes . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.3.5 Flag-transitive affine planes . . . . . . . . . . . . . . . . . . . 14.3.6 Subplanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.3.7 Embedded unitals . . . . . . . . . . . . . . . . . . . . . . . . 14.3.8 Maximal arcs . . . . . . . . . . . . . . . . . . . . . . . . . . 14.3.9 Other results . . . . . . . . . . . . . . . . . . . . . . . . . . 14.4 Projective spaces James W.P. Hirschfeld and Joseph A. Thas . . . . . 14.4.1 Projective and affine spaces . . . . . . . . . . . . . . . . . . . 14.4.2 Collineations, correlations and coordinate frames . . . . . . . 14.4.3 Polarities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.4.4 Partitions and cyclic projectivities . . . . . . . . . . . . . . . 14.4.5 k -Arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The three problems of Segre . . . . . . . . . . . . . . . . . . . . . . . . . 14.4.6 k -Arcs and linear MDS codes . . . . . . . . . . . . . . . . . . 14.4.7 k -Caps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.5 Block designs Charles J. Colbourn and Jeffrey H. Dinitz . . . . . . . . 14.5.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.5.2 Triple systems . . . . . . . . . . . . . . . . . . . . . . . . . . 14.5.3 Difference families and balanced incomplete block designs . . 14.5.4 Nested designs . . . . . . . . . . . . . . . . . . . . . . . . . 14.5.5 Pairwise balanced designs . . . . . . . . . . . . . . . . . . . . 14.5.6 Group divisible designs . . . . . . . . . . . . . . . . . . . . . 14.5.7 t-designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

14.6

14.7

14.8

14.9

15

14.5.8 Packing and covering . . . . . . . . . . . . . . . . . . . . . . . . 14.5.9 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Difference sets Alexander Pott . . . . . . . . . . . . . . . . . . . . . . . . 14.6.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.6.2 Difference sets in cyclic groups . . . . . . . . . . . . . . . . . . . 14.6.3 Difference sets in the additive groups of finite fields . . . . . . . . 14.6.4 Difference sets and Hadamard matrices . . . . . . . . . . . . . . 14.6.5 Further families . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.6.6 Difference sets and character sums . . . . . . . . . . . . . . . . . 14.6.7 Multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Applications and divisibility of polynomials Brett Stevens . . . . . . . . . 14.7.1 Weights of multiples of polynomials . . . . . . . . . . . . . . . . 14.7.1.1 Applications . . . . . . . . . . . . . . . . . . . . . . . 14.7.1.2 Weights of multiples of polynomials . . . . . . . . . . 14.7.2 Card Tricks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ramanujan and Expander Graphs M. Ram Murty and Sebastian M. Cioab˘ a 14.8.1 Graphs, Adjacency Matrices and Eigenvalues . . . . . . . . . . . 14.8.2 Cayley Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.8.3 Ramanujan Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 14.8.4 Expander Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 14.8.5 Explicit Constructions of Ramanujan Graphs . . . . . . . . . . . 14.8.6 Combinatorial Constructions of Expanders . . . . . . . . . . . . 14.8.7 The Ihara Zeta Function . . . . . . . . . . . . . . . . . . . . . . Other combinatorial structures Jeffrey H. Dinitz and Charles J. Colbourn 14.9.1 Association Schemes . . . . . . . . . . . . . . . . . . . . . . . . 14.9.2 Costas Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.9.3 Conference Matrices . . . . . . . . . . . . . . . . . . . . . . . . 14.9.4 Covering Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.9.5 Hall Triple Systems . . . . . . . . . . . . . . . . . . . . . . . . . 14.9.6 Ordered Designs and Perpendicular Arrays . . . . . . . . . . . . 14.9.7 Perfect Hash Families . . . . . . . . . . . . . . . . . . . . . . . . 14.9.8 Room Squares and Starters . . . . . . . . . . . . . . . . . . . . . 14.9.9 Strongly Regular Graphs . . . . . . . . . . . . . . . . . . . . . . 14.9.10 Whist Tournaments . . . . . . . . . . . . . . . . . . . . . . . . . 14.9.11 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Algebraic coding theory

. . . . . . . . . . . . . . . . . . . . . . . . Huffman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15.1 Basic coding properties and bounds Ian Blake and W. Cary 15.1.1 Channel models and error correction . . . . . . . . 15.1.2 Linear codes . . . . . . . . . . . . . . . . . . . . . 15.1.2.1 Standard array decoding of linear codes 15.1.2.2 Hamming codes . . . . . . . . . . . . . 15.1.2.3 Reed-Muller codes . . . . . . . . . . . . 15.1.2.4 Subfield and trace codes . . . . . . . . . 15.1.2.5 Modifying linear codes . . . . . . . . . 15.1.2.6 Bounds on codes . . . . . . . . . . . . . 15.1.2.7 Asymptotic bounds . . . . . . . . . . . 15.1.3 Cyclic codes . . . . . . . . . . . . . . . . . . . . . 15.1.3.1 Algebraic prerequisites . . . . . . . . . 15.1.3.2 Properties of cyclic codes . . . . . . . . 15.1.3.3 Classes of cyclic codes . . . . . . . . . . 15.1.4 A spectral approach to coding . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

510 510 512 512 514 516 517 517 518 519 520 520 520 521 530 532 532 534 537 539 540 542 545 546 546 546 547 548 549 551 552 553 556 556 558 559 559 559 561 565 566 567 568 569 570 573 574 575 576 577 589

15.2

15.3 15.4

15.5 15.6

16

15.1.5 Codes and combinatorics . . . . . . . . . . . . . . . . . . . . . . 15.1.6 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.1.6.1 Decoding BCH codes . . . . . . . . . . . . . . . . . . 15.1.6.2 The Peterson-Gorenstein-Zierler decoder . . . . . . . . 15.1.6.3 Berlekamp-Massey decoding . . . . . . . . . . . . . . 15.1.6.4 Extended Euclidean algorithm decoding . . . . . . . . 15.1.6.5 Welch-Berlekamp decoding of GRS codes . . . . . . . 15.1.6.6 Majority logic decoding . . . . . . . . . . . . . . . . . 15.1.6.7 Generalized minimum distance decoding . . . . . . . . 15.1.6.8 List decoding - decoding beyond the minimum distance bound . . . . . . . . . . . . . . . . . . . . . . . . . . 15.1.7 Codes over Z4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.1.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Algebraic-geometry codes Harald Niederreiter . . . . . . . . . . . . . . . 15.2.1 Classical algebraic-geometry codes . . . . . . . . . . . . . . . . . 15.2.2 Generalized algebraic-geometry codes . . . . . . . . . . . . . . . 15.2.3 Function-field codes . . . . . . . . . . . . . . . . . . . . . . . . . 15.2.4 Asymptotic bounds . . . . . . . . . . . . . . . . . . . . . . . . . LDPC codes over finite fields Oscar Takeshita . . . . . . . . . . . . . . . Turbo codes over finite fields Oscar Takeshita . . . . . . . . . . . . . . . 15.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.4.1.1 Historical background . . . . . . . . . . . . . . . . . . 15.4.1.2 Terminology . . . . . . . . . . . . . . . . . . . . . . . 15.4.2 Convolutional codes . . . . . . . . . . . . . . . . . . . . . . . . . 15.4.2.1 Non-recursive convolutional codes . . . . . . . . . . . 15.4.2.2 Distance properties of non-recursive convolutional codes 15.4.2.3 Recursive convolutional codes . . . . . . . . . . . . . . 15.4.2.4 Distance properties of recursive convolutional codes . . 15.4.3 Permutations and interleavers . . . . . . . . . . . . . . . . . . . 15.4.4 Encoding and decoding . . . . . . . . . . . . . . . . . . . . . . . 15.4.5 Design of turbo codes . . . . . . . . . . . . . . . . . . . . . . . . 15.4.5.1 Design of the recursive convolutional code . . . . . . . 15.4.5.2 Design of the interleaver . . . . . . . . . . . . . . . . Polar codes Simon Litsyn . . . . . . . . . . . . . . . . . . . . . . . . . . Quantum codes Harriet Pollatsek . . . . . . . . . . . . . . . . . . . . . .

Cryptography

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

16.1 Introduction Alfred Menezes . . . . . . . . . . . . 16.1.1 Goals of cryptography . . . . . . . . . . 16.1.2 Symmetric-key cryptography . . . . . . . 16.1.2.1 Stream ciphers . . . . . . . . . 16.1.2.2 Block ciphers . . . . . . . . . 16.1.3 Public-key cryptography . . . . . . . . . 16.1.3.1 RSA . . . . . . . . . . . . . . 16.1.3.2 Discrete logarithm cryptosystems 16.1.3.3 DSA . . . . . . . . . . . . . . 16.1.4 Pairing-based cryptography . . . . . . . . 16.1.5 Post-quantum cryptography . . . . . . . 16.2 Stream and block ciphers Guang Gong and Kishan 16.2.1 Basic Concepts of Stream Ciphers . . . . 16.2.2 (Alleged) RC4 Algorithm . . . . . . . . . 16.2.3 WG Stream Cipher . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chand . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gupta . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

590 591 591 592 593 594 594 595 596 597 599 601 603 603 605 608 610 613 614 614 614 614 615 616 618 618 619 620 620 621 622 622 623 624 625 625 625 626 626 627 628 628 629 630 631 633 635 635 637 638

16.2.4 Basic Structures of Block Ciphers . . . . . . . . . . . . . . . . . 16.2.5 RC6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2.6 AES (Advanced Encryption Standard) RIJNDAEL . . . . . . . . 16.3 Multivariate cryptographic systems Jintai Ding . . . . . . . . . . . . . . . 16.3.1 The Basics of Multivariate PKCs . . . . . . . . . . . . . . . . . . 16.3.1.1 The Standard (Bipolar) Construction of MPKCS . . . 16.3.1.2 Other Constructions . . . . . . . . . . . . . . . . . . . 16.3.1.3 Implicit Form MPKCs . . . . . . . . . . . . . . . . . . 16.3.1.4 Isomorphism of Polynomials . . . . . . . . . . . . . . 16.3.2 Main Constructions and Variations . . . . . . . . . . . . . . . . . 16.3.2.1 Historical Constructions . . . . . . . . . . . . . . . . . 16.3.2.2 Triangular Constructions . . . . . . . . . . . . . . . . 16.3.2.3 Big-Field Families: Matsumoto-Imai (C ∗ ) and HFE . . 16.3.2.4 Oil and Vinegar (Unbalanced and Balanced) and Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3.2.5 UOV as a Booster Stage . . . . . . . . . . . . . . . . 16.3.2.6 Plus-Minus Variations . . . . . . . . . . . . . . . . . . 16.3.2.7 Internally Perturbation . . . . . . . . . . . . . . . . . 16.3.2.8 Vinegar as an external perturbation and Projection . . 16.3.2.9 TTM and Related Schemes: “Lock” or Repeated Triangular . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3.2.10 Intermediate Fields: MFE and `IC . . . . . . . . . . . 16.3.2.11 Odd Characteristics . . . . . . . . . . . . . . . . . . . 16.3.2.12 Other constructions . . . . . . . . . . . . . . . . . . . 16.3.3 Standard Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3.3.1 Linearization Equations . . . . . . . . . . . . . . . . . 16.3.3.2 Critical Bilinear Relations . . . . . . . . . . . . . . . . 16.3.3.3 HOLEs (Higher-Order Linearization Equations) . . . . 16.3.3.4 Differential Attacks . . . . . . . . . . . . . . . . . . . 16.3.3.5 Attacking Internal Perturbations . . . . . . . . . . . . 16.3.3.6 The Skew Symmetric Transformation . . . . . . . . . . 16.3.3.7 The Multiplicative Symmetry . . . . . . . . . . . . . . 16.3.3.8 Rank Attacks . . . . . . . . . . . . . . . . . . . . . . 16.3.3.9 MinRank Attacks on Big-Field Schemes . . . . . . . . 16.3.3.10 Distilling Oil from Vinegar and Other Attacks on UOV 16.3.3.11 Reconciliation . . . . . . . . . . . . . . . . . . . . . . 16.3.3.12 Direct attack using polynomial Solvers . . . . . . . . . 16.3.4 The Future . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.4 Elliptic curve cryptographic systems Andreas Enge . . . . . . . . . . . . . 16.4.1 Cryptosystems based on elliptic curve discrete logarithms . . . . . 16.4.1.1 Key sizes . . . . . . . . . . . . . . . . . . . . . . . . . 16.4.1.2 Cryptographic primitives . . . . . . . . . . . . . . . . 16.4.1.3 Special curves . . . . . . . . . . . . . . . . . . . . . . 16.4.1.4 Random curves: point counting . . . . . . . . . . . . . 16.4.2 Pairing based cryptosystems . . . . . . . . . . . . . . . . . . . . 16.4.2.1 Cryptographic pairings . . . . . . . . . . . . . . . . . 16.4.2.2 Pairings and twists . . . . . . . . . . . . . . . . . . . 16.4.2.3 Explicit isomorphisms . . . . . . . . . . . . . . . . . . 16.4.2.4 Curve constructions . . . . . . . . . . . . . . . . . . . 16.4.2.5 Hashing into elliptic curves . . . . . . . . . . . . . . . 16.5 Hyperelliptic curve cryptographic systems Tanja Lange . . . . . . . . . .

642 643 644 648 649 649 650 650 651 651 651 652 653 654 655 656 656 657 657 658 658 658 659 659 659 659 660 660 661 661 662 662 662 663 663 664 666 666 666 666 667 669 670 670 673 674 674 678 680

16.6 Cryptosystems arising from abelian varieties Kumar Murty . . . . . . . . 16.7 Finite field arithmetic in hardware Anwar Hasan . . . . . . . . . . . . . .

17

Miscellaneous applications

. . . . . . . . . . . . . . . . . . . . . . . . . .

17.1 Finite Fields in Biology Franziska Hinkelmann and Reinhard Laubenbacher 17.1.1 Polynomial dynamical systems as framework for discrete models in systems biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.1.2 Polynomial dynamical systems . . . . . . . . . . . . . . . . . . . 17.1.3 Discrete model types and their translation into PDS . . . . . . . 17.1.3.1 Boolean network models . . . . . . . . . . . . . . . . 17.1.3.2 Logical models . . . . . . . . . . . . . . . . . . . . . . 17.1.3.3 Petri nets and agent-based models . . . . . . . . . . . 17.1.4 Reverse engineering and parameter estimation . . . . . . . . . . . 17.1.4.1 The minimal-sets algorithm . . . . . . . . . . . . . . . 17.1.4.2 Parameter estimation using the Gr¨ obner fan of an ideal 17.1.5 Software for biologists and computer algebra software . . . . . . . 17.1.6 Specific polynomial dynamical systems . . . . . . . . . . . . . . . 17.1.6.1 Nested canalyzing functions . . . . . . . . . . . . . . . 17.1.6.2 Parameter estimation resulting in nested canalyzing functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.1.6.3 Linear polynomial dynamical systems . . . . . . . . . 17.1.6.4 Conjunctive/disjunctive networks . . . . . . . . . . . . 17.2 Finite fields in quantum information theory Arne Winterhof . . . . . . . . 17.3 Finite fields in engineering Jonathan Jedwab and Kai-Uwe Schmidt . . . . 17.3.1 Binary sequences with small aperiodic autocorrelation . . . . . . 17.3.2 Sequence sets with small aperiodic auto- and crosscorrelation . . . 17.3.3 Binary Golay sequence pairs . . . . . . . . . . . . . . . . . . . . 17.3.4 Optical orthogonal codes . . . . . . . . . . . . . . . . . . . . . . 17.3.5 Sequences with small Hamming correlation . . . . . . . . . . . . 17.3.6 Rank distance codes . . . . . . . . . . . . . . . . . . . . . . . . 17.3.7 Space-time coding . . . . . . . . . . . . . . . . . . . . . . . . . . 17.3.8 Coding over networks . . . . . . . . . . . . . . . . . . . . . . . .

Index

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

681 682 683 683 683 684 685 685 687 688 689 689 689 689 690 690 692 692 692 693 694 694 695 695 696 698 699 699 701 823

Actual appearance, pages 290–302

Special functions over finite fields

9.7

243

Schur’s conjecture and exceptional covers

.

Michael D. Fried,

9.7.1

University of California Irvine

Rational function definitions

9.7.1 Remark (Extend values) The historical functions of this section are polynomials and rational

functions: f (x) = Nf (x)/Df (x) with Nf and Df relatively prime (nonzero) polynomials, denoted f ∈ F (x), F a field (almost always Fq or a number field). The subject takes off by including functions f – covers – where the domain and range are varieties of the same dimension. Still, we emphasize functions between projective algebraic curves (nonsingular), often where the target and domain are projective 1-space. 9.7.2 Definition The degree of f ∈ F (x), deg(f ), is the maximum of deg(Nf ) and deg(Df ).

Add a point at ∞ to F , F ∪ {∞} = P1x (F ), to get the F points of projective 1-space. 9.7.3 Remark (Plug in ∞) Using Definition 9.7.2 requires plugging in and getting out ∞. We

sometimes use the notion of value sets Vf and their cardinality #Vf (Section 8.3). 1. The value of f (x0 ) for x0 ∈ F is ∞ if x0 is a zero of Df (x). 2. The value of f (∞) is respectively ∞, 0, or the ratio of the Nf and Df leading coefficients, if the degree of Nf is greater, less than, or equal to the degree of Df . If z is a variable indicating the range, this gives f as a function from P1x (F ) to P1z (F ). We abbreviate this as f : P1x → P1z . 9.7.4 Definition (M¨ obius equivalence) Denote the group – under composition – of

M¨ obius transformations x 7→ ax+b with ad − bc = 6 0, a, b, c, d ∈ F by PGL(F ). Refer to cx+d f1 , f2 ∈ F (x) as M¨ obius equivalent if f2 = α ◦ f1 ◦ β for α, β ∈ PGL(F ).

9.7.5 Example If f (x) = xn , with gcd(n, q − 1) = 1, then #Vf = q k + 1 on P1x (Fqk ) exactly for

those infinitely many k with gcd(n, q k − 1) = 1.

9.7.6 Remark Initial motivation came from Schur’s Conjecture Thm. 9.7.32, which starts over a

number field K – a finite extension of Q, the rational numbers – with its ring of integers OK . That asks about Vf over residue class fields, OK /pp of prime ideals p , denoting this Vf (O/pp) (Vf (Fp ) if O = Z). Assume Nf and Df have coefficients in OK . Avoid p – it is a bad prime – if it contains the leading coefficient of either Nf or Df . 9.7.7 Definition For f ∈ F (x), if f = f1 ◦ f2 with f1 , f2 ∈ F (x), deg(fi ) > 1, i = 1, 2, we say f

decomposes over F . Then, the fi s are composition factors of f . 9.7.8 Definition (Cofinite) For B a subset of A, we say B is cofinite in A if A \ B is finite. 9.7.9 Proposition [1638, p. 390] Consider Xh0 = {(x, y) | h(x, y) = 0}, an algebraic curve, defined

by h ∈ K[x, y]. Then, there is a unique nonsingular curve Xh – the normalization of Xh0 – and a morphism µh : Xh0 → Xh that is an isomorphism on the complement of a finite subset of points in Xh . Indeed, every variety Xh0 has such a unique normalization, but in higher dimensions it may be singular, and µh is an isomorphism off a codimension 1 set.

244

Handbook of Finite Fields

9.7.10 Definition (Components) A definition field for an algebraic set W is a field containing all

coefficients of all polynomials defining W . Components of W over F are algebraic subsets which are not the union of two closed non-empty proper algebraic subsets over F [1054, p. 3]. We say W is a variety if it has just one component. It is absolutely irreducible if it has just one component over F¯ , an algebraic closure of F. 9.7.11 Remark (Points on varieties) [1054, Chapters 1 and 2] and [1638, §2] introduce affine and

projective algebraic sets, and their components (Definition 9.7.10), except they are over an algebraically closed field. For perfect fields F (including finite fields and number fields) this extends for normal varieties. Since their components do not meet, taking any disjoint union of distinct varieties under the action of the absolute Galois group of F defines components in general. Points on an algebraic set X over F refers here to geometric points: points with coordinates in F¯ . It is an F point if its coordinates are in F . 9.7.12 Definition A general f : X → Z is a cover means it is a finite, flat morphism (see Definition

9.7.25) of quasi-projective varieties [1638, p. 432, Proposition 2]. 9.7.13 Lemma Definition 9.7.12 simplifies for curves, because all our varieties will be normal, and

so for curves, nonsingular. Then, any nonconstant morphism is a cover: That includes any nonconstant rational function f : P1x → P1z . 9.7.14 Example If f : X → Z is finite and X and Z are nonsingular, generalizing what happens

for curves, and no matter their dimension, then f is automatically flat [1054, p. 266, 9.3a)]. This doesn’t extend to weakening nonsingular to normal varieties. [1638, p. 434] has a finite morphism, where X is nonsingular (it is affine 2-space), and Z is normal. But, the fiber degree is 2 over each z ∈ Z, excluding one point where it is 3. 9.7.15 Remark (Assuming normality) Starting with §9.7.2 all results assume that the algebraic

sets are normal. Some constructions (especially Def. 9.7.45) momentarily produce nonnormal sets, that we immediately replace with their normalizations.

9.7.2

MacCluer’s Theorem and Schur’s Conjecture

9.7.16 Definition An f ∈ Fq (x) is exceptional if it maps one-one on P1 (Fqk ) for infinitely many

k. Similarly, with K a number field, f ∈ K(x) is exceptional if it is exceptional mod p for infinitely many primes p . 9.7.17 Remark We use K, allowing decoration, for a number field. §8.3 refers to the splitting field,

Ωf (resp. Ωf F¯ ), of f (x) − z over F (z) (resp. over F¯ (z)). The automorphism group of the extension Ωf /F (z) (resp. Ωf,F¯ /F¯ (z)) is the arithmetic (resp. geometric) monodromy group A (resp. G) of a separable function (Definition 9.7.25) f ∈ F (x). When there are several functions, we denote these Af and Gf . They act on the zeros, {x1 , . . . , xn } (often denoted {1, . . . , n}), of f (x) − z, giving a natural permutation representation on n symbols. 9.7.18 Definition Every cover f : X → Z over a field F with X irreducible has an associated

extension of function fields that determines the cover up to birational morphisms (see Lemma 9.7.43). 9.7.19 Remark Essentially all the Galois theory of fields translates to useful statements about a

cover f : X → Z (over F ) of an irreducible variety Z. It does this by corresponding to f the

Special functions over finite fields

245

composite of the function field extensions F (X 0 )/F (Z) where X 0 runs over the components of X [1638, p. 396]. Several papers in our references (say, [842, §0.C]) give oft-used examples, with Lemma 9.7.20 a simple archetype. 9.7.20 Lemma (See Remark 9.7.21) Any separable cover f : X → Y over F has a Galois closure

ˆ → Z over F . Then, Af is the group of fˆ with its natural permutation reprecover fˆ : X sentation TAf (of degree the degree of f ). Do this over F¯ to get the geometric monodromy Gf . Then, X is irreducible (resp. absolutely irreducible) if and only if TAf (resp. TGf ) is transitive. For f a rational function it is automatic that TGf (and so TAf ) is transitive. 9.7.21 Remark [846, §2.1] explains how to form the Galois closure cover of a cover using fiber

products (see Remark 9.7.54). This shows how to form the Galois closure cover of any collection of covers as in Lemma 9.7.50. 9.7.22 Remark Normalization gives a nearly invertible process to Remark 9.7.19: going from field

extensions of F (Z) to covers of Z. While this doesn’t translate all arithmetic cover problems to Galois theory, we apply the phrase “monodromy precision” (Remark 9.7.26) to when it does. Example: It does in the topic of exceptional covers, as in Proposition 9.7.28. 9.7.23 Definition Denote the elements of a group G, under a representation TG , that fix 1 by G(1).

When TG is transitive, refer to TG as primitive (resp. doubly transitive) if there is no group properly between G(1) and G (resp. G(1) is transitive on {2, . . . , n}). 9.7.24 Theorem [840, Theorem 1]: An f ∈ Fq (x) is exceptional if and only if the following holds

for each orbit O of Af (1) on {2, . . . , n}: O breaks into strictly smaller orbits under Gf (1).

(9.23)

(y) Denote the projective normalization of {(x, y) | f (x)−f = 0} by Xf,f \ ∆. Also equivalent x−y to (9.23): Each Fq component of Xf,f \ ∆ has at least 2 components over F¯q . Similarly, an f ∈ K(x), K a number field, is exceptional if and only if (9.23) holds for f mod p for infinitely many primes p .

9.7.25 Definition (Covers) Let f ∈ Fq (x) be nonconstant and separable: not g(xp ) for some

g ∈ Fq (x). Then, f : P1x (F¯q ) → P1z (F¯q ) by x 7→ f (x) has these cover properties.

1. Excluding a finite set {z1 , . . . , zr } ⊂ P1z (F¯q ), branch points of f , there are exactly n = deg(f ) points over z 0 . 2. For z 0 a branch point, counting zeros, x0 of f (x) − z 0 with multiplicity, the sum at all x0 s over z 0 is still n. An x0 ∈ P1x with multiplicity > 1 is a ramified point. For K a number field, the same properties hold, without any separable condition. 9.7.26 Remark (MacCluer’s Theorem) Theorem 9.7.24 has a surprise: (9.23) implies exceptionality

over Fq . An error term in applying Chebotarev’s density theorem with branch points (as in §8.3, in §8.3.3) vanishes. A ramified point with p not dividing its multiplicity is tame. Macluer’s thesis [1472] responded to a Davenport-Lewis conjecture [577] by showing Theorem 9.7.24 for a polynomial tame at every point. We say: MacCluer’s Theorem shows tame polynomial exceptional covers exhibit monodromy precision [847, §3.2.1]. Proposition 9.7.28 shows monodromy precision holds for general exceptional covers. 9.7.27 Example A polynomial f over Fq for which p| deg(f ) is not tame at ∞. 9.7.28 Proposition [840] combined with [846, Principle 3.1]: Let f : X → Z be any cover (Defi-

nition 9.7.12) over Fq with X absolutely irreducible. Then [846, Corollary 2.5]:

246

Handbook of Finite Fields

1. the extended meaning of (9.23) is that the 2-fold fiber product (§9.7.3) of f minus the diagonal has no absolutely irreducible Fq components; and 2. (9.23) is equivalent to f being exceptional: X(Fqk ) → Y (Fqk ) is one-one (and onto) for infinitely many k. 9.7.29 Remark As noted in [846, Comments on Principle 3.1], the proof of [840] applies without

change to give Proposition 9.7.28 Part 2 when X and Z are non-singular; indeed, it applies to pr-exceptionality (Definition 9.7.93). Without, however, this nonsingularity assumption, there are complications considered in [847, §A.4.1] (see Example 9.7.14). 9.7.30 Definition Let f in Proposition 9.7.28 over Fq be an exceptional cover. Denote values k

where (9.23) holds with Fqk replacing Fq , by Ef,q : the exceptionality set of f . Similarly, for f satisfying the hypotheses of Proposition 9.7.28 over a number field K, denote those primes p where f mod p has Ef,O/pp infinite, by Ef,K . 9.7.31 Definition The equation Tu (cos(θ)) = cos(uθ) defines the u-th Chebychev polynomial, Tu .

From it define a Chebychev conjugate: α ◦ Tu ◦ α−1 with α(x) = αz0 (x) = z 0 x and either z 0 = 1, or z 0 and −z 0 are conjugate in a quadratic extension of K. 9.7.32 Theorem (Schur’s Conjecture) [837, Theorem 2]: With K a number field, the f ∈ O[x]

for which Ef,K is infinite are compositions with maps a 7→ ax + b (affine) over K with polynomials of the following form for some odd prime u: xu (cyclic) or, α ◦ Tu ◦ α−1 , u > 3, a Chebychev conjugate.

(9.24)

9.7.33 Remark Many still refer to Theorem 9.7.32 as Schur’s Conjecture, though Schur conjectured

it only over Q. [837] refers to all Chebychev conjugates as Chebychev polynomials, rather than Dickson as in Remark 9.7.34. [1441] assiduously distinguishes Dickson polynomials. Here is a simple branch point Chebychev Conjugate characterization: f has two finite ¯ which identify with the unique unramified points (in (6= ∞) branch points, ±z 0 ∈ P1z (Q), 1 ¯ Px (Q)) over the branch points, as in [837, Proof of Lemma 9]. 1. A corollary of [853, Theorem 3.5] is that any cover with a unique totally and tamely ramified point decomposes over F if and only if it decomposes over F¯ . This applies if f ∈ F [x] has deg(f ) prime to the characteristic of F . 2. If f from Part 1 is indecomposable, then Gf is primitive (see Definition 9.7.23) and it contains an n-cycle. 3. If f ∈ K[x] is exceptional, since (9.23) says Gf cannot be doubly transitive, up to composing with K affine maps, f from Part 2 is in (9.24). 9.7.34 Remark (Dickson doppelgangers, see §9.6) Each Chebychev conjugate is a constant times

a Dickson polynomial [846, Proposition 5.3]. The Remark 9.7.33 characterization – by locating their branch points – avoids using equations. That is the distinction at the last step between the proof of Theorem 9.7.32 and [1441, Chapter 6]. 9.7.35 Remark Use the notation in Theorem 9.7.32. Suppose f ∈ OK [x] is an exceptional poly-

nomial. Define nf,c (resp. nf,C ) to be the product of distinct primes s for which f has a degree s cyclic (resp. Chebychev conjugate) composition factor. The referee of [1507] noted Corollary 9.7.36 follows from 9.7.28 combined with 9.7.32. 9.7.36 Corollary For f ∈ OK [x] an exceptional polynomial, one can determine Ef,K (excluding

bad primes, Remark 9.7.6) from nc,f and nf,C by congruences. When OK = Z, then p ∈ Ef,Q if and only if gcd(p − 1, s) = 1 for each s|nf,c and gcd(p2 − 1, s) = 1 for each s|nf,C .

Special functions over finite fields

247

9.7.37 Example (Infinite Ef,Q ) It is necessary that gcd(2, nc ) = 1 and gcd(6, nC ) = 1 for there

to be infinitely many p that satisfy the conclusion of Corollary 9.7.36. But it is sufficient, too. Without loss, assume gcd(nc , nC ) = 1. If 36 | nc , then Dirichlet’s Theorem on primes in arithmetic progressions gives an infinite set of p ≡ 3 mod nc nC . They are in Ef,Q . If 3|nc , the Chinese remainder theorem gives an arithmetic progression of p satisfying p ≡ 3 mod nC and p ≡ −1 mod nc . So, Ef,Q is infinite whenever it has a chance to be. 9.7.38 Remark Combine [841, Lemma 1] with monodromy precision in Proposition 9.7.39. This

shows, the Proposition 9.7.28 fiber product statement is equivalent to f ∈ K(x) being exceptional, and therefore permutation, mod p . If OK /pp is sufficiently large, the fiber product statement is also necessary for f to be permutation (well-known, for example [837, proof of Theorem 2, last paragraph]). 9.7.39 Proposition (Permutation functions) From Remark 9.7.38, for f ∈ Fq (x), those k where f

permutes P1 (Fqk ) contains Ef,Fq as a cofinite subset. Similarly, for K a number field, those p where f functionally permutes P1 (O/pp) contains Ef,K as a cofinite subset. 9.7.40 Remark §8.1 shows permutation polynomials are abundant. Exceptional polynomials sat-

isfy a much stronger property, but Corollary 9.7.36 shows they are abundant, too. One difference: §9.7.3 combines them in ways with no analog for permutation polynomials. 9.7.41 Corollary An analog of Theorem 9.7.32 holds over Fq to characterize exceptional polyno-

mials of degree prime to p ([848, Introduction to §5] or [846, Proposition 5.1]). There, z 0 in αz0 is either 1 or in the unique quadratic extension of Fq . Consider a Chebychev conjugate αz0 ◦ Tn ◦ αz−1 as a permutation polynomial on Fqk with gcd(q 2k − 1, n) = 1. Then, when 0 n · m ≡ 1 ( mod q 2k − 1), αz0 ◦ Tm ◦ αz−1 is its functional inverse. 0

9.7.3

Fiber product of covers

9.7.42 Definition For any field extension F1 /F2 containing Fp , there is the notion of being sep-

arable [849, p. 111]. For f ∈ Fq (x), the extension F¯q (x)/F¯q (f (x)) being separable is equivalent to f is separable (Definition 9.7.25). Many of our examples inherit separableness from this special case.

9.7.43 Lemma (Curve covering maps [1054, Chapter I, §6]) Any nonsingular projective algebraic

curve X over a perfect field F has a field of functions F (X) that uniquely determines X up to isomorphism over F . Each non-constant element f ∈ F (X) determines a finite map X → P1z over F [1054, Chapter I, Exercise 6.4]. If F (X)/F (f ) is separable, then f has the covering properties of (9.7.25): finite number of branch points, and uniform count of points in a fiber over F¯ (including multiplicity in the fiber) [1054, Chapter IV, Proposition 2.2]. 9.7.44 Definition Refer to any f in the conclusion of Lemma 9.7.43 as a nonsingular cover of P1z . 9.7.45 Definition (Fiber product) Let fi : Xi → P1z , i = 1, 2, be two nonsingular covers of P1z . The

set theoretic fiber product consists of the algebraic curve {(x1 , x2 ) ∈ X1 × X2 |f1 (x1 ) = f2 (x2 )}. Denote this X1 ×set P1z X2 . Its normalization (Proposition 9.7.9), X1 ×P1z X2 , is the fiber product of f1 and f2 .

248

Handbook of Finite Fields

9.7.46 Remark Definition 9.7.45 works equally for any covers Xi → Z, i = 1, 2, with Z a normal

projective variety. Then, X1 ×Z X2 is normal and projective (possibly with several components) with natural maps pri : X1 ×Z X2 → Xi , i = 1, 2, given by its projection on each factor. The functions fi ◦ pri , i = 1, 2 are identical, giving a well-defined map: (f1 , f2 ) : X1 ×Z X2 → Z.

(9.25)

9.7.47 Remark (Fiber equations) Consider x0 ∈ X1 ×Z X2 that is simultaneously over x0i ∈ Xi ,

i = 1, 2, where both x0i s ramify over pr1 (x01 ) = pr2 (x02 ). Then, f1 (x1 ) = f2 (x2 ), with xi in a neighborhood of x0i , is not a correct local description around x0 . There is another complication when Z is not a curve (dimension 1). The fiber product might be singular even when the Xi s are not. So (f1 , f2 ) in (9.25) may not be a cover because it is not flat (Remark 9.7.67).

9.7.48 Example Consider two polynomials, f1 , f2 ∈ K[x], of the same degree n. They define

fj : P1xj → P1z , j = 1, 2. Then, there are n points over z = ∞ on P1y1 ×P1z P1y2 , but only one point on the set theoretic fiber product over ∞. [839, Proposition 1] gives the generalization of this, showing – when the covers are tame – how to compute the genus of the fiber product components from the covers fj , j = 1, 2. 9.7.49 Definition The fiber product Xf,f = X ×Z X for a cover f : X → Z of degree exceeding 1

has at least two components. One is the diagonal : the set ∆(X) = {(x, x) | x ∈ X}. The normal variety X ×Z X \ ∆(X) generalizes the set in Theorem 9.7.24. 9.7.50 Lemma (Fiber product monodromy [846, §2.1.3]) Consider the covers in Definition (9.7.45).

To each fj there is an arithmetic (resp. geometric) monodromy group Afj (resp. Gfj ), j = 1, 2. Similarly, for (f1 , f2 ) in (9.25). Then, A(f1 ,f2 ) maps naturally, surjectively, to Afj by homomorphisms pr∗j , j = 1, 2. There is a largest simultaneous quotient, H, of both Afj s given by homomorphisms mi : Afj → H, j = 1, 2, so that A(f1 ,f2 ) = {(σ1 , σ2 ) ∈ Af1 × Af2 | m1 (σ1 ) = m2 (σ2 )}. Similarly with geometric replacing arithmetic monodromy. 9.7.51 Corollary (Components) With the hypotheses of Lem. 9.7.50, let {1j , . . . , nj }, be integers

on which Aj acts, j = 1, 2. Then, A(f1 ,f2 ) acts on the pairs (i1 , i2 ) and on each of the sets {1j , . . . , nj } separately. If X1 is absolutely irreducible, then the components of X1 ×Z X2 over F (resp. F¯ ) correspond to the orbits of A(f1 ,f2 ) (11 ) (resp. G(f1 ,f2 ) (11 ); see Definition 9.7.23) on {12 , . . . , n2 }. Note: The degrees n1 and n2 may be different. 9.7.52 Definition (Absolute components) Given X1 ×Z X2 in Corollary 9.7.51, denote the union of

its absolutely irreducible F components by X1 ×abs Z X2 . Denote the complementary cp set, X1 ×Z X2 \ X1 ×abs Z X2 , of components by X1 ×Z X2 . 9.7.53 Theorem (Explicit Ef,q – see Remark 9.7.54) Let f : X → Z (as in Proposition 9.7.28) be

an exceptional cover over Fq . For Xi0 , an Fq component of X ×cp Z X, denote the number of components in its breakup over F¯q by si , i = 1, . . . , u. With sexc = lcm(s1 , . . . , su ), Ef,q = {k mod sexc | gcd(k, si ) < si , i = 1, . . . , u}.

The group G(Fqsexc /Fq ) is naturally a quotient of Af /Gf . We can interpret all quantities using Af and Gf .

Special functions over finite fields

249

9.7.54 Remark All but the last sentence of Theorem 9.7.53 is [846, Corollary 2.8]. The last sentence

is from [846, Lemma 2.6], using that the Galois closure cover of f is a(ny) component (over Fq ) of the deg(f ) = n-fold fiber product of f with itself. Project that fiber product onto the 2-fold fiber product of f over Fq to finish. Corollary 9.7.51 shows the orbit lengths of Af (1) on {2, . . . , n} divided by the corresponding orbit lengths of Gf (1), give the si s. 9.7.55 Theorem (Explicit Ef,K – see Remark 9.7.56): Now change Fq to K (number field) in the

first sentence of Theorem 9.7.53. For each cyclic subgroup C ≤ Af /Gf denote those σ ∈ Af that map to C by AC . As previously, denote the stabilizers of 1 in the representation by AC (1) and GC (1). Consider this set, Cf,K , of cyclic C (as in (9.23)): {C | each orbit of AC (1) on {2, . . . , n} breaks into strictly smaller orbits under GC (1)}. Then, f is exceptional over K if and only if Cf,K is nonempty. Further, Ef,K consists of those primes p for which the Frobenius attached to p is a generator of some C ∈ Cf,K . 9.7.56 Remark Theorem 9.7.55 comes from applying [841, §2] exactly as in Remark 9.7.28. If Ef,K

is infinite, then X ×Z X \ ∆(X) has no absolutely irreducible component. The converse, however, does not hold.

9.7.4

Combining exceptional covers; the (Fq , Z) exceptional tower

9.7.57 Definition (Category of exceptional covers) For Z absolutely irreducible over Fq , denote

the collection of exceptional covers of Z over Fq by TZ,Fq . 9.7.58 Theorem [846, §4.1]: Given (fi , Xi ) ∈ TZ,Fq , i = 1, 2, X1 ×abs Z X2 (Definition 9.7.52) has

one component. We conclude that: (f1 ◦ pr1 , X1 ×abs Z X2 ) ∈ TZ,Fq . Also, there is at most one morphism between any two objects in TZ,Fq . 9.7.59 Remark (When f1 = f2 in Theorem 9.7.58) We definitely include the fiber product of

a cover in TZ,Fq with itself. Then, the only absolutely irreducible component of the fiber product is the diagonal (Definition 9.7.49), which is equivalent to the original cover. 9.7.60 Definition We call X1 ×abs Z X2 the fiber product of f1 and f2 in TZ,Fq , and continue to

denote its morphism to Z by (f1 , f2 ). This defines TZ,Fq as a category with fiber products. Theorem 9.7.53 shows Ef1 ,q ∩ Ef2 ,q = E(f1 ,f2 ),Fq is infinite. 9.7.61 Remark Consider (fi , Xi ) ∈ TZ,Fq , i = 1, 2, for which there exists ψ : X1 → X2 over Fq

that factors through f2 : f2 ◦ ψ = f1 . Then, Theorem 9.7.58 says ψ is unique. 9.7.62 Corollary For (f, X) ∈ TZ,Fq , denote the group of the Galois closure cover of f over X by

Af (1). Then, Af has the representation Tf by acting on cosets of Af (1). If (fi , Xi ) ∈ TZ,Fq , i = 1, 2, we write (f1 , X1 ) > (f2 , X2 ) if f1 factors through X2 . [846, Prop. 4.3] produces from these pairs a canonical group AZ,Fq with a profinite permutation representation TZ,Fq . 9.7.63 Remark (A projective limit) Given (fi , Xi ) ∈ TZ,Fq , i = 1, 2, there is a 3rd (f, X) ∈ TZ,Fq ,

given by the fiber product, that factors through both. This is the condition defining a projective sequence. So, AZ,Fq in Corollary 9.7.62 is a projective limit.

250

Handbook of Finite Fields

9.7.64 Definition (AZ,Fq , TZ,Fq ) is the (arithmetic) monodromy group, in its natural permutation

representation, of the Exceptional Tower TZ,Fq . 9.7.65 Theorem Let fi : Xi → Z, i = 1, 2, be exceptional covers over K: Efi ,K is infinite, i = 1, 2.

Then, X1 ×Z X2 is exceptional in the sense that X1 mod p ×abs Z mod p X2 mod p is exceptional for infinitely p if and only if Ef1 ,K ∩ Ef2 ,K is infinite. 9.7.66 Remark Theorem 9.7.65 forces considering if there is an infinite intersection of two excep-

tionality sets over K. As Theorem 9.7.53 shows, this is automatic over Fq . Example 9.7.37 shows it is not automatic over a number field. §9.7.5 and §9.7.6 have examples along these lines: If both fi s, i = 1, 2, are exceptional rational functions, then their composition is again exceptional over K if and only if Ef1 ,K ∩ Ef2 ,K is infinite. Beyond cyclic and Chebychev situations, it is very difficult to decide when this intersection is infinite. 9.7.67 Remark The same definition for exceptional works for any finite, surjective, map of normal

varieties over Fq . Such maps may not be flat (say, when Remark 9.7.14 doesn’t apply), so they may not be covers. Normalization of any projective variety is projective: Segre’s Embedding [1638, Thm. 4, p. 400]. For irreducible X, flatness says the multiplicity sum of points in the fiber over z is constant in z: the function field extension degree, [K(X) : K(Z)] [1638, Proposition 2, p. 432]. That is, Definition 9.7.25, Part 2, holds. For finite morphisms that characterizes flatness [1638, Corollary p. 432]. With normality, but not flatness, this may hold only outside a codimension 2 set in the target. [847, Appendix A.4] has a liesurely discussion. See Example 9.7.14.

9.7.5

Exceptional rational functions; Serre’s Open Image Theorem

9.7.68 Definition Definition 9.7.31 explains Chebychev conjugates. Consider lz 0 : x 7→

x−z 0 x+z 0 ,

mapping ±z 0 to 0, ∞, with a = (z 0 )2 ∈ K, z 0 ∈ 6 K. Then, for n odd, characterize Rn,a = (lz0 )−1 ◦ (lz0 (x))n , a cyclic conjugate, by these conditions: ±z 0 are its sole ramified points, Rn,a (±z 0 ) = ±z 0 and it maps ∞ 7→ ∞.

(9.26)

9.7.69 Remark According to [1441, Chapter 2, §5]), Rn,a in Definition 9.7.68 is a Redei function.

From [1441, Theorem 3.11]: Under the hypotheses on z 0 , the exceptionality set ERn,a ,K is {pp | (|OK /pp| − 1, n) = 1} {pp | (|OK /pp| + 1, n) = 1}

if z 0 is a quadratic residue if not.

mod p , and

9.7.70 Remark (Addendum Remark 9.7.69) Quadratic reciprocity determines nonempty arithmetic

progressions for which z 0 is a quadratic residue and those for which it is not. If z 0 in Definition 9.7.68 were in K, then – of course – the exceptional set is the same as for xn . Whether or not z 0 ∈ K, we refer to Rn,a as a cyclic conjugate. 9.7.71 Definition [846, §4.2] Suppose a collection C of covers from an exceptional tower TY,Fq is

closed under the categorical fiber product. We say C is a subtower. We also speak of the (minimal) subtower any collection generates under fiber product.

Special functions over finite fields

251

9.7.72 Remark [846, §4.3] uses that the fiber product of two unramified covers is unramified to cre-

ate cryptographic exceptional subtowers. [846, §5.2.3] computes the arithmetic monodromy attached to the Dickson subtower generated by all the exceptional Chebychev conjugates over Fq . The analog of Remark 9.7.69 over Fq gives a similar – Redei – subtower of TP1z ,Fq generated by exceptional cyclic conjugates. 9.7.73 Remark Theorem 9.7.65 requires common exceptional intersection (Remark 9.7.66) to form

fiber products in TZ,K , Z absolutely irreducible over a number field K. For fiber products (or composites) of Chebychev and cyclic conjugates, we easily decide if exceptional sets have infinite intersection. Exceptional rational functions from Serre’s O(pen) I(mage) T(heorem) give much harder versions of such problems. 9.7.74 Definition (j-line P1j ) A special copy of projective 1-space, the j-line, occurs in the study

¯ = A1 (Q) ¯ has an of modular curves (see Theorem 9.7.76). Each j ∈ P1j \ {∞}(Q) j attached isomorphism class of elliptic curves Ej . For each integer n > 0, consider a special case of a modular curve, µ0 (n) : X0 (n) → P1j , with its cover of P1j . Denote the points of X0 (n) not lying over j = ∞ by Y0 (n).

9.7.75 Definition For E an elliptic curve, denote by E → E/C an isogeny from quotienting E

by a (finite) torsion subgroup C of E. When C is a cyclic, generated by e0 ∈ E (resp. all torsion points killed by multiplication by n), write C = he0 i (resp. Cn ). 9.7.76 Theorem There are two approaches to giving “meaning” to each algebraic point y ∈ Y0 (n),

whose image in P1j is jy . 1. [1718, p. 108] or [843, p. 158]: y 7→ [Ejy → Ejy /he0y i] with e0y ∈ Ejy of order n where brackets, [ ] , indicate an isomorphism class of isogenies. ¯ 2. [843, Lemma 2.1]: y 7→ fy ∈ Q(x) (up to M¨obius equivalence) of degree n. 9.7.77 Theorem [843, Theorem 2.1]: Suppose f ∈ K(x) is exceptional and of prime degree u.

Then, f is M¨ obius equivalent over K to either: 1. a cyclic (Remark 9.7.70) or a Chebychev (Remark 9.7.34) conjugate; 2. or to some fy (u = n) in Theorem 9.7.76, Part 2. 9.7.78 Definition For a dense set of j 0 ∈ A1j , we say the corresponding Ej 0 is of CM -type if its ring

of isogenies, tensored by Q, has dimension 2 over Q. Such isogenies form a complex quadratic extension of Q (containing j 0 , which is an algebraic integer; [1904, II-28] or [1928, Chapter 2, §5.2]). Otherwise, j 0 is of GL2 -type. 9.7.79 Theorem [843, (2.10)]: Continue the notation of Theorem 9.7.77. Except for the two cases

where jy is one of the two finite branch points of µ0 (u), the geometric monodromy Gfy is the order 2u dihedral group Du , and fy has four branch points (Definition 9.7.25). For u in Theorem 9.7.77, Part 2, for which Ej 0 has good reduction, the coordinates of e0y generate a constant extension of K with group Afy /Gfy (explained in Theorem 9.7.85). 9.7.80 Theorem [843, §2.B]: For j 0 of CM-type, complex multiplication theory gives (an infinite)

Efy ,K . Computing this would use [1010, §6.3.1-§6.3.2]. 9.7.81 Remark (Addendum to Theorem 9.7.80) Using adelic (modular) arithmetic gives analogs

of Corollary 9.7.36; and Corollary 9.7.41 for explicitly finding the functional inverse of a CM-type reduced modulo a prime in the exceptional set Efy ,K . If K = Q(j 0 ), then Efy ,K depends on the congruence defining the Frobenius in the (cyclic of degree u−1 over K)

252

Handbook of Finite Fields

constant field. Only finitely many j 0 in Q have CM-type, corresponding to class number 1 for complex quadratic extensions. 9.7.82 Problem Take one of the CM-type j s in Q. Then, consider two allowed values of u, ui ,

i = 1, 2, denoting the corresponding fy s by fi , i = 1, 2. Test for explicitness in Remark 9.7.81 as to whether Ef1 ,Q ∩ Ef2 ,Q is infinite. 9.7.83 Definition (Composition factor definition field ) For f ∈ F (x) consider a minimal field

Ff (ind) over which f decomposes into composition factors indecomposable over F¯ . Similarly, denote the minimal field over which Xf,f \ ∆ in Theorem 9.7.24 breaks into absolutely irreducible components by Fˆf (2). 9.7.84 Proposition [846, Proposition 6.5]: If f : X → Z is a cover over F , then Ff (ind) ⊂ Fˆf (2). 9.7.85 Theorem See Remark 9.7.87: Assume j 0 ∈ A1j is of GL2 -type. For K = Q(j 0 ), consider

C = Cu in Definition 9.7.75 with u a prime. The corresponding fu ∈ K(x) has degree u2 . Use the monodromy groups of Definition 9.7.17. There is a constant M1,j 0 so that if u > M1,j 0 , then the arithmetic/geometric monodromy quotient Afu /Gfu is GL2 (Z/u)/{±1}. Further, fu decomposes into two degree u rational functions over Kf (ind), but it is indecomposable over K. 9.7.86 Theorem [846, Proposition 6.6]: Continue Theorem 9.7.85 hypotheses. For a second constant

M2,j 0 , and for any prime p of OK with |OK /pp| > M2,j 0 assume Ap ∈ GL2 (Z/u)/h±1i represents the conjugacy class of the Frobenius for p . Then, fu mod p is an exceptional indecomposable rational function, and it decomposes over the algebraic closure of OK /pp, precisely when hAp i acts irreducibly on (Z/p)2 = Vp . This holds for infinitely many primes p . In particular, fu is exceptional over K (Definition 9.7.30). 9.7.87 Remark (Using Serre’s OIT ) [1904] lays the groundwork for [1905]. The latter has the

¯ existence of the constant M1,j 0 . [1904, App. A.1, §3.2] proves it exists when j 0 ∈ A1j (Q) is not an algebraic integer. Then, the computation of Mi,j 0 , i = 1, 2, in Theorems 9.7.85 and 9.7.86 is effective. Even after all these years, there is no effective computation of these constants when j is not CM-type, but is an algebraic integer. [843, §2] gets Theorem 9.7.85 from the OIT using the relation between Parts 1 and 2 in Theorem 9.7.76. 9.7.88 Remark (More elementary, but less precise, Theorem 9.7.86) [843, Theorem 2.2] shows,

for every K and any prime u > 3, the j 0 ∈ K, with fu satisfying the exceptionality and decomposability conclusions of Theorem 9.7.86, are dense. Applying the [841, Theorem 3] (or [849, Theorem 12.7]) version of Hilbert’s Irreducibility Theorem to X0 (u) gives the corresponding M2,j 0 explicitly. 9.7.89 Example (M1,j 0 effectiveness?) [1904, App. A.1, §3.3] gives Ogg’s example [1717] with

j 0 ∈ Q. [846, §6.2.2] reviews this case, where M2,j 0 = 6, to show how to pick an Ap acting irreducibly as in Theorem 9.7.86 (for infinitely many p ), assuring that Efu ,Q is infinite for u > M2,j 0 . [846, §6.3.2] – still Ogg’s case – aims at finding an automorphic function, a la Langland’s Program, that would characterize the primes in Efu ,Q . This is akin to the unrelated examples of [1913], but uses results on automorphic functions in [1908, Theorem 22]. Primes of Efu ,Q do not lie in arithmetic progressions. So, Problem 9.7.90 is much harder than Problem 9.7.82. 9.7.90 Problem (Analog of Problem 9.7.82) For the Ogg curve in Example 9.7.89, consider two

allowed values of u, ui , i = 1, 2, denoting the corresponding fy s by fi , i = 1, 2. Test for explicitness in Remark 9.7.81 as to whether Ef1 ,Q ∩ Ef2 ,Q is infinite.

Special functions over finite fields

253

9.7.91 Remark [852] connects “variables separated factors” of Xf,f and composition factors of f .

[61] et. al. used this to effectively test for composition factors (and primitivity) of covers. 9.7.92 Theorem [1010, Chapter 3]: Excluding finitely many degrees, all indecomposable excep-

tional f ∈ K(x) (K a number field) are M¨obius equivalent to a cyclic or Chebychev conjugate, or to a CM function from Theorem 9.7.77 of prime degree; or they are from Theorem 9.7.86 and of prime degree squared.

9.7.6

Davenport pairs and Poincar´ e series

9.7.93 Definition [846, Definition 2.2] Consider f : X → Z, a cover of normal varieties over Fq ,

with Z absolutely irreducible, but X possibly reducible. Then f is pr-exceptional if it is surjective on Fqk points for infinitely many k. There is a similar definition extending Definition 9.7.30 over a number field, and for both a notation for exceptional sets. 9.7.94 Definition Use the value set notation of Remark 9.7.3. We say fi ∈ Fq (x), i = 1, 2, is a

Davenport pair over Fq if Vf1 (P1 (Fqk )) = Vf2 (P1 (Fqk )) for infinitely many k. So, take f2 (x) = x to see Davenport pairs generalize exceptional functions. The notion applies to any pair of covers fi : Xi → Z, i = 1, 2. For K a number field, this similarly generalizes Definition 9.7.30: f1 , f2 ∈ K(x) are a Davenport pair if they are a Davenport pair for infinitely many residue class fields. 9.7.95 Theorem [846, Corollary 3.6]: Monodromy precision (Definition 9.7.26) applies to pr-

exceptional covers and so to Davenport pairs. That is, generalizing Theorems 9.7.53 and 9.7.55, a precise monodromy statement generalizes MacCluer’s Theorem (Proposition 9.7.28) to pr-exceptional covers and to Davenport pairs. 9.7.96 Theorem [846, §3.1.2]: With the notation of Definition 9.7.93, a pr-exceptional cover over

Fq is exceptional if and only if X is absolutely irreducible. 9.7.97 Remark The proof of Schur’s Conjecture began the solution of Davenport’s problem for

polynomial pairs (f1 , f2 ) over a number field, the main result of [838]. [846, §3.2] shows the exceptional set characterization for Davenport pairs in general is given by the intersection of exceptionality sets for pr-exceptionality correspondences. A full description of many authors’ results that came from the solution of Davenport’s problem – especially the study of general zeta functions attached to diophantine problems – is in [847, §7.3]. 9.7.98 Remark (The Genus 0 Problem) Geometric monodromy groups of rational functions are

¯ severely limited. The mildest statement for f ∈ Q(x) is that excluding cyclic and alternating groups the composition factors of Gf fall among a finite set of simple groups. That is the original genus 0 problem. ¯ There is a large literature distinguishing between geometric monodromy of f ∈ Q(x) and those in F¯q (x), because of wild (not tame; Remark 9.7.26) ramification. The contrast starts from the [1631, §8.1.2, Guralnick’s Optimistic Conjecture] list of all primitive monodromy ¯ groups of indecomposable f ∈ Q[x]. 9.7.99 Example (Davenport pairs) A significant part of the exceptional primitive monodromy

groups (Remark 9.7.98), without cyclic or alternating group composition factors, came from the finitely many possible degrees of Davenport pairs f1 , f2 ∈ K[x] (polynomials) over number fields, with f1 indecomposable and Vf1 (OK /pp) = Vf2 (OK /pp). Important hints about what to expect for primitive monodromy groups of f ∈ F¯q (x) came also from Davenport pairs. [846, §3.3.3] (explicitly in [247]): Over every Fq , there are

254

Handbook of Finite Fields

infinitely many degrees of Davenport pairs, where (deg(f1 ), p) = 1, f1 is indecomposable, and Vf1 (Fqk ) = Vf2 (Fqk ) for all k. 9.7.100 Example [512, Theorem 14.1] described the geometric monodromy (PSL2 (pa ), p = 2, 3, a

odd) of the only possible exceptional polynomials over Fp whose degrees were neither prime to p or a power of p. Then, [848] produced these: the first exceptional polynomials over finite fields with nonsolvable monodromy. 9.7.101 Remark (Zeta functions attached to problems) [849, Chapter 25 and 26] details how Dav-

enport pairs led to attaching Poincar´e series – based on the Galois stratification procedure of [845] – to counting the values of parameters for any diophantine problem interpretable over all extensions of Fq , or for infinitely many primes p of K. w , x), g(w w , y) ∈ Fq [w w , x, y]. Denote the car9.7.102 Example Denote w1 , . . . , wu by w . Suppose f (w dinality of w 0 ∈ Au (Fqk ) with

w 0 , x))(P1 (Fqk )) = V (g(w w 0 , x))(P1 (Fqk )) V (f (w by Nf,g,k . Define Pf,g,Fq (t) to be the Poincar´e series

P∞

i=1

(9.27)

Nf,g,k tk .

w , x), g(w w , y) ∈ Z[w w , x, y]. 9.7.103 Example With notation over Z, as in Example 9.7.102, suppose f (w

Denote the cardinality of w 0 ∈ Au (Fpk ) with (9.27) holding over Fpk by Nf,g,Z/p,k . Define P∞ Pf,g,Z/p (t) to be i=1 Nf,g,Z/p,k tk .

9.7.104 Theorem [849, Chapter 25], [847, §7.3.3]: For any diophantine problem over Fq expressed

in a first order language, the attached Poincar´e series is a rational function. Further, there is an effective computation of the coefficients of its numerator and denominator based on expressing those coefficients in p-adic Dwork cohomology. 9.7.105 Theorem [Theorem 9.7.104 continued] Given a diophantine problem D over Z (or OK )

expressed in a first order language, there is an effective split of the primes of Q (or over K) into two sets: LD,1 and LD,2 , with LD,2 finite. Further, there is a set of varieties V1 , . . . , Vs over Z, from which we produce linear equations in variables Y1 , . . . , Ys0 that serve as the coefficients of the numerator and denominator of a rational function PD (t). To each (p, Yi ), p ∈ LD,1 there is a universal attachment of a p-adic Dwork cohomology group, H(p, Yi ), computed in the category of such Dwork cohomology attached to V1 , . . . , Vs . The corresponding Poincar´e series PD,p at p ∈ LD,1 comes by substituting H(p, Yi ) for each Y1 , . . . , Ys0 in PD (t). Then apply the Frobenius operator at p to these coefficients. 9.7.106 Remark [608]: In Theorem 9.7.105 it is possible to take V1 , . . . , Vs to be nonsingular projec-

tive varieties with Yi representing a Chow motive (over Q). Applying the Frobenius operator at p is meaningful as Chow motives are formed from ´etale cohomology groups of V1 , . . . , Vs . 9.7.107 Remark The effectiveness of Theorem 9.7.104 is based on Dwork cohomology [713], and the

explicit calculations of [256]. Theorem 9.7.105 and Remark 9.7.106 both rest on the Galois stratification procedure of [845] or [849, Chapter 24]. On the plus side, the uniform use of ´etale cohomology from characteristic 0 produces wonderful invariants – like, Euler characteristics – attached to diophantine problems. On the negative, all the effectiveness disappears. In particular, the relation between the sets denoted LD,1 in the two results is a mystery. 9.7.108 Remark Relating exceptional covers (and Davenport pairs) and other problems about al-

gebraic equations is a running theme in [846] and [847]. Detecting these relations comes from pr-exceptional correspondences [846, §3.2]. We catch the possible appearance of such correspondences when two Poincar´e series have infinitely many identical coefficients.

Special functions over finite fields

255

9.7.109 Example Example: An exceptional cover, X → P1z , over Q, will be a curve whose Poincar´e

series is the same as that of P1z at infinitely many primes. The systematic use of such characterizations combines monodromy precision (where it applies) and Theorem 9.7.110.

9.7.110 Theorem [847, Proposition 7.17], based on [775]: The zero support of the difference of two

Poincar´e series consists of the union of arithmetic progressions. See Also

§8.1 Discusses the large literature on permutation polynomials (as in Proposition 9.7.39). This contrasts with the use of a cover given by an exceptional polynomial, where one fixed polynomial works for infinitely many finite fields. §8.3 Section §8.3.3 mentions several explicit Chebotarev density theorem error terms. Such error terms have improved over time, but, like Proposition 9.7.28, this sections’ results exhibit monodromy precision: the error term vanishes. §9.6 Discusses Dickson polynomials in detail, including their various combinatorial formulas. This contrasts with the Remark 9.7.34 formula free characterization. References Cited: [61, 247, 256, 512, 577, 608, 713, 775, 837, 838, 839, 840, 841, 845, 842, 843, 846, 847, 848, 849, 853, 852, 845, 1010, 1054, 1441, 1472, 1507, 1631, 1638, 1717, 1718, 1904, 1905, 1908, 1913, 1928]

Bibliography [1] Groupes de monodromie en g´eom´etrie alg´ebrique. II. Lecture Notes in Mathematics, Vol. 340. Springer-Verlag, Berlin, 1973. S´eminaire de G´eom´etrie Alg´ebrique du Bois-Marie 1967–1969 (SGA 7 II), Dirig´e par P. Deligne et N. Katz. [122, 124, 127, 401, 402] [2] Th´eorie des topos et cohomologie ´etale des sch´emas. Tome 3. Lecture Notes in Mathematics, Vol. 305. Springer-Verlag, Berlin, 1973. S´eminaire de G´eom´etrie Alg´ebrique du Bois-Marie 1963–1964 (SGA 4), Dirig´e par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B. SaintDonat. [20, 385, 386, 392, 393] [3] Cohomologie l-adique et fonctions L. Lecture Notes in Mathematics, Vol. 589. Springer-Verlag, Berlin, 1977. S´eminaire de G´eometrie Alg´ebrique du BoisMarie 1965–1966 (SGA 5), Edit´e par Luc Illusie. [20, 385, 388, 393] [4] 1998. [635, 643, 644, 647] [5] M. Abd´ on and F. Torres. On maximal curves in characteristic two. Manuscripta Math., 99(1):39–53, 1999. [366, 367] [6] R. J. R. Abel. Some new BIBDs with block size 7. J. Combin. Des., 8(2):146–150, 2000. [509] [7] R. J. R. Abel and M. Buratti. Some progress on (v, 4, 1) difference families and optical orthogonal codes. J. Combin. Theory Ser. A, 106(1):59–75, 2004. [506] [8] R. J. R. Abel, N. J. Finizio, G. Ge, and M. Greig. New Z-cyclic triplewhist frames and triplewhist tournament designs. Discrete Appl. Math., 154:1649–1673, 2006. [558] [9] R. J. R. Abel and G. Ge. Some difference matrix constructions and an almost completion for the existence of triplewhist tournaments TWh(v). European J. Combin., 26(7):1094–1104, 2005. [557, 558] [10] F. Abu Salem, S. Gao, and A. G. B. Lauder. Factoring polynomials via polytopes. In ISSAC ’04: Proceedings of the 2004 International Symposium on Symbolic and Algebraic Computation, pages 4–11, New York, 2004. ACM Press. [308, 311] [11] F. K. Abu Salem. An efficient sparse adaptation of the polytope method over Fp and a record-high binary bivariate factorisation. J. Symbolic Comput., 43(5):311– 341, 2008. [307, 311] [12] W. W. Adams and P. Loustaunau. An introduction to Gr¨ obner bases. American Mathematical Society, Providence, RI, first edition, 1994. [55] [13] L. Adleman and H. W. Lenstra, Jr. Finding irreducible polynomials over finite fields. STOC ’86: Proceedings of the eighteenth annual ACM symposium on Theory of computing, Nov. 1986. [297, 298, 299] [14] L. M. Adleman, J. DeMarrais, and M.-D. Huang. A subexponential algorithm for discrete logarithms over the rational subgroup of the Jacobians of large genus hyperelliptic curves over finite fields. In Algorithmic number theory (Ithaca, NY, 1994), volume 877 of Lecture Notes in Comput. Sci., pages 28–40. Springer, Berlin, 1994. [360] [15] L. M. Adleman and M.-D. Huang. Counting points on curves and abelian varieties over finite fields. J. Symbolic Comput., 32(3):171–189, 2001. [404, 406]

Miscellaneous applications

703

[16] A. Adolphson and S. Sperber. On unit root formulas for toric exponential sums. Alg. Num. Th., to appear. [397] [17] A. Adolphson and S. Sperber. p-adic estimates for exponential sums and the theorem ´ of Chevalley-Warning. Ann. Sci. Ecole Norm. Sup. (4), 20(4):545–556, 1987. [157, 158, 395, 402] [18] A. Adolphson and S. Sperber. On the degree of the L-function associated with an exponential sum. Compositio Math., 68(2):125–159, 1988. [126, 388, 391, 393] [19] A. Adolphson and S. Sperber. Exponential sums and Newton polyhedra: cohomology and estimates. Ann. of Math. (2), 130(2):367–406, 1989. [122, 127, 154, 158, 391, 393, 397, 402] [20] A. Adolphson and S. Sperber. On twisted exponential sums. Math. Ann., 290(4):713–726, 1991. [397] [21] A. Adolphson and S. Sperber. Twisted exponential sums and Newton polyhedra. J. Reine Angew. Math., 443:151–177, 1993. [397] [22] A. Adolphson and S. Sperber. On the zeta function of a complete intersection. Ann. ´ Sci. Ecole Norm. Sup. (4), 29(3):287–328, 1996. [154, 158, 396] [23] A. Adolphson and S. Sperber. Exponential sums on An . III. Manuscripta Math., 102(4):429–446, 2000. [121, 127] [24] A. Adolphson and S. Sperber. On the zeta function of a projective complete intersection. Illinois J. Math., 52(2):389–417, 2008. [396] r [25] S. Agou. Factorisation sur un corps fini Fp n des polynˆomes compos´es f (X p − aX) lorsque f (X) est un polynˆ ome irr´eductible de Fp n(X). J. Number Theory, 9(2):229–239, 1977. [35] 2r

r

[26] S. Agou. Irr´eductibilit´e des polynˆomes f (X p − aX p − bX) sur un corps fini Fps . J. Number Theory, 10(1):64–69, 1978. [35] Pm ri [27] S. Agou. Irr´eductibilit´e des polynˆomes f ( i=0 ai X p ) sur un corps fini Fps . Canad. Math. Bull., 23(2):207–212, 1980. [35] [28] S. Ahmad. Cycle structure of automorphisms of finite cyclic groups. J. Combinatorial Theory, 6:370–374, 1969. [184, 185] [29] O. Ahmadi. Self-reciprocal irreducible pentanomials over F2 . Des. Codes Cryptogr., 38(3):395–397, 2006. [37, 38, 41] [30] O. Ahmadi. On the distribution of irreducible trinomials over F3 . Finite Fields Appl., 13(3):659–664, 2007. [38] [31] O. Ahmadi. The trace spectra of polynomial bases for F2n . Appl. Algebra Engrg. Comm. Comput., 18(4):391–396, 2007. [77, 79] [32] O. Ahmadi. Generalization of a theorem of carlitz. Finite Fields Appl., 2011. [28, 30] [33] O. Ahmadi and R. Granger. An efficient deterministic test for Kloosterman sum zeros. 2011. submitted. [111, 118] [34] O. Ahmadi, F. Luca, O. A., and S. I. E. On stable quadratic polynomials. Preprint, 2010. [288, 289] [35] O. Ahmadi and A. Menezes. On the number of trace-one elements in polynomial bases for F2n . Des. Codes Cryptogr., 37(3):493–507, 2005. [77, 79] [36] O. Ahmadi and A. Menezes. Irreducible polynomials of maximum weight. Util. Math., 72:111–123, 2007. [41] [37] O. Ahmadi and I. Shparlinski. Bilinear character sums and sum-product problems on elliptic curves. Proc. Edinb. Math. Soc. (2), 53(1):1–12, 2010. [130]

704

Handbook of Finite Fields

[38] O. Ahmadi, I. E. Shparlinski, and J. F. Voloch. Multiplicative order of gauss periods. Int. J. Number Theory, 6(4):877–882, 2010. [70] [39] O. Ahmadi and G. Vega. On the parity of the number of irreducible factors of selfreciprocal polynomials over finite fields. Finite Fields Appl., 14(1):124–131, 2008. [40] [40] W. Aitken. On value sets of polynomials over a finite field. Finite Fields Appl., 4(4):441–449, 1998. [191, 192] [41] M. Ajtai, H. Iwaniec, J. Koml´ os, J. Pintz, and E. Szemer´edi. Construction of a thin set with small Fourier coefficients. Bull. London Math. Soc., 22(6):583–590, 1990. [148] [42] A. Akbary, S. Alaric, and Q. Wang. On some classes of permutation polynomials. Int. J. Number Theory, 4(1):121–133, 2008. [178, 179, 185] [43] A. Akbary, D. Ghioca, and Q. Wang. On permutation polynomials of prescribed shape. Finite Fields Appl., 15(2):195–206, 2009. [174, 175, 185] [44] A. Akbary, D. Ghioca, and Q. Wang. On constructing permutations of finite fields. Finite Fields Appl., pages 1–17, 2010. [176, 177, 180, 181, 185] [45] A. Akbary and Q. Wang. On some permutation polynomials over finite fields. Int. J. Math. Math. Sci., (16):2631–2640, 2005. [178, 185] [46] A. Akbary and Q. Wang. A generalized Lucas sequence and permutation binomials. Proc. Amer. Math. Soc., 134(1):15–22 (electronic), 2006. [174, 178, 185] [47] A. Akbary and Q. Wang. On polynomials of the form xr f (x(q−1)/l ). Int. J. Math. Math. Sci., pages Art. ID 23408, 7, 2007. [177, 178, 179, 185] [48] S. Akiyama. On the pure Jacobi sums. Acta Arith., 75(2):97–104, 1996. [103, 118] [49] M.-L. Akkar, N. T. Courtois, R. Duteuil, and L. Goubin. A fast and secure implementation of Sflash. In Public key cryptography—PKC 2003, volume 2567 of Lecture Notes in Comput. Sci., pages 267–278. Springer, Berlin, 2002. [656] [50] E. Aksoy, A. C ¸ e¸smelio˘ glu, W. Meidl, and A. Topuzo˘glu. On the Carlitz rank of permutation polynomials. Finite Fields Appl., 15(4):428–440, 2009. [184, 185] [51] A. A. Albert. Symmetric and alternate matrices in an arbitrary field. I. Trans. Amer. Math. Soc., 43(3):386–436, 1938. [421, 424] [52] A. A. Albert. Finite division algebras and finite planes. In Proc. Sympos. Appl. Math., Vol. 10, pages 53–70. American Mathematical Society, Providence, R.I., 1960. [226, 229] [53] A. A. Albert. Generalized twisted fields. Pacific J. Math., 11:1–8, 1961. [227, 229] [54] A. A. Albert. Isotopy for generalized twisted fields. An. Acad. Brasil. Ci., 33:265– 275, 1961. [227, 229] [55] R. Albert and H. G. Othmer. The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in drosophila melanogaster. J. Theoret. Biol., 223(1):1–18, 2003. [683, 692] [56] N. Ali. Stabilit´e des polynˆ omes. Acta Arith., 119(1):53–63, 2005. [287, 289] [57] J.-P. Allouche and J. Shallit. Automatic sequences. Cambridge University Press, Cambridge, 2003. Theory, applications, generalizations. [458] [58] J.-P. Allouche and D. S. Thakur. Automata and transcendence of the Tate period in finite characteristic. Proc. Amer. Math. Soc., 127(5):1309–1312, 1999. [458] [59] N. Alon. Eigenvalues and expanders. Combinatorica, 6(2):83–96, 1986. Theory of computing (Singer Island, Fla., 1984). [539, 545] [60] N. Alon and F. R. K. Chung. Explicit construction of linear sized tolerant net-

Miscellaneous applications

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68] [69] [70] [71] [72]

[73]

[74] [75] [76]

[77] [78]

works. In Proceedings of the First Japan Conference on Graph Theory and Applications (Hakone, 1986), volume 72, pages 15–19, 1988. [534, 545] C. Alonso, J. Gutierrez, and T. Recio. A rational function decomposition algorithm by near-separated polynomials. J. Symbolic Comput., 19(6):527–544, 1995. [253, 255] H. Aly, R. Marzouk, and W. Meidl. On the calculation of the linear complexity of periodic sequences. In Finite fields: theory and applications, volume 518 of Contemp. Math., pages 11–22. Amer. Math. Soc., Providence, RI, 2010. [274, 281] H. Aly and W. Meidl. On the linear complexity and k-error linear complexity over Fp of the d-ary Sidel0 nikov sequence. IEEE Trans. Inform. Theory, 53(12):4755– 4761, 2007. [279, 281] H. Aly and A. Winterhof. On the linear complexity profile of nonlinear congruential pseudorandom number generators with Dickson polynomials. Des. Codes Cryptogr., 39(2):155–162, 2006. [278, 281] P. R. Amestoy, T. A. Davis, and I. S. Duff. Algorithm 837: AMD, an approximate minimum degree ordering algorithm. ACM Trans. Math. Software, 30(3):381– 388, 2004. [434, 436] G. An. In silico experiments of existing and hypothetical cytokine-directed clinical trials using agent-based modeling. Crit Care Med, 32(10):2050–2060, Oct. 2004. [689, 692] V. Anashin and A. Khrennikov. Applied algebraic dynamics, volume 49 of de Gruyter Expositions in Mathematics. Walter de Gruyter & Co., Berlin, 2009. [282, 283, 289] H. E. Andersen and O. Geil. Evaluation codes from order domain theory. Finite Fields Appl., 14:92–123, 2008. [605, 612] B. A. Anderson and K. B. Gross. A partial starter construction. Congress. Numer., 21:57–64, 1978. [554] G. W. Anderson. t-motives. Duke Math. J., 53(2):457–502, 1986. [457] G. W. Anderson. Log-algebraicity of twisted A-harmonic series and special values of L-series in characteristic p. J. Number Theory, 60(1):165–209, 1996. [453] G. W. Anderson, W. D. Brownawell, and M. A. Papanikolas. Determination of the algebraic relations among special Γ-values in positive characteristic. Ann. of Math. (2), 160(1):237–313, 2004. [458] G. W. Anderson and D. S. Thakur. Multizeta values for Fq [t], their period interpretation, and relations between them. Int. Math. Res. Not. IMRN, (11):2038– 2055, 2009. [456] I. Anderson. Combinatorial Designs: Construction Methods. Ellis Horwood Ltd., Chichester, 1990. [20, 558] I. Anderson. A hundred years of whist tournaments. J. Combin. Math. Combin. Comput., 19:129–150, 1995. [557] I. Anderson. Some cyclic and 1-rotational designs. In J. W. P. Hirschfeld, editor, Surveys in Combinatorics, 2001, pages 47–73. Cambridge Univ. Press, London, 2001. [557, 558] I. Anderson and N. J. Finizio. Some new Z-cyclic whist tournament designs. Discrete Math., 293(1-3):19–28, 2005. [557, 558] I. Anderson, N. J. Finizio, and P. A. Leonard. New product theorems for Z-cyclic whist tournaments. J. Combin. Theory A, 88:162–166, 1999. [557, 558]

705

706

Handbook of Finite Fields

¨ [79] J. Andr´e. Uber nicht-Desarguessche Ebenen mit transitiver Translationsgruppe. Math. Z., 60:156–186, 1954. [479, 486] [80] B. Angles and C. Maire. A note on tamely ramified towers of global function fields. Finite Fields Appl., 8(2):207–215, 2002. [367] [81] J.-C. Angl`es d’Auriac, J.-M. Maillard, and C. M. Viallet. On the complexity of some birational transformations. J. Phys. A, 39(14):3641–3654, 2006. [282, 289] [82] ANSI. The elliptic curve digital signature algorithm (ECDSA). Working Draft American National Standard: Public Key Cryptography for the Financial Services Industry X9.62-1998, American National Standards Institute, Sept. 1998. Available at http://grouper.ieee.org/groups/1363/private/ x9-62-09-20-98.zip. [667] [83] ANSI. Key agreement and key transport using elliptic curve cryptography. Working Draft American National Standard: Public Key Cryptography for the Financial Services Industry X9.63-199x, American National Standards Institute, Jan. 1999. Available at http://grouper.ieee.org/groups/1363/private/ x9-63-01-08-99.zip. [667] [84] N. Anuradha and S. A. Katre. Number of points on the projective curves aY l = bX l + cZ l and aY 2l = bX 2l + cZ 2l defined over finite fields, l an odd prime. J. Number Theory, 77(2):288–313, 1999. [166, 170] [85] N. Aoki. Abelian fields generated by a Jacobi sum. Comment. Math. Univ. St. Paul., 45(1):1–21, 1996. [103, 118] [86] N. Aoki. On the purity problem of Gauss sums and Jacobi sums over finite fields. Comment. Math. Univ. St. Paul., 46(2):223–233, 1997. [102, 103, 118] [87] N. Aoki. A finiteness theorem on pure Gauss sums. Comment. Math. Univ. St. Pauli, 53(2):145–168, 2004. [102, 118] [88] N. Aoki. On the zeta function of some cyclic quotients of Fermat curves. Comment. Math. Univ. St. Pauli, 57(2):163–185, 2008. [103, 118] [89] N. Aoki. On multi-quadratic Gauss sums. Comment. Math. Univ. St. Pauli, 59(2):97–117, 2010. [106, 118] [90] K. T. Arasu and K. J. Player. A new family of cyclic difference sets with Singer parameters in characteristic three. Des. Codes Cryptogr., 28(1):75–91, 2003. [516, 519] [91] V. L. Arlazarov, E. A. Dinic, M. A. Kronrod, and I. A. Faradˇzev. The economical construction of the transitive closure of an oriented graph. Dokl. Akad. Nauk SSSR, 194:487–488, 1970. [425, 436] [92] C. Armana. Torsion des modules de Drinfeld de rang 2 et formes modulaires de Drinfeld. C. R. Math. Acad. Sci. Paris, 347(13-14):705–708, 2009. [457] [93] C. Armana. Coefficients of drinfeld modular forms and hecke operators. J. Number Theory, 131:1435–1460, 2011. [457] [94] M. A. Armand. Multisequence shift register synthesis over commutative rings with identity with applications to decoding cyclic codes over integer residue rings. IEEE Trans. Inform. Theory, 50(1):220–229, 2004. [275, 281] [95] F. Armknecht and M. Krause. Algebraic attacks on combiners with memory. In Advances in cryptology—CRYPTO 2003, volume 2729 of Lecture Notes in Comput. Sci., pages 162–175. Springer, Berlin, 2003. [665] [96] V. I. Arnold. Dynamics, statistics and projective geometry of Galois fields. Cambridge University Press, Cambridge, 2011. Translated from the Russian, With

Miscellaneous applications words about Arnold by Maxim Kazarian and Ricardo Uribe-Vargas. [20] [97] E. Artin. Quadratische K¨ orper im Gebiete der h¨oheren Kongruenzen. I. Math. Z., 19(1):153–206, 1924. [356, 360] [98] E. Artin. Quadratische k¨ orper im gebiete der h¨oheren kongruenzen, ii. Math. Z., 19:207–246, 1924. [43, 49] [99] E. Artin. Quadratische K¨ orper im Gebiete der h¨oheren Kongruenzen. II. Math. Z., 19(1):207–246, 1924. [409, 414] ¨ [100] E. Artin. Galoissche Theorie. Verlag Harri Deutsch, Zurich, 1973. Ubersetzung nach der zweiten englischen Auflage besorgt von Viktor Ziegler, Mit einem Anhang von N. A. Milgram, Zweite, unver¨anderte Auflage, Deutsch-Taschenb¨ ucher, No. 21. [19, 20, 83] [101] E. F. Assmus, Jr. and J. D. Key. Designs and their codes, volume 103 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1992. [20, 261, 262] [102] E. F. Assmus, Jr. and H. F. Mattson, Jr. New 5-designs. J. Combinatorial Theory, 6:122–151, 1969. [590, 602] [103] Y. Aubry and P. Langevin. On the weights of binary irreducible cyclic codes. In Coding and cryptography, volume 3969 of Lecture Notes in Comput. Sci., pages 46–54. Springer, Berlin, 2006. [109, 118] [104] J.-P. Aumasson, M. Finiasz, W. Meier, and S. Vaudenay. A hardware-oriented trapdoor cipher. In J. Pieprzyk, H. Ghodosi, and E. Dawson, editors, Information Security and Privacy, volume 4586 of Lecture Notes in Computer Science, pages 184–199. Springer Berlin / Heidelberg, 2007. [521, 531] [105] J. Ax. Zeroes of polynomials over finite fields. Amer. J. Math., 86:255–261, 1964. [157, 158, 395, 402] [106] M. Ayad and D. L. McQuillan. Irreducibility of the iterates of a quadratic polynomial over a field. Acta Arith., 93(1):87–97, 2000. [287, 289] [107] M. Ayad and D. L. McQuillan. Corrections to: “Irreducibility of the iterates of a quadratic polynomial over a field” [Acta Arith. 93 (2000), no. 1, 87–97; MR1760091 (2001c:11031)]. Acta Arith., 99(1):97, 2001. [287, 289] [108] M. Baake, J. A. G. Roberts, and A. Weiss. Periodic orbits of linear endomorphisms on the 2-torus and its lattices. Nonlinearity, 21(10):2427–2446, 2008. [282, 289] [109] L. Babai. The fourier transform and equations over finite abelian groups. Private Communication. [261] [110] L. Babai. Spectra of Cayley graphs. J. Combin. Theory Ser. B, 27(2):180–189, 1979. [537, 545] [111] C. Bajaj, J. Canny, T. Garrity, and J. Warren. Factoring rational polynomials over the complex numbers. SIAM J. Comput., 22(2):318–331, 1993. [305, 311] [112] R. D. Baker, C. Culbert, G. L. Ebert, and K. E. Mellinger. Odd order flag-transitive affine planes of dimension three over their kernel. Adv. Geom., (suppl.):S215– S223, 2003. Special issue dedicated to Adriano Barlotti. [481, 486] [113] R. D. Baker, J. M. Dover, G. L. Ebert, and K. L. Wantz. Hyperbolic fibrations of P G(3, q). European J. Combin., 20(1):1–16, 1999. [485, 486] [114] R. D. Baker, J. M. Dover, G. L. Ebert, and K. L. Wantz. Baer subgeometry partitions. J. Geom., 67(1-2):23–34, 2000. Second Pythagorean Conference (Pythagoreion, 1999). [483, 486] [115] R. D. Baker and G. L. Ebert. Nests of size q − 1 and another family of translation planes. J. London Math. Soc. (2), 38(2):341–355, 1988. [480, 486]

707

708

Handbook of Finite Fields

[116] R. D. Baker and G. L. Ebert. A new class of translation planes. In Combinatorics ’86 (Trento, 1986), volume 37 of Ann. Discrete Math., pages 7–20. North-Holland, Amsterdam, 1988. [480, 486] [117] R. D. Baker and G. L. Ebert. Filling the nest gaps. Finite Fields Appl., 2(1):42–61, 1996. [480, 486] [118] R. D. Baker and G. L. Ebert. Two-dimensional flag-transitive planes revisited. Geom. Dedicata, 63(1):1–15, 1996. [481, 486] [119] R. D. Baker, G. L. Ebert, K. H. Leung, and Q. Xiang. A trace conjecture and flag-transitive affine planes. J. Combin. Theory Ser. A, 95(1):158–168, 2001. [481, 486] [120] R. D. Baker, G. L. Ebert, and T. Penttila. Hyperbolic fibrations and q-clans. Des. Codes Cryptogr., 34(2-3):295–305, 2005. [485, 486] [121] R. D. Baker, G. L. Ebert, and K. L. Wantz. Regular hyperbolic fibrations. Adv. Geom., 1(2):119–144, 2001. [485, 486] [122] R. D. Baker, G. L. Ebert, and K. L. Wantz. Enumeration of nonsingular Buekenhout unitals. Note Mat., 29(1):69–90, 2009. [484, 486] [123] R. D. Baker, G. L. Ebert, and K. L. Wantz. Enumeration of orthogonal Buekenhout unitals. Des. Codes Cryptogr., 55(2-3):261–283, 2010. [484, 486] [124] J. Balakrishnan, J. Belding, S. Chisholm, K. Eisentr¨ager, K. E. Stange, and E. Teske. Pairings on hyperelliptic curves. Fields Inst. Commun., 58:1–34, 2010. [359, 360] [125] R. Balasubramanian and N. Koblitz. The improbability that an elliptic curve has subexponential discrete log problem under the Menezes-Okamoto-Vanstone algorithm. J. Cryptology, 11(2):141–145, 1998. [671] [126] S. Ball. On the size of a triple blocking set in PG(2, q). European J. Combin., 17(5):427–435, 1996. [474, 475] [127] S. Ball. The number of directions determined by a function over a finite field. J. Combin. Theory Ser. A, 104(2):341–350, 2003. [470, 475] [128] S. Ball. On the graph of a function in many variables over a finite field. Des. Codes Cryptogr., 47(1-3):159–164, 2008. [471, 475] [129] S. Ball. The polynomial method in galois geometries. In Current Research Topics in Galois Geometry, Mathematics Research Developments. Nova, 2011, to appear. [475] [130] S. Ball and A. Blokhuis. On the size of a double blocking set in PG(2, q). Finite Fields Appl., 2(2):125–137, 1996. [474, 475] [131] S. Ball, A. Blokhuis, and F. Mazzocca. Maximal arcs in Desarguesian planes of odd order do not exist. Combinatorica, 17(1):31–41, 1997. [484, 486] [132] S. Ball and A. G´ acs. On the graph of a function over a prime field whose small powers have bounded degree. European J. Combin., 30(7):1575–1584, 2009. [471, 475] [133] S. Ball, A. G´ acs, and P. Sziklai. On the number of directions determined by a pair of functions over a prime field. J. Combin. Theory Ser. A, 115(3):505–516, 2008. [471, 475] [134] S. Ball and M. Zieve. Symplectic spreads and permutation polynomials. In Finite fields and applications, volume 2948 of Lecture Notes in Comput. Sci., pages 79–88. Springer, Berlin, 2004. [185] [135] A. Balog. Many additive quadruples. In Additive combinatorics, volume 43 of CRM Proc. Lecture Notes, pages 39–49. Amer. Math. Soc., Providence, RI, 2007.

Miscellaneous applications [130] [136] A. Balog and E. Szemer´edi. A statistical theorem of set addition. Combinatorica, 14(3):263–268, 1994. [130] [137] J. Bamberg, A. Betten, C. Praeger, and A. Wassermann. Unitals in the Desarguesian projective plane of order sixteen. International Conference on Design of Experiments (ICODOE, 2011). [484, 486] [138] W. D. Banks, A. Conflitti, J. B. Friedlander, and I. E. Shparlinski. Exponential sums over Mersenne numbers. Compos. Math., 140(1):15–30, 2004. [132] [139] W. D. Banks, J. B. Friedlander, S. V. Konyagin, and I. E. Shparlinski. Incomplete exponential sums and Diffie-Hellman triples. Math. Proc. Cambridge Philos. Soc., 140(2):193–206, 2006. [148] [140] H. W. Bao. On two exponential sums and their applications. Finite Fields Appl., 3(2):115–130, 1997. [62] [141] I. Baoulina. On the number of solutions to certain diagonal equations over finite fields. Int. J. Number Theory, 6(1):1–14, 2010. [165, 170] [142] B. Barak, G. Kindler, R. Shaltiel, B. Sudakov, and A. Wigderson. Simulating independence: new constructions of condensers, Ramsey graphs, dispersers, and extractors. J. ACM, 57(4):Art. 20, 52, 2010. [133] [143] M. Bardet, J.-C. Faug`ere, and B. Salvy. On the complexity of Gr¨obner basis computation of semi-regular overdetermined algebraic equations. In Proceedings of the International Conference on Polynomial System Solving, pages 71–74, 2004. Previously INRIA report RR-5049. [664] [144] A. Barlotti. Un’estensione del teorema di Segre-Kustaanheimo. Boll. Un. Mat. Ital. (3), 10:498–506, 1955. [500] ´ Eigeartaigh, ´ [145] P. S. L. M. Barreto, S. D. Galbraith, C. O’h and M. Scott. Efficient pairing computation on supersingular abelian varieties. Designs, Codes and Cryptography, 42:239–271, 2007. [672] [146] S. Barwick and G. Ebert. Unitals in projective planes. Springer Monographs in Mathematics. Springer, New York, 2008. [483, 486] [147] S. G. Barwick and W.-A. Jackson. Geometric constructions of optimal linear perfect hash families. Finite Fields Appl., 14(1):1–13, 2008. [552] [148] S. G. Barwick, W.-A. Jackson, and C. T. Quinn. Optimal linear perfect hash families with small parameters. J. Combin. Des., 12(5):311–324, 2004. [552] [149] L. Batina, S. B. rs, B. Preneel, and J. Vandewalle. Hardware architectures for public key cryptography. Integration, the VLSI Journal, 34(1-2):1 – 64, 2003. [79] [150] L. D. Baumert. Cyclic difference sets. Lecture Notes in Mathematics, Vol. 182. Springer-Verlag, Berlin, 1971. [20, 512, 515, 519] [151] B. Beckermann and G. Labahn. Fraction-free computation of matrix rational interpolants and matrix GCDs. SIAM J. Matrix Anal. Appl., 22(1):114–144 (electronic), 2000. [436] [152] E. Bedford and K. Kim. Continuous families of rational surface automorphisms with positive entropy. Math. Ann., 348(3):667–688, 2010. [283, 289] [153] E. Bedford and T. T. Truong. Degree complexity of birational maps related to matrix inversion. Comm. Math. Phys., 298(2):357–368, 2010. [282, 283, 289] [154] P. Beelen and I. I. Bouw. Asymptotically good towers and differential equations. Compos. Math., 141(6):1405–1424, 2005. [368, 372] [155] D. Behr. Searchable magic book contents. main site:http://archive.denisbehr.

709

710

[156] [157]

[158]

[159] [160] [161]

[162] [163]

[164]

[165] [166] [167]

[168] [169]

[170] [171]

[172] [173]

Handbook of Finite Fields

de. http://archive.denisbehr.de/archive/route/entries.php?url=10, 50,1036. [531] K. Belabas, M. van Hoeij, J. Kl¨ uners, and A. Steel. Factoring polynomials over global fields. J. Th´eor. Nombres Bordeaux, 21(1):15–39, 2009. [304, 311] J. Belding, R. Brker, A. Enge, and K. Lauter. Computing Hilbert class polynomials. In A. van der Poorten and A. Stein, editors, Algorithmic Number Theory ANTS-VIII, volume 5011 of Lecture Notes in Computer Science, pages 282– 295, Berlin, 2008. Springer-Verlag. [669] M. Bellare and P. Rogaway. Minimizing the use of random oracles in authenticated encryption schemes. In Y. Han, T. Okamoto, and S. Qing, editors, Information and Communications Security, volume 1334 of Lecture Notes in Computer Science, pages 1–16, Berlin, 1997. Springer-Verlag. [667] M. P. Bellon and C.-M. Viallet. Algebraic entropy. Comm. Math. Phys., 204(2):425– 437, 1999. [282, 283, 289] M. Ben-Or. Probabilistic algorithms in finite fields. In Proc. 22nd IEEE Symp. Foundations Computer Science, pages 394–398, 1981. [296, 299] T. D. Bending and D. Fon-Der-Flaass. Crooked functions, bent functions, and distance regular graphs. Electron. J. Combin., 5:Research Paper 34, 14 pp. (electronic), 1998. [211, 213] A. T. Benjamin and C. D. Bennett. The probability of relatively prime polynomials. Math. Mag., 80:196–202, 2007. [51, 55, 423, 424] C. H. Bennett and G. Brassard. Quantum cryptography: Public key distribution and coin tossing. In International Conference on Computers, Systems & Signal Processing (Bangalore, India, 2004). 1984. [633, 634] T. P. Berger, A. Canteaut, P. Charpin, and Y. Laigle-Chapuy. On almost perfect nonlinear functions over F2n . IEEE Trans. Inform. Theory, 52(9):4160–4170, 2006. [208, 211, 213] E. R. Berlekamp. Factoring polynomials over finite fields. Bell System Tech. J., 46:1853–1859, 1967. [294, 299, 653] E. R. Berlekamp. Algebraic coding theory. McGraw-Hill Book Co., New York, 1968. [19, 20, 37, 38, 41, 163, 561, 591, 593, 602] E. R. Berlekamp, editor. Key papers in the development of coding theory. IEEE Press [Institute of Electrical and Electronics Engineers, Inc.], New York, 1974. IEEE Press Selected Reprint Series. [601, 602] E. R. Berlekamp. Bit-serial Reed-Solomon encoders. IEEE Trans. Inf. Theory, 28:869–874, 1982. [79] E. R. Berlekamp, R. J. McEliece, and H. C. A. van Tilborg. On the inherent intractability of certain coding problems. IEEE Trans. Information Theory, IT-24(3):384–386, 1978. [633, 634] E. R. Berlekamp, H. Rumsey, and G. Solomon. On the solution of algebraic equations over finite fields. Information and Control, 10:553–564, 1967. [38] P. Berman and G. Schnitger. On the performance of the minimum degree ordering for Gaussian elimination. SIAM J. Matrix Anal. Appl., 11(1):83–88, 1990. [434, 436] L. Bernardin. On square-free factorization of multivariate polynomials over a finite field. Theoret. Comput. Sci., 187(1-2):105–116, 1997. [303, 311] L. Bernardin. On bivariate Hensel lifting and its parallelization. In ISSAC ’98: Proceedings of the 1998 International Symposium on Symbolic and Algebraic

Miscellaneous applications Computation, pages 96–100, New York, 1998. ACM Press. [304, 311] [174] L. Bernardin and M. B. Monagan. Efficient multivariate factorization over finite fields. In Applied algebra, algebraic algorithms and error-correcting codes (Toulouse, 1997), volume 1255 of Lecture Notes in Comput. Sci., pages 15–28. Springer-Verlag, 1997. [306, 311] [175] B. C. Berndt, R. J. Evans, and K. S. Williams. Gauss and Jacobi sums. A WileyInterscience Publication. John Wiley & Sons, Inc., New York, 1988. Canadian Mathematical Society Series of Monographs and Advanced Texts. [19, 20, 137] [176] B. C. Berndt, R. J. Evans, and K. S. Williams. Gauss and Jacobi sums. Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley & Sons Inc., New York, 1998. A Wiley-Interscience Publication. [96, 98, 99, 100, 102, 104, 105, 106, 107, 108, 113, 117, 118] [177] D. J. Bernstein, J. Buchmann, and E. Dahmen, editors. Post-quantum cryptography. Springer-Verlag, Berlin, 2009. [19, 20, 633, 634] [178] D. J. Bernstein, T. Lange, and C. Peters. Attacking and defending the McEliece cryptosystem. In Post-quantum cryptography (Cincinnati, Ohio, 2008), volume 5299 of Lecture Notes in Comput. Sci., pages 31–46. Springer, Berlin, 2008. [634] [179] P. Berthelot. Cohomologie rigide et th´eorie de Dwork: le cas des sommes exponentielles. Ast´erisque, (119-120):3, 17–49, 1984. p-adic cohomology. [126] [180] P. Berthelot, S. Bloch, and H. Esnault. On Witt vector cohomology for singular varieties. Compos. Math., 143(2):363–392, 2007. [158] [181] P. Berthelot and A. Ogus. Notes on crystalline cohomology. Princeton University Press, Princeton, N.J., 1978. [396, 402] [182] J. Berthomieu and G. Lecerf. Convex-dense bivariate polynomial factorization. Manuscript available from http://hal.archives-ouvertes.fr/ hal-00526659, to appear in Math. Comp., 2010. [308, 311] [183] T. Beth and Z. D. Dai. On the complexity of pseudo-random sequences—or: If you can describe a sequence it can’t be random. In Advances in cryptology— EUROCRYPT ’89 (Houthalen, 1989), volume 434 of Lecture Notes in Comput. Sci., pages 533–543. Springer, Berlin, 1990. [280, 281] [184] T. Beth and W. Geiselmann. Selbstduale Normalbasen u ¨ber GF(q). Arch. Math. (Basel), 55(1):44–48, 1990. [420, 424] [185] T. Beth, D. Jungnickel, and H. Lenz. Design theory. Cambridge University Press, Cambridge, 1986. [20, 135] [186] T. Beth, D. Jungnickel, and H. Lenz. Design theory. Vol. I, volume 69 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, second edition, 1999. [20, 511, 512, 513, 517, 519, 558] [187] T. Beth, D. Jungnickel, and H. Lenz. Design theory. Vol. II, volume 78 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, second edition, 1999. [20, 511, 512, 513, 519, 558] ¨ [188] D. Betten and D. G. Glynn. Uber endliche planare Funktionen, ihre zugeh¨orenden Schiebebenen, und ihre abgeleiteten Translationsebenen. Results Math., 42(12):32–36, 2002. [231, 234] [189] C. Bey and G. M. Kyureghyan. On Boolean functions with the sum of every two of them being bent. Des. Codes Cryptogr., 49(1-3):341–346, 2008. [206, 213] [190] J. Bezerra, A. Garcia, and H. Stichtenoth. An explicit tower of function fields over cubic finite fields and Zink’s lower bound. J. Reine Angew. Math., 589:159–199,

711

712

Handbook of Finite Fields

2005. [367, 371, 372] [191] M. Bhargava and M. E. Zieve. Factoring Dickson polynomials over finite fields. Finite Fields Appl., 5(2):103–111, 1999. [236, 242] [192] A. Bhattacharyya, S. Kopparty, G. Schoenebeck, M. Sudan, and D. Zuckerman. Optimal testing of reed-muller codes (report no. 86). In Proceedings of Electronic Colloquium on Computational Complexity (2009). [200, 204] [193] K. Bibak. Additive combinatorics with a view towards computer science and cryptography: An exposition. arXiv:1108.3790. [132, 133] [194] F. Bien. Constructions of telephone networks by group representations. Notices Amer. Math. Soc., 36(1):5–22, 1989. [532, 539, 545] [195] J. Bierbrauer. Introduction to coding theory. Discrete Mathematics and its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton, FL, 2005. [19, 20] [196] J. Bierbrauer. A direct approach to linear programming bounds for codes and tms-nets. Des. Codes Cryptogr., 42:127–143, 2007. [374, 383] [197] J. Bierbrauer. A family of crooked functions. Des. Codes Cryptogr., 50(2):235–241, 2009. [211, 213] [198] J. Bierbrauer. New commutative semifields and their nuclei. In Applied algebra, algebraic algorithms, and error-correcting codes, volume 5527 of Lecture Notes in Comput. Sci., pages 179–185. Springer, Berlin, 2009. [233, 234] [199] J. Bierbrauer. New semifields, PN and APN functions. Des. Codes Cryptogr., 54(3):189–200, 2010. [233, 234] [200] J. Bierbrauer, Y. Edel, and W. C. Schmid. Coding-theoretic constructions for (t, m, s)-nets and ordered orthogonal arrays. J. Combin. Des., 10:403–418, 2002. [375, 378, 383] [201] J. Bierbrauer and G. M. Kyureghyan. Crooked binomials. Des. Codes Cryptogr., 46(3):269–301, 2008. [211, 213] [202] E. Biham and A. Shamir. Differential cryptanalysis of DES-like cryptosystems. J. Cryptology, 4(1):3–72, 1991. [205, 213] [203] M. Biliotti, V. Jha, and N. L. Johnson. Foundations of translation planes, volume 243 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker Inc., New York, 2001. [478, 486] [204] O. Billet and H. Gilbert. Cryptanalysis of rainbow. In Security and Cryptography for Networks, volume 4116 of LNCS, pages 336–347. Springer, September 2006. [655, 656] [205] O. Billet, M. J. B. Robshaw, and T. Peyrin. On building hash functions from multivariate quadratic equations. In J. Pieprzyk, H. Ghodosi, and E. Dawson, editors, ACISP, volume 4586 of Lecture Notes in Computer Science, pages 82–95. Springer, 2007. [665] [206] Y. Bilu and N. Linial. Lifts, discrepancy and nearly optimal spectral gap. Combinatorica, 26(5):495–519, 2006. [543, 544, 545] [207] G. Bini and F. Flamini. Finite commutative rings and their applications. The Kluwer International Series in Engineering and Computer Science, 680. Kluwer Academic Publishers, Boston, MA, 2002. With a foreword by Dieter Jungnickel. [17, 18, 19] [208] B. J. Birch. How the number of points of an elliptic curve over a fixed prime field varies. J. London Math. Soc., 43:57–60, 1968. [341, 351] [209] B. J. Birch and H. P. F. Swinnerton-Dyer. Note on a problem of Chowla. Acta

Miscellaneous applications Arith., 5:417–423 (1959), 1959. [190, 192] [210] A. Bir´ o. On polynomials over prime fields taking only two values on the multiplicative group. Finite Fields Appl., 6(4):302–308, 2000. [190, 192] [211] R. R. Bitmead and B. D. O. Anderson. Asymptotically fast solution of Toeplitz and related systems of linear equations. Linear Algebra Appl., 34:103–116, 1980. [434, 436] [212] R. Blache. First vertices for generic newton polygons, and p-cyclic coverings of the projective line. [399, 402] [213] R. Blache. Newton polygons for character sums and p??incar´e series. Int. J. Number Th., to appear. [400, 402] [214] R. Blache. p-density, exponential sums and artin-schreier curves. [395, 399, 402] ´ F´erard. Newton stratification for polynomials: the open stratum. [215] R. Blache and E. J. Number Theory, 123(2):456–472, 2007. [399, 402] ´ F´erard, and H. J. Zhu. Hodge-Stickelberger polygons for L-functions [216] R. Blache, E. of exponential sums of P (xs ). Math. Res. Lett., 15(5):1053–1071, 2008. [399, 402] [217] S. R. Blackburn. A generalisation of the discrete Fourier transform: determining the minimal polynomial of a periodic sequence. IEEE Trans. Inform. Theory, 40(5):1702–1704, 1994. [274, 281] [218] S. R. Blackburn, T. Etzion, and K. G. Paterson. Permutation polynomials, de Bruijn sequences, and linear complexity. J. Combin. Theory Ser. A, 76(1):55–82, 1996. [274, 281] [219] S. R. Blackburn, D. Gomez-Perez, J. Gutierrez, and I. E. Shparlinski. Predicting the inversive generator. In Cryptography and coding, volume 2898 of Lecture Notes in Comput. Sci., pages 264–275. Springer, Berlin, 2003. [283, 289] [220] S. R. Blackburn, D. Gomez-Perez, J. Gutierrez, and I. E. Shparlinski. Predicting nonlinear pseudorandom number generators. Math. Comp., 74(251):1471–1494 (electronic), 2005. [283, 289] [221] S. R. Blackburn, D. Gomez-Perez, J. Gutierrez, and I. E. Shparlinski. Reconstructing noisy polynomial evaluation in residue rings. J. Algorithms, 61(2):47–59, 2006. [283, 289] [222] S. R. Blackburn and P. R. Wild. Optimal linear perfect hash families. J. Combin. Theory Ser. A, 83(2):233–250, 1998. [552] [223] R. E. Blahut. Transform techniques for error control codes. IBM J. Res. Develop., 23(3):299–315, 1979. [273, 281] [224] R. E. Blahut. Theory and practice of error control codes. Addison-Wesley Publishing Company Advanced Book Program, Reading, MA, 1983. [19, 20, 561, 563, 580, 588, 589, 591, 593, 602] [225] I. F. Blake, editor. Algebraic coding theory: history and development. Dowden Hutchinson & Ross Inc., Stroudsburg, Pa., 1973. Benchmark Papers in Electrical Engineering and Computer Science. [601, 602] [226] I. F. Blake, S. Gao, and R. J. Lambert. Construction and distribution problems for irreducible trinomials over finite fields. In Applications of finite fields (Egham, 1994), volume 59 of Inst. Math. Appl. Conf. Ser. New Ser., pages 19–32. Oxford Univ. Press, New York, 1996. [58] [227] I. F. Blake, S. Gao, and R. C. Mullin. Specific irreducible polynomials with linearly independent roots over finite fields. Linear Algebra Appl., 253:227–249, 1997. [83, 94]

713

714

Handbook of Finite Fields

[228] I. F. Blake and T. Garefalakis. A transform property of Kloosterman sums. Discrete Appl. Math., 158(10):1064–1072, 2010. [44, 49] [229] I. F. Blake and R. C. Mullin. The mathematical theory of coding. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. [19, 20, 561, 582, 587, 602] [230] I. F. Blake, G. Seroussi, and N. P. Smart. Elliptic curves in cryptography, volume 265 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2000. Reprint of the 1999 original. [19, 20, 666, 678] [231] I. F. Blake, G. Seroussi, and N. P. Smart. Advances in Elliptic Curve Cryptography, volume 317 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2005. [19, 20, 666, 667, 670] [232] D. Blessenohl and K. Johnsen. Eine Versch¨arfung des Satzes von der Normalbasis. J. Algebra, 103(1):141–159, 1986. [83] [233] D. Blessenohl and K. Johnsen. Stabile Teilk¨orper galoisscher Erweiterungen und ein Problem von C. Faith. Arch. Math. (Basel), 56(3):245–253, 1991. [84] [234] A. Blokhuis. On the size of a blocking set in PG(2, p). Combinatorica, 14(1):111–114, 1994. [471, 472, 475] [235] A. Blokhuis. Blocking sets in Desarguesian planes. In Combinatorics, Paul ErdHos is eighty, Vol. 2 (Keszthely, 1993), volume 2 of Bolyai Soc. Math. Stud., pages 133–155. J´ anos Bolyai Math. Soc., Budapest, 1996. [471, 472, 475] [236] A. Blokhuis, S. Ball, A. E. Brouwer, L. Storme, and T. SzHonyi. On the number of slopes of the graph of a function defined on a finite field. J. Combin. Theory Ser. A, 86(1):187–196, 1999. [470, 475] [237] A. Blokhuis, A. E. Brouwer, and T. SzHonyi. The number of directions determined by a function f on a finite field. J. Combin. Theory Ser. A, 70(2):349–353, 1995. [470, 475] [238] A. Blokhuis, A. E. Brouwer, and H. A. Wilbrink. Blocking sets in PG(2, p) for small p, and partial spreads in PG(3, 7). Adv. Geom., (suppl.):S245–S253, 2003. Special issue dedicated to Adriano Barlotti. [473, 475] [239] A. Blokhuis, A. A. Bruen, and J. A. Thas. Arcs in PG(n, q), MDS-codes and three fundamental problems of B. Segre—some extensions. Geom. Dedicata, 35(13):1–11, 1990. [498] [240] A. Blokhuis, R. S. Coulter, M. Henderson, and C. M. O’Keefe. Permutations amongst the Dembowski-Ostrom polynomials. In Finite fields and applications (Augsburg, 1999), pages 37–42. Springer, Berlin, 2001. [180, 185] [241] A. Blokhuis, D. Jungnickel, and B. Schmidt. Proof of the prime power conjecture for projective planes of order n with abelian collineation groups of order n2 . Proc. Amer. Math. Soc., 130(5):1473–1476 (electronic), 2002. [230, 234, 485, 486] [242] A. Blokhuis, M. Lavrauw, and S. Ball. On the classification of semifield flocks. Adv. Math., 180(1):104–111, 2003. [229] [243] A. Blokhuis, L. Lov´ asz, L. Storme, and T. SzHonyi. On multiple blocking sets in Galois planes. Adv. Geom., 7(1):39–53, 2007. [474, 475] [244] A. Blokhuis, R. Pellikaan, and T. SzHonyi. Blocking sets of almost R´edei type. J. Combin. Theory Ser. A, 78(1):141–150, 1997. [471, 475] [245] A. Blokhuis, L. Storme, and T. SzHonyi. Lacunary polynomials, multiple blocking sets and Baer subplanes. J. London Math. Soc. (2), 60(2):321–332, 1999. [474, 475]

Miscellaneous applications [246] C. Blondeau, A. Canteaut, and P. Charpin. Differential properties of power functions. Int. J. Inf. Coding Theory, 1(2):149–170, 2010. [213] [247] A. W. Bluher. Explicit formulas for strong Davenport pairs. Acta Arith., 112(4):397– 403, 2004. [253, 255] [248] A. W. Bluher. A Swan-like theorem. Finite Fields Appl., 12(1):128–138, 2006. [37, 38] [249] G. B¨ ockle. An eichler-shimura isomorphism over function fields between drinfeld modular forms and cohomology classes of crystals. preprint, 2002. [457] [250] G. B¨ ockle. Global L-functions over function fields. Math. Ann., 323(4):737–795, 2002. [454] [251] A. Bodin. Number of irreducible polynomials in several variables over finite fields. Amer. Math. Monthly, 115:653–660, 2008. [50, 55] [252] A. Bodin. Generating series for irreducible polynomials over finite fields. Finite Fields Appl., 16:116–125, 2010. [50, 52, 55] [253] A. Bodin, P. D`ebes, and S. Najib. Indecomposable polynomials and their spectrum. Acta Arith., 139:79–100, 2009. [53, 54, 55] [254] E. Bombieri. On exponential sums in finite fields. Amer. J. Math., 88:71–105, 1966. [120, 127, 388, 391, 393] [255] E. Bombieri. Counting points on curves over finite fields (d’apr`es S. A. Stepanov). In S´eminaire Bourbaki, 25`eme ann´ee (1972/1973), Exp. No. 430, pages 234–241. Lecture Notes in Math., Vol. 383. Springer, Berlin, 1974. [391, 393] [256] E. Bombieri. On exponential sums in finite fields. II. Invent. Math., 47(1):29–39, 1978. [121, 127, 254, 255, 388, 391, 393] [257] E. Bombieri and S. Sperber. On the estimation of certain exponential sums. Acta Arith., 69(4):329–358, 1995. [121, 127] [258] D. Bonchev, S. Thomas, A. Apte, and L. B. Kier. Cellular automata modelling of biomolecular networks dynamics. SAR and QSAR in Environmental Research, 21(1):77–102, 2010. [685] [259] D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. SIAM J. Comput., 32(3):586–615, 2003. [631, 634] [260] D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-DNF formulas on ciphertexts. In J. Kilian, editor, Theory of Cryptography — TCC 2005, volume 3378 of Lecture Notes in Computer Science, pages 325–341, Berlin, 2005. Springer-Verlag. [674] [261] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. J. Cryptology, 17(4):297–319, 2004. [632, 634] [262] D. Boneh and R. Venkatesan. Rounding in lattices and its cryptographic applications. In Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (New Orleans, LA, 1997), pages 675–681, New York, 1997. ACM. [141] [263] D. Boneh and R. Venkatesan. Breaking rsa may not be equivalent to factoring. In K. Nyberg, editor, Advances in Cryptology EUROCRYPT’98, volume 1403 of Lecture Notes in Computer Science, pages 59–71. Springer Berlin / Heidelberg, 1998. [141] [264] T. J. Boothby and R. W. Bradshaw. Bitslicing and the method of four russians over larger finite fields, Jan. 2009. arXiv:0901.1413v1 [cs.MS]. [425, 436] [265] P. Borwein, K.-K. S. Choi, and J. Jedwab. Binary sequences with merit factor greater than 6.34. IEEE Trans. Inform. Theory, 50(12):3234–3249, 2004. [269]

715

716

Handbook of Finite Fields

[266] S. Bosch, U. G¨ untzer, and R. Remmert. Non-Archimedean analysis, volume 261 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1984. A systematic approach to rigid analytic geometry. [449] [267] R. C. Bose. On the application of the properties of galois fields to the construction of hyper-graeco-latin squares. Sankhya, 3:323–338, 1938. [466] [268] R. C. Bose. On the construction of balanced incomplete block designs. Ann. Eugenics, 9:353–399, 1939. [504] [269] R. C. Bose. On some connections between the design of experiments and information theory. Bull. Inst. Internat. Statist., 38:257–271, 1961. [520, 531] [270] R. C. Bose and R. C. Burton. A characterization of flat spaces in a finite geometry and the uniqueness of the Hamming and the MacDonald codes. J. Combinatorial Theory, 1:96–104, 1966. [471, 475] [271] R. C. Bose and D. K. Ray-Chaudhuri. On a class of error correcting binary group codes. Information and Control, 3:68–79, 1960. [578, 601, 602] [272] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system I: The user language. J. Symbolic Comput., 24(3-4):235–265, 1997. [306, 311] ´ Schost. Solving structured linear systems with [273] A. Bostan, C.-P. Jeannerod, and E. large displacement rank. Theoret. Comput. Sci., 407(1-3):155–181, 2008. [434, 436] ´ Schost, and B. Wiebelt. Complexity issues in [274] A. Bostan, G. Lecerf, B. Salvy, E. bivariate polynomial factorization. In ISSAC ’04: Proceedings of the 2004 International Symposium on Symbolic and Algebraic Computation, pages 42– 49, New York, 2004. ACM Press. [304, 311] [275] A. Bostan, F. Morain, B. Salvy, and E. Schost. Fast algorithms for computing isogenies between elliptic curves. Mathematics of Computation, 77(263):1755– 1778, 2008. [670] [276] A. Bostin, P. Flajolet, B. Salvy, and E. Schost. Fast computation of special resultants. Journal of Symbolic Computation, 41(1):1–29, Jan. 2006. [297, 298, 299] [277] A. B¨ ottcher and B. Silbermann. Introduction to large truncated Toeplitz matrices. Universitext. Springer-Verlag, New York, 1999. [422, 424] [278] J. Bourgain. Estimates on exponential sums related to the Diffie-Hellman distributions. Geom. Funct. Anal., 15(1):1–34, 2005. [132, 148] [279] J. Bourgain. Mordell’s exponential sum estimate revisited. J. Amer. Math. Soc., 18(2):477–499 (electronic), 2005. [132] [280] J. Bourgain. More on the sum-product phenomenon in prime fields and its applications. Int. J. Number Theory, 1(1):1–32, 2005. [133] [281] J. Bourgain. Multilinear exponential sums in prime fields under optimal entropy condition on the sources. Geom. Funct. Anal., 18(5):1477–1502, 2009. [129, 130, 131, 137, 141] [282] J. Bourgain. On exponential sums in finite fields. In An irregular mind: Szemer´edi is 70, pages 219–242. Springer, 2010. [132] [283] J. Bourgain and M.-C. Chang. A Gauss sum estimate in arbitrary finite fields. C. R. Math. Acad. Sci. Paris, 342(9):643–646, 2006. [98, 118] [284] J. Bourgain and A. Gamburd. Uniform expansion bounds for Cayley graphs of SL2 (Fp ). Ann. of Math. (2), 167(2):625–642, 2008. [134] [285] J. Bourgain, A. Gamburd, and P. Sarnak. Affine linear sieve, expanders, and sum-

Miscellaneous applications product. Invent. Math., 179(3):559–644, 2010. [134] [286] J. Bourgain and M. Z. Garaev. On a variant of sum-product estimates and explicit exponential sum bounds in prime fields. Math. Proc. Cambridge Philos. Soc., 146(1):1–21, 2009. [129, 130, 149] [287] J. Bourgain and A. Glibichuk. Exponential sum estimate over subgroup in an arbitrary field. J. Analyse Math., 115(1):51–70, 2011. [130, 133] [288] J. Bourgain, A. A. Glibichuk, and S. V. Konyagin. Estimates for the number of sums and products and for exponential sums in fields of prime order. J. London Math. Soc. (2), 73(2):380–398, 2006. [128, 130, 131, 133, 137, 141] [289] J. Bourgain, N. Katz, and T. Tao. A sum-product estimate in finite fields, and applications. Geom. Funct. Anal., 14(1):27–57, 2004. [128] [290] H. Boylan and N.-P. Skoruppa. Explicit formulas for Hecke Gauss sums in quadratic number fields. Abh. Math. Semin. Univ. Hambg., 80(2):213–226, 2010. [117, 118] [291] C. Bracken, E. Byrne, N. Markin, and G. McGuire. Determining the nonlinearity of a new family of APN functions. In Applied algebra, algebraic algorithms and error-correcting codes, volume 4851 of Lecture Notes in Comput. Sci., pages 72–79. Springer, Berlin, 2007. [211, 213, 261, 262] [292] C. Bracken, E. Byrne, N. Markin, and G. McGuire. On the walsh spectrum of a new APN function. In Cryptography and Coding, volume 4887 of Lecture Notes in Comput. Sci., pages 92–98. Springer, Berlin, 2007. [211, 213] [293] C. Bracken, E. Byrne, N. Markin, and G. McGuire. New families of quadratic almost perfect nonlinear trinomials and multinomials. Finite Fields Appl., 14(3):703– 714, 2008. [209, 211, 213] [294] C. Bracken, E. Byrne, N. Markin, and G. McGuire. Fourier spectra of binomial APN functions. SIAM J. Discrete Math., 23(2):596–608, 2009. [211, 213, 261, 262] [295] C. Bracken, E. Byrne, N. Markin, and G. McGuire. A few more quadratic APN functions. Cryptogr. Commun., 3(1):43–53, 2011. [208, 211, 213] [296] C. Bracken, E. Byrne, G. McGuire, and G. Nebe. On the equivalence of quadratic APN functions. Des. Codes Cryptogr., 61(3):261–272, 2011. [211, 213] [297] A. Braeken, C. Wolf, and B. Preneel. A study of the security of unbalanced oil and vinegar signature schemes. In Topics in cryptology—CT-RSA 2005, volume 3376 of Lecture Notes in Comput. Sci., pages 29–43. Springer, Berlin, 2005. [663] [298] N. Brandst¨ atter and A. Winterhof. Some notes on the two-prime generator of order 2. IEEE Trans. Inform. Theory, 51(10):3654–3657, 2005. [279, 281] [299] N. Brandst¨ atter and A. Winterhof. Linear complexity profile of binary sequences with small correlation measure. Period. Math. Hungar., 52(2):1–8, 2006. [281] [300] J. V. Brawley and L. Carlitz. Irreducibles and the composed product for polynomials over a finite field. Discrete Math., 65(2):115–139, 1987. [35, 38] [301] J. V. Brawley and L. Carlitz. A test for additive decomposability of irreducibles over a finite field. Discrete Math., 76(1):61–65, 1989. [35, 38] [302] J. V. Brawley, L. Carlitz, and J. Levine. Scalar polynomial functions on the n × n matrices over a finite field. Linear Algebra and Appl., 10:199–217, 1975. [183, 185] [303] J. V. Brawley and G. L. Mullen. Infinite Latin squares containing nested sets of mutually orthogonal finite Latin squares. Publ. Math. Debrecen, 39(1-2):135–

717

718

Handbook of Finite Fields

141, 1991. [463, 467] [304] J. V. Brawley and G. E. Schnibben. Infinite algebraic extensions of finite fields, volume 95 of Contemporary Mathematics. American Mathematical Society, Providence, RI, 1989. [19, 20, 93, 463, 467] [305] R. P. Brent and P. Zimmermann. Ten new primitive binary trinomials. Math. Comp., 78(266):1197–1199, 2009. [66, 68] [306] R. P. Brent and P. Zimmermann. The great trinomial hunt. Notices Amer. Math. Soc., 78(2):233–239, 2011. [66, 68] [307] J. Brewster Lewis, R. Ini Liu, A. H. Morales, G. Panova, S. V. Sam, and Y. Zhang. Matrices with restricted entries and q-analogues of permutations. ArXiv eprints, Nov. 2010. [416, 424] [308] F. Brezing and A. Weng. Elliptic curves suitable for pairing based cryptography. Des. Codes Cryptogr., 37(1):133–141, 2005. [676] [309] M. Brinkmann and G. Leander. On the classification of APN functions up to dimension five. Des. Codes Cryptogr., 49(1-3):273–288, 2008. [209, 213] [310] D. R. L. Brown. Generic groups, collision resistance, and ECDSA. Designs, Codes and Cryptography, 35:119–152, 2005. [667] [311] M. R. Brown. Ovoids of pg(3,q),q even, with a conic section. J. London Math. Soc., 62(2):569–582, 2000. [500] [312] M. R. Brown, G. L. Ebert, and D. Luyckx. On the geometry of regular hyperbolic fibrations. European J. Combin., 28(6):1626–1636, 2007. [485, 486] [313] K. A. Browning, J. F. Dillon, R. E. Kibler, and M. T. McQuistan. APN polynomials and related codes. Journal of Combinatorics Information and System Sciences, 34(1-4):135–159, 2009. [209, 213] [314] K. A. Browning, J. F. Dillon, M. T. McQuistan, and A. J. Wolfe. An APN permutation in dimension six. In Finite Fields: theory and applications, volume 518 of Contemp. Math., pages 33–42. Amer. Math. Soc., Providence, RI, 2010. [185, 208, 213] [315] R. H. Bruck. Difference sets in a finite group. Trans. Amer. Math. Soc., 78:464–481, 1955. [482, 486] [316] R. H. Bruck. Quadratic extensions of cyclic planes. In Proc. Sympos. Appl. Math., Vol. 10, pages 15–44. American Mathematical Society, Providence, R.I., 1960. [482, 486] [317] R. H. Bruck. Construction problems of finite projective planes. In Combinatorial Mathematics and its Applications (Proc. Conf., Univ. North Carolina, Chapel Hill, N.C., 1967), pages 426–514. Univ. North Carolina Press, Chapel Hill, N.C., 1969. [479, 480, 486] [318] R. H. Bruck and R. C. Bose. The construction of translation planes from projective spaces. J. Algebra, 1:85–102, 1964. [478, 479, 486] [319] R. H. Bruck and H. J. Ryser. The nonexistence of certain finite projective planes. Canadian J. Math., 1:88–93, 1949. [513, 519] [320] A. Bruen. Blocking sets in finite projective planes. SIAM J. Appl. Math., 21:380– 392, 1971. [471, 472, 475] [321] A. A. Bruen and R. Silverman. On the nonexistence of certain M.D.S. codes and projective planes. Math. Z., 183(2):171–175, 1983. [499] [322] A. A. Bruen and R. Silverman. Arcs and blocking sets. II. European J. Combin., 8(4):351–356, 1987. [471, 475]

Miscellaneous applications [323] A. A. Bruen and J. A. Thas. Blocking sets. Geometriae Dedicata, 6(2):193–203, 1977. [471, 475] [324] A. A. Bruen, J. A. Thas, and A. Blokhuis. On M.D.S. codes, arcs in PG(n, q) with q even, and a solution of three fundamental problems of B. Segre. Invent. Math., 92(3):441–459, 1988. [498, 499] [325] L. Br¨ unjes. Forms of Fermat equations and their zeta functions. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2004. [386, 393] [326] B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. PhD thesis, Innsbruck, 1965. [664] [327] J. Buchmann, D. Cabarcas, J. Ding, and M. S. E. Mohamed. Flexible partial enlargement to accelerate gr¨obner basis computation over 2 . In D. J. Bernstein and T. Lange, editors, AFRICACRYPT, volume 6055 of Lecture Notes in Computer Science, pages 69–81. Springer, 2010. [664] [328] J. Buchmann and H. C. Williams. A key-exchange system based on imaginary quadratic fields. J. Cryptology, 1(2):107–118, 1988. [630, 634] [329] L. Budaghyan and C. Carlet. Classes of quadratic APN trinomials and hexanomials and related structures. IEEE Trans. Inform. Theory, 54(5):2354–2357, 2008. [209, 211, 213] [330] L. Budaghyan, C. Carlet, and G. Leander. Two classes of quadratic APN binomials inequivalent to power functions. IEEE Trans. Inform. Theory, 54(9):4218– 4229, 2008. [209, 211, 213] [331] L. Budaghyan, C. Carlet, and G. Leander. Constructing new APN functions from known ones. Finite Fields Appl., 15(2):150–159, 2009. [211, 213] [332] L. Budaghyan, C. Carlet, and A. Pott. New classes of almost bent and almost perfect nonlinear polynomials. IEEE Trans. Inform. Theory, 52(3):1141–1152, 2006. [209, 211, 213] [333] L. Budaghyan and T. Helleseth. New perfect nonlinear multinomials over Fp2k for any odd prime p. In Sequences and their applications—SETA 2008, volume 5203 of Lecture Notes in Comput. Sci., pages 403–414. Springer, Berlin, 2008. [233, 234] [334] L. Budaghyan and T. Helleseth. New commutative semifields defined by new PN multinomials. Cryptogr. Commun., 3(1):1–16, 2011. [233, 234] [335] F. Buekenhout. Existence of unitals in finite translation planes of order q 2 with a kernel of order q. Geometriae Dedicata, 5(2):189–194, 1976. [483, 486] [336] F. Buekenhout. An introduction to incidence geometry. In Handbook of incidence geometry, pages 1–25. North-Holland, Amsterdam, 1995. [20] [337] F. Buekenhout, A. Delandtsheer, J. Doyen, P. B. Kleidman, M. W. Liebeck, and J. Saxl. Linear spaces with flag-transitive automorphism groups. Geom. Dedicata, 36(1):89–94, 1990. [482, 486] [338] J. Buhler and N. Koblitz. Lattice basis reduction, Jacobi sums and hyperelliptic cryptosystems. Bull. Austral. Math. Soc., 58(1):147–154, 1998. [405, 406] [339] B. Bukh and J. Tsimerman. Sum-product estimates for rational functions. Proc. London Math. Soc. [130] [340] J. R. Bunch and J. E. Hopcroft. Triangular factorization and inversion by fast matrix multiplication. Math. Comp., 28:231–236, 1974. [429, 436] [341] Bundesnetzagentur f¨ ur Elektrizit¨at, Gas, Telekommunikation, Post und Eisenbahnen. Bekanntmachung zur elektronischen Signatur nach dem Signaturgesetz

719

720

[342] [343] [344] [345] [346] [347] [348]

[349] [350]

[351] [352] [353] [354]

[355] [356] [357] [358]

[359] [360]

[361]

Handbook of Finite Fields

¨ und der Signaturverordnung (Ubersicht u ¨ber geeignete Algorithmen). Bundesanzeiger, 85, June 7:2034, 2011. [667] M. Buratti. Improving two theorems of Bose on difference families. J. Combin. Des., 3(1):15–24, 1995. [506] M. Buratti. On simple radical difference families. J. Combin. Des., 3(2):161–168, 1995. [507] M. Buratti. Old and new designs via difference multisets and strong difference families. J. Combin. Des., 7(6):406–425, 1999. [510] M. Buratti. Existence of Z-cyclic triplewhist tournaments for a prime number of players. J. Combin. Theory A, 90:315–325, 2000. [558] K. Burde. Zur Herleitung von Reziprozit¨atsgesetzen unter Benutzung von endlichen K¨ orpern. J. Reine Angew. Math., 293/294:418–427, 1977. [138] D. A. Burgess. On character sums and primitive roots. Proc. London Math. Soc. (3), 12:179–192, 1962. [147] J. F. Burkhart, N. J. Calkin, S. Gao, J. C. Hyde-Volpe, K. James, H. Maharaj, S. Manber, J. Ruiz, and E. Smith. Finite field elements of high order arising from modular curves. Des. Codes Cryptogr., 51(3):301–314, 2009. [70] M. V. D. Burmester. On the commutative non-associative division algebras of even order of L. E. Dickson. Rend. Mat. e Appl. (5), 21:143–166, 1962. [227, 229] J. F. Buss, G. S. Frandsen, and J. O. Shallit. The computational complexity of some problems of linear algebra (extended abstract). In STACS 97 (L¨ ubeck), volume 1200 of Lecture Notes in Comput. Sci., pages 451–462. Springer, Berlin, 1997. [662] M. Butler. On the reducibility of polynomials over a finite field. Quart. J. Math. Oxford, 5:102–107, 1954. [294, 299] M. C. R. Butler. The irreducible factors of f (xm ) over a finite field. J. London Math. Soc., 30:480–482, 1955. [31, 34] K. A. Byrd and T. P. Vaughan. Counting and constructing orthogonal circulants. J. Combinatorial Theory Ser. A, 24(1):34–49, 1978. [420, 424] A. Cafure and G. Matera. Improved explicit estimates on the number of solutions of equations over a finite field. Finite Fields Appl., 12(2):155–185, 2006. [152, 158] ¨ E. C ¸ ak¸cak and F. Ozbudak. Subfields of the function field of the Deligne-Lusztig curve of Ree type. Acta Arith., 115(2):133–180, 2004. [365, 366, 367] C. Caliskan and G. E. Moorhouse. Subplanes of order 3 in Hughes planes. Electron. J. Combin., 18(1):Paper 2, 8, 2011. [483, 486] C. Caliskan and B. Petrak. Subplanes of order 3 in Figueroa planes. [483, 486] J. Calmet and R. Loos. An improvement of Rabin’s probabilistic algorithm for generating irreducible polynomials over GF (p). Information Processing Letters, 11(2):94–95, Oct. 1980. [295, 299] P. J. Cameron and J. J. Seidel. Quadratic forms over GF (2). Nederl. Akad. Wetensch. Proc. Ser. A 76=Indag. Math., 35:1–8, 1973. [163] P. J. Cameron and J. H. van Lint. Designs, graphs, codes and their links, volume 22 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1991. [20] P. Candelas, X. de la Ossa, and F. Rodriguez-Villegas. Calabi-Yau manifolds over finite fields. II. In Calabi-Yau varieties and mirror symmetry (Toronto, ON,

Miscellaneous applications

[362]

[363]

[364]

[365]

[366]

[367]

[368]

[369]

[370] [371]

[372] [373] [374]

[375] [376] [377] [378]

2001), volume 38 of Fields Inst. Commun., pages 121–157. Amer. Math. Soc., Providence, RI, 2003. [386, 393] R. Canetti, J. Friedlander, S. Konyagin, M. Larsen, D. Lieman, and I. Shparlinski. On the statistical properties of Diffie-Hellman distributions. Israel J. Math., 120(part A):23–46, 2000. [147, 148] R. Canetti, J. Friedlander, and I. Shparlinski. On certain exponential sums and the distribution of Diffie-Hellman triples. J. London Math. Soc. (2), 59(3):799–812, 1999. [132, 147, 148] A. Canteaut. Analyse et conception de chiffrements ` a clef secr`ete. M´emoire d’habilitation ` a diriger des recherches, Universit´e Paris 6, Septembre 2006. [206, 213] A. Canteaut. Open problems related to algebraic attacks on stream ciphers. In Coding and cryptography, volume 3969 of Lecture Notes in Comput. Sci., pages 120–134. Springer, Berlin, 2006. [202, 204] A. Canteaut, C. Carlet, P. Charpin, and C. Fontaine. On cryptographic properties of the cosets of R(1, m). IEEE Trans. Inform. Theory, 47(4):1494–1513, 2001. [199, 204] A. Canteaut, P. Charpin, and H. Dobbertin. A new characterization of almost bent functions. In Fast Software Encryption 99, volume 1636 of LNCS, pages 186–200. Springer-Verlag, 1999. [213] A. Canteaut, P. Charpin, and H. Dobbertin. Binary m-sequences with three-valued crosscorrelation: a proof of Welch’s conjecture. IEEE Trans. Inform. Theory, 46(1):4–8, 2000. [207, 213] A. Canteaut, P. Charpin, and H. Dobbertin. Weight divisibility of cyclic codes, highly nonlinear functions on F2m , and crosscorrelation of maximum-length sequences. SIAM J. Discrete Math., 13(1):105–138 (electronic), 2000. [210, 212, 213] A. Canteaut, P. Charpin, and G. M. Kyureghyan. A new class of monomial bent functions. Finite Fields Appl., 14(1):221–241, 2008. [206, 213, 219, 224] A. Canteaut (ed.), D. Augot, C. Cid, H. Englund, H. Gilbert, M. Hell, T. Johansson, M. Parker, T. Pornin, B. Preneel, C. Rechberger, and M. Robshaw. D.STVL.9 - ongoing research areas in symmetric cryptography. ECRYPT – European NoE in Cryptology, July 2008. 108 pages. [206, 213] D. G. Cantor. Computing in the Jacobian of a hyperelliptic curve. Math. Comp., 48(177):95–101, 1987. [356, 360] D. G. Cantor and H. Zassenhaus. A new algorithm for factoring polynomials over finite fields. Math. Comp., 36(154):587–592, 1981. [653] W. Cao, L. Hu, J. Ding, and Z. Yin. Kipnis-shamir attack on unbalanced oil-vinegar scheme. In F. Bao and J. Weng, editors, ISPEC, volume 6672 of Lecture Notes in Computer Science, pages 168–180. Springer, 2011. [663] X. Cao. A note on the moments of Kloosterman sums. Appl. Algebra Engrg. Comm. Comput., 20(5-6):447–457, 2009. [111, 118] X. Cao and L. Hu. New methods for generating permutation polynomials over finite fields. Finite Fields Appl., in press. [172, 185] A. Capelli. Sulla redutibilita delle equasioni algebrique. Rend. Acad. Sci. Fis. Mat. Napoli, 3:243–252, 1897. [31, 34] M. Car. Le probl´eme de Waring pour l’anneau des polynˆomes sur un corps fini. C. R. Acad. Sci. Paris Sr. A-B, 273:A141–A144, 1971. [413, 414]

721

722

Handbook of Finite Fields

[379] M. Car. Distribution des polynˆomes irr´eductibles dans Fq [T ]. Acta Arith., 88(2):141–153, 1999. [44, 46, 49] [380] M. Car. New bounds on some parameters in the Waring problem for polynomials over a finite field. In Finite fields and applications, volume 461 of Contemp. Math., pages 59–77. Amer. Math. Soc., Providence, 2008. [413, 414] [381] M. Car and L. Gallardo. Sums of cubes of polynomials. Acta Arith., 112(1):41–50, 2004. [413, 414] [382] M. Car and L. Gallardo. Waring’s problem for polynomial biquadrates over a finite field of odd characteristic. Funct. Approx. Comment. Math., 37(1):39–50, 2007. [413, 414] [383] J.-P. Cardinal. On a property of Cauchy-like matrices. C. R. Acad. Sci. Paris S´er. I Math., 328(11):1089–1093, 1999. [434, 436] [384] I. Cardinali, O. Polverino, and R. Trombetti. Semifield planes of order q 4 with kernel Fq2 and center Fq . European J. Combin., 27(6):940–961, 2006. [228, 229] [385] C. Carlet. Recursive lower bounds on the nonlinearity profile of Boolean functions and their applications. IEEE Trans. Inform. Theory, 54(3):1262–1272, 2008. [200, 204] [386] C. Carlet. Boolean functions for cryptography and error correcting codes. In Y. Crama and P. L. Hammer, editors, Boolean Models and Methods in Mathematics, Computer Science, and Engineering, pages 257–397. Cambridge University Press, 2010. [145] [387] C. Carlet. Boolean Functions for Cryptography and Error Correcting Codes (Chapter 8). In Y. Crama and P. L. Hammer, editors, Boolean Models and Methods in Mathematics, Computer Science, and Engineering, pages 257–397. Cambridge University Press, Prel. version: http://wwwroc.inria.fr/secret/Claude.Carlet/pubs.html, 2010. [197, 198, 199, 202, 203, 204] [388] C. Carlet. Boolean Models and Methods in Mathematics, Computer Science, and Engineering, chapter Vectorial boolean functions for cryptography, pages 398– 469. Cambridge University Press,Yves Crama and Peter L. Hammer (eds.), 2010. [205, 206, 213] [389] C. Carlet, P. Charpin, and V. Zinoviev. Codes, bent functions and permutations suitable for DES-like cryptosystems. Des. Codes Cryptogr., 15(2):125–156, 1998. [207, 209, 210, 211, 212, 213] [390] C. Carlet and S. Dubuc. On generalized bent and q-ary perfect nonlinear functions. In Finite fields and applications (Augsburg, 1999), pages 81–94. Springer, Berlin, 2001. [221, 224] [391] C. Carlet and K. Feng. An infinite class of balanced functions with optimal algebraic immunity, good immunity to fast algebraic attacks and good nonlinearity. In Advances in cryptology—ASIACRYPT 2008, volume 5350 of Lecture Notes in Comput. Sci., pages 425–440. Springer, Berlin, 2008. [203, 204] [392] C. Carlet and P. Gaborit. Hyper-bent functions and cyclic codes. J. Combin. Theory Ser. A, 113(3):466–482, 2006. [221, 224] [393] C. Carlet and S. Mesnager. On Dillon’s class h of bent functions, Niho bent functions and o-polynomials. Journal of Combinatorial Theory. Series A, 2011. To appear. [220, 221, 224] [394] C. Carlet and A. Pott, editors. Sequences and Their Applications—SETA 2010,

Miscellaneous applications

[395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408] [409] [410] [411] [412] [413] [414]

[415]

[416]

volume 6338 of Lecture Notes in Computer Science, Berlin, 2010. Springer. [20] C. Carlet and B. Sunar, editors. Arithmetic of finite fields, volume 4547 of Lecture Notes in Computer Science, Berlin, 2007. Springer. [20] C. Carlet and J. L. Yucas. Piecewise constructions of bent and almost optimal Boolean functions. Des. Codes Cryptogr., 37(3):449–464, 2005. [163] L. Carlitz. The arithmetic of polynomials in a Galois field. Amer. J. Math., 54:39– 50, 1932. [50, 55] L. Carlitz. Primitive roots in a finite field. Trans. Amer. Math. Soc., 73:373–382, 1952. [92] L. Carlitz. A theorem of Dickson on irreducible polynomials. Proc. Amer. Math. Soc., 3:693–700, 1952. [25, 26, 30, 43, 48, 49] L. Carlitz. Invariantive theory of equations in a finite field. Trans. Amer. Math. Soc., 75:405–427, 1953. [186, 188] L. Carlitz. Permutations in a finite field. Proc. Amer. Math. Soc., 4:538, 1953. [194] L. Carlitz. Representations by quadratic forms in a finite field. Duke Math. J., 21:123–137, 1954. [421, 424] L. Carlitz. Representations by skew forms in a finite field. Arch. Math. (Basel), 5:19–31, 1954. [422, 424] L. Carlitz. Solvability of certain equations in a finite field. Quart. J. Math. Oxford Ser. (2), 7:3–4, 1956. [167, 170] L. Carlitz. Some theorems on irreducible reciprocal polynomials over a finite field. J. Reine Angew. Math., 227:212–220, 1967. [28, 30, 238, 242] L. Carlitz. Kloosterman sums and finite field extensions. Acta Arith., 16:179–193, 1969/1970. [112, 118] L. Carlitz, D. J. Lewis, W. H. Mills, and E. G. Straus. Polynomials over finite fields with minimal value sets. Mathematika, 8:121–130, 1961. [189, 192] L. Carlitz and S. Uchiyama. Bounds for exponential sums. Duke Math. J., 24:37–41, 1957. [267] L. Carlitz and C. Wells. The number of solutions of a special system of equations in a finite field. Acta Arith, 12:77–84, 1966/1967. [174, 185] R. Carls and D. Lubicz. A p-adic quasi-quadratic time point counting algorithm. Int. Math. Res. Not. IMRN, (4):698–735, 2009. [406] P. Cartier. Une nouvelle op´eration sur les formes diff´erentielles. C. R. Acad. Sci. Paris, 244:426–428, 1957. [401, 402] R. Casse. Projective geometry: an introduction. Oxford University Press, Oxford, 2006. [476, 486] J. W. S. Cassels. Diophantine equations with special reference to elliptic curves. J. London Math. Soc., 41:193–291, 1966. [334, 351] J. W. S. Cassels. Lectures on elliptic curves, volume 24 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1991. [19, 20, 334, 351] G. Castagnoli, S. Br¨ auer, and M. Herrmann. Optimization of cyclic redundancycheck codes with 24 and 32 parity bits. Communications, IEEE Transactions on, 41(6):883 –892, jun 1993. [522, 524, 527, 528, 531] G. Castagnoli, J. Ganz, and P. Graber. Optimum cycle redundancy-check codes with 16-bit redundancy. Communications, IEEE Transactions on, 38(1):111

723

724

Handbook of Finite Fields

–114, jan 1990. [524, 531] [417] F. N. Castro and C. J. Moreno. Mixed exponential sums over finite fields. Proc. Amer. Math. Soc., 128(9):2529–2537, 2000. [125, 127] [418] F. N. Castro, I. Rubio, P. Guan, and R. Figueroa. On systems of linear and diagonal equation of degree pi +1 over finite fields of characteristic p. Finite Fields Appl., 14(3):648–657, 2008. [169, 170] [419] F. N. Castro, I. Rubio, and J. M. Vega. Divisibility of exponential sums and solvability of certain equations over finite fields. Q. J. Math., 60(2):169–181, 2009. [168, 170] [420] W. Castryck, J. Denef, and F. Vercauteren. Computing zeta functions of nondegenerate curves. IMRP Int. Math. Res. Pap., pages Art. ID 72017, 57, 2006. [406] [421] K. Cattell, C. R. Miers, F. Ruskey, J. Sawada, and M. Serra. The number of irreducible polynomials over GF(2) with given trace and subtrace. J. Combin. Math. Combin. Comput., 47:31–64, 2003. [27, 48, 49] [422] A. Cauchy. Recherches sur les nombres. Ecole Polytechnique, 9:99–116, 1813. [168, 170] [423] S. R. Cavior. A note on octic permutation polynomials. Math. Comp., 17:450–452, 1963. [179, 185] [424] C. Cazacu and D. Simovici. A new approach of some problems concerning polynomials over finite fields. Information and Control, 22:503–511, 1973. [37, 38] [425] A. C ¸ e¸smelio˘ glu, W. Meidl, and A. Topuzo˘glu. On the cycle structure of permutation polynomials. Finite Fields Appl., 14(3):593–614, 2008. [184, 185] [426] F. Chabaud and S. Vaudenay. Links between differential and linear cryptanalysis. In Advances in cryptology—EUROCRYPT ’94 (Perugia), volume 950 of Lecture Notes in Comput. Sci., pages 356–365. Springer, Berlin, 1995. [205, 207, 213] [427] W. Chambers. Solution of Welch-Berlekamp key equation by Euclidean algorithm. Electronics Letters, 29:1031, 1993. [595, 602] [428] A. Chambert-Loir. Compter (rapidement) le nombre de solutions d’´equations dans les corps finis. Ast´erisque, (317):Exp. No. 968, vii, 39–90, 2008. S´eminaire Bourbaki. Vol. 2006/2007. [406] [429] D. B. Chandler and Q. Xiang. The invariant factors of some cyclic difference sets. J. Combin. Theory Ser. A, 101(1):131–146, 2003. [109, 118] [430] C.-Y. Chang, M. A. Papanikolas, D. S. Thakur, and J. Yu. Algebraic independence of arithmetic gamma values and Carlitz zeta values. Adv. Math., 223(4):1137– 1154, 2010. [458] [431] C.-Y. Chang and J. Yu. Determination of algebraic relations among special zeta values in positive characteristic. Adv. Math., 216(1):321–345, 2007. [454, 458] [432] M.-C. Chang. On a question of Davenport and Lewis and new character sum bounds in finite fields. Duke Math. J., 145(3):409–442, 2008. [134] [433] M.-C. Chang and C. Z. Yao. An explicit bound on double exponential sums related to Diffie-Hellman distributions. SIAM J. Discrete Math., 22(1):348–359, 2008. [132, 148] [434] Y. Chang, W.-S. Chou, and P. J.-S. Shiue. On the number of primitive polynomials over finite fields. Finite Fields Appl., 11(1):156–163, 2005. [59] [435] R. Chapman. Completely normal elements in iterated quadratic extensions of finite fields. Finite Fields Appl., 3(1):1–10, 1997. [31, 34, 94, 238, 242]

Miscellaneous applications [436] P. Charpin. Handbook of Coding Theory, chapter Open problems on cyclic codes, pages 963–1063. elsevier, V.S. Pless and C.W. Huffman (eds.), R.A. Brualdi (ass. ed., 1998. [210, 212, 213] [437] P. Charpin and G. Gong. Hyperbent functions, Kloosterman sums, and Dickson polynomials. IEEE Trans. Inform. Theory, 54(9):4230–4238, 2008. [221, 223, 224] [438] P. Charpin, T. Helleseth, and V. Zinoviev. Divisibility properties of classical binary Kloosterman sums. Discrete Math., 309(12):3975–3984, 2009. [111, 118] [439] P. Charpin and G. Kyureghyan. When does G(x) + γTr(H(x)) permute Fpn ? Finite Fields Appl., 15(5):615–632, 2009. [181, 185] [440] P. Charpin and G. M. Kyureghyan. On a class of permutation polynomials over F2n . In Sequences and their applications—SETA 2008, volume 5203 of Lecture Notes in Comput. Sci., pages 368–376. Springer, Berlin, 2008. [181, 185] [441] S. Chatterjee and A. Menezes. On cryptographic protocols employing asymmetric pairings – the role of ψ revisited. To appear in Discrete Applied Mathematics, http://eprint.iacr.org/2009/480/, 2011. [674] [442] H. Chen. Fast algorithms for determining the linear complexity of sequences over GF(pm ) with period 2t n. IEEE Trans. Inform. Theory, 51(5):1854–1856, 2005. [274, 281] [443] H. Chen. Reducing the computation of linear complexities of periodic sequences over GF(pm ). IEEE Trans. Inform. Theory, 52(12):5537–5539, 2006. [274, 281] [444] J. Chen and T. Wang. On the Goldbach problem. Acta Math. Sinica, 32(5):702–718, 1989. [411] [445] J.-M. Chen and T.-T. Moh. On the Goubin-Courtois attack on TTM. Cryptology ePrint Archive, 2001. http://eprint.iacr.org/2001/072. [657] [446] J.-M. Chen and B.-Y. Yang. A more secure and efficacious TTS signature scheme. In Information security and cryptology—ICISC 2003, volume 2971 of Lecture Notes in Comput. Sci., pages 320–338. Springer, Berlin, 2004. [655, 658] [447] J.-M. Chen, B.-Y. Yang, and B.-Y. Peng. Tame transformation signatures with topsy-yurvy hashes. In IWAP’02, pages 1–8, 2002. http://dsns.csie.nctu.edu.tw/iwap/proceedings/proceedings/sessionD/7.pdf. [658] [448] K. Chen and L. Zhu. Existence of APAV(q, k) with q a prime power ≡ 3 (mod 4) and k odd > 1. J. Combin. Des., 7(1):57–68, 1999. [551] [449] Y. Chen. The Steiner system S(3, 6, 26). J Geometry, 2:7–28, 1972. [501] [450] Y. Q. Chen. A construction of difference sets. Des. Codes Cryptogr., 13(3):247–250, 1998. [518, 519] [451] Q. Cheng. Constructing finite field extensions with large order elements. SIAM J. Discrete Math., 21(3):726–730 (electronic), 2007. [69, 70] [452] Q. Cheng, S. Gao, and D. Wan. Constructing high order elements through subspace polynomials. To appear in ACM-SIAM Symposium on Discrete Algorithms SODA’12. [70] [453] G. Ch`eze. Des m´ethodes symboliques-num´eriques et exactes pour la factorisation absolue des polynˆ omes en deux variables. PhD thesis, Universit´e de Nice-Sophia Antipolis (France), 2004. [305, 311] [454] G. Ch`eze and G. Lecerf. Lifting and recombination techniques for absolute factorization. J. Complexity, 23(3):380–420, 2007. [303, 311]

725

726

Handbook of Finite Fields

[455] K. Chinen and T. Hiramatsu. Hyper-Kloosterman sums and their applications to the coding theory. Appl. Algebra Engrg. Comm. Comput., 12(5):381–390, 2001. [111, 118] [456] A. Chistov. Polynomial time construction of a finite field. In In Abstracts of Lectures at 7th All-Union Conference in Mathematical Logic, page 196, Novosibirsk, USSR, 1984. In Russian. [297, 299] [457] H. T. Choi and R. Evans. Congruences for sums of powers of Kloosterman sums. Int. J. Number Theory, 3(1):105–117, 2007. [114, 118] [458] B. C. Chong and K. M. Chan. On the existence of normalized room squares. Nanta Math., 7(1):8–17, 1974. [554] [459] W. S. Chou. Permutation polynomials on finite fields and their combinatorial applications, Ph.D. Thesis, Penn. State Univ., University Park, PA. PhD thesis, 1990. [184, 185] [460] W. S. Chou. The period lengths of inversive pseudorandom vector generations. Finite Fields Appl., 1(1):126–132, 1995. [184, 185] [461] W.-S. Chou. The factorization of Dickson polynomials over finite fields. Finite Fields Appl., 3(1):84–96, 1997. [236, 242] [462] W.-S. Chou and S. D. Cohen. Primitive elements with zero traces. Finite Fields Appl., 7(1):125–141, 2001. Dedicated to Professor Chao Ko on the occasion of his 90th birthday. [62, 65] [463] W. S. Chou, J. Gomez-Calderon, and G. L. Mullen. Value sets of Dickson polynomials over finite fields. J. Number Theory, 30(3):334–344, 1988. [191, 192] [464] S. Chowla and H. J. Ryser. Combinatorial problems. Canadian J. Math., 2:93–99, 1950. [513, 519] [465] S. Chowla and H. Zassenhaus. Some conjectures concerning finite fields. Norske Vid. Selsk. Forh. (Trondheim), 41:34–35, 1968. [184] [466] W. Chu and C. J. Colbourn. Optimal frequency-hopping sequences via cyclotomy. IEEE Trans. Inform. Theory, 51(3):1139–1141, 2005. [698, 701] [467] F. R. K. Chung. Diameters and eigenvalues. J. Amer. Math. Soc., 2(2):187–196, 1989. [534, 545] [468] F. R. K. Chung, J. A. Salehi, and V. K. Wei. Optical orthogonal codes: design, analysis, and applications. IEEE Trans. Inform. Theory, 35(3):595–604, 1989. [696, 697, 701] [469] J.-H. Chung and K. Yang. Bounds on the linear complexity and the 1-error linear complexity over Fp of M -ary Sidel0 nikov sequences. In Sequences and their applications—SETA 2006, volume 4086 of Lecture Notes in Comput. Sci., pages 74–87. Springer, Berlin, 2006. [279, 281] [470] J. Cilleruelo. Combinatorial problems in finite fields and sidon sets. Combinatorica. [133] [471] S. M. Cioaba. Eigenvalues, expanders and gaps between primes. ProQuest LLC, Ann Arbor, MI, 2006. Thesis (Ph.D.)–Queen’s University (Canada). [538, 544, 545] [472] S. M. Cioab˘ a. Eigenvalues of graphs and a simple proof of a theorem of Greenberg. Linear Algebra Appl., 416(2-3):776–782, 2006. [538, 545] [473] S. M. Cioab˘ a. On the extreme eigenvalues of regular graphs. J. Combin. Theory Ser. B, 96(3):367–373, 2006. [538, 545] [474] S. M. Cioab˘ a and M. R. Murty. Expander graphs and gaps between primes. Forum Math., 20(4):745–756, 2008. [544, 545]

Miscellaneous applications [475] J. A. Cipra. Waring’s number in a finite field. Integers, 9:A34, 435–440, 2009. [140, 169, 170] [476] J. A. Cipra, T. Cochrane, and C. Pinner. Heilbronn’s conjecture on Waring’s number (mod p). J. Number Theory, 125(2):289–297, 2007. [168, 169, 170] [477] M. Cipu. Dickson polynomials that are permutations. Serdica Math. J., 30(2-3):177– 194, 2004. [182, 185] [478] M. Cipu and S. D. Cohen. Dickson polynomial permutations. In Finite fields and applications, volume 461 of Contemp. Math., pages 79–90. Amer. Math. Soc., Providence, RI, 2008. [182, 185] [479] T. Cochrane, J. Coffelt, and C. Pinner. A further refinement of Mordell’s bound on exponential sums. Acta Arith., 116(1):35–41, 2005. [132] [480] T. Cochrane, M.-C. Liu, and Z. Zheng. Upper bounds on n-dimensional Kloosterman sums. J. Number Theory, 106(2):259–274, 2004. [117, 118] [481] T. Cochrane and C. Pinner. Sum-product estimates applied to Waring’s problem mod p. Integers, 8:A46, 18, 2008. [134, 169, 170] [482] T. Cochrane and Z. Zheng. A survey on pure and mixed exponential sums modulo prime powers. In Number theory for the millennium, I (Urbana, IL, 2000), pages 273–300. A K Peters, Natick, MA, 2002. [117, 118] [483] H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, and F. Vercauteren, editors. Handbook of Elliptic and Hyperelliptic Curve Cryptography. Discrete Mathematics and Its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton, FL, 2006. [19, 20, 354, 355, 356, 357, 358, 359, 360, 666, 670] [484] S. Cohen and H. Niederreiter, editors. Finite fields and applications, volume 233 of London Mathematical Society Lecture Note Series, Cambridge, 1996. Cambridge University Press. [20] [485] S. D. Cohen. The distribution of irreducible polynomials in several indeterminates over a finite field. Proc. Edinburgh Math. Soc. (2), 16:1–17, 1968/1969. [51, 52, 55] [486] S. D. Cohen. On irreducible polynomials of certain types in finite fields. Proc. Cambridge Philos. Soc., 66:335–344, 1969. [28, 29, 30, 31, 34] [487] S. D. Cohen. The distribution of polynomials over finite fields. Acta Arith., 17:255– 271, 1970. [40, 184, 185, 190, 192, 193] [488] S. D. Cohen. Some arithmetical functions in finite fields. Glasgow Math. J., 11:21– 36, 1970. [50, 53, 55] [489] S. D. Cohen. Uniform distribution of polynomials over finite fields. J. London Math. Soc. (2), 6:93–102, 1972. [47, 49] [490] S. D. Cohen. The reducibility theorem for linearised polynomials over finite fields. Bull. Austral. Math. Soc., 40(3):407–412, 1989. [35] [491] S. D. Cohen. Windmill polynomials over fields of characteristic two. Monatsh. Math., 107(4):291–301, 1989. [37, 38, 58, 59] [492] S. D. Cohen. Primitive elements and polynomials with arbitrary trace. Discrete Math., 83(1):1–7, 1990. [62, 65] [493] S. D. Cohen. Proof of a conjecture of Chowla and Zassenhaus on permutation polynomials. Canad. Math. Bull., 33(2):230–234, 1990. [184, 185] [494] S. D. Cohen. Permutation polynomials and primitive permutation groups. Arch. Math. (Basel), 57(5):417–423, 1991. [174] [495] S. D. Cohen. The explicit construction of irreducible polynomials over finite fields.

727

728

Handbook of Finite Fields

Des. Codes Cryptogr., 2(2):169–174, 1992. [31, 33, 34, 238, 242] [496] S. D. Cohen. Dickson polynomials of the second kind that are permutations. Canad. J. Math., 46(2):225–238, 1994. [182, 185] [497] S. D. Cohen. Dickson permutations. In Number-theoretic and algebraic methods in computer science (Moscow, 1993), pages 29–51. World Sci. Publ., River Edge, NJ, 1995. [182, 185] [498] S. D. Cohen. Permutation group theory and permutation polynomials. In Algebras and combinatorics (Hong Kong, 1997), pages 133–146. Springer, Singapore, 1999. [172, 185] [499] S. D. Cohen. Gauss sums and a sieve for generators of Galois fields. Publ. Math. Debrecen, 56(3-4):293–312, 2000. Dedicated to Professor K´alm´an GyHory on the occasion of his 60th birthday. [58, 59, 62, 63, 65] [500] S. D. Cohen. Kloosterman sums and primitive elements in Galois fields. Acta Arith., 94(2):173–201, 2000. [62, 65] [501] S. D. Cohen. Primitive polynomials over small fields. In Finite fields and applications, volume 2948 of Lecture Notes in Comput. Sci., pages 197–214. Springer, Berlin, 2004. [62, 65] [502] S. D. Cohen. Explicit theorems on generator polynomials. Finite Fields Appl., 11(3):337–357, 2005. [31, 33, 34, 46, 49] [503] S. D. Cohen. Primitive polynomials with a prescribed coefficient. Finite Fields Appl., 12(3):425–491, 2006. [61, 62, 65] [504] S. D. Cohen and M. D. Fried. Lenstra’s proof of the Carlitz-Wan conjecture on exceptional polynomials: an elementary version. Finite Fields Appl., 1(3):372– 375, 1995. [174, 185] [505] S. D. Cohen and M. J. Ganley. Commutative semifields, two-dimensional over their middle nuclei. J. Algebra, 75(2):373–385, 1982. [228, 229, 233, 234] [506] S. D. Cohen and D. Hachenberger. Primitive normal bases with prescribed trace. Appl. Algebra Engrg. Comm. Comput., 9(5):383–403, 1999. [57, 59] [507] S. D. Cohen and D. Hachenberger. Primitivity, freeness, norm and trace. Discrete Math., 214(1-3):135–144, 2000. [62, 63, 65] [508] S. D. Cohen and S. Huczynska. Primitive free quartics with specified norm and trace. Acta Arith., 109(4):359–385, 2003. [58, 59, 62, 63, 65] [509] S. D. Cohen and S. Huczynska. The primitive normal basis theorem—without a computer. J. London Math. Soc. (2), 67(1):41–56, 2003. [63, 65] [510] S. D. Cohen and S. Huczynska. The strong primitive normal basis theorem. Acta Arith., 143(4):299–332, 2010. [64, 65] [511] S. D. Cohen and C. King. The three fixed coefficient primitive polynomial theorem. JP J. Algebra Number Theory Appl., 4(1):79–87, 2004. [62, 65] [512] S. D. Cohen and R. W. Matthews. A class of exceptional polynomials. Trans. Amer. Math. Soc., 345(2):897–909, 1994. [254, 255] [513] S. D. Cohen and D. Mills. Primitive polynomials with first and second coefficients prescribed. Finite Fields Appl., 9(3):334–350, 2003. [62] [514] S. D. Cohen, G. L. Mullen, and P. J.-S. Shiue. The difference between permutation polynomials over finite fields. Proc. Amer. Math. Soc., 123(7):2011–2015, 1995. [184, 185] [515] S. D. Cohen and M. Preˇsern. Primitive finite field elements with prescribed trace. Southeast Asian Bull. Math., 29(2):283–300, 2005. [62, 65]

Miscellaneous applications [516] S. D. Cohen and M. Preˇsern. Primitive polynomials with prescribed second coefficient. Glasg. Math. J., 48(2):281–307, 2006. [62] [517] S. D. Cohen and M. Preˇsern. The Hansen-Mullen primitive conjecture: completion of proof. In Number theory and polynomials, volume 352 of London Math. Soc. Lecture Note Ser., pages 89–120. Cambridge Univ. Press, Cambridge, 2008. [62, 65] [518] C. J. Colbourn. Covering arrays from cyclotomy. Des. Codes Cryptogr., 55(2-3):201– 219, 2010. [549] [519] C. J. Colbourn. Covering arrays and hash families. In Information Security and Related Combinatorics, NATO Peace and Information Security, pages 99–136. IOS Press, 2011. [549] [520] C. J. Colbourn and J. H. Dinitz. The CRC Handbook of Combinatorial Designs. CRC Press, 1996. [20, 264] [521] C. J. Colbourn and J. H. Dinitz, editors. Handbook of combinatorial designs. Discrete Mathematics and its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton, FL, second edition, 2007. [20, 462, 463, 466, 467, 476, 484, 485, 486, 512, 519] [522] C. J. Colbourn and J. H. Dinitz, editors. Handbook of Combinatorial Designs. CRC/Chapman and Hall, Boca Raton FL, second edition, 2007. [20, 509, 511, 556, 558] [523] C. J. Colbourn and A. C. H. Ling. Linear hash families and forbidden configurations. Des. Codes Cryptogr., 52(1):25–55, 2009. [552] [524] C. J. Colbourn and A. Rosa. Triple systems. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 1999. [503, 507] [525] Computational Algebra Group, University of Sydney. The MAGMA computational algebra system for algebra, number theory and geometry. http://magma. maths.usyd.edu.au/magma/, 2005. [664] [526] A. Conflitti. On elements of high order in finite fields. In Cryptography and computational number theory (Singapore, 1999), volume 20 of Progr. Comput. Sci. Appl. Logic, pages 11–14. Birkh¨auser, Basel, 2001. [69, 70] [527] K. Conrad. Jacobi sums and Stickelberger’s congruence. Enseign. Math. (2), 41(12):141–153, 1995. [109, 118] [528] K. Conrad. On Weil’s proof of the bound for Kloosterman sums. J. Number Theory, 97(2):439–446, 2002. [111, 112, 118] [529] S. Contini and I. E. Shparlinski. On stern’s attack against secret truncated linear congruential generators. 3574:52–60, 2005. [283, 289] [530] D. Coppersmith. Solving homogeneous linear equations over GF(2) via block Wiedemann algorithm. Math. Comp., 62(205):333–350, 1994. [436] [531] D. Coppersmith, J. Stern, and S. Vaudenay. The security of the birational permutation signature schemes. J. Cryptology, 10(3):207–221, 1997. [652, 658, 662] [532] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. J. Symbolic Comput., 9(3):251–280, 1990. [425, 436] [533] R. Coulter, M. Henderson, and R. Matthews. A note on constructing permutation polynomials. Finite Fields Appl., 15(5):553–557, 2009. [180, 185] [534] R. S. Coulter. The classification of planar monomials over fields of prime square order. Proc. Amer. Math. Soc., 134(11):3373–3378 (electronic), 2006. [232, 234]

729

730

Handbook of Finite Fields

[535] R. S. Coulter and M. Henderson. The compositional inverse of a class of permutation polynomials over a finite field. Bull. Austral. Math. Soc., 65(3):521–526, 2002. [184, 185] [536] R. S. Coulter and M. Henderson. Commutative presemifields and semifields. Adv. Math., 217(1):282–304, 2008. [229, 233, 234] [537] R. S. Coulter, M. Henderson, and P. Kosick. Planar polynomials for commutative semifields with specified nuclei. Des. Codes Cryptogr., 44(1-3):275–286, 2007. [228, 229, 233, 234] [538] R. S. Coulter and P. Kosick. Commutative semifields of order 243 and 3125. In Finite fields: theory and applications, volume 518 of Contemp. Math., pages 129–136. Amer. Math. Soc., Providence, RI, 2010. [227, 229] [539] R. S. Coulter and F. Lazebnik. On the classification of planar monomials over fields of square order. submitted. [229, 232, 233] [540] R. S. Coulter and R. W. Matthews. Planar functions and planes of Lenz-Barlotti class II. Des. Codes Cryptogr., 10(2):167–184, 1997. [221, 224, 231, 232, 234] [541] R. S. Coulter and R. W. Matthews. On the permutation behaviour of Dickson polynomials of the second kind. Finite Fields Appl., 8(4):519–530, 2002. [182, 185] [542] R. S. Coulter and R. W. Matthews. On the number of distinct values of a class of functions over a finite field. Finite Fields Appl., 17(3):220–224, 2011. [232, 234] [543] N. Courtois, L. Goubin, W. Meier, and J.-D. Tacier. Solving underdefined systems of multivariate quadratic equations. In 2002, volume 2274 of Lecture Notes in Computer Science, pages 211–227. David Naccache and Pascal Paillier, editors, 2002. [663] [544] N. Courtois, L. Goubin, and J. Patarin. SFLASH: Primitive specification (second revised version), 2002. https://www.cosic.esat.kuleuven.be/nessie, Submissions, Sflash, 11 pages. [656] [545] N. Courtois, A. Klimov, J. Patarin, and A. Shamir. Efficient algorithms for solving overdefined systems of multivariate polynomial equations. In Advances in cryptology—EUROCRYPT 2000 (Bruges), volume 1807 of Lecture Notes in Comput. Sci., pages 392–407. Springer, Berlin, 2000. [662, 664] [546] N. T. Courtois. Fast algebraic attacks on stream ciphers with linear feedback. In Advances in cryptology—CRYPTO 2003, volume 2729 of Lecture Notes in Comput. Sci., pages 176–194. Springer, Berlin, 2003. [202, 204] [547] N. T. Courtois. Algebraic attacks over GF(2k ), application to HFE Challenge 2 and Sflash-v2. In Public key cryptography—PKC 2004, volume 2947 of Lecture Notes in Comput. Sci., pages 201–217. Springer, Berlin, 2004. [664] [548] N. T. Courtois, M. Daum, and P. Felke. On the security of HFE, HFEv- and Quartz. In Public key cryptography—PKC 2003, volume 2567 of Lecture Notes in Comput. Sci., pages 337–350. Springer, Berlin, 2002. [654, 662] [549] N. T. Courtois and W. Meier. Algebraic attacks on stream ciphers with linear feedback. In Advances in cryptology—EUROCRYPT 2003, volume 2656 of Lecture Notes in Comput. Sci., pages 345–359. Springer, Berlin, 2003. [201, 204] [550] N. T. Courtois and J. Patarin. About the XL algorithm over GF(2). In Topics in cryptology—CT-RSA 2003, volume 2612 of Lecture Notes in Comput. Sci., pages 141–157. Springer, Berlin, 2003. [664]

Miscellaneous applications [551] N. T. Courtois and J. Pieprzyk. Cryptanalysis of block ciphers with overdefined systems of equations. In Advances in cryptology—ASIACRYPT 2002, volume 2501 of Lecture Notes in Comput. Sci., pages 267–287. Springer, Berlin, 2002. [664, 665] [552] J. Couveignes and R. Lercier. Fast construction of irreducible polynomials over finite fields. Israel Journal of Mathematics, 2011. To appear. ArXiv:0905.1642v2. [297, 299] [553] J.-M. Couveignes and T. Henocq. Action of modular correspondences around CM points. In C. Fieker and D. R. Kohel, editors, Algorithmic Number Theory — ANTS-V, volume 2369 of Lecture Notes in Computer Science, pages 234–243, Berlin, 2002. Springer-Verlag. [669] [554] J.-M. Couveignes and J.-G. Kammerer. The geometry of flex tangents to a cubic curve and its parameterizations. Preprint ArXiv 1101.3630v1, 2011. [679] [555] D. Cox, J. Little, and D. O’Shea. Ideals, varieties, and algorithms. Undergraduate Texts in Mathematics. Springer, New York, third edition, 2007. An introduction to computational algebraic geometry and commutative algebra. [684, 692] [556] R. Crandall and C. Pomerance. Prime numbers: a computational perspective. 2nd edition. Springer, New York, 2005. [410, 414] [557] R. M. Crew. Etale p-covers in characteristic p. Compositio Math., 52(1):31–45, 1984. [401, 402] [558] C. Culbert and G. L. Ebert. Circle geometry and three-dimensional subregular translation planes. Innov. Incidence Geom., 1:3–18, 2005. [480, 486] [559] T. W. Cusick. Value sets of some polynomials over finite fields GF(22m ). SIAM J. Comput., 27(1):120–131 (electronic), 1998. [191, 192] [560] T. W. Cusick. Polynomials over base 2 finite fields with evenly distributed values. Finite Fields Appl., 11(2):278–291, 2005. [191, 192] [561] T. W. Cusick, C. Ding, and A. Renvall. Stream ciphers and number theory, volume 66 of North-Holland Mathematical Library. Elsevier Science B.V., Amsterdam, revised edition, 2004. [19, 20, 272, 273, 279, 281] [562] T. W. Cusick and P. M¨ uller. Wan’s bound for value sets of polynomials. In Finite fields and applications (Glasgow, 1995), volume 233 of London Math. Soc. Lecture Note Ser., pages 69–72. Cambridge Univ. Press, Cambridge, 1996. [189, 191, 192] [563] S. Czapor, K. Geddes, and G. Labahn. Algorithms for Computer Algebra. Kluwer Academic Publishers, 1992. [20, 301, 311] [564] E. D. D. Bernstein, J. Buchmann. Post-quantum cryptography. Springer, 2009. Chapter: Multivariate public key cryptography by J. Ding and B. Yang. [648] [565] J. Daemen and V. Rijmen. The design of Rijndael: AES – the Advanced Encryption Standard. Springer-Verlag, 2002. [19, 20, 635, 644, 645, 647] [566] X. Dahan and J.-P. Tillich. Ramanujan graphs of very large girth based on octonions, 2010. [540, 545] [567] Z. Dai. Multi-continued fraction algorithms and their applications to sequences. In Sequences and their applications—SETA 2006, volume 4086 of Lecture Notes in Comput. Sci., pages 17–33. Springer, Berlin, 2006. [275, 281] [568] Z. Dai and X. Feng. Classification and counting on multi-continued fractions and its application to multi-sequences. Sci. China Ser. F, 50(3):351–358, 2007. [275, 281] [569] Z. Dai, K. Wang, and D. Ye. Multi-continued fraction algorithm on multi-formal

731

732

Handbook of Finite Fields

Laurent series. Acta Arith., 122(1):1–16, 2006. [275, 281] [570] Z. Dai and J. Yang. Multi-continued fraction algorithm and generalized B-M algorithm over Fq . Finite Fields Appl., 12(3):379–402, 2006. [275, 281] [571] A. Danilevsky. The numerical solution of the secular equation. Matem. sbornik, 44(2):169–171, 1937. In Russian. [294, 299] [572] P. Das. The number of permutation polynomials of a given degree over a finite field. Finite Fields Appl., 8(4):478–490, 2002. [175, 185] [573] P. Das. The number of polynomials of a given degree over a finite field with value sets of a given cardinality. Finite Fields Appl., 9(2):168–174, 2003. [191, 192] [574] P. Das. Value sets of polynomials and the Cauchy Davenport theorem. Finite Fields Appl., 10(1):113–122, 2004. [191, 192] [575] P. Das and G. L. Mullen. Value sets of polynomials over finite fields. In Finite fields with applications to coding theory, cryptography and related areas (Oaxaca, 2001), pages 80–85. Springer, Berlin, 2002. [190, 192] [576] H. Davenport. Bases for finite fields. J. London Math. Soc., 43:21–39, 1968. [92] [577] H. Davenport and D. J. Lewis. Notes on congruences. I. Quart. J. Math. Oxford Ser. (2), 14:51–60, 1963. [194, 245, 255] ´ Tournier. Calcul formel : syst`emes et algorithmes [578] J. H. Davenport, Y. Siret, and E. de manipulations alg´ebriques. Masson, Paris, France, 1987. [301, 311] [579] J. H. Davenport and B. M. Trager. Factorization over finitely generated fields. In SYMSAC’81: Proceedings of the fourth ACM symposium on Symbolic and algebraic computation, pages 200–205. ACM Press, 1981. [306, 311] [580] G. Davidoff, P. Sarnak, and A. Valette. Elementary number theory, group theory, and Ramanujan graphs, volume 55 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 2003. [545] [581] J. A. Davis. Difference sets in abelian 2-groups. J. Combin. Theory Ser. A, 57(2):262–286, 1991. [517, 519] [582] J. A. Davis and J. Jedwab. A unifying construction for difference sets. J. Combin. Theory Ser. A, 80(1):13–78, 1997. [518, 519] [583] J. A. Davis and J. Jedwab. Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes. IEEE Trans. Inform. Theory, 45(7):2397–2417, 1999. [696, 701] [584] E. Dawson and L. Simpson. Analysis and design issues for synchronous stream ciphers. In Coding theory and cryptology (Singapore, 2001), volume 1 of Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., pages 49–90. World Sci. Publ., River Edge, NJ, 2002. [271, 281] [585] J. De Beule and L. Storme. Current Research Topics in Galois Geometry. Nova Academic Publishers, New York, 2011. [20] [586] J. De Beule and L. Storme. Current research topics in Galois geometry. NOVA Academic Publishers, Inc., New York, 2012. [20, 485, 486] [587] P. de la Harpe and A. Musitelli. Expanding graphs, Ramanujan graphs, and 1-factor perturbations. Bull. Belg. Math. Soc. Simon Stevin, 13(4):673–680, 2006. [544, 545] [588] M. J. de Resmini and N. Hamilton. Hyperovals and unitals in Figueroa planes. European J. Combin., 19(2):215–220, 1998. [484, 486] [589] P. Deligne. Les constantes des ´equations fonctionnelles des fonctions L. In Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp,

Miscellaneous applications

[590] [591]

[592]

[593] [594] [595]

[596] [597] [598] [599]

[600]

[601]

[602]

[603] [604] [605] [606]

[607]

Antwerp, 1972), pages 501–597. Lecture Notes in Math., Vol. 349. Springer, Berlin, 1973. [393] ´ P. Deligne. La conjecture de Weil. I. Inst. Hautes Etudes Sci. Publ. Math., (43):273– 307, 1974. [120, 127, 153, 155, 158, 384, 387, 390, 393] P. Deligne. Applications de la formule des traces aux sommes trigonometriques, rm in Cohomologie ´etale. Lecture Notes in Mathematics, Vol. 569. SpringerVerlag, Berlin, 1977. S´eminaire de G´eom´etrie Alg´ebrique du Bois-Marie SGA 41øer2, Avec la collaboration de J. F. Boutot, A. Grothendieck, L. Illusie et J. L. Verdier. [126] P. Deligne. Cohomologie ´etale. Lecture Notes in Mathematics, Vol. 569. SpringerVerlag, Berlin, 1977. S´eminaire de G´eom´etrie Alg´ebrique du Bois-Marie SGA 41øer2, Avec la collaboration de J. F. Boutot, A. Grothendieck, L. Illusie et J. L. Verdier. [20, 385, 386, 389, 390, 392, 393] ´ P. Deligne. La conjecture de Weil. II. Inst. Hautes Etudes Sci. Publ. Math., (52):137– 252, 1980. [387, 390, 393, 394] P. Delsarte. An algebraic approach to the association schemes of coding theory. Philips Res. Rep. Suppl., (10):vi+97, 1973. [204] P. Delsarte. Four fundamental parameters of a code and their combinatorial significance. Information and Control, 23:407–438, 1973. [520, 531, 563, 564, 565, 573, 591, 602] P. Delsarte. On subfield subcodes of modified Reed-Solomon codes. IEEE Trans. Information Theory, IT-21(5):575–576, 1975. [569, 584, 602] P. Delsarte. Bilinear forms over a finite field, with applications to coding theory. J. Combin. Theory Ser. A, 25(3):226–241, 1978. [699, 701] P. Delsarte and J.-M. Goethals. Alternating bilinear forms over GF (q). J. Combinatorial Theory Ser. A, 19:26–50, 1975. [601, 602] P. Delsarte, J.-M. Goethals, and F. J. MacWilliams. On generalized Reed-Muller codes and their relatives. Information and Control, 16:403–442, 1970. [586, 602] P. Delsarte and V. I. Levenshtein. Association schemes and coding theory. IEEE Trans. Inform. Theory, 44(6):2477–2504, 1998. Information theory: 1948–1998. [591, 602] E. D. Demaine, M. L. Demaine, and T. Rodgers, editors. A lifetime of puzzles. A K Peters Ltd., Wellesley, MA, 2008. A collection of puzzles in honor of Martin Gardner’s 90th birthday. [531, 734] P. Dembowski. Finite geometries. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 44. Springer-Verlag, Berlin, 1968. [16, 20, 225, 229, 476, 479, 486, 501, 503] P. Dembowski and T. G. Ostrom. Planes of order n with collineation groups of order n2 . Math. Z., 103:239–258, 1968. [206, 213, 231, 232, 234] U. Dempwolff. Semifield planes of order 81. J. Geom., 89(1-2):1–16, 2008. [227, 229] U. Dempwolff and M. R¨ oder. On finite projective planes defined by planar monomials. Innov. Incidence Geom., 4:103–108, 2006. [231, 232, 234] J. Denef and F. Loeser. Weights of exponential sums, intersection cohomology, and Newton polyhedra. Invent. Math., 106(2):275–294, 1991. [122, 127, 154, 158, 391, 393] J. Denef and F. Loeser. Character sums associated to finite Coxeter groups. Trans.

733

734

Handbook of Finite Fields

Amer. Math. Soc., 350(12):5047–5066, 1998. [103, 118] [608] J. Denef and F. Loeser. Definable sets, motives and p-adic integrals. J. Amer. Math. Soc., 14(2):429–469 (electronic), 2001. [254, 255] [609] J. Denef and F. Vercauteren. An extension of Kedlaya’s algorithm to Artin-Schreier curves in characteristic 2. In Algorithmic number theory (Sydney, 2002), volume 2369 of Lecture Notes in Comput. Sci., pages 308–323. Springer, Berlin, 2002. [358, 360] [610] J. Denef and F. Vercauteren. Counting points on Cab curves using MonskyWashnitzer cohomology. Finite Fields Appl., 12(1):78–102, 2006. [406] [611] J. Denef and F. Vercauteren. An extension of Kedlaya’s algorithm to hyperelliptic curves in characteristic 2. J. Cryptology, 19(1):1–25, 2006. [358, 360, 406] [612] J. D´enes and A. D. Keedwell. Latin squares and their applications. Academic Press, New York, 1974. [467] [613] J. D´enes and A. D. Keedwell. Latin squares, volume 46 of Annals of Discrete Mathematics. North-Holland Publishing Co., Amsterdam, 1991. New developments in the theory and applications, With contributions by G. B. Belyavskaya, A. E. Brouwer, T. Evans, K. Heinrich, C. C. Lindner and D. A. Preece, With a foreword by Paul ErdHos. [20, 467] [614] R. H. F. Denniston. Some maximal arcs in finite projective planes. J. Combinatorial Theory, 6:317–319, 1969. [484, 486] [615] R. H. F. Denniston. Uniqueness of the inverse plane of order 5. Manuscripta Math., 8:11–19, 1973. [501] [616] R. H. F. Denniston. Uniqueness of the inversive plane of order 7. Manuscripta Math., 8:21–26, 1973. [501] [617] a. C.-Y. S. Derrcik Hart, Liangpan Li. Fourier analysis and expanding phenomena in finite fields. Proc. Amer. Math. Soc. [130] [618] J.-M. Deshouillers, G. Effinger, H. te Riele, and D. Zinoviev. A complete Vinogradov 3-primes theorem under the Riemann hypothesis. Electron. Res. Announc. Amer. Math. Soc., 3:99–104, 1997. [411, 414] [619] M. Deuring. Die Typen der Multiplikatorenringe elliptischer Funktionenk¨orper. Abh. Math. Sem. Hansischen Univ., 14:197–272, 1941. [342, 351] [620] M. Dewar, L. Moura, D. Panario, B. Stevens, and Q. Wang. Division of trinomials by pentanomials and orthogonal arrays. Des. Codes Cryptogr., 45(1):1–17, 2007. [528, 529, 531] [621] A. D´iaz and E. Kaltofen. FoxBox a system for manipulating symbolic objects in black box representation. In ISSAC ’98: Proceedings of the 1998 International Symposium on Symbolic and Algebraic Computation, pages 30–37, 1998. [311] [622] J. W. Di Paola. On minimum blocking coalitions in small projective plane games. SIAM J. Appl. Math., 17:378–392, 1969. [472, 475] [623] P. Diaconis and R. Graham. Products of Universal Cycles, pages 35–55. In Demaine et al. [601], 2008. A collection of puzzles in honor of Martin Gardner’s 90th birthday. [531] [624] P. Diaconis and R. Graham. Magical Mathematics: The Mathematical Ideas that Animate Great Magic Tricks. Princeton University Press, November 2011. [531] [625] P. Diaconis and M. Shahshahani. Generating a random permutation with random transpositions. Z. Wahrsch. Verw. Gebiete, 57(2):159–179, 1981. [536, 537, 545]

Miscellaneous applications [626] J. Dick. Walsh spaces containing smooth functions and quasi-Monte Carlo rules of arbitrary high order. SIAM J. Numer. Anal., 46:1519–1553, 2008. [376, 381, 383] [627] J. Dick, P. Kritzer, G. Leobacher, and F. Pillichshammer. Constructions of general polynomial lattice rules based on the weighted star discrepancy. Finite Fields Appl., 13:1045–1070, 2007. [377, 383] [628] J. Dick and H. Niederreiter. On the exact t-value of Niederreiter and Sobol’ sequences. J. Complexity, 24:572–581, 2008. [381, 383] [629] J. Dick and H. Niederreiter. Duality for digital sequences. J. Complexity, 25:406– 414, 2009. [381, 383] [630] J. Dick and F. Pillichshammer. Digital nets and sequences: discrepancy theory and quasi-Monte Carlo integration. Cambridge University Press, Cambridge, 2010. [373, 376, 377, 378, 381, 383] [631] L. E. Dickson. The analytic representation of substitutions on a power of a prime number of letters with a discussion of the linear group. Ann. of Math., 11(16):65–120, 1896/97. [172, 185] [632] L. E. Dickson. On finite algebras. In Gesellschaften der Wissenschaften zu G¨ ottingen, pages 358–393. 1905. [227, 229] [633] L. E. Dickson. Criteria for the irreducibility of functions in a finite field. Bull. Amer. Math. Soc., 13(1):1–8, 1906. [36, 38, 41] [634] L. E. Dickson. On commutative linear algebras in which division is always uniquely possible. Trans. Amer. Math. Soc., 7(4):514–522, 1906. [227, 229, 233, 234] [635] L. E. Dickson. Linear groups: With an exposition of the Galois field theory. with an introduction by W. Magnus. Dover Publications Inc., New York, 1958. [19, 20, 39, 40] [636] C. Diem. The GHS attack in odd characteristic. Journal of the Ramanujan Mathematical Society, 18(1):1–32, 2003. [668] [637] C. Diem. The XL-algorithm and a conjecture from commutative algebra. In Advances in cryptology—ASIACRYPT 2004, volume 3329 of Lecture Notes in Comput. Sci., pages 323–337. Springer, Berlin, 2004. [665] [638] J. Dieudonn´e. Sur les groupes classiques. Actualit´es Sci. Ind., no. 1040 = Publ. Inst. Math. Univ. Strasbourg (N.S.) no. 1 (1945). Hermann et Cie., Paris, 1948. [439, 440, 441, 442, 443, 444, 445, 446, 447] [639] J. A. Dieudonn´e. La g´eom´etrie des groupes classiques. Springer-Verlag, Berlin, 1971. Troisi`eme ´edition, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 5. [438, 443, 447] [640] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Trans. Information Theory, IT-22(6):644–654, 1976. [147, 629, 634] [641] W. Diffie and M. E. Hellman. New directions in cryptography. In Secure communications and asymmetric cryptosystems, volume 69 of AAAS Sel. Sympos. Ser., pages 143–180. Westview, Boulder, CO, 1982. [649] [642] J. F. Dillon. ELEMENTARY HADAMARD DIFFERENCE-SETS. ProQuest LLC, Ann Arbor, MI, 1974. Thesis (Ph.D.)–University of Maryland, College Park. [221, 223, 224] [643] J. F. Dillon. Multiplicative difference sets via additive characters. Des. Codes Cryptogr., 17(1-3):225–235, 1999. [212, 213, 515, 519] [644] J. F. Dillon. Geometry, codes and difference sets: exceptional connections. In Codes and designs (Columbus, OH, 2000), volume 10 of Ohio State Univ. Math. Res.

735

736

Handbook of Finite Fields

Inst. Publ., pages 73–85. de Gruyter, Berlin, 2002. [212, 213] [645] J. F. Dillon and H. Dobbertin. New cyclic difference sets with Singer parameters. Finite Fields Appl., 10(3):342–389, 2004. [212, 213, 219, 224, 265, 515, 519, 639, 640, 647] [646] J. F. Dillon and G. McGuire. Near bent functions on a hyperplane. Finite Fields Appl., 14(3):715–720, 2008. [261, 262] [647] E. Dimitrova, L. D. Garc`Ia-Puente, F. Hinkelmann, A. S. Jarrah, R. Laubenbacher, B. Stigler, M. Stillman, and P. Vera-Licona. Polynome. Available at http://polymath.vbi.vt.edu/polynome/, 2010. [690] [648] E. Dimitrova, L. D. Garc`ia-Puente, F. Hinkelmann, A. S. Jarrah, R. Laubenbacher, B. Stigler, M. Stillman, and P. Vera-Licona. Parameter estimation for boolean models of biological networks. Theoretical Computer Science, 412(26):2816 – 2826, 2011. Foundations of Formal Reconstruction of Biochemical Networks. [689, 692] [649] E. S. Dimitrova, A. S. Jarrah, R. Laubenbacher, and B. Stigler. A Gr¨obner fan method for biochemical network modeling. In ISSAC 2007, pages 122–126. ACM, New York, 2007. [689, 692] [650] C. Ding, T. Helleseth, and H. Niederreiter, editors. Sequences and their applications, Springer Series in Discrete Mathematics and Theoretical Computer Science, London, 1999. Springer-Verlag London Ltd. [20] [651] C. Ding, D. Pei, and A. Salomaa. Chinese remainder theorem. World Scientific Publishing Co. Inc., River Edge, NJ, 1996. Applications in computing, coding, cryptography. [185] [652] C. Ding, Z. Wang, and Q. Xiang. Skew Hadamard difference sets from the ReeTits slice symplectic spreads in PG(3, 32h+1 ). J. Combin. Theory Ser. A, 114(5):867–887, 2007. [185, 231, 232, 234, 516, 519] [653] C. Ding, Q. Xiang, J. Yuan, and P. Yuan. Explicit classes of permutation polynomials of F33m . Sci. China Ser. A, 52(4):639–647, 2009. [182, 185] [654] C. Ding, G. Xiao, and W. Shan. The stability theory of stream ciphers, volume 561 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1991. [271, 275, 281] [655] C. Ding and J. Yuan. A family of skew Hadamard difference sets. J. Combin. Theory Ser. A, 113(7):1526–1535, 2006. [185, 231, 234, 516, 519] [656] C. Ding and P. Yuan. Permutation polynomials over finite fields from a powerful lemma. Finite Fields Appl., 2011. [177, 180, 181, 185] [657] C. S. Ding, H. Niederreiter, and C. P. Xing. Some new codes from algebraic curves. IEEE Trans. Inform. Theory, 46:2638–2642, 2000. [607, 612] [658] J. Ding. A new variant of the Matsumoto-Imai cryptosystem through perturbation. In Public key cryptography—PKC 2004, volume 2947 of Lecture Notes in Comput. Sci., pages 305–318. Springer, Berlin, 2004. [656] [659] J. Ding. Mutants and its impact on polynomial solving strategies and algorithms. Privately distributed research note, University of Cincinnati and Technical University of Darmstadt, 2006. [664] [660] J. Ding. Inverting square systems algebraically is exponential. Cryptology ePrint Archive, Report 2011/275, 2011. http://eprint.iacr.org/. [654, 658, 664] [661] J. Ding, J. Buchmann, M. S. E. Mohamed, W. S. A. M. Mohamed, and R.-P. Weinmann. Mutant xl. First International Conference on Symbolic Computation and Cryptography – SCC, 2008. [664]

Miscellaneous applications [662] J. Ding, V. Dubois, B.-Y. Yang, O. C.-H. Chen, and C.-M. Cheng. Could SFLASH be repaired? In Automata, languages and programming. Part II, volume 5126 of Lecture Notes in Comput. Sci., pages 691–701. Springer, Berlin, 2008. [656, 657, 662] [663] J. Ding and J. E. Gower. Inoculating multivariate schemes against differential attacks. In Public key cryptography—PKC 2006, volume 3958 of Lecture Notes in Comput. Sci., pages 290–301. Springer, Berlin, 2006. [658, 660] [664] J. Ding, J. E. Gower, and D. S. Schmidt. Multivariate public key cryptosystems, volume 25 of Advances in Information Security. Springer, New York, 2006. [648] [665] J. Ding and T. Hodges. Cryptanalysis of an implementation scheme of the tamed transformation method cryptosystem. J. Algebra Appl., 3(3):273–282, 2004. [658, 659] [666] J. Ding and T. Hodges. Inverting the hfe systems is quasipolynomial for all fields. Accept for Crypto 2011, Febuary 2011. [654, 658, 664] [667] J. Ding and D. Schmidt. A common defect of the TTM cryptosystem. In Proceedings of the technical track of the ACNS’03, ICISA Press, pages 68–78, 2003. http://eprint.iacr.org/2003/085. [658, 659] [668] J. Ding and D. Schmidt. The new implementation schemes of the TTM cryptosystem are not secure. In Coding, cryptography and combinatorics, volume 23 of Progr. Comput. Sci. Appl. Logic, pages 113–127. Birkh¨auser, Basel, 2004. [658, 659] [669] J. Ding and D. Schmidt. Cryptanalysis of HFEv and internal perturbation of HFE. In Public key cryptography—PKC 2005, volume 3386 of Lecture Notes in Comput. Sci., pages 288–301. Springer, Berlin, 2005. [657] [670] J. Ding and D. Schmidt. Rainbow, a new multivariable polynomial signature scheme. In Conference on Applied Cryptography and Network Security — ACNS 2005, volume 3531 of LNCS, pages 164–175. Springer, 2005. [655] [671] J. Ding, D. Schmidt, and F. Werner. Algebraic attack on hfe revisited. In ISC 2008, Lecture Notes in Computer Science. Springer, 2007. [654, 658] [672] J. Ding, D. Schmidt, and Z. Yin. Cryptanalysis of the new tts scheme in ches 2004. Int. J. Inf. Sec., 5(4):231–240, 2006. [655] [673] J. Ding, C. Wolf, and B.-Y. Yang. l-invertible cycles for M ultivariate Quadratic (M Q) public key cryptography. In Public key cryptography—PKC 2007, volume 4450 of Lecture Notes in Comput. Sci., pages 266–281. Springer, Berlin, 2007. [658] [674] J. Ding and B.-Y. Yang. Multivariate polynomials for hashing. In Inscrypt, LNCS. Springer, 2007. to appear, cf. http://eprint.iacr.org/2007/137. [665] [675] J. Ding, B.-Y. Yang, C.-H. O. Chen, M.-S. Chen, and C.-M. Cheng. New differentialalgebraic attacks and reparametrization of rainbow. In Applied Cryptography and Network Security, volume 5037 of LNCS, pages 242–257. Springer, 2008. cf. http://eprint.iacr.org/2008/108. [655, 656, 662, 663] [676] J. Ding and Z. Yin. Cryptanalysis of TTS and Tame–like signature schemes. In Third International Workshop on Applied Public Key Infrastructures, 2004. [658] [677] J. H. Dinitz. New lower bounds for the number of pairwise orthogonal symmetric Latin squares. In Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), Congress. Numer., XXIII–XXIV, pages 393–398, Winnipeg, Man.,

737

738

Handbook of Finite Fields

1979. Utilitas Math. [553] [678] J. H. Dinitz and D. R. Stinson. The construction and uses of frames. Ars Combin., 10:31–53, 1980. [554] [679] J. H. Dinitz and D. R. Stinson. Room squares and related designs. In Contemporary design theory, Wiley-Intersci. Ser. Discrete Math. Optim., pages 137–204. Wiley, New York, 1992. [555] [680] J. H. Dinitz and G. S. Warrington. The spectra of certain classes of Room frames: the last cases. Electron. J. Combin., 17(1):Research Paper 74, 13, 2010. [556] [681] V. Dmytrenko, F. Lazebnik, and J. Williford. On monomial graphs of girth eight. Finite Fields Appl., 13(4):828–842, 2007. [185] [682] H. Dobbertin. Almost perfect nonlinear power functions on GF(2n ): the Niho case. Inform. and Comput., 151(1-2):57–72, 1999. [185, 213] [683] H. Dobbertin. Almost perfect nonlinear power functions on GF(2n ): the Welch case. IEEE Trans. Inform. Theory, 45(4):1271–1275, 1999. [185, 213] [684] H. Dobbertin. Kasami power functions, permutation polynomials and cyclic difference sets. In Difference sets, sequences and their correlation properties (Bad Windsheim, 1998), volume 542 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pages 133–158. Kluwer Acad. Publ., Dordrecht, 1999. [515, 519] [685] H. Dobbertin. Almost perfect nonlinear power functions on GF(2n ): a new case for n divisible by 5. In Finite fields and applications (Augsburg, 1999), pages 113–121. Springer, Berlin, 2001. [183, 185, 213] [686] H. Dobbertin, G. Leander, A. Canteaut, C. Carlet, P. Felke, and P. Gaborit. Construction of bent functions via Niho power functions. J. Combin. Theory Ser. A, 113(5):779–798, 2006. [220, 224] [687] H. Dobbertin, D. Mills, E. N. M¨ uller, A. Pott, and W. Willems. APN functions in odd characteristic. Discrete Math., 267(1-3):95–112, 2003. Combinatorics 2000 (Gaeta). [208, 213] [688] G. Dolinar, A. E. Guterman, B. Kuzma, and M. Orel. On the Polya permanent problem over finite fields. European J. Combin., 32(1):116–132, 2011. [424] [689] G. Dorfer and H. Maharaj. Generalized AG codes and generalized duality. Finite Fields Appl., 9:194–210, 2003. [608, 612] [690] G. Dorfer, W. Meidl, and A. Winterhof. Counting functions and expected values for the lattice profile at n. Finite Fields Appl., 10(4):636–652, 2004. [280, 281] [691] G. Dorfer and A. Winterhof. Lattice structure and linear complexity profile of nonlinear pseudorandom number generators. Appl. Algebra Engrg. Comm. Comput., 13(6):499–508, 2003. [280, 281] [692] J. M. Dover. A family of non-Buekenhout unitals in the Hall planes. In Mostly finite geometries (Iowa City, IA, 1996), volume 190 of Lecture Notes in Pure and Appl. Math., pages 197–205. Dekker, New York, 1997. [484, 486] [693] K. Drakakis, R. Gow, and G. McGuire. APN permutations on Zn and Costas arrays. Discrete Appl. Math., 157(15):3320–3326, 2009. [185] [694] K. Drakakis, F. Iorio, and S. Rickard. The enumeration of costas arrays of order 28 and its consequences. Adv. Math. Commun., 5(1):69–86, 2011. [547] [695] V. G. Drinfeld. Elliptic modules. Mat. Sb. (N.S.), 94(136):594–627, 656, 1974. [448, 450, 452, 456, 457] [696] V. G. Drinfeld. Elliptic modules. II. Mat. Sb. (N.S.), 102(144)(2):182–194, 325, 1977. [448, 450, 451]

Miscellaneous applications [697] M. Drmota and R. F. Tichy. Sequences, discrepancies and applications, volume 1651 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1997. [19, 20, 139] [698] V. Dubois, P.-A. Fouque, A. Shamir, and J. Stern. Practical cryptanalysis of SFLASH. In Advances in cryptology—CRYPTO 2007, volume 4622 of Lecture Notes in Comput. Sci., pages 1–12. Springer, Berlin, 2007. [656, 657, 662] [699] V. Dubois, P.-A. Fouque, and J. Stern. Cryptanalysis of SFLASH with slightly modified parameters. In Advances in cryptology—EUROCRYPT 2007, volume 4515 of Lecture Notes in Comput. Sci., pages 264–275. Springer, Berlin, 2007. [656, 657, 661] [700] V. Dubois and N. Gama. The degree of regularity of HFE systems. In Advances in cryptology—ASIACRYPT 2010, volume 6477 of Lecture Notes in Comput. Sci., pages 557–576. Springer, Berlin, 2010. [664] [701] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct methods for sparse matrices. Monographs on Numerical Analysis. The Clarendon Press Oxford University Press, New York, second edition, 1989. Oxford Science Publications. [434, 436] [702] W. Duke. On multiple Sali´e sums. Proc. Amer. Math. Soc., 114(3):623–625, 1992. [111, 118] [703] J.-G. Dumas. Q-adic transform revisited. In ISSAC 2008, pages 63–69. ACM, New York, 2008. [426, 427, 436] [704] J.-G. Dumas, L. Fousse, and B. Salvy. Simultaneous modular reduction and kronecker substitution for small finite fields. Journal of Symbolic Computation, 46(7):823 – 840, 2011. Special Issue in Honour of Keith Geddes on his 60th Birthday. [426, 427, 436] [705] J.-G. Dumas, T. Gautier, and C. Pernet. Finite field linear algebra subroutines. In Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, pages 63–74 (electronic), New York, 2002. ACM. [427, 436] [706] J.-G. Dumas, P. Giorgi, and C. Pernet. Dense linear algebra over word-size prime fields: the FFLAS and FFPACK packages. ACM Trans. Math. Software, 35(3):Art. 19, 35, 2008. [427, 428, 436] [707] J.-G. Dumas and G. Villard. Computing the rank of sparse matrices over finite fields. In V. G. Ganzha, E. W. Mayr, and E. V. Vorozhtsov, editors, CASC 2002, Proceedings of the fifth International Workshop on Computer Algebra in Scientific Computing, Yalta, Ukraine, pages 47–62. Technische Universit¨at M¨ unchen, Germany, Sept. 2002. [432, 433, 434, 435, 436] [708] A. Duran, B. Saunders, and Z. Wan. Hybrid algorithms for rank of sparse matrices. In R. Mathias and H. Woerdeman, editors, SIAM Conference on Applied Linear Algebra, Williamsburg, VA, USA, July 2003. [435, 436] [709] I. Duursma and K.-H. Mak. On lower bounds for the Ihara constants A(2) and A(3). arXiv:1102.4127v2[math.NT], 2011. [367, 368, 372] [710] B. Dwork. On the rationality of the zeta function of an algebraic variety. Amer. J. Math., 82:631–648, 1960. [120, 127, 394] ´ [711] B. Dwork. p-adic cycles. Inst. Hautes Etudes Sci. Publ. Math., (37):27–115, 1969. [394, 402] [712] B. Dwork. Bessel functions as p-adic functions of the argument. Duke Math. J., 41:711–738, 1974. [394, 402] [713] B. M. Dwork. On the zeta function of a hypersurface. III. Ann. of Math. (2), 83:457–519, 1966. [254, 255]

739

740

Handbook of Finite Fields

[714] W. Eberly, M. Giesbrecht, P. Giorgi, A. Storjohann, and G. Villard. Faster inversion and other black box matrix computations using efficient block projections. In ISSAC 2007, pages 143–150. ACM, New York, 2007. [436] [715] W. Eberly and E. Kaltofen. On randomized Lanczos algorithms. In Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation (Kihei, HI), pages 176–183 (electronic), New York, 1997. ACM. [432, 433, 436] [716] G. L. Ebert. Partitioning projective geometries into caps. Canad. J. Math., 37(6):1163–1175, 1985. [480, 486] [717] G. L. Ebert. Nests, covers, and translation planes. Ars Combin., 25(C):213–233, 1988. Eleventh British Combinatorial Conference (London, 1987). [480, 486] [718] G. L. Ebert. Spreads admitting regular elliptic covers. European J. Combin., 10(4):319–330, 1989. [480, 486] [719] G. L. Ebert. Partitioning problems and flag-transitive planes. Rend. Circ. Mat. Palermo (2) Suppl., (53):27–44, 1998. Combinatorics ’98 (Mondello). [481, 486] [720] G. L. Ebert, G. Marino, O. Polverino, and R. Trombetti. Infinite families of new semifields. Combinatorica, 29(6):637–663, 2009. [228, 229] [721] Y. Edel, G. Kyureghyan, and A. Pott. A new APN function which is not equivalent to a power mapping. IEEE Trans. Inform. Theory, 52(2):744–747, 2006. [209, 213] [722] Y. Edel and A. Pott. A new almost perfect nonlinear function which is not quadratic. Adv. Math. Commun., 3(1):59–81, 2009. [208, 213] [723] G. A. Edgar and C. Miller. Borel subrings of the reals. Proc. Amer. Math. Soc., 131(4):1121–1129 (electronic), 2003. [128] [724] G. Effinger. A Goldbach theorem for polynomials of low degree over odd finite fields. Acta Arith., 42(4):329–365, 1983. [412, 414] [725] G. Effinger. A Goldbach 3-primes theorem for polynomials of low degree over finite fields of characteristic 2. J. Number Theory, 29(3):345–363, 1988. [412, 414] [726] G. Effinger. Toward a complete twin primes theorem for polynomials over finite fields. In Finite Fields and Applications, volume 461 of Contemp. Math., pages 103–110. Amer. Math. Soc., Providence, 2008. [410, 414] [727] G. Effinger and D. Hayes. A complete solution to the polynomial 3-primes problem. Bull. Amer. Math. Soc., 24(2):363–369, 1991. [412, 414] [728] G. Effinger and D. R. Hayes. Additive number theory of polynomials over a finite field. Oxford Mathematical Monographs. Oxford University Press, New York, 1991. [19, 20, 411, 412, 413, 414] [729] G. Effinger, K. Hick, and G. L. Mullen. Twin irreducible polynomials over finite fields. In Finite fields with applications to coding theory, cryptography and related areas, pages 94–111. Springer, Berlin, 2002. [410, 414] [730] G. Effinger, K. Hick, and G. L. Mullen. Integers and polynomials: comparing the close cousins Z and Fq [x]. Math. Intelligencer, 27(2):26–34, 2005. [407, 414] [731] M. Einsiedler and T. Ward. Ergodic theory with a view towards number theory, volume 259 of Graduate Texts in Mathematics. Springer-Verlag London Ltd., London, 2011. [282, 283, 289] [732] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inform. Theory, 31(4):469–472, 1985. [629, 634] [733] S. Eliahou, M. Kervaire, and B. Saffari. On Golay polynomial pairs. Adv. in Appl. Math., 12(3):235–292, 1991. [696, 701]

Miscellaneous applications [734] N. D. Elkies. The existence of infinitely many supersingular primes for every elliptic curve over Q. Invent. Math., 89(3):561–567, 1987. [349, 351] [735] N. D. Elkies. Distribution of supersingular primes. Ast´erisque, (198-200):127–132 (1992), 1991. Journ´ees Arithm´etiques, 1989 (Luminy, 1989). [349, 351] [736] N. D. Elkies. Elliptic and modular curves over finite fields and related computational issues. In Computational perspectives on number theory (Chicago, IL, 1995), volume 7 of AMS/IP Stud. Adv. Math., pages 21–76. Amer. Math. Soc., Providence, RI, 1998. [669] [737] N. D. Elkies. Explicit modular towers. Proceedings of the 35th Allerton conference on communication, control and computing, pages 23–32, 1998. [368, 372] [738] N. D. Elkies. Explicit towers of Drinfeld modular curves. In European Congress of Mathematics, Vol. II (Barcelona, 2000), volume 202 of Progr. Math., pages 189–198. Birkh¨ auser, Basel, 2001. [368, 372] [739] N. D. Elkies, E. W. Howe, A. Kresch, B. Poonen, J. L. Wetherell, and M. E. Zieve. Curves of every genus with many points. II. Asymptotically good families. Duke Math. J., 122(2):399–422, 2004. [367] [740] W. Ellison. Waring’s problem. Amer. Math. Monthly, 78(1):10–36, 1971. [413, 414] [741] B. Elspas. The theory of autonomous linear sequential networks. In Linear Sequential Switching Circuits, pages 21–61. Holden-Day, San Francisco, Calif., 1965. [692] [742] H. Enderling, M. Chaplain, and P. Hahnfeldt. Quantitative modeling of tumor dynamics and radiotherapy. Acta Biotheoretica, 58:341–353, 2010. 10.1007/s10441-010-9111-z. [689, 692] [743] A. Enge. Computing discrete logarithms in high-genus hyperelliptic Jacobians in provably subexponential time. Math. Comp., 71(238):729–742 (electronic), 2002. [360] [744] A. Enge. The complexity of class polynomial computation via floating point approximations. Mathematics of Computation, 78(266):1089–1107, 2009. [669] [745] A. Enge. Computing modular polynomials in quasi-linear time. Mathematics of Computation, 78(267):1809–1824, 2009. [670] [746] A. Enge and P. Gaudry. A general framework for subexponential discrete logarithm algorithms. Acta Arith., 102(1):83–103, 2002. [360] [747] S. S. Erdem, T. Yanik, and C ¸ . K. Ko¸c. Polynomial basis multiplication over GF(2m ). Acta Appl. Math., 93(1-3):33–55, 2006. [79] [748] S. Erickson, M. J. Jacobson, Jr., N. Shang, S. Shen, and A. Stein. Explicit formulas for real hyperelliptic curves of genus 2 in affine representation. In Arithmetic of finite fields, volume 4547 of Lecture Notes in Comput. Sci., pages 202–218. Springer, Berlin, 2007. [357, 360] [749] S. Erickson, M. J. Jacobson, Jr., and A. Stein. Explicit formulas for real hyperelliptic curves of genus 2 in affine representation. to appear in Advances in Mathematics of Communication, 2011. [356, 357, 360] [750] T. eSTREAM Project. [636, 638, 639, 647] [751] J. Ethier and G. L. Mullen. Strong forms of orthogonality for sets of frequency hypercubes. Preprint, 2011. [466] [752] J. Ethier and G. L. Mullen. Strong forms of orthogonality for sets of hypercubes. Preprint, 2011. [466] [753] A. B. Evans. Maximal sets of mutually orthogonal Latin squares. II. European J. Combin., 13(5):345–350, 1992. [184, 185]

741

742

Handbook of Finite Fields

[754] A. B. Evans. Orthomorphism graphs of groups, volume 1535 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1992. [135, 184, 185] [755] R. Evans. Residuacity of primes. Rocky Mountain J. Math., 19(4):1069–1081, 1989. [98, 118] [756] R. Evans. Character sums as orthogonal eigenfunctions of adjacency operators for Cayley graphs. In Finite fields: theory, applications, and algorithms (Las Vegas, NV, 1993), volume 168 of Contemp. Math., pages 33–50. Amer. Math. Soc., Providence, RI, 1994. [112, 118] [757] R. Evans. Congruences for Jacobi sums. J. Number Theory, 71(1):109–120, 1998. [104, 118] [758] R. Evans. Gauss sums and Kloosterman sums over residue rings of algebraic integers. Trans. Amer. Math. Soc., 353(11):4429–4445 (electronic), 2001. [117, 118] [759] R. Evans. Gauss sums of orders six and twelve. Canad. Math. Bull., 44(1):22–26, 2001. [107, 108, 118] [760] R. Evans. Twisted hyper-Kloosterman sums over finite rings of integers. In Number theory for the millennium, I (Urbana, IL, 2000), pages 429–448. A K Peters, Natick, MA, 2002. [112, 117, 118] [761] R. Evans. Hypergeometric 3 F2 (1/4) evaluations over finite fields and Hecke eigenforms. Proc. Amer. Math. Soc., 138(2):517–531, 2010. [115, 118] [762] R. Evans. Seventh power moments of Kloosterman sums. Israel J. Math., 175:349– 362, 2010. [114, 115, 118] [763] R. Evans and J. Greene. Clausen’s theorem and hypergeometric functions over finite fields. Finite Fields Appl., 15(1):97–109, 2009. [103, 118] [764] R. Evans and J. Greene. Evaluations of hypergeometric functions over finite fields. Hiroshima Math. J., 39(2):217–235, 2009. [103, 118] [765] R. Evans, H. D. L. Hollmann, C. Krattenthaler, and Q. Xiang. Gauss sums, Jacobi sums, and p-ranks of cyclic difference sets. J. Combin. Theory Ser. A, 87(1):74– 119, 1999. [109, 118] [766] R. J. Evans. Identities for products of Gauss sums over finite fields. Enseign. Math. (2), 27(3-4):197–209 (1982), 1981. [103, 118] [767] R. J. Evans. Pure Gauss sums over finite fields. Mathematika, 28(2):239–248 (1982), 1981. [102, 118] [768] R. J. Evans. Period polynomials for generalized cyclotomic periods. Manuscripta Math., 40(2-3):217–243, 1982. [117, 118] [769] R. J. Evans. Character sum analogues of constant term identities for root systems. Israel J. Math., 46(3):189–196, 1983. [103, 118] [770] R. J. Evans. The evaluation of Selberg character sums. Enseign. Math. (2), 37(34):235–248, 1991. [103, 118] [771] R. J. Evans. Selberg-Jack character sums of dimension 2. J. Number Theory, 54(1):1–11, 1995. [103, 118] [772] R. J. Evans, J. Greene, and H. Niederreiter. Linearized polynomials and permutation polynomials of finite fields. Michigan Math. J., 39(3):405–413, 1992. [184, 185] [773] S. A. Evdokimov. Efficient factorization of polynomials over finite fields and the generalized Riemann hypothesis. Translation of Zapiski Nauchnyck Seminarov Leningradskgo Otdeleniya Mat. Inst. V.A. Steklova Akad. Nauk SSSR (LOMI), volume 176, 1989, pp. 104–117, 1986. [298, 299] [774] G. Everest and T. Ward. Heights of polynomials and entropy in algebraic dynamics.

Miscellaneous applications Universitext. Springer-Verlag London Ltd., London, 1999. [282, 283, 289] [775] J.-H. Evertse. Linear equations with unknowns from a multiplicative group whose solutions lie in a small number of subspaces. Indag. Math. (N.S.), 15(3):347– 355, 2004. [255] [776] C. Faber and G. van der Geer. Complete subvarieties of moduli spaces and the Prym map. J. Reine Angew. Math., 573:117–137, 2004. [401, 402] [777] C. C. Faith. Extensions of normal bases and completely basic fields. Trans. Amer. Math. Soc., 85:406–427, 1957. [83, 84] [778] G. Faltings. Finiteness theorems for abelian varieties over number fields. In Arithmetic geometry (Storrs, Conn., 1984), pages 9–27. Springer, New York, 1986. Translated from the German original [Invent. Math. 73 (1983), no. 3, 349–366; ibid. 75 (1984), no. 2, 381; MR 85g:11026ab] by Edward Shipz. [344, 351] [779] S. Fan. Primitive normal polynomials with the last half coefficients prescribed. Finite Fields Appl., 15(5):604–614, 2009. [64, 65] [780] S. Fan and W. Han. Character sums over Galois rings and primitive polynomials over finite fields. Finite Fields Appl., 10(1):36–52, 2004. [61, 62, 65] [781] S. Fan and W. Han. p-adic formal series and Cohen’s problem. Glasg. Math. J., 46(1):47–61, 2004. [61, 65] [782] S. Fan and W. Han. p-adic formal series and primitive polynomials over finite fields. Proc. Amer. Math. Soc., 132(1):15–31 (electronic), 2004. [61, 62, 65] [783] S. Fan and W. Han. Primitive polynomial with three coefficients prescribed. Finite Fields Appl., 10(4):506–521, 2004. [62, 65] [784] S. Fan, W. Han, and K. Feng. Primitive normal polynomials with multiple coefficients prescribed: an asymptotic result. Finite Fields Appl., 13(4):1029–1044, 2007. [61, 64, 65] [785] S. Fan, W. Han, K. Feng, and X. Zhang. Primitive normal polynomials with the first two coefficients prescribed: a revised p-adic method. Finite Fields Appl., 13(3):577–604, 2007. [64, 65] [786] S. Fan and X. Wang. Primitive normal polynomials with a prescribed coefficient. Finite Fields Appl., 15(6):682–730, 2009. [63, 65] [787] S. Fan and X. Wang. Primitive normal polynomials with the specified last two coefficients. Discrete Math., 309(13):4502–4513, 2009. [62, 64, 65] [788] R. R. Farashahi. Hashing into Hessian curves. To appear in Africacrypt, 2011. [679] [789] J.-C. Faug´ere. A new efficient algorithm for computing Gr¨obner bases (F4 ). J. Pure Appl. Algebra, 139(1-3):61–88, 1999. Effective methods in algebraic geometry (Saint-Malo, 1998). [664] [790] J.-C. Faug`ere. A new efficient algorithm for computing Gr¨obner bases without reduction to zero (F5 ). In Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, pages 75–83 (electronic), New York, 2002. ACM. [664] [791] J.-C. Faug`ere and A. Joux. Algebraic cryptanalysis of hidden field equation (HFE) cryptosystems using Gr¨ obner bases. In Advances in cryptology—CRYPTO 2003, volume 2729 of Lecture Notes in Comput. Sci., pages 44–60. Springer, Berlin, 2003. [654, 662, 664] [792] J.-C. Faug`ere and S. Lachartre. Parallel gaussian elimination for gr¨obner bases computations in finite fields. In M. M. Maza and J.-L. Roch, editors, PASCO 2010, Proceedings of the 4th International Workshop on Parallel Symbolic Computation, Grenoble, France, pages 89–97. ACM, July 2010. [435, 436]

743

744

Handbook of Finite Fields

[793] J.-C. Faug`ere and L. Perret. Polynomial equivalence problems: algorithmic and theoretical aspects. In Advances in cryptology—EUROCRYPT 2006, volume 4004 of Lecture Notes in Comput. Sci., pages 30–47. Springer, Berlin, 2006. [651] [794] H. Faure. Discr´epance de suites associ´ees `a un syst`eme de num´eration (en dimension s). Acta Arith., 41:337–351, 1982. [381, 383] [795] H. Feistel, W. Notz, and J. Smith. Some cryptographic techniques for machineto-machine data communications. Proceedings of the IEEE, 63(11):1545–1554, 1975. [627, 634] [796] H. Fell and W. Diffie. Analysis of a public key approach based on polynomial substitution. In Advances in cryptology—CRYPTO ’85 (Santa Barbara, Calif., 1985), volume 218 of Lecture Notes in Comput. Sci., pages 340–349. Springer, Berlin, 1986. [649, 651, 652] [797] G. Fellegara. Gli ovaloidi in uno spazio tridimensionale di Galois di ordine 8. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8), 32:170–176, 1962. [501] [798] B. Felszeghy. On the solvability of some special equations over finite fields. Publ. Math. Debrecen, 68(1-2):15–23, 2006. [167, 170] [799] G. L. Feng and K. K. Tzeng. A generalization of the Berlekamp-Massey algorithm for multisequence shift-register synthesis with applications to decoding cyclic codes. IEEE Trans. Inform. Theory, 37(5):1274–1287, 1991. [275, 281] [800] K. Feng and J. Luo. Value distributions of exponential sums from perfect nonlinear functions and their applications. IEEE Trans. Inform. Theory, 53(9):3035– 3041, 2007. [221, 224] [801] K. Feng and J. Luo. Weight distribution of some reducible cyclic codes. Finite Fields Appl., 14(2):390–409, 2008. [163] [802] K. Feng, H. Niederreiter, and C. Xing, editors. Coding, cryptography and combinatorics, volume 23 of Progress in Computer Science and Applied Logic. Birkh¨ auser Verlag, Basel, 2004. [20] [803] X. Feng and Z. Dai. Expected value of the linear complexity of two-dimensional binary sequences. In Sequences and their applications—SETA 2004, volume 3486 of Lecture Notes in Comput. Sci., pages 113–128. Springer, Berlin, 2005. [276, 281] [804] F. Fiedler, K. H. Leung, and Q. Xiang. On Mathon’s construction of maximal arcs in Desarguesian planes. Adv. Geom., (suppl.):S119–S139, 2003. Special issue dedicated to Adriano Barlotti. [485, 486] [805] N. J. Fine and I. N. Herstein. The probability that a matrix be nilpotent. Illinois J. Math., 2:499–504, 1958. [417, 424] [806] FIPS 180-3. Secure hash standard (SHS). Federal Information Processing Standards Publication 180-3, National Institute of Standards and Technology, 2008. [629, 634] [807] FIPS 186-3. Digital signature standard (DSS). Federal Information Processing Standards Publication 186-3, National Institute of Standards and Technology, 2009. [630, 634] [808] FIPS 46-3. Data encryption standard (DES). Federal Information Processing Standards Publication 46-3, National Institute of Standards and Technology, 1999. [627, 634] [809] S. Fischer and W. Meier. Algebraic immunity of s-boxes and augmented functions. In Proceedings of Fast Software Encryption 2007, volume 4593 of Lecture Notes

Miscellaneous applications in Comput. Sci., pages 366–381. 2007. [202, 204] [810] S. D. Fisher. Classroom Notes: Matrices over a Finite Field. Amer. Math. Monthly, 73(6):639–641, 1966. [415] [811] R. W. Fitzgerald. A characterization of primitive polynomials over finite fields. Finite Fields Appl., 9(1):117–121, 2003. [57, 59] [812] R. W. Fitzgerald. Highly degenerate quadratic forms over finite fields of characteristic 2. Finite Fields Appl., 11(2):165–181, 2005. [163] [813] R. W. Fitzgerald. Highly degenerate quadratic forms over F2 . Finite Fields Appl., 13(4):778–792, 2007. [161, 163] [814] R. W. Fitzgerald. Invariants of trace forms over finite fields of characteristic 2. Finite Fields Appl., 15(2):261–275, 2009. [162, 163] [815] R. W. Fitzgerald. Trace forms over finite fields of characteristic 2 with prescribed invariants. Finite Fields Appl., 15(1):69–81, 2009. [162, 163] [816] R. W. Fitzgerald and J. L. Yucas. Irreducible polynomials over GF(2) with three prescribed coefficients. Finite Fields Appl., 9(3):286–299, 2003. [27, 30, 48, 49] [817] R. W. Fitzgerald and J. L. Yucas. Pencils of quadratic forms over finite fields. Discrete Math., 283(1-3):71–79, 2004. [163] [818] R. W. Fitzgerald and J. L. Yucas. Sums of Gauss sums and weights of irreducible codes. Finite Fields Appl., 11(1):89–110, 2005. [98, 118] [819] R. W. Fitzgerald and J. L. Yucas. Generalized reciprocals, factors of Dickson polynomials and generalized cyclotomic polynomials over finite fields. Finite Fields Appl., 13(3):492–515, 2007. [236, 238, 239, 242] [820] P. Flajolet and A. M. Odlyzko. Random mapping statistics. In EUROCRYPT, pages 329–354, 1989. [638, 647] [821] J. J. Flynn. Near-exceptionality over finite fields. PhD dissertation, University of California, Berkeley, Department of Mathematics, 2001. [189, 192] [822] S. Fomin and A. Zelevinsky. The Laurent phenomenon. Adv. in Appl. Math., 28(2):119–144, 2002. [282, 289] [823] F. Fontein. Groups from cyclic infrastructures and Pohlig-Hellman in certain infrastructures. Adv. Math. Commun., 2(3):293–307, 2008. [360] [824] G. D. Forney, Jr. On decoding BCH codes. IEEE Trans. Information Theory, IT-11:549–557, 1965. [593, 601, 602] [825] G. D. Forney, Jr. Generalized minimum distance decoding. IEEE Trans. Information Theory, IT-12:125–131, 1966. [596, 597, 601, 602] [826] G. D. Forney, Jr., N. J. A. Sloane, and M. D. Trott. The Nordstrom-Robinson code is the binary image of the octacode. In Coding and quantization (Piscataway, NJ, 1992), volume 14 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 19–26. Amer. Math. Soc., Providence, RI, 1993. [601, 602] [827] P.-A. Fouque, L. Granboulan, and J. Stern. Differential cryptanalysis for multivariate schemes. In Advances in cryptology—EUROCRYPT 2005, volume 3494 of Lecture Notes in Comput. Sci., pages 341–353. Springer, Berlin, 2005. [656, 660] [828] P.-A. Fouque, G. Macario-Rat, L. Perret, and J. Stern. Total break of the l-IC signature scheme. In Public key cryptography—PKC 2008, volume 4939 of Lecture Notes in Comput. Sci., pages 1–17. Springer, Berlin, 2008. [657] [829] D. M. Freeman. Converting pairing-based cryptosystems from composite-order groups to prime-order groups. In H. Gilbert, editor, Advances in Cryptology

745

746

[830] [831]

[832] [833]

[834]

[835]

[836]

[837] [838] [839] [840] [841] [842] [843] [844]

[845]

[846]

[847]

Handbook of Finite Fields

— EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer Science, pages 44–61, Berlin, 2010. Springer-Verlag. [670, 674] J. W. Freeman. Reguli and pseudoreguli in PG(3, s2 ). Geom. Dedicata, 9(3):267– 280, 1980. [482, 486] T. S. Freeman, G. Imirzian, E. Kaltofen, and Lakshman Yagati. Dagwood: A system for manipulating polynomials given by straight-line programs. ACM Trans. Math. Software, 14(3):218–240, 1988. [309, 311] D. Freemann, M. Scott, and E. Teske. A taxonomy of pairing-friendly elliptic curves. Journal of Cryptology, 23(2):224–280, 2010. [675, 676] G. Frey. Applications of arithmetical geometry to cryptographic constructions. In D. Jungnickel and H. Niederreiter, editors, Finite Fields and Applications — Proceedings of The Fifth International Conference on Finite Fields and Applications Fq5 , held at the University of Augsburg, Germany, August 2–6, 1999, pages 128–161, Berlin, 2001. Springer-Verlag. [668] G. Frey and T. Lange. Varieties over special fields. In Handbook of elliptic and hyperelliptic curve cryptography, Discrete Math. Appl. (Boca Raton), pages 87–113. Chapman & Hall/CRC, Boca Raton, FL, 2006. [19, 20] G. Frey, M. M¨ uller, and H.-G. R¨ uck. The Tate pairing and the discrete logarithm applied to elliptic curve cryptosystems. IEEE Trans. Inform. Theory, 45(5):1717–1719, 1999. [360] G. Frey, M. Perret, and H. Stichtenoth. On the different of abelian extensions of global fields. In Coding theory and algebraic geometry (Luminy, 1991), volume 1518 of Lecture Notes in Math., pages 26–32. Springer, Berlin, 1992. [372] M. Fried. On a conjecture of Schur. Michigan Math. J., 17:41–55, 1970. [183, 236, 246, 247, 255] M. Fried. The field of definition of function fields and a problem in the reducibility of polynomials in two variables. Illinois J. Math., 17:128–146, 1973. [253, 255] M. Fried. On a theorem of Ritt and related Diophantine problems. J. Reine Angew. Math., 264:40–55, 1973. [248, 255] M. Fried. On a theorem of MacCluer. Acta Arith., 25:121–126, 1973/74. [245, 246, 255] M. Fried. On Hilbert’s irreducibility theorem. J. Number Theory, 6:211–231, 1974. [247, 249, 252, 255] M. Fried. Fields of definition of function fields and Hurwitz families—groups as Galois groups. Comm. Algebra, 5(1):17–82, 1977. [245, 255] M. Fried. Galois groups and complex multiplication. Trans. Amer. Math. Soc., 235:141–163, 1978. [251, 252, 255] M. Fried and R. Lidl. On Dickson polynomials and R´edei functions. In Contributions to general algebra, 5 (Salzburg, 1986), pages 139–149. H¨older-Pichler-Tempsky, Vienna, 1987. [236, 242] M. Fried and G. Sacerdote. Solving Diophantine problems over all residue class fields of a number field and all finite fields. Ann. of Math. (2), 104(2):203–233, 1976. [254, 255] M. D. Fried. The place of exceptional covers among all Diophantine relations. Finite Fields Appl., 11(3):367–433, 2005. [245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255] M. D. Fried. Variables separated equations: Strikingly different roles for the branch cycle lemma and the finite simple group classification. Science China Mathe-

Miscellaneous applications matics, 55:1–69, 2012. [245, 246, 250, 253, 254, 255] [848] M. D. Fried, R. Guralnick, and J. Saxl. Schur covers and Carlitz’s conjecture. Israel J. Math., 82(1-3):157–225, 1993. [173, 174, 185, 193, 194, 247, 254, 255] [849] M. D. Fried and M. Jarden. Field arithmetic, volume 11 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1986. [19, 20, 247, 252, 254, 255] [850] M. D. Fried and M. Jarden. Field arithmetic, volume 11 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, second edition, 2005. [19, 20] [851] M. D. Fried and M. Jarden. Field arithmetic, volume 11 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, third edition, 2008. Revised by Jarden. [19, 20] [852] M. D. Fried and R. E. MacRae. On curves with separated variables. Math. Ann., 180:220–226, 1969. [253, 255] [853] M. D. Fried and R. E. MacRae. On the invariance of chains of fields. Illinois J. Math., 13:165–171, 1969. [246, 255] [854] E. Friedman and L. C. Washington. On the distribution of divisor class groups of curves over a finite field. In Th´eorie des nombres (Quebec, PQ, 1987), pages 227–239. de Gruyter, Berlin, 1989. [355, 360] [855] J. Friedman. On the second eigenvalue and random walks in random d-regular graphs. Combinatorica, 11(4):331–362, 1991. [545] [856] J. Friedman. Some geometric aspects of graphs and their eigenfunctions. Duke Math. J., 69(3):487–525, 1993. [537, 538, 543, 545] [857] J. Friedman. A proof of Alon’s second eigenvalue conjecture and related problems. Mem. Amer. Math. Soc., 195(910):viii+100, 2008. [545] [858] C. Friesen. A special case of Cohen-Lenstra heuristics in function fields. In Number theory (Ottawa, ON, 1996), volume 19 of CRM Proc. Lecture Notes, pages 99–105. Amer. Math. Soc., Providence, RI, 1999. [355, 360] [859] C. Friesen. Class group frequencies of real quadratic function fields: the degree 4 case. Math. Comp., 69(231):1213–1228, 2000. [355, 360] [860] C. Friesen. Bounds for frequencies of class groups of real quadratic genus 1 function fields. Acta Arith., 96(4):313–331, 2001. [355, 360] [861] S. Frisch. When are weak permutation polynomials strong? Finite Fields Appl., 1(4):437–439, 1995. [188] [862] D. Fu and J. Solinas. IKE and IKEv2 authentication using the elliptic curve digital signature algorithm (ECDSA). RFC 4754, Internet Engineering Task Force, 2007. http://www.ietf.org/rfc/rfc4754.txt. [667] ¨ [863] F.-W. Fu, H. Niederreiter, and F. Ozbudak. On the joint linear complexity of linear recurring multisequences. In Coding and cryptology, volume 4 of Ser. Coding Theory Cryptol., pages 125–142. World Sci. Publ., Hackensack, NJ, 2008. [270, 276, 281] ¨ [864] F.-W. Fu, H. Niederreiter, and F. Ozbudak. Joint linear complexity of arbitrary multisequences consisting of linear recurring sequences. Finite Fields Appl., 15(4):475–496, 2009. [276, 281]

747

748

Handbook of Finite Fields

¨ [865] F.-W. Fu, H. Niederreiter, and F. Ozbudak. Joint linear complexity of multisequences consisting of linear recurring sequences. Cryptogr. Commun., 1(1):3– 29, 2009. [276, 281] [866] F.-W. Fu, H. Niederreiter, and M. Su. The expectation and variance of the joint linear complexity of random periodic multisequences. J. Complexity, 21(6):804– 822, 2005. [276, 281] [867] L. Fu. Weights of twisted exponential sums. Math. Z., 262(2):449–472, 2009. [125, 127] [868] L. Fu and C. Liu. Equidistribution of Gauss sums and Kloosterman sums. Math. Z., 249(2):269–281, 2005. [97, 118] [869] L. Fu and D. Wan. Moment L-functions, partial L-functions and partial exponential sums. Math. Ann., 328(1-2):193–228, 2004. [126, 127, 156, 158] [870] L. Fu and D. Wan. Mirror congruence for rational points on Calabi-Yau varieties. Asian J. Math., 10(1):1–10, 2006. [158] [871] R. Fuhrmann, A. Garcia, and F. Torres. On maximal curves. J. Number Theory, 67(1):29–51, 1997. [366, 367] [872] R. Fuhrmann and F. Torres. The genus of curves over finite fields with many rational points. Manuscripta Math., 89(1):103–106, 1996. [366, 367] [873] R. Fuji-Hara, K. Momihara, and M. Yamada. Perfect difference systems of sets and Jacobi sums. Discrete Math., 309(12):3954–3961, 2009. [100, 118] [874] W. Fulton. Algebraic curves. Advanced Book Classics. Addison-Wesley Publishing Company Advanced Book Program, Redwood City, CA, 1989. An introduction to algebraic geometry, Notes written with the collaboration of Richard Weiss, Reprint of 1969 original. [317, 332, 333, 367] ` M. Gabidulin. Theory of codes with maximum rank distance. Problemy Peredachi [875] E. Informatsii, 21(1):3–16, 1985. [699, 701] [876] A. G´ acs. A remark on blocking sets of almost R´edei type. J. Geom., 60(1-2):65–73, 1997. [471, 475] [877] A. G´ acs. On a generalization of R´edei’s theorem. Combinatorica, 23(4):585–598, 2003. [471, 475] [878] A. G´ acs, L. Lov´ asz, and T. SzHonyi. Directions in AG(2, p2 ). Innov. Incidence Geom., 6/7:189–201, 2007/08. [471, 475] [879] A. G´ acs, P. Sziklai, and T. SzHonyi. Two remarks on blocking sets and nuclei in planes of prime order. Des. Codes Cryptogr., 10(1):29–39, 1997. [471, 475] [880] S. D. Galbraith. Supersingular curves in cryptography. In Advances in cryptology— ASIACRYPT 2001 (Gold Coast), volume 2248 of Lecture Notes in Comput. Sci., pages 495–513. Springer, Berlin, 2001. [359, 360] [881] S. D. Galbraith, M. Harrison, and D. J. Mireles Morales. Efficient hyperelliptic arithmetic using balanced representation for divisors. In Algorithmic number theory, volume 5011 of Lecture Notes in Comput. Sci., pages 342–356. Springer, Berlin, 2008. [356, 360] [882] S. D. Galbraith, F. Hess, and N. P. Smart. Extending the GHS Weil descent attack. In L. Knudsen, editor, Advances in Cryptology — EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages 29–44, Berlin, 2002. Springer-Verlag. [668] [883] S. D. Galbraith and K. G. Paterson, editors. Pairing-Based Cryptography — Pairing 2008, volume 5209 of Lecture Notes in Computer Science, Berlin, 2008. Springer-Verlag. [670]

Miscellaneous applications [884] S. D. Galbraith and N. P. Smart. A cryptographic application of Weil descent. In M. Walker, editor, Cryptography and Coding, volume 1746 of Lecture Notes in Computer Science, pages 191–200, Berlin, 1999. Springer-Verlag. [668] [885] Z. Galil, R. Kannan, and E. Szemer´edi. On nontrivial separators for k-page graphs and simulations by nondeterministic one-tape Turing machines. J. Comput. System Sci., 38(1):134–149, 1989. 18th Annual ACM Symposium on Theory of Computing (Berkeley, CA, 1986). [148] [886] R. G. Gallager. A simple derivation of the coding theorem and some applications. IEEE Trans. Information Theory, IT-11:3–18, 1965. [560, 561, 602] [887] R. Gallant, R. Lambert, and S. Vanstone. Improving the parallelized Pollard lambda search on binary anomalous curves. Mathematics of Computation, 69(232):1699–1705, 2000. [668] [888] L. H. Gallardo and L. N. Vaserstein. The strict waring problem for polynomial rings. J. Number Theory, 128(12):2963–2972, 2008. [413, 414] ´ Galois. Sur la th´eorie des nombres. Bulletin des Sciences math´ematiques [889] E. ´ XIII, pages 428–435, 1830. Reprinted in Ecrits et M´emoires Mathe´ematiques ´ d’Evariste Galois, pp. 112-128. [296, 299] [890] R. A. Games and A. H. Chan. A fast algorithm for determining the complexity of a binary sequence with period 2n . IEEE Trans. Inform. Theory, 29(1):144–146, 1983. [274, 281] [891] M. J. Ganley. Central weak nucleus semifields. European J. Combin., 2(4):339–347, 1981. [228, 229, 233, 234] [892] S. Gao. Normal bases over finite fields. ProQuest LLC, Ann Arbor, MI, 1993. Thesis (Ph.D.)–University of Waterloo (Canada). [31, 32, 33, 34, 72, 79] [893] S. Gao. Elements of provable high orders in finite fields. Proc. Amer. Math. Soc., 127(6):1615–1623, 1999. [69, 70] [894] S. Gao. Absolute irreducibility of polynomials via Newton polytopes. J. Algebra, 237(2):501–520, 2001. [307, 311] [895] S. Gao. Factoring multivariate polynomials via partial differential equations. Math. Comp., 72(242):801–822, 2003. [304, 305, 311] [896] S. Gao, J. Howell, and D. Panario. Irreducible polynomials of given forms. In Finite fields: theory, applications, and algorithms (Waterloo, ON, 1997), volume 225 of Contemp. Math., pages 43–54. Amer. Math. Soc., Providence, RI, 1999. [58, 59] [897] S. Gao, E. Kaltofen, and A. Lauder. Deterministic distinct degree factorization for polynomials over finite fields. J. Symbolic Comput., 38(6):1461–1470, 2004. [306, 311] [898] S. Gao and A. G. B. Lauder. Hensel lifting and bivariate polynomial factorisation over finite fields. Math. Comp., 71(240):1663–1676, 2002. [304, 311] [899] S. Gao and D. Panario. Tests and constructions of irreducible polynomials over finite fields. In Foundations of Computational Mathematics, pages 346–361, 1997. [295, 296, 299] [900] M. Z. Garaev. Double exponential sums related to Diffie-Hellman distributions. Int. Math. Res. Not., (17):1005–1014, 2005. [148] [901] M. Z. Garaev. An explicit sum-product estimate in Fp . Int. Math. Res. Not. IMRN, (11):Art. ID rnm035, 11, 2007. [129] [902] M. Z. Garaev. A quantified version of Bourgain’s sum-product estimate in Fp for subsets of incomparable sizes. Electron. J. Combin., 15(1):Research paper 58,

749

750

Handbook of Finite Fields

8, 2008. [129] [903] M. Z. Garaev. The sum-product estimate for large subsets of prime fields. Proc. Amer. Math. Soc., 136(8):2735–2739, 2008. [129] [904] M. Z. Garaev. Sums and products of sets and estimates for rational trigonometric sums in fields of prime order. Uspekhi Mat. Nauk, 65(4(394)):5–66, 2010. [129, 131] [905] M. Z. Garaev and V. C. Garcia. Waring type congruences involving factorials modulo a prime. Arch. Math. (Basel), 88(1):35–41, 2007. [170] [906] M. Z. Garaev, F. Luca, I. E. Shparlinski, and A. Winterhof. On the lower bound of the linear complexity over Fp of Sidelnikov sequences. IEEE Trans. Inform. Theory, 52(7):3299–3304, 2006. [279, 281] [907] A. Garcia, M. Q. Kawakita, and S. Miura. On certain subcovers of the Hermitian curve. Comm. Algebra, 34(3):973–982, 2006. [166, 170] [908] A. Garc´ia and H. Stichtenoth. A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vl˘adut¸ bound. Invent. Math., 121(1):211–222, 1995. [368, 371, 372] [909] A. Garcia and H. Stichtenoth. On the asymptotic behaviour of some towers of function fields over finite fields. J. Number Theory, 61(2):248–273, 1996. [371, 372] [910] A. Garcia and H. Stichtenoth. On the Galois closure of towers. In Recent trends in coding theory and its applications, volume 41 of AMS/IP Stud. Adv. Math., pages 83–92. Amer. Math. Soc., Providence, RI, 2007. [372] [911] A. Garcia, H. Stichtenoth, and H.-G. R¨ uck. On tame towers over finite fields. J. Reine Angew. Math., 557:53–80, 2003. [371, 372] [912] A. Garcia, H. Stichtenoth, and C.-P. Xing. On subfields of the Hermitian function field. Compositio Math., 120(2):137–170, 2000. [366, 367] [913] A. Garc´ia and J. F. Voloch. Fermat curves over finite fields. J. Number Theory, 30(3):345–356, 1988. [169, 170] [914] M. Garc´ia-Armas, S. R. Ghorpade, and S. Ram. Relatively prime polynomials and nonsingular Hankel matrices over finite fields. J. Combin. Theory Ser. A, 118(3):819–828, 2011. [423, 424] [915] F. Gardeyn. A Galois criterion for good reduction of τ -sheaves. J. Number Theory, 97(2):447–471, 2002. [454] [916] T. Garefalakis. Irreducible polynomials with consecutive zero coefficients. Finite Fields Appl., 14(1):201–208, 2008. [46, 49] [917] T. Garefalakis. Self-irreducible polynomials with prescribed coefficients. Finite Fields Appl., 17(?), 2011. [47, 49] [918] G. Garg, T. Helleseth, and P. Kumar. Recent advances in low-correlation sequences. New Directions in Wireless Communications Research, 2009. [264] [919] J. von zur Gathen. Factoring sparse multivariate polynomials. In 24th Annual IEEE Symposium on Foundations of Computer Science, pages 172–179, Los Alamitos, CA, USA, 1983. IEEE Computer Society. [310, 311] [920] J. von zur Gathen. Hensel and Newton methods in valuation rings. Math. Comp., 42(166):637–661, 1984. [304, 311] [921] J. von zur Gathen. Irreducibility of multivariate polynomials. J. Comput. System Sci., 31(2):225–264, 1985. Special issue: Twenty-fourth annual symposium on the foundations of computer science (Tucson, Ariz., 1983). [305, 309, 311]

Miscellaneous applications [922] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, Cambridge, New York, Melbourne, 2003. [20, 54, 55, 295, 296, 299, 304, 306, 311] [923] J. von zur Gathen and E. Kaltofen. Factoring multivariate polynomials over finite fields. Math. Comp., 45:251–261, 1985. [305, 311] [924] J. von zur Gather and E. Kaltofen. Factoring sparse multivariate polynomials. J. Comput. System Sci., 31:265–287, 1985. [309, 310, 311] [925] P. Gaudry. An algorithm for solving the discrete log problem on hyperelliptic curves. In Advances in cryptology—EUROCRYPT 2000 (Bruges), volume 1807 of Lecture Notes in Comput. Sci., pages 19–34. Springer, Berlin, 2000. [360] [926] P. Gaudry. Index calculus for abelian varieties of small dimension and the elliptic curve discrete logarithm problem. Journal of Symbolic Computation, 44(12):1690–1702, 2009. [668] [927] P. Gaudry and N. G¨ urel. Counting points in medium characteristic using Kedlaya’s algorithm. Experiment. Math., 12(4):395–402, 2003. [406] [928] P. Gaudry and R. Harley. Counting points on hyperelliptic curves over finite fields. In Algorithmic number theory (Leiden, 2000), volume 1838 of Lecture Notes in Comput. Sci., pages 313–332. Springer, Berlin, 2000. [358, 360] [929] P. Gaudry, F. Hess, and N. P. Smart. Constructive and destructive facets of Weil descent on elliptic curves. Journal of Cryptology, 15(1):19–46, 2002. [668] [930] P. Gaudry and F. Morain. Fast algorithms for computing the eigenvalue in the Schoof–Elkies–Atkin algorithm. In J.-G. Dumas, editor, Proceedings of the 2006 International Symposium on Symbolic and Algebraic Computations — ISSAC MMVI, pages 109–115, New York, 2006. ACM Press. [670] [931] P. Gaudry, E. Thom´e, N. Th´eriault, and C. Diem. A double large prime variation for small genus hyperelliptic index calculus. Math. Comp., 76(257):475–492 (electronic), 2007. [360] [932] G. Ge and L. Zhu. Authentication perpendicular arrays APA1 (2, 5, v). J. Combin. Des., 4(5):365–375, 1996. [551] [933] W. Geiselmann and D. Gollmann. Self-dual bases in Fqn . Des. Codes Cryptogr., 3(4):333–345, 1993. [73, 79] [934] W. Geiselmann, W. Meier, and R. Steinwandt. An attack on the isomorphisms of polynomials problem with one secret. Int. Journal of Information Security, 2(1):59–64, 2003. [651] [935] E.-U. Gekeler. On the coefficients of Drinfel’d modular forms. Invent. Math., 93(3):667–700, 1988. [457] [936] M. Genma, M. Mishima, and M. Jimbo. Cyclic resolvability of cyclic Steiner 2designs. J. Combin. Des., 5(3):177–187, 1997. [507] [937] S. R. Ghorpade, S. U. Hasan, and M. Kumari. Primitive polynomials, Singer cycles and word-oriented linear feedback shift registers. Des. Codes Cryptogr., 58(2):123–134, 2011. [416, 424] ´ [938] S. R. Ghorpade and G. Lachaud. Etale cohomology, Lefschetz theorems and number of points of singular varieties over finite fields. Mosc. Math. J., 2(3):589–631, 2002. Dedicated to Yuri I. Manin on the occasion of his 65th birthday. [153, 158] [939] P. Gianni and B. Trager. Square-free algorithms in positive characteristic. Appl. Alg. Eng. Comm. Comp., 7(1):1–14, 1996. [303, 311] [940] P. Giorgi, C.-P. Jeannerod, and G. Villard. On the complexity of polynomial matrix

751

752

[941] [942] [943] [944] [945] [946] [947] [948]

[949]

[950] [951] [952] [953]

[954] [955] [956] [957] [958]

[959]

Handbook of Finite Fields

computations. In Proceedings of the 2003 International Symposium on Symbolic and Algebraic Computation, pages 135–142 (electronic), New York, 2003. ACM. [436] D. Giry and J.-J. Quisquater. Bluekrypt cryptographic key length recommendation, 2011. v26.0, April 18, http://www.keylength.com/. [666] M. Giulietti, J. W. P. Hirschfeld, G. Korchm´aros, and F. Torres. Curves covered by the Hermitian curve. Finite Fields Appl., 12(4):539–564, 2006. [166, 170] M. Giulietti and G. Korchm´ aros. A new family of maximal curves over a finite field. Math. Ann., 343(1):229–245, 2009. [366, 367] M. Giulietti, G. Korchm´ aros, and F. Torres. Quotient curves of the Suzuki curve. Acta Arith., 122(3):245–274, 2006. [366, 367] D. Glass and R. Pries. Hyperelliptic curves with prescribed p-torsion. Manuscripta Math., 117(3):299–317, 2005. [401, 402] A. Glibichuk and M. Rudnev. On additive properties of product sets in an arbitrary finite field. J. Anal. Math., 108:159–170, 2009. [134] A. A. Glibichuk. Sums of powers of subsets of an arbitrary finite field. Izv. RAN. Ser. Mat., (75):35–68, 2011. [140] A. A. Glibichuk and S. V. Konyagin. Additive properties of product sets in fields of prime order. In Additive combinatorics, volume 43 of CRM Proc. Lecture Notes, pages 279–286. Amer. Math. Soc., Providence, RI, 2007. [129] D. Gligoroski, S. Markovski, and S. J. Knapskog. Multivariate quadratic trapdoor functions based on multivariate quadratic quasigroup. In Proceedings of The American Conference on Applied Mathematics, (MATH08), Cambridge, Massachusetts, USA, March 2008. [658] D. Gluck. A note on permutation polynomials and finite geometries. Discrete Math., 80(1):97–100, 1990. [232, 234] C. Godsil and G. Royle. Algebraic graph theory, volume 207 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2001. [534, 545] J.-M. Goethals. Nonlinear codes defined by quadratic forms over GF(2). Information and Control, 31(1):43–74, 1976. [601, 602] J. S. Golan. Semirings and their applications. Kluwer Academic Publishers, Dordrecht, 1999. Updated and expanded version of it The theory of semirings, with applications to mathematics and theoretical computer science [Longman Sci. Tech., Harlow, 1992; MR1163371 (93b:16085)]. [16, 20] M. Golay. Notes on digital coding. Proc. IRE, 37:657, 1949. [583, 601, 602] Golay, M.J.E. Static multislit spectrometry and its application to the panoramic display of infrared spectra. J. Opt. Soc. Amer., 41:468–472, 1951. [695, 701] R. Gold. Maximal recursive sequences with 3-valued recursive crosscorrelation functions. IEEE Trans. Inform. Theory, 14:154–156, 1968. [183, 185] D. M. Goldschmidt. Algebraic functions and projective curves, volume 215 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2003. [317, 333] D. Gollmann. Design of algorithms in cryptography. (Algorithmenentwurf in der Kryptographie.). Aspekte Komplexer Systeme. 1. Mannheim: B.I. Wissenschaftsverlag. viii, 158 p. 68.00; ¨oS 531.00; sFr 68.00 /hc , 1994. [73, 75, 79] F. G¨ olo˘ glu, G. McGuire, and R. Moloney. Binary Kloosterman sums using Stickelberger’s theorem and the Gross-Koblitz formula. Acta Arith., 148(3):269–279, 2011. [111, 118]

Miscellaneous applications [960] S. Golomb and G. Gong. Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar. Cambridge University Press, 2004. [19, 20, 640, 647] [961] S. W. Golomb. Shift register sequences. With portions co-authored by Lloyd R. Welch, Richard M. Goldstein, and Alfred W. Hales. Holden-Day Inc., San Francisco, Calif., 1967. [38] [962] S. W. Golomb. Periodic binary sequences: solved and unsolved problems. In Sequences, subsequences, and consequences, volume 4893 of Lecture Notes in Comput. Sci., pages 1–8. Springer, Berlin, 2007. [66, 68] [963] S. W. Golomb and G. Gong. Signal design for good correlation. Cambridge University Press, Cambridge, 2005. For wireless communication, cryptography, and radar. [19, 20, 137, 515, 519] [964] S. W. Golomb and G. Gong. Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar. Cambridge University Press, 2005. [19, 20, 264] [965] S. W. Golomb and O. Moreno. On periodicity properties of Costas arrays and a conjecture on permutation polynomials. IEEE Trans. Inform. Theory, 42(6, part 2):2252–2253, 1996. [185] [966] S. W. Golomb, M. G. Parker, A. Pott, and A. Winterhof, editors. Sequences and their applications—SETA 2008, volume 5203 of Lecture Notes in Computer Science, Berlin, 2008. Springer. [20] ´ Ibeas. Attacking the Pollard generator. IEEE [967] D. G´ omez, J. Gutierrez, and A. Trans. Inform. Theory, 52(12):5518–5523, 2006. [283, 289] [968] D. Gomez and A. P. Nicol´ as. An estimate on the number of stable quadratic polynomials. Finite Fields Appl., 16(6):401–405, 2010. [143, 287, 288, 289] [969] D. Gomez and A. Winterhof. Waring’s problem in finite fields with Dickson polynomials. In Finite fields: theory and applications, volume 518 of Contemp. Math., pages 185–192. Amer. Math. Soc., Providence, RI, 2010. [169] [970] J. Gomez-Calderon. On the cardinality of value set of polynomials with coefficients in a finite field. Proc. Japan Acad. Ser. A Math. Sci., 68(10):338–340, 1992. [192] [971] J. Gomez-Calderon and D. J. Madden. Polynomials with small value set over finite fields. J. Number Theory, 28(2):167–188, 1988. [189, 192] [972] G. Gong, T. Helleseth, H.-Y. Song, and K. Yang, editors. Sequences and their applications—SETA 2006, volume 4086 of Lecture Notes in Computer Science, Berlin, 2006. Springer. [20] [973] G. Gong and A. M. Youssef. Cryptographic properties of the welch-gong transformation sequence generators. IEEE Transactions on Information Theory, 48(11):2837–2846, 2002. [640, 647] [974] P. Gopalan, V. Guruswami, and R. J. Lipton. Algorithms for modular counting of roots of multivariate polynomials. In LATIN 2006: Theoretical informatics, volume 3887 of Lecture Notes in Comput. Sci., pages 544–555. Springer, Berlin, 2006. [403, 404, 406] [975] V. D. Goppa. A new class of linear correcting codes. Problemy Peredaˇci Informacii, 6(3):24–30, 1970. [584, 601, 602] [976] V. D. Goppa. Rational representation of codes and (L, g)-codes. Problemy Peredaˇci Informacii, 7(3):41–49, 1971. [584, 601, 602] [977] V. D. Goppa. Codes that are associated with divisors (Russian). Problemy Peredaˇci

753

754

Handbook of Finite Fields

Informacii, 13:33–39, 1977. [603, 612] [978] V. D. Goppa. Codes on algebraic curves (Russian). Dokl. Akad. Nauk SSSR, 259:1289–1290, 1981. [603, 612] [979] V. D. Goppa. Algebraic-geometric codes (Russian). Izv. Akad. Nauk SSSR Ser. Mat., 46:762–781, 1982. [603, 612] [980] B. Gordon, W. H. Mills, and L. R. Welch. Some new difference sets. Canad. J. Math., 14:614–625, 1962. [265, 515, 519] [981] D. M. Gordon. The prime power conjecture is true for n < 2, 000, 000. Electron. J. Combin., 1:Research Paper 6, approx. 7 pp. (electronic), 1994. [514, 519] [982] D. Gorenstein and N. Zierler. A class of error-correcting codes in pm symbols. J. Soc. Indust. Appl. Math., 9:207–214, 1961. [578, 591, 592, 601, 602] [983] D. Goss. π-adic Eisenstein series for function fields. Compositio Math., 41(1):3–38, 1980. [457] [984] D. Goss. Basic structures of function field arithmetic, volume 35 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1996. [19, 20, 448, 449, 451, 453, 454, 455] [985] D. Goss. Applications of non-Archimedean integration to the L-series of τ -sheaves. J. Number Theory, 110(1):83–113, 2005. [454] [986] D. Goss. ζ-phenomenology. In Noncommutative Geometry, Arithmetic, and Related Topics: Proceedings of the Twenty-First Meeting of the Japan-U.S. Mathematics Institute. The Johns Hopkins University Press, Baltimore, MD, 2011. [455, 456] [987] K. Goto and R. van de Geijn. High-performance implementation of the level-3 BLAS. ACM Trans. Math. Software, 35(1):Art. 4, 14, 2009. [427, 436] [988] L. Goubin and N. T. Courtois. Cryptanalysis of the TTM cryptosystem. In Advances in cryptology—ASIACRYPT 2000 (Kyoto), volume 1976 of Lecture Notes in Comput. Sci., pages 44–57. Springer, Berlin, 2000. [652, 656, 657, 662] [989] A. Gouget and J. Patarin. Probabilistic multivariate cryptography. In P. Q. Nguyen, editor, VIETCRYPT, volume 4341 of Lecture Notes in Computer Science, pages 1–18. Springer, 2006. [654] [990] P. Goutet. An explicit factorisation of the zeta functions of Dwork hypersurfaces. Acta Arith., 144(3):241–261, 2010. [98, 118] [991] P. Goutet. On the zeta function of a family of quintics. J. Number Theory, 130(3):478–492, 2010. [98, 118] [992] P. Goutet. Isotypic decomposition of the cohomology and factorization of the zeta functions of dwork hypersurfaces. Finite Fields Appl., 17(2):113–137, 2011. [386, 393] [993] W. T. Gowers. A new proof of Szemer´edi’s theorem. Geom. Funct. Anal., 11(3):465– 588, 2001. [130] [994] B. Grammaticos, R. G. Halburd, A. Ramani, and C.-M. Viallet. How to detect the integrability of discrete systems. J. Phys. A, 42(45):454002, 30, 2009. [282, 289] [995] L. Granboulan, A. Joux, and J. Stern. Inverting HFE is quasipolynomial. In Advances in cryptology—CRYPTO 2006, volume 4117 of Lecture Notes in Comput. Sci., pages 345–356. Springer, Berlin, 2006. [664] [996] R. M. Gray. Toeplitz and circulant matrices: a review. 2005. [422, 424] [997] D. R. Grayson and M. E. Stillman. Macaulay2, a software system for research

Miscellaneous applications

[998]

[999] [1000]

[1001] [1002]

[1003] [1004] [1005]

[1006] [1007]

[1008]

[1009] [1010]

[1011] [1012]

[1013]

[1014] [1015]

in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/, 1992. [689, 692] M. Greig. Some balanced incomplete block design constructions. In Proceedings of the Twenty-first Southeastern Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1990), volume 77, pages 121–134, 1990. [507] M. Greig. Some group divisible design constructions. J. Combin. Math. Combin. Comput., 27:33–52, 1998. [509] F. Griffin, H. Niederreiter, and I. E. Shparlinski. On the distribution of nonlinear recursive congruential pseudorandom numbers of higher orders. In Applied algebra, algebraic algorithms and error-correcting codes (Honolulu, HI, 1999), volume 1719 of Lecture Notes in Comput. Sci., pages 87–93. Springer, Berlin, 1999. [283, 285, 289] F. Griffin and I. E. Shparlinski. On the linear complexity profile of the power generator. IEEE Trans. Inform. Theory, 46(6):2159–2162, 2000. [278, 281] K. C. Gupta and S. Maitra. Multiples of primitive polynomials over GF(2). In Progress in cryptology—INDOCRYPT 2001 (Chennai), volume 2247 of Lecture Notes in Comput. Sci., pages 62–72. Springer, Berlin, 2001. [523, 531] S. Gurak. Gauss and Eisenstein sums of order twelve. Canad. Math. Bull., 46(3):344–355, 2003. [108, 118] S. Gurak. Gauss sums for prime powers in p-adic fields. Acta Arith., 142(1):11–39, 2010. [117, 118] S. Gurak. Jacobi sums and irreducible polynomials with prescribed trace and restricted norm. In Finite fields: theory and applications, volume 518 of Contemp. Math., pages 193–208. Amer. Math. Soc., Providence, RI, 2010. [100, 118] S. J. Gurak. Kloosterman sums for prime powers in p-adic fields. J. Th´eor. Nombres Bordeaux, 21(1):175–201, 2009. [117, 118] R. Guralnick and D. Wan. Bounds for fixed point free elements in a transitive group and applications to curves over finite fields. Israel J. Math., 101:255–287, 1997. [189, 192] R. M. Guralnick. Rational maps and images of rational points of curves over finite fields. In Proceedings of the All Ireland Algebra Days, 2001 (Belfast), number 50, pages 71–95, 2003. [189, 192] R. M. Guralnick and P. M¨ uller. Exceptional polynomials of affine type. J. Algebra, 194(2):429–454, 1997. [194] R. M. Guralnick, P. M¨ uller, and J. Saxl. The rational function analogue of a question of Schur and exceptionality of permutation representations. Mem. Amer. Math. Soc., 162(773):viii+79, 2003. [251, 253, 255] R. M. Guralnick, P. M¨ uller, and M. E. Zieve. Exceptional polynomials of affine type, revisited. preprint. [194] R. M. Guralnick, J. Rosenberg, and M. E. Zieve. A new family of exceptional polynomials in characteristic two. Ann. of Math. (2), 172(2):1361–1390, 2010. [194] R. M. Guralnick, T. J. Tucker, and M. E. Zieve. Exceptional covers and bijections on rational points. Int. Math. Res. Not. IMRN, (1):Art. ID rnm004, 20, 2007. [195] R. M. Guralnick and M. E. Zieve. Polynomials with PSL(2) monodromy. Ann. of Math. (2), 172(2):1315–1359, 2010. [194] V. Guruswami and A. C. Patthak. Correlated algebraic-geometric codes: improved

755

756

[1016] [1017]

[1018] [1019]

[1020]

[1021]

[1022] [1023] [1024] [1025] [1026] [1027]

[1028] [1029] [1030]

[1031]

[1032] [1033] [1034]

Handbook of Finite Fields

list decoding over bounded alphabets. Math. Comp., 77:447–473, 2008. [605, 612] V. Guruswami and A. Rudra. Limits to list decoding Reed-Solomon codes. IEEE Trans. Inform. Theory, 52(8):3642–3649, 2006. [599, 602] V. Guruswami and M. Sudan. Improved decoding of Reed-Solomon and algebraicgeometry codes. IEEE Trans. Inform. Theory, 45(6):1757–1767, 1999. [599, 602] F. G. Gustavson. Analysis of the Berlekamp-Massey linear feedback shift-register synthesis algorithm. IBM J. Res. Develop., 20(3):204–212, 1976. [275, 281] J. Gutierrez and D. Gomez-Perez. Iterations of multivariate polynomials and discrepancy of pseudorandom numbers. In Applied algebra, algebraic algorithms and error-correcting codes (Melbourne, 2001), volume 2227 of Lecture Notes in Comput. Sci., pages 192–199. Springer, Berlin, 2001. [283, 285, 289] ´ Ibeas. Inferring sequences produced by a linear congruential J. Gutierrez and A. generator on elliptic curves missing high-order bits. Des. Codes Cryptogr., 45(2):199–212, 2007. [283, 289] J. Gutierrez, I. E. Shparlinski, and A. Winterhof. On the linear and nonlinear complexity profile of nonlinear pseudorandom number-generators. IEEE Trans. Inform. Theory, 49(1):60–64, 2003. [277, 278, 281] K. Gyarmati and A. S´ ark¨ ozy. Equations in finite fields with restricted solution sets. I. Character sums. Acta Math. Hungar., 118(1-2):129–148, 2008. [149] K. Gyarmati and A. S´ ark¨ ozy. Equations in finite fields with restricted solution sets. II. (Algebraic equations). Acta Math. Hungar., 119(3):259–280, 2008. [149] D. Hachenberger. On completely free elements in finite fields. Des. Codes Cryptogr., 4(2):129–143, 1994. [83] D. Hachenberger. Explicit iterative constructions of normal bases and completely free elements in finite fields. Finite Fields Appl., 2(1):1–20, 1996. [83] D. Hachenberger. Normal bases and completely free elements in prime power extensions over finite fields. Finite Fields Appl., 2(1):21–34, 1996. [83] D. Hachenberger. Finite fields. The Kluwer International Series in Engineering and Computer Science, 390. Kluwer Academic Publishers, Boston, MA, 1997. Normal bases and completely free elements. [19, 20, 82, 83, 84, 85, 86, 87, 88, 89, 90, 94, 95] D. Hachenberger. A decomposition theory for cyclotomic modules under the complete point of view. J. Algebra, 237(2):470–486, 2001. [82, 85, 86, 87, 88] D. Hachenberger. Primitive complete normal bases for regular extensions. Glasg. Math. J., 43(3):383–398, 2001. [64, 65, 82, 84, 88, 89, 92] D. Hachenberger. Universal generators for primary closures of Galois fields. In Finite fields and applications (Augsburg, 1999), pages 208–223. Springer, Berlin, 2001. [94] D. Hachenberger. Primitive complete normal bases: existence in certain 2-power extensions and lower bounds. Discrete Math., 310(22):3246–3250, 2010. [64, 65, 92] D. Hachenberger, H. Niederreiter, and C. P. Xing. Function-field codes. Appl. Algebra Engrg. Comm. Comput., 19:201–211, 2008. [608, 612] C. D. Haessig. L-functions of symmetric powers of cubic exponential sums. J. Reine Angew. Math., 631:1–57, 2009. [394, 402] A. W. Hales and D. W. Newhart. Swan’s theorem for binary tetranomials. Finite

Miscellaneous applications Fields Appl., 12(2):301–311, 2006. [37, 38] [1035] C. Hall. l-functions of twisted Legendre curves. J. Number Theory, 119(1):128–147, 2006. [410, 414] [1036] K. H. Ham and G. L. Mullen. Distribution of irreducible polynomials of small degrees over finite fields. Math. Comp., 67(221):337–341, 1998. [44, 49] [1037] N. Hamilton and R. Mathon. More maximal arcs in Desarguesian projective planes and their geometric structure. Adv. Geom., 3(3):251–261, 2003. [485, 486] [1038] N. Hamilton and R. Mathon. On the spectrum of non-Denniston maximal arcs in PG(2, 2h ). European J. Combin., 25(3):415–421, 2004. [485, 486] [1039] R. W. Hamming. Error detecting and error correcting codes. Bell System Tech. J., 29:147–160, 1950. [583, 601, 602] [1040] A. R. Hammons, Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, and P. Sol´e. The Z4 -linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inform. Theory, 40(2):301–319, 1994. [17, 18, 19, 599, 601, 602] [1041] W. Han. The distribution of the coefficients of primitive polynomials over finite fields. In Cryptography and computational number theory (Singapore, 1999), volume 20 of Progr. Comput. Sci. Appl. Logic, pages 43–57. Birkh¨auser, Basel, 2001. [62, 65] [1042] W. B. Han. The coefficients of primitive polynomials over finite fields. Math. Comp., 65(213):331–340, 1996. [62, 65] [1043] D. Hankerson, A. Menezes, and S. Vanstone. Guide to elliptic curve cryptography. Springer Professional Computing. Springer-Verlag, New York, 2004. [19, 20, 360] [1044] J. P. Hansen and J. P. Pedersen. Automorphism groups of Ree type, Deligne-Lusztig curves and function fields. J. Reine Angew. Math., 440:99–109, 1993. [365, 367] [1045] S. H. Hansen. Error-correcting codes from higher-dimensional varieties. Finite Fields Appl., 7:530–552, 2001. [605, 612] [1046] T. Hansen and G. L. Mullen. Primitive polynomials over finite fields. Math. Comp., 59(200):639–643, S47–S50, 1992. [44, 49, 57, 59, 61, 65, 66, 68] [1047] B. Hanson, D. Panario, and D. Thomson. Swan-like results for binomials and trinomials over finite fields of odd characteristic. To appear in Designs, Codes and Cryptography, 2012. [38] [1048] G. Hardy and L. J.E. Some problems of ’partitio numerorum’:iv. the singular series in waring’s problem and the value of the number g(k). Math. Z., 12(1):161–188, 1922. [412, 414] [1049] G. Hardy and J. Littlewood. Some problems of ‘Partitio numerorum’; III: On the expression of a number as a sum of primes. Acta Math., 44(1):1–70, 1923. [411, 414] [1050] G. Hardy and E. Wright. An introduction to the theory of numbers. Oxford University Press, Oxford, 2008. [409, 414] [1051] R. Harley. Asymptotically optimal p-adic point-counting, Dec. 2002. Posting to the Number Theory List, available at http://listserv.nodak.edu/cgi-bin/wa. exe?A2=ind0212&L=NMBRTHRY&P=R1277. [670] [1052] N. V. Harrach and C. Mengy´ an. Minimal blocking sets in PG(2, q) arising from a generalized construction of Megyesi. Innov. Incidence Geom., 6/7:211–226, 2007/08. [471, 475] [1053] D. Hart, A. Iosevich, and J. Solymosi. Sum-product estimates in finite fields via Kloosterman sums. Int. Math. Res. Not. IMRN, (5):Art. ID rnm007, 14, 2007.

757

758

Handbook of Finite Fields

[129] [1054] R. Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52. [244, 247, 255, 332, 333, 384, 393] [1055] D. Harvey. Kedlaya’s algorithm in larger characteristic. Int. Math. Res. Not. IMRN, (22):Art. ID rnm095, 29, 2007. [404, 406, 670] [1056] M. A. Hasan and T. Helleseth, editors. Arithmetic of finite fields, volume 6087 of Lecture Notes in Computer Science, Berlin, 2010. Springer. [20] [1057] S. Hasegawa and T. Kaneko. An attacking method for a public key cryptosystem based on the difficulty of solving a system of non-linear equations. In Proc. 10th Symposium on Information Theory and Its applications, pages JA5–3, 1987. [652] [1058] K.-i. Hashimoto. Zeta functions of finite graphs and representations of p-adic groups. In Automorphic forms and geometry of arithmetic varieties, volume 15 of Adv. Stud. Pure Math., pages 211–280. Academic Press, Boston, MA, 1989. [545] [1059] H. Hasse. Theorie der relativ-zyklischen algebraischen funktionenkrper, insbesondere bei endlichen konstantkrper. J. Reine Angew. Math., 172:37–54, 1934. [119] [1060] P. Hawkes and G. G. Rose. Exploiting multiples of the connection polynomial in word-oriented stream ciphers. In Advances in cryptology—ASIACRYPT 2000 (Kyoto), volume 1976 of Lecture Notes in Comput. Sci., pages 303–316. Springer, Berlin, 2000. [271, 281] [1061] P. Hawkes and G. G. Rose. Rewriting variables: the complexity of fast algebraic attacks on stream ciphers. In Advances in cryptology—CRYPTO 2004, volume 3152 of Lecture Notes in Comput. Sci., pages 390–406. Springer, Berlin, 2004. [202, 204] [1062] D. R. Hayes. The distribution of irreducibles in GF[q, x]. Trans. Amer. Math. Soc., 117:101–127, 1965. [43, 49, 409, 414] [1063] D. R. Hayes. The expression of a polynomial as a sum of three irreducibles. Acta Arith., 11:461–488, 1966. [411, 414] [1064] D. R. Hayes. Explicit class field theory for rational function fields. Trans. Amer. Math. Soc., 189:77–91, 1974. [450] [1065] D. R. Hayes. Explicit class field theory in global function fields. In Studies in algebra and number theory, volume 6 of Adv. in Math. Suppl. Stud., pages 173–217. Academic Press, New York, 1979. [450] [1066] D. R. Hayes. A brief introduction to Drinfeld modules. In The arithmetic of function fields (Columbus, OH, 1991), volume 2 of Ohio State Univ. Math. Res. Inst. Publ., pages 1–32. de Gruyter, Berlin, 1992. [448] [1067] D. R. Heath-Brown. Arithmetic applications of Kloosterman sums. Nieuw Arch. Wiskd. (5), 1(4):380–384, 2000. [111, 118] [1068] D. R. Heath-Brown and S. Konyagin. New bounds for Gauss sums derived from kth powers, and for Heilbronn’s exponential sum. Q. J. Math., 51(2):221–235, 2000. [98, 118, 137, 141] [1069] D. R. Heath-Brown and S. J. Patterson. The distribution of Kummer sums at prime arguments. J. Reine Angew. Math., 310:111–130, 1979. [107, 118] [1070] A. Hedayat, D. Raghavarao, and E. Seiden. Further contributions to the theory of F -squares design. Ann. Statist., 3:712–716, 1975. [465, 467] [1071] A. S. Hedayat, N. J. A. Sloane, and J. Stufken. Orthogonal arrays. Springer Series in Statistics. Springer-Verlag, New York, 1999. Theory and applications, With

Miscellaneous applications a foreword by C. R. Rao. [520, 531] [1072] A. Hefez. On the value sets of special polynomials over finite fields. Finite Fields Appl., 2(4):337–347, 1996. [191, 192] [1073] L. Heffter. Ueber Tripelsysteme. Math. Ann., 49(1):101–112, 1897. [504] [1074] H. Heilbronn. Lecture notes on additive number theory mod p. California Institute of Technology, 1964. [169, 170] [1075] R. Heindl. New directions in multivariate public key cryptography. PhD. Thesis, Clemson University, 2009. http://etd.lib.clemson.edu/documents/ 1247508584/. [658] [1076] J. Heintz and M. Sieveking. Absolute primality of polynomials is decidable in random polynomial time in the number of variables. In Automata, languages and programming (Akko, 1981), volume 115 of Lecture Notes in Comput. Sci., pages 16–28. Springer-Verlag, 1981. [305, 311] [1077] H. A. Helfgott. Growth and generation in SL2 (Z/pZ). Ann. of Math. (2), 167(2):601–623, 2008. [134] [1078] H. A. Helfgott. Growth in SL3 (Z/pZ). J. Eur. Math. Soc. (JEMS), 13(3):761–851, 2011. [134] [1079] H. A. Helfgott and M. Rudnev. An explicit incidence theorem in Fp . Mathematika, 57(1):135–145, 2011. [133] [1080] H. A. Helfgott and A. Seress. On the diameter of permutation groups. arXiv:1109.3550. [134] [1081] T. Helleseth. Some results about the cross-correlation function between two maximal linear sequences. Discrete Math., 16(3):209–232, 1976. [212, 213, 266] [1082] T. Helleseth. On the covering radius of cyclic linear codes and arithmetic codes. Discrete Appl. Math., 11(2):157–173, 1985. [140] [1083] T. Helleseth, H. D. L. Hollmann, A. Kholosha, Z. Wang, and Q. Xiang. Proofs of two conjectures on ternary weakly regular bent functions. IEEE Trans. Inform. Theory, 55(11):5272–5283, 2009. [223, 224] [1084] T. Helleseth and A. Kholosha. Monomial and quadratic bent functions over the finite fields of odd characteristic. IEEE Trans. Inform. Theory, 52(5):2018– 2032, 2006. [218, 222, 223, 224] [1085] T. Helleseth and A. Kholosha. On the dual of monomial quadratic p-ary bent functions. In Sequences, subsequences, and consequences, volume 4893 of Lecture Notes in Comput. Sci., pages 50–61. Springer, Berlin, 2007. [222, 224] [1086] T. Helleseth and A. Kholosha. New binomial bent functions over the finite fields of odd characteristic. IEEE Trans. Inform. Theory, 56(9):4646–4652, Sept. 2010. [223, 224] [1087] T. Helleseth and P. V. Kumar. Sequences with low correlation. In Handbook of coding theory, Vol. I, II, pages 1765–1853. North-Holland, Amsterdam, 1998. [163, 264, 266] [1088] T. Helleseth and P. V. Kumar. Pseudonoise sequences. The Mobile Communications Handbook, 1999. [264] [1089] T. Helleseth, P. V. Kumar, and H. Martinsen. A new family of ternary sequences with ideal two-level autocorrelation function. Des. Codes Cryptogr., 23(2):157– 166, 2001. [516, 519] [1090] T. Helleseth, P. V. Kumar, and K. Yang, editors. Sequences and their applications, Discrete Mathematics and Theoretical Computer Science (London), London, 2002. Springer-Verlag London Ltd. [20]

759

760

Handbook of Finite Fields

[1091] T. Helleseth, C. Rong, and D. Sandberg. New families of almost perfect nonlinear power mappings. IEEE Trans. Inform. Theory, 45(2):474–485, 1999. [183, 185, 208, 213] [1092] T. Helleseth, D. Sarwate, H.-Y. Song, and K. Yang, editors. Sequences and Their Applications—SETA 2004, volume 3486 of Lecture Notes in Computer Science, Berlin, 2005. Springer. [20] [1093] T. Helleseth and V. Zinoviev. New Kloosterman sums identities over F2m for all m. Finite Fields Appl., 9(2):187–193, 2003. [182] [1094] M. Henderson. A note on the permutation behaviour of the Dickson polynomials of the second kind. Bull. Austral. Math. Soc., 56(3):499–505, 1997. [182, 185] [1095] M. Henderson and R. Matthews. Permutation properties of Chebyshev polynomials of the second kind over a finite field. Finite Fields Appl., 1(1):115–125, 1995. [182, 185] [1096] M. Henderson and R. Matthews. Dickson polynomials of the second kind which are permutation polynomials over a finite field. New Zealand J. Math., 27(2):227– 244, 1998. [182, 185] [1097] B. Hendrickson and E. Rothberg. Improving the run time and quality of nested dissection ordering. SIAM J. Sci. Comput., 20(2):468–489 (electronic), 1998. [434, 436] [1098] C. Hering. Eine nicht-desarguessche zweifach transitive affine Ebene der Ordnung 27. Abh. Math. Sem. Univ. Hamburg, 34:203–208, 1969/1970. [481, 486] [1099] J. R. Heringa, H. W. J. Bl¨ ote, and A. Compagner. New primitive trinomials of Mersenne-exponent degrees for random-number generation. Internat. J. Modern Phys. C, 3(3):561–564, 1992. [66, 68] [1100] R. A. Hern´ andez Toledo. Linear finite dynamical systems. Comm. Algebra, 33(9):2977–2989, 2005. [692] [1101] F. Hernando and G. McGuire. Proof of a conjecture on the sequence of exceptional numbers, classifying cyclic codes and APN functions. Journal of Algebra, 2011. To appear. [212, 213] [1102] M. Herrmann and G. Leander. A practical key recovery attack on Basic T CHo. In Public key cryptography—PKC 2009, volume 5443 of Lecture Notes in Comput. Sci., pages 411–424. Springer, Berlin, 2009. [521, 531] [1103] F. Hess. Pairing lattices. In S. D. Galbraith and K. Paterson, editors, Pairing-Based Cryptography — Pairing 2008, volume 5209 of Lecture Notes in Computer Science, pages 18–38, Berlin, 2008. Springer-Verlag. [673] [1104] F. Hess and I. E. Shparlinski. On the linear complexity and multidimensional distribution of congruential generators over elliptic curves. Des. Codes Cryptogr., 35(1):111–117, 2005. [279, 281] [1105] F. Hess, N. P. Smart, and F. Vercauteren. The eta pairing revisited. IEEE Transactions on Information Theory, 52(10):4595–4602, 2006. [672, 673] [1106] A. E. Heydtmann. Sudan-decoding generalized geometric Goppa codes. Finite Fields Appl., 9:267–285, 2003. [608, 612] [1107] K. Hicks, G. Mullen, J. Yucas, and R. Zavislak. A polynomial analogue of the 3n+1 problem. Amer. Math. Monthly, 115(7):615–622, 2008. [414] [1108] J. Hietarinta and C. Viallet. Searching for integrable lattice maps using factorization. J. Phys. A, 40(42):12629–12643, 2007. [282, 283, 289] [1109] D. Hilbert. Ueber die Irreducibilit¨at ganzer rationaler Functionen mit ganzzahligen Coefficienten. J. Reine Angew. Math., 110, 1892. [305, 311]

Miscellaneous applications [1110] D. Hilbert. Beweis fur die darstellbarkeit der ganzen kahlen durch eine feste anzahl nter potenzen (waringsches problem)(german). Math. Ann., 67(3):281–300, 1909. [412, 414] [1111] F. Hinkelmann, M. Brandon, B. Guang, R. McNeill, A. Veliz-Cuba, G. Blekherman, and R. Laubenbacher. Adam: Analysis of analysis of dynamic algebraic models. Available at http:/adam.vbi.vt.edu/, 2010. [685, 688, 690, 692] [1112] F. Hinkelmann and A. S. Jarrah. Inferring biologically relevant models: Nested canalyzing functions. under review, 2010. [692] [1113] F. Hinkelmann and R. Laubenbacher. Boolean models of bistable biological systems. Discrete Contin. Dyn. Syst. Ser. S, 4(6):1443–1456, 2011. [685, 692] [1114] F. Hinkelmann, D. Murrugarra, A. Jarrah, and R. Laubenbacher. A mathematical framework for agent based models of complex biological networks. Bulletin of Mathematical Biology, pages 1–20, 2010. 10.1007/s11538-010-9582-8. [685, 689, 692] [1115] Y. Hiramine. A conjecture on affine planes of prime order. J. Combin. Theory Ser. A, 52(1):44–50, 1989. [232, 234] [1116] Y. Hiramine. On planar functions. J. Algebra, 133(1):103–110, 1990. [230, 234] [1117] Y. Hiramine, M. Matsumoto, and T. Oyama. On some extension of 1-spread sets. Osaka J. Math., 24(1):123–137, 1987. [228, 229, 479, 486] [1118] J. W. P. Hirschfeld. Finite projective spaces of three dimensions. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 1985. Oxford Science Publications. [20, 492, 500, 501] [1119] J. W. P. Hirschfeld. Projective geometries over finite fields. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, second edition, 1998. [20, 476, 482, 484, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 501] [1120] J. W. P. Hirschfeld, G. Korchm´ aros, and F. Torres. Algebraic curves over a finite field. Princeton Series in Applied Mathematics. Princeton University Press, Princeton, NJ, 2008. [19, 20, 317, 333, 366, 367, 496, 498, 499, 501] [1121] J. W. P. Hirschfeld and L. Storme. The packing problem in statistics, coding theory and finite projective spaces. J. Statist. Plann. Inference, 72(1-2):355–380, 1998. R. C. Bose Memorial Conference (Fort Collins, CO, 1995). [496, 498] [1122] J. W. P. Hirschfeld and L. Storme. The packing problem in statistics, coding theory and finite projective spaces: update 2001. In Finite geometries, volume 3 of Dev. Math., pages 201–246. Kluwer Acad. Publ., Dordrecht, 2001. [486, 496, 498] [1123] J. W. P. Hirschfeld, L. Storme, J. A. Thas, and J. F. Voloch. A characterization of Hermitian curves. J. Geom., 41(1-2):72–78, 1991. [166, 170] [1124] J. W. P. Hirschfeld and J. A. Thas. General Galois geometries. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 1991. Oxford Science Publications. [20, 478, 486, 496, 498, 501] [1125] A. Hocquenghem. Codes correcteurs d’erreurs. Chiffres, 2:147–156, 1959. [578, 601, 602] [1126] J. H. Hodges. The matrix equation X 2 − I = 0 over a finite field. Amer. Math. Monthly, 65:518–520, 1958. [417, 424] [1127] M. van Hoeij. Factoring polynomials and the knapsack problem. J. Number Theory, 95(2):167–189, 2002. [304, 311] [1128] J. van der Hoeven and G. Lecerf. On the bit-complexity of sparse polyno-

761

762

[1129]

[1130] [1131] [1132] [1133] [1134]

[1135] [1136]

[1137] [1138] [1139]

[1140]

[1141]

[1142] [1143] [1144]

[1145] [1146] [1147] [1148]

Handbook of Finite Fields

mial and series multiplication. Manuscript available from http://hal. archives-ouvertes.fr/hal-00476223/fr, 2010. [301, 306, 311] J. Hoffstein, J. Pipher, and J. H. Silverman. An introduction to mathematical cryptography. Undergraduate Texts in Mathematics. Springer, New York, 2008. [19, 20, 634] T. Høholdt. Personal communication. 2011. [583, 602] T. Høholdt and H. E. Jensen. Determination of the merit factor of legendre sequences. IEEE Trans. Inform. Theory, 34(1):161–164, 1988. [269] T. Høholdt and H. E. Jensen. Determination of the merit factor of Legendre sequences. IEEE Trans. Inf. Theory, 34(1):161–164, 1988. [695, 701] T. Høholdt and R. Pellikaan. On the decoding of algebraic-geometric codes. IEEE Trans. Inform. Theory, 41:1589–1614, 1995. [605, 612] H. D. L. Hollmann and Q. Xiang. A proof of the Welch and Niho conjectures on cross-correlations of binary m-sequences. Finite Fields Appl., 7(2):253–286, 2001. [213] H. D. L. Hollmann and Q. Xiang. A class of permutation polynomials of F2m related to Dickson polynomials. Finite Fields Appl., 11(1):111–122, 2005. [183] S. Hong. Newton polygons of L functions associated with exponential sums of polynomials of degree four over finite fields. Finite Fields Appl., 7(1):205–237, 2001. Dedicated to Professor Chao Ko on the occasion of his 90th birthday. [399, 402] S. Hong. Newton polygons for L-functions of exponential sums of polynomials of degree six over finite fields. J. Number Theory, 97(2):368–396, 2002. [399, 402] C. Hooley. On Artin’s conjecture. J. Reine Angew. Math., 225:209–220, 1967. [40] C. Hooley. On exponential sums and certain of their applications. In Number theory days, 1980 (Exeter, 1980), volume 56 of London Math. Soc. Lecture Note Ser., pages 92–122. Cambridge Univ. Press, Cambridge, 1982. [121, 127] C. Hooley. On the number of points on a complete intersection over a finite field. J. Number Theory, 38(3):338–358, 1991. With an appendix by Nicholas M. Katz. [153, 158] S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their applications. Bull. Amer. Math. Soc. (N.S.), 43(4):439–561 (electronic), 2006. [532, 538, 539, 545] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge University Press, Cambridge, 1985. [545] A. Hoshi. Explicit lifts of quintic Jacobi sums and period polynomials for Fq . Proc. Japan Acad. Ser. A Math. Sci., 82(7):87–92, 2006. [98, 106, 118] X. Hou and G. L. Mullen. Number of irreducible polynomials and pairs of relatively prime polynomials in several variables over finite fields. Finite Fields Appl., 15:304–331, 2009. [50, 51, 52, 53, 55] X.-D. Hou. p-ary and q-ary versions of certain results about bent functions and resilient functions. Finite Fields Appl., 10(4):566–582, 2004. [216, 224] X.-D. Hou. A note on the proof of a theorem of Katz. Finite Fields Appl., 11(2):316– 319, 2005. [157, 158] X.-d. Hou. Affinity of permutations of Fn2 . Discrete Appl. Math., 154(2):313–325, 2006. [185, 208, 213] X.-d. Hou. Two classes of permutation polynomials over finite fields. J. Combin.

Miscellaneous applications Theory Ser. A, 118(2):448–454, 2011. [183, 185] [1149] X.-d. Hou and T. Ly. Necessary conditions for reversed Dickson polynomials to be permutational. Finite Fields Appl., 16(6):436–448, 2010. [183, 185] [1150] X.-d. Hou, G. L. Mullen, J. A. Sellers, and J. L. Yucas. Reversed Dickson polynomials over finite fields. Finite Fields Appl., 15(6):748–773, 2009. [182, 183, 185] [1151] X.-D. Hou and C. Sze. On certain diagonal equations over finite fields. Finite Fields Appl., 15(6):633–643, 2009. [165, 170] [1152] E. Howe and K. Lauter. Improved upper bounds for the number of points on curves over finite fields. Ann. Inst. Fourier (Grenoble), 53(6):1677–1737, 2003. [364, 367] [1153] E. Howe, K. Lauter, C. Ritzenthaler, and G. van der Geer. manYPoints - table of curves with many points. http://www.manypoints.org/. [364, 367] [1154] C.-N. Hsu. The distribution of irreducible polynomials in Fq [t]. J. Number Theory, 61(1):85–96, 1996. [46, 49] [1155] H. Hubrechts. Point counting in families of hyperelliptic curves in characteristic 2. LMS J. Comput. Math., 10:207–234, 2007. [359, 360] [1156] H. Hubrechts. Point counting in families of hyperelliptic curves. Found. Comput. Math., 8(1):137–169, 2008. [359, 360, 406] [1157] S. Huczynska and S. D. Cohen. Primitive free cubics with specified norm and trace. Trans. Amer. Math. Soc., 355(8):3099–3116 (electronic), 2003. [58, 59, 62, 63, 65] [1158] W. C. Huffman and V. Pless. Fundamentals of error-correcting codes. Cambridge University Press, Cambridge, 2003. [19, 20, 561, 563, 572, 574, 577, 578, 581, 582, 602] [1159] D. R. Hughes. On t-designs and groups. Amer. J. Math., 87:761–778, 1965. [510] [1160] D. R. Hughes and F. C. Piper. Projective planes. Springer-Verlag, New York, 1973. Graduate Texts in Mathematics, Vol. 6. [16, 20, 225, 229, 476, 486, 491] [1161] T. W. Hungerford. Algebra, volume 73 of Graduate Texts in Mathematics. SpringerVerlag, New York-Berlin, first edition, 1980. Reprint of the 1974 original. [50, 55] [1162] N. E. Hurt. Exponential sums and coding theory: a review. Acta Appl. Math., 46(1):49–91, 1997. [111, 118] [1163] D. Husem¨ oller. Elliptic curves, volume 111 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 2004. With appendices by Otto Forster, Ruth Lawrence and Stefan Theisen. [19, 20, 334, 351] [1164] T. Icart. How to hash into elliptic curves. In S. Halevi, editor, Advances in Cryptology — CRYPTO 2009, volume 5677 of Lecture Notes in Computer Science, pages 303–316, Berlin, 2009. Springer-Verlag. [678] [1165] IEEE. Standard specifications for public-key cryptography. Technical Report IEEE Std 1361-2000. IEEE Inc., 3 Park Ave., NY 10016-5997, USA. [36, 37, 38] [1166] IEEE. Standard specifications for public key cryptography. Standard P1363-2000, Institute of Electrical and Electronics Engineering, 2000. Draft D13 available at http://grouper.ieee.org/groups/1363/P1363/draft.html. [667] [1167] Y. Ihara. On discrete subgroups of the two by two projective linear group over p-adic fields. J. Math. Soc. Japan, 18:219–235, 1966. [545] [1168] Y. Ihara. Some remarks on the number of rational points of algebraic curves over

763

764

[1169]

[1170]

[1171] [1172]

[1173]

[1174] [1175] [1176]

[1177] [1178]

[1179] [1180] [1181]

[1182] [1183] [1184]

[1185]

Handbook of Finite Fields

finite fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28(3):721–724 (1982), 1981. [365, 367, 368, 372] L. Illusie. Ordinarit´e des intersections compl`etes g´en´erales. In The Grothendieck Festschrift, Vol. II, volume 87 of Progr. Math., pages 376–405. Birkh¨auser Boston, Boston, MA, 1990. [398, 402] L. Illusie. Crystalline cohomology. In Motives (Seattle, WA, 1991), volume 55 of Proc. Sympos. Pure Math., pages 43–70. Amer. Math. Soc., Providence, RI, 1994. [394] K. Imamura. On self-complementary bases of GF (q n ) over GF(q). Trans. IECE Japan, E, 66(12):717–721, 1983. [73, 74, 79] H. Iwaniec. Topics in classical automorphic forms, volume 17 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1997. [114, 118] H. Iwaniec and E. Kowalski. Analytic number theory, volume 53 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 2004. [97, 111, 113, 116, 117, 118] F. Jacob and J. Monod. Genetic regulatory mechanisms in the synthesis of proteins†. Journal of Molecular Biology, 3(3):318–356, June 1961. [685, 692] C. G. J. Jacobi. Uber die kreistheilung und ihre anwendung auf die zahlentheorie. Gesammelte Werke, 6:254–274, 1846. [15, 20] M. Jacobson, Jr., A. Menezes, and A. Stein. Hyperelliptic curves and cryptography. In High primes and misdemeanours: lectures in honour of the 60th birthday of Hugh Cowie Williams, volume 41 of Fields Inst. Commun., pages 255–282. Amer. Math. Soc., Providence, RI, 2004. [356, 360] M. Jacobson, Jr., R. Scheidler, and A. Stein. Cryptographic aspects of real hyperelliptic curves. Tatra Mt. Math. Publ., 47:31–65, 2010. [357, 360] M. J. Jacobson, Jr., R. Scheidler, and A. Stein. Fast arithmetic on hyperelliptic curves via continued fraction expansions. In Advances in coding theory and cryptography, volume 3 of Ser. Coding Theory Cryptol., pages 200–243. World Sci. Publ., Hackensack, NJ, 2007. [356, 357, 360] N. Jacobson. Basic algebra. I. W. H. Freeman and Company, New York, second edition, 1985. [437, 438, 440, 443, 444, 445, 447] R. Jain. Error characteristics of fiber distributed data interface (fddi). Communications, IEEE Transactions on, 38(8):1244 –1252, aug 1990. [524, 528, 531] K. Jambunathan. On choice of connection-polynomials for LFSR-based stream ciphers. In Progress in cryptology—INDOCRYPT 2000 (Calcutta), volume 1977 of Lecture Notes in Comput. Sci., pages 9–18. Springer, Berlin, 2000. [522, 523, 531] N. S. James and R. Lidl. Permutation polynomials on matrices. Linear Algebra Appl., 96:181–190, 1987. [182, 185] G. J. Janusz. Separable algebras over commutative rings. Trans. Amer. Math. Soc., 122:461–479, 1966. [17] H. Janwa, G. M. McGuire, and R. M. Wilson. Double-error-correcting cyclic codes and absolutely irreducible polynomials over GF(2). J. Algebra, 178(2):665–676, 1995. [212, 213] H. Janwa and R. M. Wilson. Hyperplane sections of Fermat varieties in P3 in char. 2 and some applications to cyclic codes. In Applied algebra, algebraic algorithms and error-correcting codes (San Juan, PR, 1993), volume 673 of Lecture Notes

Miscellaneous applications in Comput. Sci., pages 180–194. Springer, Berlin, 1993. [210, 212, 213] [1186] A. S. Jarrah and R. Laubenbacher. On the algebraic geometry of polynomial dynamical systems. In Emerging applications of algebraic geometry, volume 149 of IMA Vol. Math. Appl., pages 109–123. Springer, New York, 2009. [282, 289] [1187] A. S. Jarrah, R. Laubenbacher, B. Stigler, and M. Stillman. Reverse-engineering of polynomial dynamical systems. Advances in Applied Mathematics, 39(4):477 – 489, 2007. [689, 692] [1188] A. S. Jarrah, R. Laubenbacher, and A. Veliz-Cuba. The dynamics of conjunctive and disjunctive Boolean network models. Bull. Math. Biol., 72(6):1425–1447, 2010. [692] [1189] A. S. Jarrah, B. Raposa, and R. Laubenbacher. Nested canalyzing, unate cascade, and polynomial functions. Phys. D, 233(2):167–174, 2007. [691, 692] [1190] C.-P. Jeannerod and C. Mouilleron. Computing specified generators of structured matrix inverses. In W. Koepf, editor, Symbolic and Algebraic Computation, International Symposium, ISSAC 2010, Munich, Germany, July 25-28, 2010, Proceedings, pages 281–288. ACM, 2010. [434, 436] [1191] J. Jedwab. What can be used instead of a Barker sequence? In Finite fields and applications, volume 461 of Contemp. Math., pages 153–178. Amer. Math. Soc., Providence, RI, 2008. [694, 701] [1192] J. Jedwab, D. J. Katz, and K.-U. Schmidt. Littlewood polynomials with small L4 norm. preprint, 2011. [695, 701] [1193] E. Jensen and M. R. Murty. Artin’s conjecture for polynomials over finite fields. In Number Theory, Trends in Mathematics, pages 167–181. Birkhauser, Basel, 2000. [411, 414] [1194] J. M. Jensen, H. E. Jensen, and T. Høholdt. The merit factor of binary sequences related to difference sets. IEEE Trans. Inform. Theory, 37(3, part 1):617–626, 1991. [695, 701] [1195] V. Jha and N. L. Johnson. An analog of the Albert-Knuth theorem on the orders of finite semifields, and a complete solution to Cofman’s subplane problem. Algebras Groups Geom., 6(1):1–35, 1989. [228, 229] [1196] V. Jha and N. L. Johnson. Nests of reguli and flocks of quadratic cones. Simon Stevin, 63(3-4):311–338, 1989. [480, 486] [1197] X. Jiang, J. Ding, and L. Hu. Kipnis-Shamir attack on HFE revisited. In Information security and cryptology, volume 4990 of Lecture Notes in Comput. Sci., pages 399–411. Springer, Berlin, 2008. [662] [1198] N. L. Johnson. Projective planes of prime order p that admit collineation groups of order p2 . J. Geom., 30(1):49–68, 1987. [232, 234] [1199] N. L. Johnson. Nest replaceable translation planes. J. Geom., 36(1-2):49–62, 1989. [480, 486] [1200] N. L. Johnson, V. Jha, and M. Biliotti. Handbook of finite translation planes, volume 289 of Pure and Applied Mathematics (Boca Raton). Chapman & Hall/CRC, Boca Raton, FL, 2007. [478, 486] [1201] N. L. Johnson and R. Pomareda. Andr´e planes and nests of reguli. Geom. Dedicata, 31(3):245–260, 1989. [480, 486] [1202] N. L. Johnson and R. Pomareda. Mixed nests. J. Geom., 56(1-2):59–86, 1996. [480, 486] [1203] S. C. Johnson. Sparse polynomial arithmetic. ACM SIGSAM Bull., 8(3):63–71, 1974. [301, 311]

765

766

Handbook of Finite Fields

[1204] R. Jones. Iterated Galois towers, their associated martingales, and the p-adic Mandelbrot set. Compos. Math., 143(5):1108–1126, 2007. [282, 287, 289] [1205] R. Jones. The density of prime divisors in the arithmetic dynamics of quadratic polynomials. J. Lond. Math. Soc. (2), 78(2):523–544, 2008. [282, 287, 289] [1206] R. Jones and N. Boston. Settled polynomials over finite fields. Preprint, 2009. [287, 289] [1207] R. Jones and N. Boston. Settled polynomials over finite fields. Proc. Amer. Math. Soc., 2011. [142] [1208] H. F. Jordan and D. C. M. Wood. On the distribution of sums of successive bits of shift-register sequences. IEEE Trans. Computers, C-22:400–408, 1973. [521, 531] [1209] J.-P. Jouanolou. Th´eor`emes de Bertini et applications, volume 42 of Progress in Mathematics. Birkh¨ auser Boston, 1983. [305, 311] [1210] A. Joux. A one round protocol for tripartite Diffie-Hellman. J. Cryptology, 17(4):263–276, 2004. [631, 634] [1211] A. Joux and V. Vitse. Cover and decomposition index calculus on elliptic curves made practical — Application to a seemingly secure curve over Fp6 . Preprint, http://eprint.iacr.org/2011/020.pdf, 2011. [668] [1212] M. Joye, A. Miyaji, and A. Otsuka, editors. Pairing-Based Cryptography — Pairing 2010, volume 6487 of Lecture Notes in Computer Science, Berlin, 2010. Springer-Verlag. [670] [1213] D. Jungnickel. Finite fields. Bibliographisches Institut, Mannheim, 1993. Structure and arithmetics. [3, 19, 20, 71, 73, 75, 76, 79, 135, 270, 271, 273, 274, 281, 418, 419, 421, 424] [1214] D. Jungnickel, T. Beth, and W. Geiselmann. A note on orthogonal circulant matrices over finite fields. Arch. Math. (Basel), 62(2):126–133, 1994. [420, 424] [1215] D. Jungnickel and M. J. de Resmini. Another case of the prime power conjecture for finite projective planes. Adv. Geom., 2(3):215–218, 2002. [485, 486] [1216] D. Jungnickel, A. J. Menezes, and S. A. Vanstone. On the number of self-dual bases of GF(q m ) over GF(q). Proc. Amer. Math. Soc., 109(1):23–29, 1990. [74, 79] [1217] D. Jungnickel and H. Niederreiter, editors. Finite fields and applications, Berlin, 2001. Springer-Verlag. [20] [1218] D. Jungnickel and S. A. Vanstone. On primitive polynomials over finite fields. J. Algebra, 124(2):337–353, 1989. [62, 65] [1219] J. Justesen. A class of constructive asymptotically good algebraic codes. IEEE Trans. Information Theory, IT-18:652–656, 1972. [589, 601, 602] [1220] J. Justesen and T. Høholdt. A course in error-correcting codes. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Z¨ urich, 2004. [561, 602] [1221] V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means proving circuit lower bounds. Comput complexity, 13(1-2):1–46, 2004. [309, 311] [1222] T. Kaida, S. Uehara, and K. Imamura. An algorithm for the k-error linear complexity of sequences over GF(pm ) with period pn , p a prime. Inform. and Comput., 151(1-2):134–147, 1999. [274, 281] [1223] T. Kailath, S. Y. Kung, and M. Morf. Displacement ranks of a matrix. Bull. Amer. Math. Soc. (N.S.), 1(5):769–773, 1979. [434, 436]

Miscellaneous applications [1224] E. Kaltofen. A polynomial reduction from multivariate to bivariate integral polynomial factorization. In Proceedings of the 14th Symposium on Theory of Computing, pages 261–266. ACM Press, 1982. [305, 306, 311] [1225] E. Kaltofen. A polynomial-time reduction from bivariate to univariate integral polynomial factorization. In Proc. 23rd Annual Symp. Foundations of Comp. Sci., pages 57–64. IEEE, 1982. [306, 311] [1226] E. Kaltofen. Effective Hilbert irreducibility. Information and Control, 66:123–137, 1985. [305, 311] [1227] E. Kaltofen. Fast parallel absolute irreducibility testing. J. Symbolic Comput., 1(1):57–67, 1985. [305, 311] [1228] E. Kaltofen. Sparse Hensel lifting. In Proceedings of EUROCAL ’85, Vol. 2 (Linz, 1985), volume 204 of Lecture Notes in Comput. Sci., pages 4–17. SpringerVerlag, 1985. [305, 310, 311] [1229] E. Kaltofen. Uniform closure properties of p-computable functions. In Proc. 18th Annual ACM Symp. Theory Comput., pages 330–337. ACM, 1986. Also published as part of [1231] and [1232]. [309, 311] [1230] E. Kaltofen. Deterministic irreducibility testing of polynomials over large finite fields. J. Symbolic Comput., 4:77–82, 1987. [306, 311] [1231] E. Kaltofen. Greatest common divisors of polynomials given by straight-line programs. J. ACM, 35(1):231–264, 1988. [767] [1232] E. Kaltofen. Factorization of polynomials given by straight-line programs. In S. Micali, editor, Randomness and Computation, volume 5 of Advances in Computing Research, pages 375–412. JAI Press Inc., Greenwhich, Connecticut, 1989. [309, 311, 767] [1233] E. Kaltofen. Polynomial factorization 1982-1986. In D. V. Chudnovsky and R. D. Jenks, editors, Computers in Mathematics, volume 125 of Lecture Notes in Pure and Applied Mathematics, pages 285–309. Marcel Dekker, New York, N. Y., 1990. [306, 311] [1234] E. Kaltofen. Polynomial factorization 1987-1991. In I. Simon, editor, Proc. LATIN ’92, volume 583 of Lect. Notes Comput. Sci., pages 294–313. Springer-Verlag, 1992. [306, 311] [1235] E. Kaltofen. Asymptotically fast solution of toeplitz-like singular linear systems. In Proceedings of the international symposium on Symbolic and algebraic computation, ISSAC ’94, pages 297–304, New York, NY, USA, 1994. ACM. [434, 436] [1236] E. Kaltofen. Analysis of Coppersmith’s block Wiedemann algorithm for the parallel solution of sparse linear systems. Math. Comp., 64(210):777–806, 1995. [436] [1237] E. Kaltofen. Effective Noether irreducibility forms and applications. J. Comput. System Sci., 50(2):274–295, 1995. [305, 311] [1238] E. Kaltofen. Polynomial factorization: a success story. In ISSAC ’03: Proceedings of the 2003 international symposium on Symbolic and algebraic computation, pages 3–4. ACM Press, 2003. [306, 311] [1239] E. Kaltofen and P. Koiran. On the complexity of factoring bivariate supersparse (lacunary) polynomials. In ISSAC ’05: Proceedings of the 2005 International Symposium on Symbolic and Algebraic Computation, pages 208–215, 2005. [309, 311] [1240] E. Kaltofen and P. Koiran. Finding small degree factors of multivariate supersparse (lacunary) polynomials over algebraic number fields. In ISSAC ’06: Proceedings

767

768

[1241] [1242]

[1243]

[1244] [1245]

[1246]

[1247] [1248]

[1249]

[1250] [1251]

[1252] [1253] [1254] [1255] [1256] [1257]

Handbook of Finite Fields

of the 2006 International Symposium on Symbolic and Algebraic Computation, pages 162–168, 2006. [308, 311] E. Kaltofen and W. Lee. Early termination in sparse interpolation algorithms. J. Symbolic Comput., 36(3–4):365–400, 2003. [311] E. Kaltofen and V. Pan. Parallel solution of Toeplitz and Toeplitz-like linear systems over fields of small positive characteristic. In First International Symposium on Parallel Symbolic Computation—PASCO ’94 (Hagenberg/Linz, 1994), volume 5 of Lecture Notes Ser. Comput., pages 225–233. World Sci. Publ., River Edge, NJ, 1994. [423, 424] E. Kaltofen and B. D. Saunders. On Wiedemann’s method of solving sparse linear systems. In Applied algebra, algebraic algorithms and error-correcting codes (New Orleans, LA, 1991), volume 539 of Lecture Notes in Comput. Sci., pages 29–38. Springer, Berlin, 1991. [432, 436] E. Kaltofen and V. Shoup. Subquadratic-time factoring of polynomials over finite fields. Mathematics of Computation, 67(223):1179–1198, July 1998. [295, 299] E. Kaltofen and B. Trager. Computing with polynomials given by black boxes for their evaluations: Greatest common divisors, factorization, separation of numerators and denominators. In Proc. 29th Annual Symp. Foundations of Comp. Sci., pages 296–305. IEEE, 1988. [310, 311] E. Kaltofen and B. Trager. Computing with polynomials given by black boxes for their evaluations: Greatest common divisors, factorization, separation of numerators and denominators. J. Symbolic Comput., 9(3):301–320, 1990. [310, 311] E. Kaltofen and G. Villard. On the complexity of computing determinants. Comput. Complexity, 13(3-4):91–130, 2004. [309, 311, 436] N. Kamiya. On multisequence shift register synthesis and generalized-minimumdistance decoding of Reed-Solomon codes. Finite Fields Appl., 1(4):440–457, 1995. [275, 281] J.-G. Kammerer, R. Lercier, and G. Renault. Encoding points on hyperelliptic curves over finite fields in deterministic polynomial time. In M. Joye, A. Miyaji, and A. Otsuka, editors, Pairing-Based Cryptography — Pairing 2010, volume 6487 of Lecture Notes in Computer Science, pages 278–297, Berlin, 2010. Springer-Verlag. [679] W. M. Kantor. Two families of flag-transitive affine planes. Geom. Dedicata, 41(2):191–200, 1992. [480, 481, 486] W. M. Kantor. 2-transitive and flag-transitive designs. In Coding theory, design theory, group theory (Burlington, VT, 1990), Wiley-Intersci. Publ., pages 13– 30. Wiley, New York, 1993. [481, 486] W. M. Kantor. Note on GMW designs. European J. Combin., 22(1):63–69, 2001. [515, 519] W. M. Kantor. Commutative semifields and symplectic spreads. J. Algebra, 270(1):96–114, 2003. [227, 229] W. M. Kantor. Finite semifields. In Finite geometries, groups, and computation, pages 103–114. Walter de Gruyter GmbH & Co. KG, Berlin, 2006. [227, 229] W. M. Kantor. HMO-planes. Adv. Geom., 9(1):31–43, 2009. [228, 229] W. M. Kantor and R. A. Liebler. Semifields arising from irreducible semilinear transformations. J. Aust. Math. Soc., 85(3):333–339, 2008. [228, 229] W. M. Kantor and C. Suetake. A note on some flag-transitive affine planes. J.

Miscellaneous applications Combin. Theory Ser. A, 65(2):307–310, 1994. [481, 486] [1258] W. M. Kantor and M. E. Williams. Symplectic semifield planes and Z4 -linear codes. Trans. Amer. Math. Soc., 356(3):895–938, 2004. [227, 229] [1259] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput., 20(1):359–392 (electronic), 1998. [434, 436] [1260] M. Kasahara and R. Sakai. A construction of public-key cryptosystem based on singular simultaneous equations. In 2004, Jan. 27–30 2004. 6 pages. [655] [1261] M. Kasahara and R. Sakai. A construction of public key cryptosystem for realizing ciphtertext of size 100 bit and digital signature scheme. IEICE Trans. Fundamentals, E87-A(1):102–109, Jan. 2004. Electronic version: http: //search.ieice.org/2004/files/e000a01.htm\#e87-a,1,102. [655] [1262] T. Kasami. Weight distributions of Bose-Chaudhuri-Hocquenghem codes. In Combinatorial Mathematics and its Applications (Proc. Conf., Univ. North Carolina, Chapel Hill, N.C., 1967), pages 335–357. Univ. North Carolina Press, Chapel Hill, N.C., 1969. [210, 213] [1263] T. Kasami. The weight enumerators for several classes of subcodes of the 2nd order binary Reed-Muller codes. Information and Control, 18:369–394, 1971. [210, 211, 213] [1264] T. Kasami, S. Lin, and W. W. Peterson. Generalized Reed-Muller codes. Electron. Commun. Japan, 51(3):96–104, 1968. [586, 588, 602] [1265] T. Kasami, S. Lin, and W. W. Peterson. Polynomial codes. IEEE Trans. Information Theory, IT-14:807–814, 1968. [588, 602] [1266] T. Kasimi. The weight enumerators for several classes of subcodes of the second order binary reed-muller codes. Inform. and Control, 18:369–394, 1971. [183, 185] [1267] J. Katz and Y. Lindell. Introduction to modern cryptography. Chapman & Hall/CRC Cryptography and Network Security. Chapman & Hall/CRC, Boca Raton, FL, 2008. [19, 20, 634] [1268] N. Katz and R. Livn´e. Sommes de Kloosterman et courbes elliptiques universelles en caract´eristiques 2 et 3. C. R. Acad. Sci. Paris S´er. I Math., 309(11):723–726, 1989. [223, 224] [1269] N. H. Katz and C.-Y. Shen. Garaev’s inequality in finite fields not of prime order. Online J. Anal. Comb., (3):Art. 3, 6, 2008. [130] [1270] N. M. Katz. On a theorem of Ax. Amer. J. Math., 93:485–499, 1971. [157, 158] [1271] N. M. Katz. Slope filtration of F -crystals. In Journ´ees de G´eom´etrie Alg´ebrique de Rennes (Rennes, 1978), Vol. I, volume 63 of Ast´erisque, pages 113–163. Soc. Math. France, Paris, 1979. [398, 402] [1272] N. M. Katz. Sommes exponentielles, volume 79 of Ast´erisque. Soci´et´e Math´ematique de France, Paris, 1980. Course taught at the University of Paris, Orsay, Fall 1979, With a preface by Luc Illusie, Notes written by G´erard Laumon, With an English summary. [113, 118] [1273] N. M. Katz. Sommes exponentielles, volume 79 of Ast´erisque. Soci´et´e Math´ematique de France, Paris, 1980. Course taught at the University of Paris, Orsay, Fall 1979, With a preface by Luc Illusie, Notes written by G´erard Laumon, With an English summary. [122, 126, 127] [1274] N. M. Katz. Gauss sums, Kloosterman sums, and monodromy groups, volume 116 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ,

769

770

Handbook of Finite Fields

1988. [19, 20] [1275] N. M. Katz. Gauss sums, Kloosterman sums, and monodromy groups, volume 116 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1988. [97, 112, 113, 115, 118] [1276] N. M. Katz. An estimate for character sums. J. Amer. Math. Soc., 2(2):197–200, 1989. [126, 127, 147, 148] [1277] N. M. Katz. Affine cohomological transforms, perversity, and monodromy. J. Amer. Math. Soc., 6(1):149–222, 1993. [125, 127] [1278] N. M. Katz. Estimates for “singular” exponential sums. Internat. Math. Res. Notices, (16):875–899, 1999. [122, 127, 155, 158, 285, 289] [1279] N. M. Katz. Frobenius-Schur indicator and the ubiquity of Brock-Granville quadratic excess. Finite Fields Appl., 7(1):45–69, 2001. Dedicated to Professor Chao Ko on the occasion of his 90th birthday. [156, 158] [1280] N. M. Katz. Sums of Betti numbers in arbitrary characteristic. Finite Fields Appl., 7(1):29–44, 2001. Dedicated to Professor Chao Ko on the occasion of his 90th birthday. [388, 391, 393] [1281] N. M. Katz. Estimates for nonsingular multiplicative character sums. Int. Math. Res. Not., (7):333–349, 2002. [123, 124, 127, 156, 158] [1282] N. M. Katz. Moments, monodromy, and perversity: a Diophantine perspective, volume 159 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2005. [151, 158] [1283] N. M. Katz. Estimates for nonsingular mixed character sums. Int. Math. Res. Not. IMRN, (19):Art. ID rnm069, 19, 2007. [125, 127] [1284] N. M. Katz. Another look at the Dwork family. In Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. II, volume 270 of Progr. Math., pages 89–126. Birkh¨ auser Boston Inc., Boston, MA, 2009. [386, 393] [1285] N. M. Katz. Convolution and Equidistribution: Sato-Tate Theorems for FiniteField Mellin Transforms. Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2012. [101, 114, 118] [1286] N. M. Katz and G. Laumon. Transformation de Fourier et majoration de sommes ´ exponentielles. Inst. Hautes Etudes Sci. Publ. Math., (62):361–418, 1985. [124, 127] [1287] N. M. Katz and Z. Zheng. On the uniform distribution of Gauss sums and Jacobi sums. In Analytic number theory, Vol. 2 (Allerton Park, IL, 1995), volume 139 of Progr. Math., pages 537–558. Birkh¨auser Boston, Boston, MA, 1996. [97, 101, 118] [1288] S. Kauffman, C. Peterson, B. Samuelsson, and C. Troein. Genetic networks with canalyzing boolean rules are always stable. Proceedings of the National Academy of Sciences of the United States of America, 101(49):17102–17107, 2004. [690] [1289] S. A. Kauffman. Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical Biology, 22(3):437 – 467, 1969. [687, 692] [1290] N. Kayal. Recognizing permutation functions in polynomial time. ECCC, TR05-008, 2005. [173, 185, 311] [1291] W. F. Ke and H. Kiechle. On the solutions of the equation xm + y m − z m = 1 in a finite field. Proc. Amer. Math. Soc., 123(5):1331–1339, 1995. [166, 170] [1292] K. Kedlaya and C. Umans. Fast modular composition in any characteristic. In Foundations of Computer Science, 2008. FOCS ’08. IEEE 49th Annual IEEE Symposium on, pages 146–155, 2008. [295, 297, 299]

Miscellaneous applications [1293] K. S. Kedlaya. Counting points on hyperelliptic curves using Monsky-Washnitzer cohomology. J. Ramanujan Math. Soc., 16(4):323–338, 2001. [358, 360, 406] [1294] K. S. Kedlaya. Errata for: “Counting points on hyperelliptic curves using MonskyWashnitzer cohomology” [J. Ramanujan Math. Soc. 16 (2001), no. 4, 323–338; mr1877805]. J. Ramanujan Math. Soc., 18(4):417–418, 2003. Dedicated to Professor K. S. Padmanabhan. [358, 360] [1295] K. S. Kedlaya. Computing zeta functions via p-adic cohomology. In Algorithmic number theory, volume 3076 of Lecture Notes in Comput. Sci., pages 1–17. Springer, Berlin, 2004. [406] [1296] D. Kelmer. Distribution of twisted Kloosterman sums modulo prime powers. Int. J. Number Theory, 6(2):271–280, 2010. [113, 118] [1297] O. Kempthorne. A simple approach to confounding and fractional replication in factorial experiments. Biometrika, 34:255–272, 1947. [520, 531] [1298] A. M. Kerdock. A class of low-rate nonlinear binary codes. Information and Control, 20:182–187; ibid. 21 (1972), 395, 1972. [601, 602] [1299] K. Khoo, G. Gong, and D. R. Stinson. New family of gold-like sequences. IEEE Intern. Symp. Inform. Theory, 2:181, 2002. [163] [1300] D. S. Kim. Codes associated with special linear groups and power moments of multidimensional Kloosterman sums. Ann. Mat. Pura Appl. (4), 190(1):61–76, 2011. [111, 118] [1301] J. H. Kim. Codes associated with Sp(4, q) and even-power moments of Kloosterman sums. Bull. Aust. Math. Soc., 79(3):427–435, 2009. [114, 118] [1302] R. Kim and W. Koepf. Parity of the number of irreducible factors for composite polynomials. Finite Fields Appl., 16(3):137–143, 2010. [37, 38] [1303] S.-H. Kim and J.-S. No. New families of binary sequences with low correlation. IEEE Trans. Inform. Theory, 49(11):3059–3065, 2003. [163] [1304] A. Kipnis, J. Patarin, and L. Goubin. Unbalanced oil and vinegar signature schemes. In Advances in cryptology—EUROCRYPT ’99 (Prague), volume 1592 of Lecture Notes in Comput. Sci., pages 206–222. Springer, Berlin, 1999. [654, 663] [1305] A. Kipnis and A. Shamir. Cryptanalysis of the oil and vinegar signature scheme. In Advances in cryptology—CRYPTO ’98 (Santa Barbara, CA, 1998), volume 1462 of Lecture Notes in Comput. Sci., pages 257–266. Springer, Berlin, 1998. [663] [1306] A. Kipnis and A. Shamir. Cryptanalysis of the HFE public key cryptosystem by relinearization. In Advances in cryptology—CRYPTO ’99 (Santa Barbara, CA), volume 1666 of Lecture Notes in Comput. Sci., pages 19–30. Springer, Berlin, 1999. [309, 311, 662] [1307] T. Kiran and B. S. Rajan. Optimal rate-diversity tradeoff STBCs from codes over arbitrary finite fields. In IEEE Int. Conf. Commun., pages 453–457, May 2005. [700, 701] [1308] T. P. Kirkman. On a problem in combinations. Cambridge and Dublin Math. J., 2:191–204, 1847. [503] [1309] A. Klapper. Cross-correlations of geometric sequences in characteristic two. Des. Codes Cryptogr., 3(4):347–377, 1993. [162, 163] [1310] A. Klapper. Cross-correlations of quadratic form sequences in odd characteristic. Des. Codes Cryptogr., 11(3):289–305, 1997. [162, 163] [1311] A. Klapper, A. H. Chan, and M. Goresky. Cross-correlations of linearly and quadratically related geometric sequences and GMW sequences. Discrete Appl. Math.,

771

772

Handbook of Finite Fields

46(1):1–20, 1993. [162, 163] [1312] S. L. Kleiman. Bertini and his two fundamental theorems. Rend. Circ. Mat. Palermo (2) Suppl., 55:9–37, 1998. Studies in the history of modern mathematics, III. [305, 311] [1313] E. Kleinfeld. Techniques for enumerating Veblen-Wedderburn systems. J. Assoc. Comput. Mach., 7:330–337, 1960. [227, 229] [1314] R. Kloosterman. The zeta function of monomial deformations of Fermat hypersurfaces. Algebra Number Theory, 1(4):421–450, 2007. [394, 402] [1315] A. A. Klyachko. Monodromy groups of polynomial mappings. In Studies in Number Theory, volume 6, pages 82–91. 1975. [193, 194] [1316] A. W. Knapp. Elliptic curves, volume 40 of Mathematical Notes. Princeton University Press, Princeton, NJ, 1992. [19, 20, 334, 351] [1317] N. Knarr and M. Stroppel. Polarities and unitals in the Coulter-Matthews planes. Des. Codes Cryptogr., 55(1):9–18, 2010. [231, 234] [1318] D. E. Knuth. Finite semifields and projective planes. J. Algebra, 2:182–217, 1965. [225, 226, 228, 229] [1319] N. Koblitz. p-adic variation of the zeta-function over families of varieties defined over finite fields. Compositio Math., 31(2):119–218, 1975. [400] [1320] N. Koblitz. p-adic numbers, p-adic analysis, and zeta-functions. Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, Vol. 58. [394, 402] [1321] N. Koblitz. Elliptic curve cryptosystems. Math. Comp., 48(177):203–209, 1987. [630, 634] [1322] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48(177):203–209, 1987. [666] [1323] N. Koblitz. Hyperelliptic cryptosystems. J. Cryptology, 1(3):139–150, 1989. [630, 634] [1324] N. Koblitz. Introduction to elliptic curves and modular forms, volume 97 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1993. [19, 20, 334, 351] [1325] N. Koblitz. Algebraic aspects of cryptography, volume 3 of Algorithms and Computation in Mathematics. Springer-Verlag, Berlin, 1998. With an appendix by Alfred J. Menezes, Yi-Hong Wu and Robert J. Zuccherato. [19, 20] [1326] W. Koepf and R. Kim. The parity of the number of irreducible factors for some pentanomials. Finite Fields Appl., 15(5):585–603, 2009. [37, 38] [1327] J. F. Koksma. Some theorems on Diophantine inequalities. Scriptum no. 5. Math. Centrum Amsterdam, 1950. [285, 289] [1328] K. Kononen. More exact solutions to Waring’s problem for finite fields. Acta Arith., 145(2):209–212, 2010. [169, 170] [1329] K. Kononen, M. Moisio, M. Rinta-Aho, and K. V¨a¨an¨anen. Irreducible polynomials with prescribed trace and restricted norm. JP J. Algebra Number Theory Appl., 11(2):223–248, 2008. [26, 48, 49, 100, 118] [1330] K. Kononen, M. Rinta-Aho, and K. V¨a¨an¨anen. On the degree of a Kloosterman sum as an algebraic integer. 2011. submitted. [111, 118] [1331] K. P. Kononen, M. J. Rinta-aho, and K. O. V¨a¨an¨anen. On integer values of Kloosterman sums. IEEE Trans. Inform. Theory, 56(8):4011–4013, 2010. [111, 112, 118] [1332] K. P. Kononen, M. J. Rinta-aho, and K. O. V¨a¨an¨anen. On integer values of Kloost-

Miscellaneous applications

[1333] [1334] [1335] [1336] [1337]

[1338]

[1339] [1340]

[1341]

[1342] [1343] [1344] [1345] [1346]

[1347] [1348] [1349] [1350]

[1351]

erman sums. IEEE Trans. Inform. Theory, 56(8):4011–4013, Aug. 2010. [223, 224] S. Konyagin, T. Lange, and I. Shparlinski. Linear complexity of the discrete logarithm. Des. Codes Cryptogr., 28(2):135–146, 2003. [279, 281] S. Konyagin and F. Pappalardi. Enumerating permutation polynomials over finite fields by degree. Finite Fields Appl., 8(4):548–553, 2002. [175, 185] S. Konyagin and F. Pappalardi. Enumerating permutation polynomials over finite fields by degree. II. Finite Fields Appl., 12(1):26–37, 2006. [175, 185] S. V. Konyagin. Estimates for Gaussian sums and Waring’s problem modulo a prime. Trudy Mat. Inst. Steklov., 198:111–124, 1992. [140, 141, 169, 170] S. V. Konyagin. Estimates for trigonometric sums over subgroups and for Gauss sums. In IV International Conference “Modern Problems of Number Theory and its Applications”: Current Problems, Part III (Russian) (Tula, 2001), pages 86–114. Mosk. Gos. Univ. im. Lomonosova, Mekh.-Mat. Fak., Moscow, 2002. [98, 118] P. Koopman. 32-bit cyclic redundancy codes for internet applications. In Dependable Systems and Networks, 2002. DSN 2002. Proceedings. International Conference on, pages 459 – 468, 2002. [524, 528, 531] P. Koopman and T. Chakravarty. Cyclic redundancy code (crc) polynomial selection for embedded networks. In Dependable Systems and Networks, 2004. [524, 531] G. Korchm´ aros and T. SzHonyi. Fermat curves over finite fields and cyclic subsets in high-dimensional projective spaces. Finite Fields Appl., 5(2):206–217, 1999. [166, 170] P. Kosick. Commutative semifields of odd order and planar Dembowski-Ostrom polynomials. PhD thesis, Department of Mathematical Sciences, University of Delaware, USA, 2010. [233, 234] R. K¨ otter and F. R. Kschischang. Coding for errors and erasures in random network coding. IEEE Trans. Inform. Theory, 54(8):3579–3591, 2008. [701] A. G. Kouchnirenko. Poly`edres de Newton et nombres de Milnor. Invent. Math., 32(1):1–31, 1976. [397, 402] R. G. Kraemer. Proof of a conjecture on Hadamard 2-groups. J. Combin. Theory Ser. A, 63(1):1–10, 1993. [517, 519] R. A. Kristiansen and M. G. Parker. Binary sequences with merit factor > 6.3. IEEE Trans. Inform. Theory, 50(12):3385–3389, 2004. [269] M. Krivelevich and B. Sudakov. Pseudo-random graphs. In More sets, graphs and numbers, volume 15 of Bolyai Soc. Math. Stud., pages 199–262. Springer, Berlin, 2006. [534, 545] W. Krull. Algebraische Theorie der Ringe. II. Math. Ann., 91(1-2):1–46, 1924. [17] D. S. Kubert and S. Lichtenbaum. Jacobi-sum Hecke characters and Gauss-sum identities. Compositio Math., 48(1):55–87, 1983. [103, 118] R. Kubota. Waring’s problem for Fq [x]. Dissertationes Math. (Rozprawy Mat.), 117:60pp, 1974. [413, 414] T. Kumada, H. Leeb, Y. Kurita, and M. Matsumoto. New primitive t-nomials (t = 3, 5) over GF(2) whose degree is a Mersenne exponent. Math. Comp., 69(230):811–814, 2000. [66, 67, 68] P. V. Kumar, R. A. Scholtz, and L. R. Welch. Generalized bent functions and their properties. J. Combin. Theory Ser. A, 40(1):90–107, 1985. [215, 216, 224]

773

774

Handbook of Finite Fields

[1352] V. A. Kurbatov and N. G. Starkov. The analytic representation of permutations. Sverdlovsk. Gos. Ped. Inst. Uˇcen. Zap., 31:151–158, 1965. [173, 185] [1353] M. K. Kuregian. Recurrent methods of constructing irreducible polynomials over gf(2s )(Russian). J. Inform. Process. Cybernet EIK, 27(7):357–372, 1991. [31, 32, 33, 34] [1354] E. N. Kuz0 min. Irreducible polynomials over a finite field and an analogue of Gauss sums over a field of characteristic 2. Sibirsk. Mat. Zh., 32(6):100–108, 205, 1991. [27, 47, 48, 49] [1355] G. M. Kyureghyan. Crooked maps in F2n . Finite Fields Appl., 13(3):713–726, 2007. [211, 213] [1356] G. M. Kyureghyan. Constructing permutations of finite fields via linear translators. J. Combin. Theory A, 118(3), 2011. [181, 184, 185] [1357] G. M. Kyureghyan and A. Pott. Some theorems on planar mappings. In Arithmetic of finite fields, volume 5130 of Lecture Notes in Comput. Sci., pages 117–122. Springer, Berlin, 2008. [232, 234] [1358] M. K. Kyuregyan. On the theory of the reducibility of polynomials over finite fields. Akad. Nauk Armyan. SSR Dokl., 86(1):17–22, 1988. [31, 33, 34] [1359] M. K. Kyuregyan. Recurrent methods for constructing irreducible polynomials over GF(2s ). Finite Fields Appl., 8(1):52–68, 2002. [31, 32, 33, 34, 238, 242] [1360] M. K. Kyuregyan. Recurrent methods for constructing irreducible polynomials over Fq of odd characteristics. Finite Fields Appl., 9(1):39–58, 2003. [31, 32, 33, 34] [1361] M. K. Kyuregyan. Iterated constructions of irreducible polynomials over finite fields with linearly independent roots. Finite Fields Appl., 10(3):323–341, 2004. [31, 32, 34] [1362] M. K. Kyuregyan. Recurrent methods for constructing irreducible polynomials over Fq of odd characteristics. II. Finite Fields Appl., 12(3):357–378, 2006. [31, 33, 34] [1363] G. Lachaud. Sommes d’Eisenstein et nombre de points de certaines courbes alg´ebriques sur les corps finis. C. R. Acad. Sci. Paris S´er. I Math., 305(16):729– 732, 1987. [366, 367] [1364] G. Lachaud. The parameters of projective Reed-Muller codes. Discrete Math., 81(2):217–221, 1990. [587, 602] [1365] G. Lachaud and J. Wolfmann. The weights of the orthogonals of the extended quadratic binary Goppa codes. IEEE Trans. Inform. Theory, 36(3):686–692, 1990. [212, 213] [1366] L. Lafforgue. Chtoucas de Drinfeld et correspondance de Langlands. Invent. Math., 147(1):1–241, 2002. [457] [1367] L. Lafforgue. Chtoucas de Drinfeld, formule des traces d’Arthur-Selberg et correspondance de Langlands. In Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002), pages 383–400, Beijing, 2002. Higher Ed. Press. [457] [1368] J. C. Lagarias. Pseudorandom number generators in cryptography and number theory. In Cryptology and computational number theory (Boulder, CO, 1989), volume 42 of Proc. Sympos. Appl. Math., pages 115–143. Amer. Math. Soc., Providence, RI, 1990. [283, 289] [1369] Y. Laigle-Chapuy. A note on a class of quadratic permutations over F2n . In Applied algebra, algebraic algorithms and error-correcting codes, volume 4851 of Lecture Notes in Comput. Sci., pages 130–137. Springer, Berlin, 2007. [180, 185]

Miscellaneous applications [1370] Y. Laigle-Chapuy. Permutation polynomials and applications to coding theory. Finite Fields Appl., 13(1):58–70, 2007. [174, 179, 185] [1371] D. Laksov. Linear recurring sequences over finite fields. Math. Scand., 16:181–196, 1965. [523, 531] [1372] C. Lam, M. Aagaard, and G. G. Hardware implementations of multi-output welch-gong ciphers, 2011. http://www.cacr.math.uwaterloo.ca/techreports/2011/cacr2011-01.pdf. [638, 647] [1373] C. W. H. Lam, G. Kolesova, and L. Thiel. A computer search for finite projective planes of order 9. Discrete Math., 92(1-3):187–195, 1991. [476, 486] [1374] C. W. H. Lam, L. Thiel, and S. Swiercz. The nonexistence of finite projective planes of order 10. Canad. J. Math., 41(6):1117–1123, 1989. [476, 486] [1375] T. Y. Lam and K. H. Leung. Vanishing sums of mth roots of unity in finite fields. Finite Fields Appl., 2(4):422–438, 1996. [168, 170] [1376] B. A. LaMacchia and A. M. Odlyzko. Solving large sparse linear systems over finite fields. Lecture Notes in Computer Science, 537:109–133, 1991. http://www. dtc.umn.edu/~odlyzko/doc/arch/sparse.linear.eqs.pdf. [435, 436] [1377] R. Lambert. Computational aspects of discrete logarithms. PhD thesis, University of Waterloo, Ontario, Canada, 1996. http://www.cacr.math.uwaterloo.ca/ techreports/2000/lambert-thesis.ps. [432, 436] [1378] E. S. Lander. Symmetric designs: an algebraic approach, volume 74 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1983. [512, 515, 519] [1379] S. Lang. Elliptic curves: Diophantine analysis, volume 231 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1978. [19, 20, 334, 351] [1380] S. Lang. Abelian varieties. Springer-Verlag, New York, 1983. Reprint of the 1959 original. [121, 127] [1381] S. Lang. Elliptic functions, volume 112 of Graduate Texts in Mathematics. SpringerVerlag, New York, second edition, 1987. With an appendix by J. Tate. [19, 20, 334, 351] [1382] S. Lang. Algebra, volume 211 of Graduate Texts in Mathematics. Springer-Verlag, New York, third edition, 2002. [326, 333, 372, 448, 449] [1383] S. Lang and H. Trotter. Frobenius distributions in GL2 -extensions. Springer-Verlag, Berlin, 1976. Distribution of Frobenius automorphisms in GL2 -extensions of the rational numbers, Lecture Notes in Mathematics, Vol. 504. [20, 349, 351] [1384] S. Lang and A. Weil. Number of points of varieties in finite fields. Amer. J. Math., 76:819–827, 1954. [152, 158] [1385] V. Laohakosol and U. Pintoptang. A modification of Fitzgerald’s characterization of primitive polynomials over a finite field. Finite Fields Appl., 14(1):85–91, 2008. [57, 59] [1386] G. Larcher and H. Niederreiter. Generalized (t, s)-sequences, Kronecker-type sequences, and diophantine approximations of formal Laurent series. Trans. Amer. Math. Soc., 347:2051–2073, 1995. [379, 383] [1387] R. Laubenbacher, A. Jarrah, H. Mortveit, and S. S. Ravi. Encyclopedia of Complexity and System Science, chapter A mathematical foundation for agent-based computer simulation. Springer Verlag, New York, 2009. [685] [1388] R. Laubenbacher and B. Stigler. A computational algebra approach to the re-

775

776

[1389] [1390] [1391] [1392]

[1393] [1394]

[1395]

[1396]

[1397] [1398]

[1399] [1400]

[1401]

[1402]

[1403]

[1404] [1405] [1406]

Handbook of Finite Fields

verse engineering of gene regulatory networks. Journal of Theoretical Biology, 229(4):523 – 537, 2004. [282, 289, 689, 692] A. G. B. Lauder. Computing zeta functions of Kummer curves via multiplicative characters. Found. Comput. Math., 3(3):273–295, 2003. [406] A. G. B. Lauder. Counting solutions to equations in many variables over finite fields. Found. Comput. Math., 4(3):221–267, 2004. [404, 405, 406] A. G. B. Lauder. Deformation theory and the computation of zeta functions. Proc. London Math. Soc. (3), 88(3):565–602, 2004. [405, 406] A. G. B. Lauder and K. G. Paterson. Computing the error linear complexity spectrum of a binary sequence of period 2n . IEEE Trans. Inform. Theory, 49(1):273–280, 2003. [274, 281] A. G. B. Lauder and D. Wan. Computing zeta functions of Artin-Schreier curves over finite fields. II. J. Complexity, 20(2-3):331–349, 2004. [359, 360, 406] A. G. B. Lauder and D. Wan. Counting points on varieties over finite fields of small characteristic. In Algorithmic number theory: lattices, number fields, curves and cryptography, volume 44 of Math. Sci. Res. Inst. Publ., pages 579–612. Cambridge Univ. Press, Cambridge, 2008. [359, 360, 404, 405, 406] G. Laumon. Majorations de sommes trigonom´etriques (d’apr`es P. Deligne et N. Katz). In The Euler-Poincar´e characteristic (French), volume 83 of Ast´erisque, pages 221–258. Soc. Math. France, Paris, 1981. [126] G. Laumon. Transformation de Fourier, constantes d’´equations fonctionnelles et ´ conjecture de Weil. Inst. Hautes Etudes Sci. Publ. Math., (65):131–210, 1987. [392, 393] G. Laumon. Exponential sums and l-adic cohomology: a survey. Israel J. Math., 120(part A):225–257, 2000. [126] M. Lavrauw, L. Storme, and G. Van de Voorde. A proof of the linearity conjecture for k-blocking sets in PG(n, p3 ), p prime. J. Combin. Theory Ser. A, 118(3):808– 818, 2011. [472, 475] K. M. Lawrence. A combinatorial characterization of (t, m, s)-nets in base b. J. Combin. Des., 4:275–293, 1996. [374, 383] K. M. Lawrence, A. Mahalanabis, G. L. Mullen, and W. C. Schmid. Construction of digital (t, m, s)-nets from linear codes. In Finite fields and applications (Glasgow, 1995), volume 233 of London Math. Soc. Lecture Note Ser., pages 189–208. Cambridge University Press, Cambridge, 1996. [378, 383] C. F. Laywine and G. L. Mullen. Discrete mathematics using Latin squares. WileyInterscience Series in Discrete Mathematics and Optimization. John Wiley & Sons Inc., New York, 1998. A Wiley-Interscience Publication. [20, 463, 467] C. F. Laywine, G. L. Mullen, and G. Whittle. d-dimensional hypercubes and the Euler and MacNeish conjectures. Monatsh. Math., 119(3):223–238, 1995. [464, 465, 467] D. Lazard. Gr¨ obner bases, Gaussian elimination and resolution of systems of algebraic equations. In Computer algebra (London, 1983), volume 162 of Lecture Notes in Comput. Sci., pages 146–156. Springer, Berlin, 1983. [664] G. Leander and A. Kholosha. Bent functions with 2r Niho exponents. IEEE Trans. Inform. Theory, 52(12):5529–5532, 2006. [220, 224] N. G. Leander. Monomial bent functions. IEEE Trans. Inform. Theory, 52(2):738– 743, 2006. [219, 223, 224] G. Lecerf. Sharp precision in Hensel lifting for bivariate polynomial factorization.

Miscellaneous applications Math. Comp., 75:921–933, 2006. [304, 311] [1407] G. Lecerf. Improved dense multivariate polynomial factorization algorithms. J. Symbolic Comput., 42(4):477–494, 2007. [305, 311] [1408] G. Lecerf. Fast separable factorization and applications. Appl. Alg. Eng. Comm. Comp., 19(2), 2008. [302, 303, 311] [1409] G. Lecerf. New recombination algorithms for bivariate polynomial factorization based on Hensel lifting. Appl. Alg. Eng. Comm. Comp., 21(2):151–176, 2010. [303, 311] [1410] A. M. Legendre. Recherches d’analyse indeterminee. Memoires Acad. Sci. Paris, pages 465–559, 1785. [146] [1411] A. Lempel and H. Greenberger. Families of sequences with optimal Hamming correlation properties. IEEE Trans. Information Theory, IT-20:90–94, 1974. [698, 701] [1412] D. Lenskoi. On the arithmetic of polynomials over a finite field (russian). Volz. Mat. Sb., 4:155–159, 1966. [408, 414] [1413] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lov´asz. Factoring polynomials with rational coefficients. Math. Ann., 261(4):515–534, 1982. [306, 311] [1414] A. K. Lenstra and E. R. Verheul. Selecting cryptographic key sizes (extended abstract). In H. Imai and Y. Zheng, editors, Public Key Cryptography — 3rd International Workshop on Practice and Theory in Public Key Cryptosystems PKC 2000, volume 1751 of Lecture Notes in Computer Science, pages 446–465, Berlin, 2000. Springer-Verlag. [666] [1415] H. W. Lenstra, Jr. A normal basis theorem for infinite Galois extensions. Nederl. Akad. Wetensch. Indag. Math., 47(2):221–228, 1985. [93] [1416] H. W. Lenstra, Jr. Finding small degree factors of lacunary polynomials. In K. GyHory, H. Iwaniec, and J. Urbanowicz, editors, Number Theory in Progress, volume 1 Diophantine Problems and Polynomials, pages 267–276. Stefan Banach Internat. Center, Walter de Gruyter Berlin/New York, 1999. Proc. Internat. Conf. Number Theory in Honor of the 60th Birthday of Andrzej Schinzel, Zakopane, Poland June 30–July 9, 1997. [308, 311] [1417] H. W. Lenstra, Jr. and R. J. Schoof. Primitive normal bases for finite fields. Math. Comp., 48(177):217–231, 1987. [63, 65, 92] [1418] J. S. Leon, J. M. Masley, and V. Pless. Duadic codes. IEEE Trans. Inform. Theory, 30(5):709–714, 1984. [581, 602] [1419] R. Lercier and D. Lubicz. Counting points on elliptic curves over finite fields of small characteristic in quasi quadratic time. In E. Biham, editor, Advances in Cryptology — EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages 360–373, Berlin, 2003. Springer-Verlag. [670] [1420] R. Lercier and D. Lubicz. A quasi quadratic time algorithm for hyperelliptic curve point counting. Ramanujan J., 12(3):399–423, 2006. [358, 360, 406] [1421] K. H. Leung, S. L. Ma, and B. Schmidt. Nonexistence of abelian difference sets: Lander’s conjecture for prime power orders. Trans. Amer. Math. Soc., 356(11):4343–4358 (electronic), 2004. [515, 519] [1422] K. H. Leung, S. L. Ma, and B. Schmidt. New Hadamard matrices of order 4p2 obtained from Jacobi sums of order 16. J. Combin. Theory Ser. A, 113(5):822– 838, 2006. [106, 118] [1423] K. H. Leung, S. L. Ma, and B. Schmidt. On Lander’s conjecture for difference sets whose order is a power of 2 or 3. Des. Codes Cryptogr., 56(1):79–84, 2010.

777

778

Handbook of Finite Fields

[515, 516, 519] [1424] K. H. Leung and B. Schmidt. The field descent method. Des. Codes Cryptogr., 36(2):171–188, 2005. [517, 519] [1425] V. Levenshtein. Application of hadamard matrices to a problem of coding theorey. Problemy Kibernetiki, 5:123–136, 1961. [135] [1426] F. Levy-dit Vehel and L. Perret. Polynomial equivalence problems and applications to multivariate cryptosystems. In Progress in cryptology—INDOCRYPT 2003, volume 2904 of Lecture Notes in Comput. Sci., pages 235–251. Springer, Berlin, 2003. [651] [1427] H. Li and H. J. Zhu. Zeta functions of totally ramified p-covers of the projective line. Rend. Sem. Mat. Univ. Padova, 113:203–225, 2005. [400, 402] [1428] J. Li, D. B. Chandler, and Q. Xiang. Permutation polynomials of degree 6 or 7 over finite fields of characteristic 2. Finite Fields Appl., 16(6):406–419, 2010. [172, 185] [1429] K.-Z. Li and F. Oort. Moduli of supersingular abelian varieties, volume 1680 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1998. [401, 402] [1430] L. Li and O. Roche-Newton. An improved sum-product estimate for general finite fields. SIAM J. Discrete Math., 25:1285–1296, 2011. [130] [1431] W.-C. W. Li. Character sums and abelian Ramanujan graphs. J. Number Theory, 41(2):199–217, 1992. With an appendix by Ke Qin Feng and the author. [536, 545] [1432] W. C. W. Li. Number theory with applications, volume 7 of Series on University Mathematics. World Scientific Publishing Co. Inc., River Edge, NJ, 1996. [19, 20, 532, 536, 545] [1433] W.-C. W. Li. Recent developments in automorphic forms and applications. In Number theory for the millennium, II (Urbana, IL, 2000), pages 331–354. A K Peters, Natick, MA, 2002. [532, 545] [1434] W.-C. W. Li. Ramanujan hypergraphs. Geom. Funct. Anal., 14(2):380–399, 2004. [539, 545] [1435] W.-C. W. Li and P. Sol´e. Spectra of regular graphs and hypergraphs and orthogonal polynomials. European J. Combin., 17(5):461–477, 1996. [538, 545] [1436] Y. Li, S. Ling, H. Niederreiter, H. Wang, C. Xing, and S. Zhang, editors. Coding and cryptology, volume 4 of Series on Coding Theory and Cryptology. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008. [20] [1437] Y. Li and M. Wang. On EA-equivalence of certain permutations to power mappings. Des. Codes Cryptogr., 58(3):259–269, 2011. [182, 185] [1438] R. Lidl and G. L. Mullen. Unsolved Problems: When Does a Polynomial Over a Finite Field Permute the Elements of the Field? Amer. Math. Monthly, 95(3):243–246, 1988. [172, 185] [1439] R. Lidl and G. L. Mullen. Cycle structure of Dickson permutation polynomials. Math. J. Okayama Univ., 33:1–11, 1991. [184, 185] [1440] R. Lidl and G. L. Mullen. Unsolved Problems: When Does a Polynomial over a Finite Field Permute the Elements of the Field?, II. Amer. Math. Monthly, 100(1):71–74, 1993. [172, 173, 185] [1441] R. Lidl, G. L. Mullen, and G. Turnwald. Dickson polynomials, volume 65 of Pitman Monographs and Surveys in Pure and Applied Mathematics. Longman Scientific & Technical, Harlow, 1993. [19, 20, 185, 192, 235, 240, 241, 242, 246, 250, 255] [1442] R. Lidl and H. Niederreiter. On orthogonal systems and permutation polynomials

Miscellaneous applications in several variables. Acta Arith., 22:257–265, 1972/73. [186, 188] [1443] R. Lidl and H. Niederreiter. Introduction to finite fields and their applications. Cambridge University Press, Cambridge, first edition, 1994. [3, 19, 20, 39] [1444] R. Lidl and H. Niederreiter. Finite Fields, volume 20 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, second edition, 1997. With a foreword by P. M. Cohn. [3, 14, 15, 19, 20, 31, 34, 35, 39, 56, 59, 136, 137, 138, 140, 160, 163, 164, 170, 171, 172, 173, 183, 184, 188, 191, 205, 213, 240, 261, 270, 273, 281, 296, 299, 424] [1445] R. Lidl and C. Wells. Chebyshev polynomials in several variables. J. Reine Angew. Math., 255:104–111, 1972. [187, 188] [1446] S. Lin. On a class of cyclic codes. In Error Correcting Codes (Proc. Sympos. Math. Res. Center, Madison, Wis., 1968), pages 131–148. John Wiley, New York, 1968. [588, 596, 601, 602] [1447] S. Lin and D. Costello. Error control coding. Prentice-Hall, Saddle River, NJ, second edition, 2004. [19, 20, 561, 591, 602] [1448] J. Lindholm. An analysis of the pseudo-randomness properties of subsequences of long m -sequences. Information Theory, IEEE Transactions on, 14(4):569 – 576, jul 1968. [521, 531] [1449] S. Ling and C. Xing. Coding theory. Cambridge University Press, Cambridge, 2004. A first course. [19, 20, 561, 576, 580, 585, 602] [1450] P. Lisonˇek and M. Moisio. On zeros of Kloosterman sums. Des. Codes Cryptogr., 59(1-3):223–230, 2011. [111, 118] [1451] C. Liu. Twisted higher moments of Kloosterman sums. Proc. Amer. Math. Soc., 130(7):1887–1892 (electronic), 2002. [115, 118] [1452] C. Liu. The L-functions of twisted Witt extensions. J. Number Theory, 125(2):267– 284, 2007. [397, 402] [1453] C. Liu and D. Wan. T -adic exponential sums over finite fields. Algebra Number Theory, 3(5):489–509, 2009. [397, 402] [1454] C. Liu and D. Wei. The L-functions of Witt coverings. Math. Z., 255(1):95–115, 2007. [397, 402] [1455] P. Loidreau. On the factiorization of trinomials over 3 . INRIA rapport de recherche 3918, 2000. [38] [1456] D. Lorenzini. An invitation to arithmetic geometry, volume 9 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1996. [363, 367] [1457] S. R. Louboutin. Efficient computation of root numbers and class numbers of parametrized families of real abelian number fields. Math. Comp., 76(257):455– 473 (electronic), 2007. [100, 118] [1458] L. Lov´ asz and A. Schrijver. Remarks on a theorem of R´edei. Studia Sci. Math. Hungar., 16(3-4):449–454, 1983. [471, 475] [1459] H.-f. Lu and P. V. Kumar. Rate-diversity tradeoff of space-time codes with fixed alphabet and optimal constructions of PSK modulation. IEEE Trans. Inform. Theory, 49(10):2747–2751, 2003. Special issue on space-time transmission, reception, coding and signal processing. [700, 701] [1460] H.-F. Lu and P. V. Kumar. A unified construction of space-time codes with optimal rate-diversity tradeoff. IEEE Trans. Inform. Theory, 51(5):1709–1730, 2005. [700, 701] [1461] Y. Lu and L. Zhu. On the existence of triplewhist tournaments TWh(v). J. Combin.

779

780

Handbook of Finite Fields

Des., 5(4):249–256, 1997. [558] [1462] A. Lubotzky. Discrete groups, expanding graphs and invariant measures, volume 125 of Progress in Mathematics. Birkh¨auser Verlag, Basel, 1994. With an appendix by Jonathan D. Rogawski. [532, 538, 545] [1463] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica, 8(3):261–277, 1988. [540, 541, 542, 545] [1464] G. Lunardon. Normal spreads. Geom. Dedicata, 75(3):245–261, 1999. [472, 475] [1465] G. Lunardon and O. Polverino. Blocking sets of size q t + q t−1 + 1. J. Combin. Theory Ser. A, 90(1):148–158, 2000. [472, 475] ¨ [1466] H. L¨ uneburg. Uber projektive Ebenen, in denen jede Fahne von einer nicht-trivialen Elation invariant gelassen wird. Abh. Math. Sem. Univ. Hamburg, 29:37–76, 1965. [481, 486] [1467] H. L¨ uneburg. Translation planes. Springer-Verlag, Berlin, 1980. [479, 486] [1468] J. Luo and K. Feng. On the weight distributions of two classes of cyclic codes. IEEE Trans. Inform. Theory, 54(12):5332–5344, 2008. [163] [1469] K. Ma and J. von zur Gathen. The computational complexity of recognizing permutation functions. Comput. Complexity, 5(1):76–97, 1995. [173, 185, 311] [1470] K. Ma and J. von zur Gathen. Tests for permutation functions. Finite Fields Appl., 1(1):31–56, 1995. [173, 185] [1471] F. S. Macaulay. The algebraic theory of modular systems. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1994. Revised reprint of the 1916 original, With an introduction by Paul Roberts. [664] [1472] C. R. MacCluer. On a conjecture of Davenport and Lewis concerning exceptional polynomials. Acta Arith, 12:289–299, 1966/1967. [245, 255] [1473] H. F. MacNeish. Euler squares. Ann. of Math. (2), 23(3):221–227, 1922. [464, 467] [1474] F. J. MacWilliams. Orthogonal circulant matrices over finite fields, and how to find them. J. Combinatorial Theory Ser. A, 10:1–17, 1971. [420, 424] [1475] F. J. MacWilliams and N. J. A. Sloane. The theory of error-correcting codes. NorthHolland Publishing Co., Amsterdam, 1977. North-Holland Mathematical Library. [19, 20, 499] [1476] F. J. MacWilliams and N. J. A. Sloane. The theory of error-correcting codes. I. North-Holland Publishing Co., Amsterdam, 1977. North-Holland Mathematical Library, Vol. 16. [19, 20, 143, 163, 211, 213, 561, 584, 591, 601, 602] [1477] J. MacWilliams. Orthogonal matrices over finite fields. Amer. Math. Monthly, 76:152–164, 1969. [420, 421, 422, 424] [1478] S. Maitra, K. C. Gupta, and A. Venkateswarlu. Results on multiples of primitive polynomials and their products over GF(2). Theoret. Comput. Sci., 341(13):311–343, 2005. [67, 68, 522, 524, 531] [1479] C. Malvenuto and F. Pappalardi. Enumerating permutation polynomials. I. Permutations with non-maximal degree. Finite Fields Appl., 8(4):531–547, 2002. [176, 185] [1480] C. Malvenuto and F. Pappalardi. Enumerating permutation polynomials. II. kcycles with minimal degree. Finite Fields Appl., 10(1):72–96, 2004. [176, 185] [1481] C. Malvenuto and F. Pappalardi. Corrigendum to: “Enumerating permutation polynomials. I. Permutations with non-maximal degree” [Finite Fields Appl. 8 (2002), no. 4, 531–547; mr1933624]. Finite Fields Appl., 13(1):171–174, 2007. [176, 185]

Miscellaneous applications [1482] F. Manganiello, E. Gorla, and J. Rosenthal. Spread codes and spread decoding in network coding. In Proc. Int. Symp. Inform. Theory, pages 881–885, July 2008. [701] [1483] J. I. Manin. The Hasse-Witt matrix of an algebraic curve. Izv. Akad. Nauk SSSR Ser. Mat., 25:153–172, 1961. [401, 402] [1484] Y. Mansury, M. Kimura, J. Lobo, and T. S. Deisboeck. Emerging patterns in tumor systems: Simulating the dynamics of multicellular clusters with an agent-based spatial agglomeration model. Journal of Theoretical Biology, 219(3):343 – 370, 2002. [689, 692] [1485] I. Mantin. Analysis of the Stream Cipher RC4. Master’s dissertation, The Weizmann Institute of Science, Rehovot, 76100, Israel, 2001. [635, 637, 647] [1486] J. E. Marcos. Specific permutation polynomials over finite fields. Finite Fields Appl., 17(2):105–112, 2011. [177, 180, 181, 185] [1487] D. A. Marcus. Number fields. Springer-Verlag, New York, 1977. Universitext. [700, 701] [1488] G. A. Margulis. Explicit group-theoretic constructions of combinatorial schemes and their applications in the construction of expanders and concentrators. Problemy Peredachi Informatsii, 24(1):51–60, 1988. [540, 541, 542, 545] [1489] W. J. Martin and D. R. Stinson. A generalized Rao bound for ordered orthogonal arrays and (t, m, s)-nets. Canad. Math. Bull., 42:359–370, 1999. [374, 383] [1490] W. J. Martin and D. R. Stinson. Association schemes for ordered orthogonal arrays and (T, M, S)-nets. Canad. J. Math., 51:326–346, 1999. [374, 383] [1491] W. J. Martin and T. I. Visentin. A dual Plotkin bound for (T, M, S)-nets. IEEE Trans. Inform. Theory, 53:411–415, 2007. [374, 383] [1492] J. L. Massey. Threshold decoding. Massachusetts Institute of Technology, Research Laboratory of Electronics, Tech. Rep. 410, Cambridge, Mass., 1963. [595, 602] [1493] J. L. Massey. Shift-register synthesis and BCH decoding. IEEE Trans. Information Theory, IT-15:122–127, 1969. [201, 204, 271, 281, 593, 601, 602] [1494] J. L. Massey and S. Serconek. Linear complexity of periodic sequences: a general theory. In Advances in cryptology—CRYPTO ’96 (Santa Barbara, CA), volume 1109 of Lecture Notes in Comput. Sci., pages 358–371. Springer, Berlin, 1996. [274, 281] [1495] A. Masuda and D. Panario. Sequences of consecutive smooth polynomials over a finite field. Proc. Amer. Math. Soc., 135(5):1271–1277, 2007. [414] [1496] A. Masuda, D. Panario, and Q. Wang. The number of permutation binomials over F4p+1 where p and 4p + 1 are primes. Electron. J. Combin., 13(1):Research Paper 65, 15 pp. (electronic), 2006. [173, 174, 179, 185] [1497] A. M. Masuda and D. Panario. T´ opicos de Corpos Finitos com Aplica¸c˜ oes em Criptografia e Teoria de C´ odigos. Publica¸c˜oes Matem´aticas do IMPA. [IMPA Mathematical Publications]. Instituto Nacional de Matem´atica Pura e Aplicada (IMPA), Rio de Janeiro, 2007. 26o Col´oquio Brasileiro de Matem´atica. [26th Brazilian Mathematics Colloquium]. [3, 19, 20] [1498] A. M. Masuda and M. E. Zieve. Nonexistence of permutation binomials of certain shapes. Electron. J. Combin., 14(1):Note 12, 5 pp. (electronic), 2007. [174, 185] [1499] A. M. Masuda and M. E. Zieve. Permutation binomials over finite fields. Trans. Amer. Math. Soc., 361(8):4169–4180, 2009. [174, 179, 185] [1500] R. Mathon. Symmetric conference matrices of order pq 2 + 1. Canad. J. Math.,

781

782

Handbook of Finite Fields

30(2):321–331, 1978. [548] [1501] R. Mathon. New maximal arcs in Desarguesian planes. J. Combin. Theory Ser. A, 97(2):353–368, 2002. [484, 486] [1502] R. Mathon and G. F. Royle. The translation planes of order 49. Des. Codes Cryptogr., 5(1):57–72, 1995. [226, 229] [1503] M. Matsui. Linear cryptoanalysis method for des cipher. In EUROCRYPT, pages 386–397. 1993. [205, 213] [1504] T. Matsumoto and H. Imai. Public quadratic polynomial-tuples for efficient signature-verification and message-encryption. In Advances in cryptology— EUROCRYPT ’88 (Davos, 1988), volume 330 of Lecture Notes in Comput. Sci., pages 419–453. Springer, Berlin, 1988. [649, 653] [1505] T. Matsumoto, H. Imai, H. Harashima, and H. Miyakawa. A cryptographically useful theorem on the connection between uni and multivariate polynomials. Transactions of the IECE of Japan, 68(3):139–146, Mar. 1985. [649, 652] [1506] S. Mattarei. On a bound of Garcia and Voloch for the number of points of a Fermat curve over a prime field. Finite Fields Appl., 13(4):773–777, 2007. [169, 170] [1507] R. Matthews. Permutation polynomials over algebraic number fields. J. Number Theory, 18(3):249–260, 1984. [246, 255] [1508] R. Matthews. Some results on permutation polynomials over finite fields. Appl. Algebra Engrg. Comm. Comput., 3(1):63–65, 1992. [186, 188] [1509] R. Matthews. Permutation properties of the polynomials 1 + x + · · · + xk over a finite field. Proc. Amer. Math. Soc., 120(1):47–51, 1994. [179, 185] [1510] R. W. Matthews. Permutation polynomials in one and several variables, Ph.D. Thesis, University of Tasmania. PhD thesis, 1982. [182, 185] [1511] R. W. Matthews. Permutation polynomials in one and several variables. PhD thesis, University of Tasmania, Hobart, Tasmania, Australia, 1990. [225, 229] [1512] H. F. Mattson and G. Solomon. A new treatment of Bose-Chaudhuri codes. J. Soc. Indust. Appl. Math., 9:654–669, 1961. [578, 601, 602] [1513] C. Mauduit, H. Niederreiter, and A. S´ark¨ozy. On pseudorandom [0, 1) and binary sequences. Publ. Math. Debrecen, 71(3-4):305–324, 2007. [281] [1514] C. Mauduit and A. S´ ark¨ ozy. On finite pseudorandom binary sequences. I. Measure of pseudorandomness, the Legendre symbol. Acta Arith., 82(4):365–377, 1997. [146, 147, 280, 281, 694, 701] [1515] U. M. Maurer and S. Wolf. The Diffie-Hellman protocol. Des. Codes Cryptogr., 19(2-3):147–171, 2000. Towards a quarter-century of public key cryptography. [629, 634] [1516] J. P. May, D. Saunders, and Z. Wan. Efficient matrix rank computation with application to the study of strongly regular graphs. In ISSAC 2007, pages 277–284. ACM, New York, 2007. [435, 436] [1517] B. Mazur. Frobenius and the Hodge filtration (estimates). Ann. of Math. (2), 98:58–95, 1973. [396, 402] [1518] O. D. Mbodj. Quadratic Gauss sums. Finite Fields Appl., 4(4):347–361, 1998. [106, 118] [1519] K. McCann and K. S. Williams. The distribution of the residues of a quartic polynomial. Glasgow Math. J., 8:67–88, 1967. [190, 192] [1520] B. R. McDonald. Finite rings with identity. Marcel Dekker Inc., New York, 1974. Pure and Applied Mathematics, Vol. 28. [17, 18, 19]

Miscellaneous applications [1521] R. J. McEliece. The theory of information and coding. Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1977. A mathematical framework for communication, With a foreword by Mark Kac, Encyclopedia of Mathematics and its Applications, Vol. 3. [561, 584, 585, 594, 602] [1522] R. J. McEliece. A public-key cryptosystem based on algebraic coding theory. DSN progress report #42-44, Jet Propulsion Laboratory, Pasadena, California, 1978. [633, 634] [1523] R. J. McEliece. Finite fields for computer scientists and engineers. The Kluwer International Series in Engineering and Computer Science, 23. Kluwer Academic Publishers, Boston, MA, 1987. [3, 19, 20] [1524] R. J. McEliece, E. R. Rodemich, H. Rumsey, Jr., and L. R. Welch. New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities. IEEE Trans. Information Theory, IT-23(2):157–166, 1977. [573, 574, 602] [1525] R. L. McFarland. A family of difference sets in non-cyclic groups. J. Combinatorial Theory Ser. A, 15:1–10, 1973. [517, 519] [1526] G. McGuire, G. L. Mullen, D. Panario, and I. E. Shparlinski, editors. Finite fields: theory and applications, volume 518 of Contemporary Mathematics, Providence, RI, 2010. American Mathematical Society. [20] [1527] B. D. McKay and I. M. Wanless. On the number of Latin squares. Ann. Comb., 9(3):335–344, 2005. [462, 467] [1528] H. McKean and V. Moll. Elliptic curves. Cambridge University Press, Cambridge, 1997. Function theory, geometry, arithmetic. [19, 20, 334, 351] [1529] W. Meidl. Linear complexity and k-error linear complexity for pn -periodic sequences. In Coding, cryptography and combinatorics, volume 23 of Progr. Comput. Sci. Appl. Logic, pages 227–235. Birkh¨auser, Basel, 2004. [274, 281] [1530] W. Meidl. Reducing the calculation of the linear complexity of u2v -periodic binary sequences to Games-Chan algorithm. Des. Codes Cryptogr., 46(1):57–65, 2008. [274, 281] [1531] W. Meidl and H. Niederreiter. Counting functions and expected values for the k-error linear complexity. Finite Fields Appl., 8(2):142–154, 2002. [276, 281] [1532] W. Meidl and H. Niederreiter. Linear complexity, k-error linear complexity, and the discrete Fourier transform. J. Complexity, 18(1):87–103, 2002. [276, 281] [1533] W. Meidl and H. Niederreiter. On the expected value of the linear complexity and the k-error linear complexity of periodic sequences. IEEE Trans. Inform. Theory, 48(11):2817–2825, 2002. [276, 281] [1534] W. Meidl and H. Niederreiter. The expected value of the joint linear complexity of periodic multisequences. J. Complexity, 19(1):61–72, 2003. [273, 274, 276, 281] [1535] W. Meidl and H. Niederreiter. Periodic sequences with maximal linear complexity and large k-error linear complexity. Appl. Algebra Engrg. Comm. Comput., 14(4):273–286, 2003. [276, 281] [1536] W. Meidl, H. Niederreiter, and A. Venkateswarlu. Error linear complexity measures for multisequences. J. Complexity, 23(2):169–192, 2007. [276, 281] ¨ [1537] W. Meidl and F. Ozbudak. Linear complexity over Fq and over Fqm for linear recurring sequences. Finite Fields Appl., 15(1):110–124, 2009. [270, 281] [1538] W. Meidl and A. Winterhof. Lower bounds on the linear complexity of the discrete logarithm in finite fields. IEEE Trans. Inform. Theory, 47(7):2807–2811, 2001. [279, 281] [1539] W. Meidl and A. Winterhof. Linear complexity and polynomial degree of a function

783

784

[1540] [1541]

[1542]

[1543] [1544]

[1545]

[1546]

[1547] [1548] [1549]

[1550]

[1551]

[1552]

[1553] [1554]

Handbook of Finite Fields

over a finite field. In Finite fields with applications to coding theory, cryptography and related areas (Oaxaca, 2001), pages 229–238. Springer, Berlin, 2002. [274, 281] W. Meidl and A. Winterhof. On the linear complexity profile of explicit nonlinear pseudorandom numbers. Inform. Process. Lett., 85(1):13–18, 2003. [277, 281] W. Meidl and A. Winterhof. On the autocorrelation of cyclotomic generators. In Finite fields and applications, volume 2948 of Lecture Notes in Comput. Sci., pages 1–11. Springer, Berlin, 2004. [137] W. Meidl and A. Winterhof. On the linear complexity profile of some new explicit inversive pseudorandom numbers. J. Complexity, 20(2-3):350–355, 2004. [277, 281] W. Meidl and A. Winterhof. On the joint linear complexity profile of explicit inversive multisequences. J. Complexity, 21(3):324–336, 2005. [277, 281] W. Meidl and A. Winterhof. Some notes on the linear complexity of Sidel0 nikovLempel-Cohn-Eastman sequences. Des. Codes Cryptogr., 38(2):159–178, 2006. [279, 281] W. Meidl and A. Winterhof. On the linear complexity profile of nonlinear congruential pseudorandom number generators with R´edei functions. Finite Fields Appl., 13(3):628–634, 2007. [278, 281] W. Meier and O. Staffelbach. Fast correlation attacks on stream ciphers. In D. Barstow, W. Brauer, P. Brinch Hansen, D. Gries, D. Luckham, C. Moler, A. Pnueli, G. Seegm??ller, J. Stoer, N. Wirth, and C. G??nther, editors, Advances in Cryptology ??? EUROCRYPT ???88, volume 330 of Lecture Notes in Computer Science, pages 301–314. Springer Berlin / Heidelberg, 1988. [521, 531] W. Meier and O. Staffelbach. Fast correlation attacks on certain stream ciphers. J. Cryptology, 1(3):159–176, 1989. [201, 204] Z. Mejias and J.-K. Accetta. N´ umero de waring en cuerpos finitos. Universidad de Puerto Rico, R´io Piedras, Informe T´ecnico, 2011. [168, 170] A. Menezes. Elliptic curve public key cryptosystems. The Kluwer International Series in Engineering and Computer Science, 234. Kluwer Academic Publishers, Boston, MA, 1993. With a foreword by Neal Koblitz, Communications and Information Theory. [19, 20] A. Menezes, I. Blake, X.-H. Gao, R. Mullin, S. Vanstone, and T. Yaghoobian. Applications of Finite Fields. The Springer International Series in Engineering and Computer Science, Vol. 199., Springer., 1993. [3, 19, 20, 31, 32, 33, 34, 39, 40] A. J. Menezes, T. Okamoto, and S. A. Vanstone. Reducing elliptic curve logarithms to logarithms in a finite field. IEEE Trans. Inform. Theory, 39(5):1639–1646, 1993. [351, 675] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of applied cryptography. CRC Press Series on Discrete Mathematics and its Applications. CRC Press, Boca Raton, FL, 1997. With a foreword by Ronald L. Rivest. [19, 20, 634, 642, 647, 667] G. Menichetti. On a Kaplansky conjecture concerning three-dimensional division algebras over a finite field. J. Algebra, 47(2):400–410, 1977. [228, 229] G. Menichetti. n-dimensional algebras over a field with a cyclic extension of degree n. Geom. Dedicata, 63(1):69–94, 1996. [228, 229]

Miscellaneous applications [1555] P. Merkey and E. Posner. Optimum cyclic redundancy codes for noisy channels (corresp.). Information Theory, IEEE Transactions on, 30(6):865 – 867, nov 1984. [521, 522, 524, 527, 528, 531] [1556] S. Mesnager. A new class of bent and hyper-bent Boolean functions in polynomial forms. Des. Codes Cryptogr., 59(1-3):265–279, 2011. [111, 118] [1557] J.-F. Mestre. Lettre adress´ee ` a Gaudry et Harley. Dec. 2000. [670] [1558] J.-F. Mestre. Algorithmes pur compter des point de courbes en petite charact´eristique et en petit genres. Available at http://www.math.jussieu.fr/∼mestre/, 2002. [358, 360] [1559] H. Meyn. On the construction of irreducible self-reciprocal polynomials over finite fields. Appl. Algebra Engrg. Comm. Comput., 1(1):43–53, 1990. [28, 31, 32, 33, 34, 238, 242] [1560] P. Michel. Some recent applications of Kloostermania. In Physics and number theory, volume 10 of IRMA Lect. Math. Theor. Phys., pages 225–251. Eur. Math. Soc., Z¨ urich, 2006. [113, 118] [1561] T. Migler, K. E. Morrison, and M. Ogle. How much does a matrix of rank k weigh? Math. Mag., 79(4):262–271, 2006. [416, 424] [1562] P. Mih˘ ailescu, F. Morain, and E. Schost. Computing the eigenvalue in the Schoof– Elkies–Atkin algorithm using abelian lifts. In C. W. Brown, editor, Proceedings of the 2007 International Symposium on Symbolic and Algebraic Computation — ISSAC 2007, pages 285–292, New York, 2007. Association for Computing Machinery. [670] [1563] R. L. Miller. Necklaces, symmetries and self-reciprocal polynomials. Discrete Math., 22(1):25–33, 1978. [238, 242] [1564] S. J. Miller and M. R. Murty. Effective equidistribution and the Sato-Tate law for families of elliptic curves. J. Number Theory, 131(1):25–44, 2011. [341, 351] [1565] V. S. Miller. Use of elliptic curves in cryptography. In Advances in cryptology— CRYPTO ’85 (Santa Barbara, Calif., 1985), volume 218 of Lecture Notes in Comput. Sci., pages 417–426. Springer, Berlin, 1986. [630, 634] [1566] V. S. Miller. Use of elliptic curves in cryptography. In H. C. Williams, editor, Advances in Cryptology — CRYPTO ’85, volume 218 of Lecture Notes in Computer Science, pages 417–426, Berlin, 1986. Springer-Verlag. [666] [1567] D. Mills. Factorizations of root-based polynomial compositions. Discrete Math., 240(1-3):161–173, 2001. [35, 38] [1568] D. Mills. Existence of primitive polynomials with three coefficients prescribed. JP J. Algebra Number Theory Appl., 4(1):1–22, 2004. [62, 65] [1569] W. H. Mills. Polynomials with minimal value sets. Pacific J. Math., 14:225–241, 1964. [189, 192] [1570] J. S. Milne. Elliptic curves. BookSurge Publishers, Charleston, SC, 2006. [19, 20, 334, 351] [1571] R. Mines, F. Richman, and W. Ruitenburg. A course in constructive algebra. Universitext. Springer-Verlag, 1988. [302, 311] [1572] M. Minzlaff. Computing zeta functions of superelliptic curves in larger characteristic. Math. Comput. Sci., 3(2):209–224, 2010. [404, 406] [1573] T. Moh. A public key system with signature and master key functions. Comm. Algebra, 27(5):2207–2222, 1999. [657] [1574] M. S. E. Mohamed, D. Cabarcas, J. Ding, J. Buchmann, and S. Bulygin. MXL3 : an efficient algorithm for computing Gr¨obner bases of zero-dimensional ideals.

785

786

[1575]

[1576]

[1577]

[1578] [1579]

[1580] [1581]

[1582]

[1583] [1584]

[1585] [1586] [1587]

[1588]

[1589]

[1590] [1591]

Handbook of Finite Fields

In Information security and cryptology—ICISC 2009, volume 5984 of Lecture Notes in Comput. Sci., pages 87–100. Springer, Berlin, 2010. [664] M. S. E. Mohamed, J. Ding, J. Buchmann, and F. Werner. Algebraic attack on the mqq public key cryptosystem. In Cryptology and Network Security, 8th International Conference, CANS, pages 392–401, 2009. [658] M. S. E. Mohamed, W. S. A. E. Mohamed, J. Ding, and J. Buchmann. Mxl2: Solving polynomial equations over gf(2) using an improved mutant strategy. In J. Buchmann and J. Ding, editors, PQCrypto, volume 5299 of Lecture Notes in Computer Science, pages 203–215. Springer, 2008. [664] B. Mohar. A strengthening and a multipartite generalization of the Alon-BoppanaSerre theorem. Proc. Amer. Math. Soc., 138(11):3899–3909, 2010. [538, 539, 545] M. Moisio. On the number of rational points on some families of Fermat curves over finite fields. Finite Fields Appl., 13(3):546–562, 2007. [165, 170] M. Moisio. Kloosterman sums, elliptic curves, and irreducible polynomials with prescribed trace and norm. Acta Arith., 132(4):329–350, 2008. [44, 49, 223, 224] M. Moisio. On the moments of Kloosterman sums and fibre products of Kloosterman curves. Finite Fields Appl., 14(2):515–531, 2008. [114, 118] M. Moisio and K. Ranto. Elliptic curves and explicit enumeration of irreducible polynomials with two coefficients prescribed. Finite Fields Appl., 14(3):798– 815, 2008. [48, 49] M. Moisio, K. Ranto, M. Rinta-Aho, and K. V¨a¨an¨anen. On the weight distribution of cyclic codes with one or two zeros. Adv. Appl. Discrete Math., 3(2):125–150, 2009. [111, 118] M. Moisio and D. Wan. On Katz’s bound for the number of elements with given trace and norm. J. Reine Angew. Math., 638:69–74, 2010. [154, 158] M. J. Moisio. The moments of a Kloosterman sum and the weight distribution of a Zetterberg-type binary cyclic code. IEEE Trans. Inform. Theory, 53(2):843– 847, 2007. [114, 118] F. M¨ oller. Exceptional polynomials with 2-transitive affine monodromy groups. Finite Fields Appl., 2012. to appear. [194] R. A. Mollin and C. Small. On permutation polynomials over finite fields. Internat. J. Math. Math. Sci., 10(3):535–543, 1987. [179, 185] R. Moloney. Divisibility Properties of Kloosterman Sums and Division Polynomials for Edwards Curves. PhD dissertation, University College Dublin, College of Engineering, Mathematical and Physical Sciences, 2011. [111, 118] M. Monagan and R. Pearce. Polynomial division using dynamic arrays, heaps, and packed exponent vectors. In Proc. of CASC 2007, pages 295–315. SpringerVerlag, 2007. [301, 311] M. Monagan and R. Pearce. Parallel sparse polynomial multiplication using heaps. In ISSAC ’09: Proceedings of the 2009 International Symposium on Symbolic and Algebraic Computation, pages 263–270, New York, NY, USA, 2009. ACM Press. [301, 311] M. Monagan and R. Pearce. Sparse polynomial multiplication and division in Maple 14. ACM Communications in Computer Algebra, 44(3/4), 2010. [301, 311] T. Moon. Error correction coding: Mathematical methods and algorithms. John Wiley and Sons, Hoboken, NJ, 2005. [561, 591, 602]

Miscellaneous applications [1592] E. H. Moore. A two-fold generalization of Fermat’s theorem. Bull. Amer. Math. Soc., 2(7):189–199, 1896. [424] [1593] D. J. M. Morales. An analysis of the infrastructure in real function fields. eprint archive no. 2008/299, 2008. [360] [1594] L. J. Mordell. On a sum analogous to a gauss sum. Quart. J. Math., 3:161–162, 1932. [132] [1595] C. Moreno. Algebraic curves over finite fields, volume 97 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1991. [20] [1596] O. Moreno. Discriminants and the irreducibility of a class of polynomials in a finite field of arbitrary characteristic. J. Number Theory, 28(1):62–65, 1988. [35] [1597] O. Moreno and F. N. Castro. On the calculation and estimation of Waring number for finite fields. In Arithmetic, geometry and coding theory (AGCT 2003), volume 11 of S´emin. Congr., pages 29–40. Soc. Math. France, Paris, 2005. [168, 170] [1598] O. Moreno and F. N. Castro. Optimal divisibility for certain diagonal equations over finite fields. J. Ramanujan Math. Soc., 23(1):43–61, 2008. [167, 168, 170] [1599] O. Moreno and C. J. Moreno. Improvements of the Chevalley-Warning and the Ax-Katz theorems. Amer. J. Math., 117(1):241–244, 1995. [157, 158, 164, 167, 170, 396, 402] [1600] O. Moreno and I. Rubio. Cyclic decomposition of monomial permutations. In Proceedings of the Twentieth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1989), volume 73, pages 147–158, 1990. [184, 185] [1601] O. Moreno, K. W. Shum, F. N. Castro, and P. V. Kumar. Tight bounds for Chevalley-Warning-Ax-Katz type estimates, with improved applications. Proc. London Math. Soc. (3), 88(3):545–564, 2004. [396, 402] [1602] M. Morf. Doubling algorithms for teoplitz and related equations. In Proc. 1980 Int’l Conf. Acoustics Speech and Signal Processing, pages 954–959, Denver, Colo., Apr. 1980. [434, 436] [1603] I. H. Morgan. Construction of complete sets of mutually equiorthogonal frequency hypercubes. Discrete Math., 186(1-3):237–251, 1998. [466, 467] [1604] I. H. Morgan and G. L. Mullen. Primitive normal polynomials over finite fields. Math. Comp., 63(208):759–765, S19–S23, 1994. [57, 59] [1605] I. H. Morgan and G. L. Mullen. Completely normal primitive basis generators of finite fields. Utilitas Math., 49:21–43, 1996. [58, 59, 64, 65, 92] ˘ [1606] I. H. Morgan, G. L. Mullen, and M. Zivkovi´ c. Almost weakly self-dual bases for finite fields. Appl. Algebra Engrg. Comm. Comput., 8(1):25–31, 1997. [58, 59, 77, 79] [1607] J. P. Morgan. Nested designs. In Design and analysis of experiments, volume 13 of Handbook of Statist., pages 939–976. North-Holland, Amsterdam, 1996. [507] [1608] M. Morgenstern. Existence and explicit constructions of q + 1 regular Ramanujan graphs for every prime power q. J. Combin. Theory Ser. B, 62(1):44–62, 1994. [542, 545] [1609] M. Morii and M. Kasahara. Generalized key-equation of remainder decoding algorithm for Reed-Solomon codes. IEEE Trans. Inform. Theory, 38(6):1801–1807, 1992. [595, 602] ´ [1610] B. Morlaye. Equations diagonales non homog`enes sur un corps fini. C. R. Acad. Sci. Paris S´er. A-B, 272:A1545–A1548, 1971. [165, 170]

787

788

Handbook of Finite Fields

[1611] K. E. Morrison. Integer sequences and matrices over finite fields. J. Integer Seq., 9(2):Article 06.2.1, 28 pp. (electronic), 2006. [417, 424] [1612] E. Mortenson. Modularity of a certain Calabi-Yau threefold and combinatorial congruences. Ramanujan J., 11(1):5–39, 2006. [98, 118] [1613] M. J. Mossinghoff. Wieferich pairs and Barker sequences. Des. Codes Cryptogr., 53(3):149–163, 2009. [517, 519] [1614] C. Mulcahy. Card colm. Mathematical Association of America Online. http: //www.maa.org/columns/colm/cardcolm.html. [531] [1615] G. Mullen and H. Stevens. Polynomial functions (mod m). Acta Math. Hungar., 44(3-4):237–241, 1984. [185] [1616] G. L. Mullen. Permutation polynomials in several variables over finite fields. Acta Arith., 31(2):107–111, 1976. [186, 188] [1617] G. L. Mullen. Polynomial representation of complete sets of mutually orthogonal frequency squares of prime power order. Discrete Math., 69(1):79–84, 1988. [465, 467] [1618] G. L. Mullen. Permutation polynomials and nonsingular feedback shift registers over finite fields. IEEE Trans. Inform. Theory, 35(4):900–902, 1989. [187, 188] [1619] G. L. Mullen. Dickson polynomials over finite fields. Adv. in Math. (China), 20(1):24–32, 1991. [182, 185] [1620] G. L. Mullen. Permutation polynomials over finite fields. In Finite fields, coding theory, and advances in communications and computing (Las Vegas, NV, 1991), volume 141 of Lecture Notes in Pure and Appl. Math., pages 131–151. Dekker, New York, 1993. [172, 173, 174, 185] [1621] G. L. Mullen. A candidate for the “next Fermat problem”. Math. Intelligencer, 17(3):18–22, 1995. [463, 467] [1622] G. L. Mullen. Permutation polynomials: a matrix analogue of Schur’s conjecture and a survey of recent results. Finite Fields Appl., 1(2):242–258, 1995. Special issue dedicated to Leonard Carlitz. [172, 183, 185] [1623] G. L. Mullen and C. Mummert. Finite fields and applications, volume 41 of Student Mathematical Library. American Mathematical Society, Providence, RI, 2007. [3, 19, 20] [1624] G. L. Mullen, D. Panario, and I. E. Shparlinski, editors. Finite fields and applications, volume 461 of Contemporary Mathematics. American Mathematical Society, Providence, RI, 2008. Papers from the 8th International Conference held in Melbourne, July 9–13, 2007. [20] [1625] G. L. Mullen, A. Poli, and H. Stichtenoth, editors. Finite fields and applications, volume 2948 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2004. Revised papers from the 7th International Conference (Fq7) held in Toulouse, May 5–9, 2003. [20] [1626] G. L. Mullen and W. C. Schmid. An equivalence between (t, m, s)-nets and strongly orthogonal hypercubes. J. Combin. Theory Ser. A, 76:164–174, 1996. [374, 383] [1627] G. L. Mullen and P. J.-S. Shiue, editors. Finite fields, coding theory, and advances in communications and computing, volume 141 of Lecture Notes in Pure and Applied Mathematics, New York, 1993. Marcel Dekker Inc. [20] [1628] G. L. Mullen and P. J.-S. Shiue, editors. Finite fields: theory, applications, and algorithms, volume 168 of Contemporary Mathematics, Providence, RI, 1994. American Mathematical Society. [20] [1629] G. L. Mullen and I. Shparlinski. Open problems and conjectures in finite fields. In

Miscellaneous applications

[1630]

[1631]

[1632] [1633]

[1634] [1635]

[1636]

[1637]

[1638]

[1639] [1640] [1641] [1642]

[1643] [1644] [1645] [1646]

Finite fields and applications (Glasgow, 1995), volume 233 of London Math. Soc. Lecture Note Ser., pages 243–268. Cambridge Univ. Press, Cambridge, 1996. [41, 57, 58, 59, 66, 68] G. L. Mullen, H. Stichtenoth, and H. Tapia-Recillas, editors. Finite fields with applications to coding theory, cryptography and related areas, Berlin, 2002. SpringerVerlag. [20] P. M¨ uller. Primitive monodromy groups of polynomials. In Recent developments in the inverse Galois problem (Seattle, WA, 1993), volume 186 of Contemp. Math., pages 385–401. Amer. Math. Soc., Providence, RI, 1995. [253, 255] P. M¨ uller. A Weil-bound free proof of Schur’s conjecture. Finite Fields Appl., 3(1):25–32, 1997. [183, 193] R. C. Mullin and G. L. Mullen, editors. Finite fields: theory, applications, and algorithms, volume 225 of Contemporary Mathematics, Providence, RI, 1999. American Mathematical Society. [20] R. C. Mullin and E. Nemeth. An existence theorem for room squares. Canad. Math. Bull., 12:493–497, 1969. [553] R. C. Mullin, J. L. Yucas, and G. L. Mullen. A generalized counting and factoring method for polynomials over finite fields. J. Combin. Math. Combin. Comput., 72:121–143, 2010. [28, 29, 30] D. Mumford. An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg deVries equation and related nonlinear equation. In Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977), pages 115–153, Tokyo, 1978. Kinokuniya Book Store. [457] D. Mumford. Algebraic geometry. I. Classics in Mathematics. Springer-Verlag, Berlin, 1995. Complex projective varieties, Reprint of the 1976 edition. [305, 311] D. Mumford. The red book of varieties and schemes, volume 1358 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, expanded edition, 1999. Includes the Michigan lectures (1974) on curves and their Jacobians, With contributions by Enrico Arbarello. [243, 244, 245, 250, 255] A. Munemasa. Orthogonal arrays, primitive trinomials, and shift-register sequences. Finite Fields Appl., 4(3):252–260, 1998. [59, 520, 524, 531] A. Muratovi´c-Ribi´c. A note on the coefficients of inverse polynomials. Finite Fields Appl., 13(4):977–980, 2007. [184, 185] A. Muratovi´c-Ribi´c. Inverse of some classes of permutation binomials. J. Concr. Appl. Math., 7(1):47–53, 2009. [184, 185] M. R. Murty. Problems in analytic number theory, volume 206 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2001. Readings in Mathematics. [535, 545] M. R. Murty. Ramanujan graphs. J. Ramanujan Math. Soc., 18(1):33–52, 2003. [532, 545] M. R. Murty and K. Sinha. Effective equidistribution of eigenvalues of Hecke operators. J. Number Theory, 129(3):681–714, 2009. [545] D. R. Musser. Multivariate polynomial factorization. J. Assoc. Comput. Mach., 22:291–308, 1975. [304, 311] M. Nagata. On automorphism group of k[x, y]. Kinokuniya Book-Store Co. Ltd., Tokyo, 1972. Department of Mathematics, Kyoto University, Lectures in Math-

789

790

Handbook of Finite Fields

ematics, No. 5. [652] [1647] S. Najib. Une g´en´eralisation de l’in´egalit´e de Stein-Lorenzini. J. Algebra, 292:566– 573, 2005. [53, 55] [1648] A. Naldi, D. Thieffry, and C. Chaouiya. Decision diagrams for the representation and analysis of logical models of genetic networks. In CMSB’07: Proceedings of the 2007 international conference on Computational methods in systems biology, pages 233–247, Berlin, Heidelberg, 2007. Springer-Verlag. [685] [1649] Y. Nawaz and G. Gong. The wg stream cipher, 2005. http://www.cacr.math.uwaterloo.ca/techreports/2005/cacr2005-15.pdf. [635, 639, 640, 641, 647] [1650] Nazarathy, M. and Newton, S.A. and Giffard, R.P. and Moberly, D.S. and Sischka, F. and Trutna, Jr., W.R. and Foster, S. Real-time long range complementary correlation optical time domain reflectometer. IEEE J. Lightwave Technology, 7:24–38, 1989. [695, 701] [1651] NESSIE: New European Schemes for Signatures, Integrity, and Encryption. Information Society Technologies programme of the European commission (IST1999-12324). http://www.cryptonessie.org/. [656] [1652] E. Netto. Zur Theorie der Tripelsysteme. Math. Ann., 42(1):143–152, 1893. [503] [1653] D. K. Nguyen and B. Schmidt. Fast computation of Gauss sums and resolution of the root of unity ambiguity. Acta Arith., 140(3):205–232, 2009. [98, 118] [1654] X. Nie, L. Hu, J. Li, C. Updegrove, and J. Ding. Breaking a new instance of ttm cryptosystems. In J. Zhou, M. Yung, and F. Bao, editors, ACNS, volume 3989 of Lecture Notes in Computer Science, pages 210–225, 2006. [658] [1655] H. Niederreiter. Permutation polynomials in several variables over finite fields. Proc. Japan Acad. 46 (1970), no. 10, suppl. to, 46(9):1001–1005, 1970. [187, 188] [1656] H. Niederreiter. Orthogonal systems of polynomials in finite fields. Proc. Amer. Math. Soc., 28:415–422, 1971. [186, 187, 188] [1657] H. Niederreiter. Permutation polynomials in several variables. Acta Sci. Math. (Szeged), 33:53–58, 1972. [187, 188] [1658] H. Niederreiter. Low-discrepancy point sets. Monatsh. Math., 102:155–167, 1986. [375, 383] [1659] H. Niederreiter. Continued fractions for formal power series, pseudorandom numbers, and linear complexity of sequences. In Contributions to general algebra, 5 (Salzburg, 1986), pages 221–233. H¨older-Pichler-Tempsky, Vienna, 1987. [275, 281] [1660] H. Niederreiter. Point sets and sequences with small discrepancy. Monatsh. Math., 104:273–337, 1987. [373, 374, 375, 379, 381, 383] [1661] H. Niederreiter. Low-discrepancy and low-dispersion sequences. J. Number Theory, 30:51–70, 1988. [379, 381, 383] [1662] H. Niederreiter. The probabilistic theory of linear complexity. In Advances in cryptology—EUROCRYPT ’88 (Davos, 1988), volume 330 of Lecture Notes in Comput. Sci., pages 191–209. Springer, Berlin, 1988. [274, 275, 281] [1663] H. Niederreiter. Sequences with almost perfect linear complexity profile. In Advances in cryptology—EUROCRYPT ’87, volume 304 of Lecture Notes in Comput. Sci., pages 37–51. Springer, Berlin, 1988. [273, 274, 275, 281] [1664] H. Niederreiter. A combinatorial approach to probabilistic results on the linearcomplexity profile of random sequences. J. Cryptology, 2(2):105–112, 1990. [275, 281]

Miscellaneous applications [1665] H. Niederreiter. Keystream sequences with a good linear complexity profile for every starting point. In Advances in cryptology—EUROCRYPT ’89 (Houthalen, 1989), volume 434 of Lecture Notes in Comput. Sci., pages 523–532. Springer, Berlin, 1990. [275, 281] [1666] H. Niederreiter. The distribution of values of Kloosterman sums. Arch. Math. (Basel), 56(3):270–277, 1991. [113, 118] [1667] H. Niederreiter. The linear complexity profile and the jump complexity of keystream sequences. In Advances in cryptology—EUROCRYPT ’90 (Aarhus, 1990), volume 473 of Lecture Notes in Comput. Sci., pages 174–188. Springer, Berlin, 1991. [274, 275, 281] [1668] H. Niederreiter. Low-discrepancy point sets obtained by digital constructions over finite fields. Czechoslovak Math. J., 42:143–166, 1992. [376, 377, 383] [1669] H. Niederreiter. Random number generation and quasi-Monte Carlo methods, volume 63 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. [139, 373, 375, 380, 383] [1670] H. Niederreiter. Constructions of (t, m, s)-nets. In Monte Carlo and quasi-Monte Carlo methods 1998 (Claremont, CA), pages 70–85. Springer-Verlag, Berlin, 2000. [378, 383] [1671] H. Niederreiter, editor. Coding theory and cryptology, volume 1 of Lecture Notes Series. Institute for Mathematical Sciences. National University of Singapore. World Scientific Publishing Co. Inc., River Edge, NJ, 2002. Expanded lecture notes of the tutorials from the Inaugural Research Program of the Institute for Mathematical Sciences held at the National University of Singapore, Singapore, July–December, 2001. [19, 20] [1672] H. Niederreiter. Linear complexity and related complexity measures for sequences. In Progress in cryptology—INDOCRYPT 2003, volume 2904 of Lecture Notes in Comput. Sci., pages 1–17. Springer, Berlin, 2003. [275, 281] [1673] H. Niederreiter. Periodic sequences with large k-error linear complexity. IEEE Trans. Inform. Theory, 49(2):501–505, 2003. [276, 281] [1674] H. Niederreiter. Digital nets and coding theory. In Coding, cryptography and combinatorics, volume 23 of Progr. Comput. Sci. Appl. Logic, pages 247–257. Birkh¨ auser, Basel, 2004. [377, 383] [1675] H. Niederreiter. Constructions of (t, m, s)-nets and (t, s)-sequences. Finite Fields Appl., 11:578–600, 2005. [378, 383] [1676] H. Niederreiter. The probabilistic theory of the joint linear complexity of multisequences. In Sequences and their applications—SETA 2006, volume 4086 of Lecture Notes in Comput. Sci., pages 5–16. Springer, Berlin, 2006. [276, 281] [1677] H. Niederreiter. Nets, (t, s)-sequences, and codes. In Monte Carlo and quasi-Monte Carlo methods 2006, pages 83–100. Springer-Verlag, Berlin, 2008. [376, 381, 383] [1678] H. Niederreiter. Quasi-Monte Carlo methods. In Encyclopedia of quantitative finance, pages 1460–1472. John Wiley and Sons, Chichester, 2010. [373, 383] ¨ [1679] H. Niederreiter and F. Ozbudak. Constructions of digital nets using global function fields. Acta Arith., 105:279–302, 2002. [377, 383] ¨ [1680] H. Niederreiter and F. Ozbudak. Constructive asymptotic codes with an improvement on the Tsfasman-Vl˘ adut¸-Zink and Xing bounds. In Coding, cryptography and combinatorics, volume 23 of Progr. Comput. Sci. Appl. Logic, pages 259–

791

792

Handbook of Finite Fields

275. Birkh¨ auser, Basel, 2004. [612] ¨ [1681] H. Niederreiter and F. Ozbudak. Matrix-product constructions of digital nets. Finite Fields Appl., 10:464–479, 2004. [378, 383] ¨ [1682] H. Niederreiter and F. Ozbudak. Further improvements on asymptotic bounds for codes using distinguished divisors. Finite Fields Appl., 13:423–443, 2007. [612] ¨ [1683] H. Niederreiter and F. Ozbudak. Improved asymptotic bounds for codes using distinguished divisors of global function fields. SIAM J. Discrete Math., 21:865–899, 2007. [612] ¨ [1684] H. Niederreiter and F. Ozbudak. Low-discrepancy sequences using duality and global function fields. Acta Arith., 130:79–97, 2007. [382, 383] [1685] H. Niederreiter and G. Pirsic. Duality for digital nets and its applications. Acta Arith., 97:173–182, 2001. [376, 383] [1686] H. Niederreiter and K. H. Robinson. Complete mappings of finite fields. J. Austral. Math. Soc. Ser. A, 33(2):197–212, 1982. [184, 185] [1687] H. Niederreiter and I. E. Shparlinski. On the distribution and lattice structure of nonlinear congruential pseudorandom numbers. Finite Fields Appl., 5(3):246– 253, 1999. [285, 289] [1688] H. Niederreiter and I. E. Shparlinski. On the distribution of inversive congruential pseudorandom numbers in parts of the period. Math. Comp., 70(236):1569– 1574 (electronic), 2001. [145, 285, 289] [1689] H. Niederreiter and I. E. Shparlinski. Dynamical systems generated by rational functions. In Applied algebra, algebraic algorithms and error-correcting codes (Toulouse, 2003), volume 2643 of Lecture Notes in Comput. Sci., pages 6–17. Springer, Berlin, 2003. [282, 283, 289] [1690] H. Niederreiter and I. E. Shparlinski. Periodic sequences with maximal linear complexity and almost maximal k-error linear complexity. In Cryptography and coding, volume 2898 of Lecture Notes in Comput. Sci., pages 183–189. Springer, Berlin, 2003. [276, 281] [1691] H. Niederreiter and A. Venkateswarlu. Periodic multisequences with large error linear complexity. Des. Codes Cryptogr., 49(1-3):33–45, 2008. [276, 281] [1692] H. Niederreiter and L.-P. Wang. Proof of a conjecture on the joint linear complexity profile of multisequences. In Progress in cryptology—INDOCRYPT 2005, volume 3797 of Lecture Notes in Comput. Sci., pages 13–22. Springer, Berlin, 2005. [275, 281] [1693] H. Niederreiter and L.-P. Wang. The asymptotic behavior of the joint linear complexity profile of multisequences. Monatsh. Math., 150(2):141–155, 2007. [275, 276, 281] [1694] H. Niederreiter and A. Winterhof. Cyclotomic r-orthomorphisms of finite fields. Discrete Mathematics, 295(1-3):161–171, 2005. [136] [1695] H. Niederreiter and A. Winterhof. Cyclotomic R-orthomorphisms of finite fields. Discrete Math., 295(1-3):161–171, 2005. [177, 184, 185] [1696] H. Niederreiter and A. Winterhof. Exponential sums for nonlinear recurring sequences. Finite Fields Appl., 14(1):59–64, 2008. [285, 289] [1697] H. Niederreiter and C. Xing. Rational points on curves over finite fields: theory and applications, volume 285 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2001. [20, 317, 333, 364, 367, 368, 372, 458, 608, 609, 612] [1698] H. Niederreiter and C. Xing. Algebraic geometry in coding theory and cryptography.

Miscellaneous applications

[1699]

[1700]

[1701]

[1702]

[1703] [1704] [1705] [1706] [1707]

[1708] [1709]

[1710]

[1711] [1712]

[1713]

[1714]

[1715]

Princeton University Press, Princeton, NJ, 2009. [19, 20, 317, 332, 333, 605, 606, 612] H. Niederreiter and C. P. Xing. Low-discrepancy sequences and global function fields with many rational places. Finite Fields Appl., 2:241–273, 1996. [382, 383] H. Niederreiter and C. P. Xing. Quasirandom points and global function fields. In Finite fields and applications (Glasgow, 1995), volume 233 of London Math. Soc. Lecture Note Ser., pages 269–296. Cambridge University Press, Cambridge, 1996. [379, 383] H. Niederreiter and C. P. Xing. Towers of global function fields with asymptotically many rational places and an improvement on the Gilbert-Varshamov bound. Math. Nachr., 195:171–186, 1998. [611, 612] H. Niederreiter, C. P. Xing, and K. Y. Lam. A new construction of algebraicgeometry codes. Appl. Algebra Engrg. Comm. Comput., 9:373–381, 1999. [605, 606, 612] Y. Niho. Multi-valued cross-correlation functions between two maximal linear recursive sequences. PhD thesis, Univ. Southern California, 1972. [213] Y. Niitsuma. Counting points of the curve y 2 = x12 + a over a finite field. Tokyo J. Math., 31(1):59–94, 2008. [106, 118] A. Nilli. On the second eigenvalue of a graph. Discrete Math., 91(2):207–210, 1991. [545] A. Nilli. Tight estimates for eigenvalues of regular graphs. Electron. J. Combin., 11(1):Note 9, 4 pp. (electronic), 2004. [537, 538, 545] NIST. Digital signature standard (DSS). Federal Information Processing Standards Publication 186-3, National Institute of Standards and Technology, July 2009. [667, 669] I. Niven. Fermat’s theorem for matrices. Duke Math. J., 15:823–826, 1948. [416, 424] J.-S. No, S. W. Golomb, G. Gong, H.-K. Lee, and P. Gaal. Binary pseudorandom sequences of period 2n − 1 with ideal autocorrelation. IEEE Transactions on Information Theory, 44(2):814–817, 1998. [639, 640, 647] W. N¨ obauer. On the length of cycles of polynomial permutations. In Contributions to general algebra, 3 (Vienna, 1984), pages 265–274. H¨older-Pichler-Tempsky, Vienna, 1985. [184, 185] A. W. Nordstrom and J. P. Robinson. An optimum nonlinear code. Information and Control, 11:613–616, 1967. [601, 602] M. Noro and K. Yokoyama. Yet another practical implementation of polynomial factorization over finite fields. In ISSAC ’02: Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, pages 200–206. ACM Press, 2002. [306, 311] Nowicki, A. and Secomski, W. and Litniewski, J. and Trots, I. and Lewin, P.A. On the application of signal compression using Golay’s codes sequences in ultrasonic diagnostic. Arch. Acoustics, 28:313–324, 2003. [695, 701] K. Nyberg. Perfect nonlinear S-boxes. In Advances in cryptology—EUROCRYPT ’91 (Brighton, 1991), volume 547 of Lecture Notes in Comput. Sci., pages 378– 386. Springer, Berlin, 1991. [206, 213] K. Nyberg. Differentially uniform mappings for cryptography. In Advances in cryptology—EUROCRYPT ’93 (Lofthus, 1993), volume 765 of Lecture Notes

793

794

Handbook of Finite Fields

in Comput. Sci., pages 55–64. Springer, Berlin, 1994. [208, 211, 213] [1716] K. Nyberg and L. R. Knudsen. Provable security against differential cryptanalysis. In Advances in cryptology—CRYPTO ’92 (Santa Barbara, CA, 1992), volume 740 of Lecture Notes in Comput. Sci., pages 566–574. Springer, Berlin, 1993. [206, 207, 213] [1717] A. P. Ogg. Abelian curves of small conductor. J. Reine Angew. Math., 226:204–215, 1967. [252, 255] [1718] A. P. Ogg. Rational points of finite order on elliptic curves. Invent. Math., 12:105– 111, 1971. [251, 255] [1719] E. Okamoto and K. Nakamura. Evaluation of public key cryptosystems proposed recently. In Proc 1986’s Symposium of cryptography and information security, volume D1, 1986. [652] [1720] C. M. O’Keefe and T. Penttila. Ovoids of PG(3, 16) are elliptic quadrics. J. Geom., 38(1-2):95–106, 1990. [501] [1721] C. M. O’Keefe and T. Penttila. Ovoids of PG(3, 16) are elliptic quadrics. II. J. Geom., 44(1-2):140–159, 1992. [501] [1722] C. M. O’Keefe, T. Penttila, and G. F. Royle. Classification of ovoids in PG(3, 32). J. Geom., 50(1-2):143–150, 1994. [501] [1723] B. Omidi Koma, D. Panario, and Q. Wang. The number of irreducible polynomials of degree n over Fq with given trace and constant terms. Discrete Math., 310(8):1282–1292, 2010. [45, 49] [1724] R. Omrani, O. Moreno, and P. V. Kumar. Improved Johnson bounds for optical orthogonal codes with λ > 1 and some optimal constructions. In Proc. Int. Symp. Inform. Theory, pages 259–263, September 2005. [697, 701] [1725] H. Ong, C. Schnorr, and A. Shamir. Signatures through approximate representations by quadratic forms. In Advances in cryptology, Crypto ’83, pages 117–131. Plenum Publ., 1984. [649, 651] [1726] H. Ong, C.-P. Schnorr, and A. Shamir. Efficient signature schemes based on polynomial equations (preliminary version). In Advances in cryptology (Santa Barbara, Calif., 1984), volume 196 of Lecture Notes in Comput. Sci., pages 37–46. Springer, Berlin, 1985. [651] [1727] F. Oort. Moduli of abelian varieties and Newton polygons. C. R. Acad. Sci. Paris S´er. I Math., 312(5):385–389, 1991. [400, 402] [1728] O. Ore. Contributions to the theory of finite fields. Trans. Amer. Math. Soc., 36(2):243–274, 1934. [35, 40] [1729] A. Ostafe. Multivariate permutation polynomial systems and nonlinear pseudorandom number generators. Finite Fields Appl., 16(3):144–154, 2010. [188, 286, 289] [1730] A. Ostafe. Pseudorandom vector sequences derived from triangular polynomial systems with constant multipliers. In Arithmetic of finite fields, volume 6087 of Lecture Notes in Comput. Sci., pages 62–72. Springer, Berlin, 2010. [286, 289] [1731] A. Ostafe. Pseudorandom vector sequences of maximal period generated by polynomial dynamical systems. To appear in Designs, Codes and Cryptography, 2011. [284, 287, 289] [1732] A. Ostafe, E. Pelican, and I. E. Shparlinski. On pseudorandom numbers from multivariate polynomial systems. Finite Fields Appl., 16(5):320–328, 2010. [283, 285, 289]

Miscellaneous applications [1733] A. Ostafe and I. Shparlinski. On the waring problem with dickson polynomials in finite fields. Proc. Amer. Math. Soc., 8, 2011. [170] [1734] A. Ostafe and I. E. Shparlinski. On the degree growth in some polynomial dynamical systems and nonlinear pseudorandom number generators. Math. Comp., 79(269):501–511, 2010. [284, 286, 289] [1735] A. Ostafe and I. E. Shparlinski. On the length of critical orbits of stable quadratic polynomials. Proc. Amer. Math. Soc., 138(8):2653–2656, 2010. [143, 287, 288, 289] [1736] A. Ostafe and I. E. Shparlinski. Pseudorandom numbers and hash functions from iterations of multivariate polynomials. Cryptogr. Commun., 2(1):49–67, 2010. [284, 286, 289] [1737] A. Ostafe and I. E. Shparlinski. On the Waring problem with Dickson polynomials in finite fields. Proc. Amer. Math. Soc., 139(11):3815–3820, 2011. [134] [1738] A. Ostafe, I. E. Shparlinski, and A. Winterhof. On the generalized joint linear complexity profile of a class of nonlinear pseudorandom multisequences. Adv. Math. Commun., 4(3):369–379, 2010. [286, 289] [1739] A. Ostafe, I. E. Shparlinski, and A. Winterhof. Multiplicative character sums of a class of nonlinear recurrence vector sequences. To appear in Intern. J. Number Theory, 2011. [286, 289] ¨ [1740] A. M. Ostrowski. Uber die Bedeutung der Theorie der konvexen Polyeder f¨ ur die formale Algebra. Jahresber. Deutsch. Math.-Verein., 30(2):98–99, 1921. Talk given at Der Deutsche Mathematikertag vom 18–24 September 1921 in Jena. [307, 311, 795] [1741] A. M. Ostrowski. On the significance of the theory of convex polyhedra for formal algebra. ACM SIGSAM Bull., 33(1):5, 1999. Translated from [1740]. [307, 311] [1742] L. J. Paige. Neofields. Duke Math. J., 16:39–60, 1949. [16, 20] [1743] R. Paley. On orthogonal matrices. J. Math. Phys., Mass. Inst. Techn., 12:311–320, 1933. [135] [1744] R. E. A. C. Paley. On orthogonal matrices. J. Math. Phys, 12:311–320, 1933. [547] [1745] V. Y. Pan. Structured matrices and polynomials. Birkh¨auser Boston Inc., Boston, MA, 2001. Unified superfast algorithms. [434, 436] [1746] D. Panario and A.Viola. Analysis of Rabin’s polynomial irreducibility test. In Proc. Latin American Theoretical Informatics Conference (LATIN), volume 1380 of Lecture Notes in Computer Science, Berlin, 1998. Springer-Verlag. [295, 299] [1747] D. Panario, B. Pittel, B. Richmond, and A. Viola. Analysis of Rabin’s irreducibility test for polynomials over finite fields. Random Structures & Algorithms, 19(34):525–551, 2001. [295, 299] [1748] D. Panario and B. Richmond. Analysis of Ben-Or’s polynomial irreducibility test. Random Structures and Algorithms, pages 439–456, 1998. [296, 299] [1749] D. Panario, A. Sakzd, B. Stevens, and Q. Wang. Two new measures for permutations: Ambiguity and deficiency. Preprint, 2011. [185] [1750] D. Panario, O. Sosnovski, B. Stevens, and Q. Wang. Divisibility of polynomials over finite fields and combinatorial applications. to appear in Des. Codes Cryptogr. [520, 529, 531] [1751] D. Panario, B. Stevens, and Q. Wang. Ambiguity and deficiency in costas arrays and apn permutations. In LATIN 2010: Theoretical Informatics, volume 6034 of Lecture Notes in Computer Science, 2010, pages 397–406. Dekker, New York,

795

796

Handbook of Finite Fields

2010. [185] [1752] D. Panario and D. Thomson. Efficient pth root computations in finite fields of characteristic p. Des. Codes Cryptogr., 50(3):351–358, 2009. [39] [1753] G. Panella. Caratterizzazione delle quadriche di uno spazio (tridimensionale) lineare sopra un corpo finito. Boll. Un. Mat. Ital. (3), 10:507–513, 1955. [500] [1754] Y. H. Park and J. B. Lee. Permutation polynomials and group permutation polynomials. Bull. Austral. Math. Soc., 63(1):67–74, 2001. [176, 177, 185] [1755] F. Parvaresh and A. Vardy. Correcting errors beyond the Guruswami-Sudan radius in polynomial time. In Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science, 2005, pages 285–294, Oct. 2005. [599, 602] [1756] E. Pasalic. On cryptographically significant mappings over GF(2n ). In Arithmetic of finite fields, volume 5130 of Lecture Notes in Comput. Sci., pages 189–204. Springer, Berlin, 2008. [182, 185] [1757] E. Pasalic and P. Charpin. Some results concerning cryptographically significant mappings over GF(2n ). Des. Codes Cryptogr., 57(3):257–269, 2010. [182, 185] [1758] J. Patarin. Cryptanalysis of the Matsumoto and Imai public key scheme of Eurocrypt ’88. In Advances in cryptology—CRYPTO ’95 (Santa Barbara, CA, 1995), volume 963 of Lecture Notes in Comput. Sci., pages 248–261. Springer, Berlin, 1995. [653, 659] [1759] J. Patarin. Asymmetric cryptography with a hidden monomial and a candidate algorithm for ' 64 bits asymmetric signatures. In Advances in cryptology— CRYPTO ’96 (Santa Barbara, CA), volume 1109 of Lecture Notes in Comput. Sci., pages 45–60. Springer, Berlin, 1996. [650] [1760] J. Patarin. Hidden Field Equations (HFE) and Isomorphisms of Polynomials (IP): two new families of asymmetric algorithms. In 1996, volume 1070 of Lecture Notes in Computer Science, pages 33–48. Ueli Maurer, ed., 1996. Extended Version: http://www.minrank.org/hfe.pdf. [651] [1761] J. Patarin. The oil and vinegar signature scheme. Dagstuhl Workshop on Cryptography, September 1997, 1997. [654] [1762] J. Patarin, N. Courtois, and L. Goubin. FLASH, a fast multivariate signature algorithm. In Topics in cryptology—CT-RSA 2001 (San Francisco, CA), volume 2020 of Lecture Notes in Comput. Sci., pages 298–307. Springer, Berlin, 2001. [656] ∗ [1763] J. Patarin, L. Goubin, and N. Courtois. C−+ and HM : Variations around two schemes of T. Matsumoto and H. Imai. In Asiacrypt 1998, volume 1514 of LNCS, pages 35–49. Kazuo Ohta and Dingyi Pei, editors, Springer, 1998. Extended Version: http://citeseer.nj.nec.com/patarin98plusmn. html. [656, 660] [1764] J. Patarin, L. Goubin, and N. Courtois. Improved algorithms for Isomorphisms of Polynomials. In 1998, volume 1403 of Lecture Notes in Computer Science, pages 184–200. Kaisa Nyberg, ed., 1998. Extended Version: http: //www.minrank.org/ip6long.ps. [651] [1765] K. G. Paterson. Applications of exponential sums in communications theory [invited paper]. In Cryptography and coding (Cirencester, 1999), volume 1746 of Lecture Notes in Comput. Sci., pages 1–24. Springer, Berlin, 1999. [143, 144] [1766] S. Paulus and H.-G. R¨ uck. Real and imaginary quadratic representations of hyperelliptic function fields. Math. Comp., 68(227):1233–1241, 1999. [356, 360] [1767] S. E. Payne. Spreads, flocks, and generalized quadrangles. J. Geom., 33(1-2):113–

Miscellaneous applications 128, 1988. [480, 486] [1768] F. Pellarin. Values of certain l-series in positive characteristic. 2011. [458] [1769] A. Pellet. Sur les fonctions irr´educibles suivant un module premier. C.R. Acad. Sci. Paris, 93:1065–1066, 1881. [31, 34] [1770] A. E. Pellet. On irreducible functions to a prime modulus and a modular function. (Sur les fonctions irr´eductibles suivant un module premier et une fonction modulaire.). C. R. Acad. Sci. Paris., 70:328–330, 1870. [40] [1771] A. E. Pellet. On the decomposition of an integral function into irreducible factors with respect to a prime modulus. (Sur la d´ecomposition d’une fonction enti`ere en facteurs irr´eductibles suivant un module premier.). C. R. Acad. Sci. Paris., 86:1071–1072., 1878. [35, 36, 38, 41] [1772] R. Pellikaan, B.-Z. Shen, and G. J. M. van Wee. Which linear codes are algebraicgeometric? IEEE Trans. Inform. Theory, 37:583–602, 1991. [610, 612] [1773] T. Penttila and G. F. Royle. Sets of type (m, n) in the affine and projective planes of order nine. Des. Codes Cryptogr., 6(3):229–245, 1995. [484, 486] [1774] T. Penttila and B. Williams. Ovoids of parabolic spaces. Geom. Dedicata, 82(13):1–19, 2000. [233, 234] [1775] G. I. Perel0 muter. Estimate of a sum along an algebraic curve. Mat. Zametki, 5:373–380, 1969. [125, 127] [1776] C. Pernet and A. Storjohann. Faster algorithms for the characteristic polynomial. In ISSAC 2007, pages 307–314. ACM, New York, 2007. [431, 436] [1777] L. Perret. A fast cryptanalysis of the isomorphism of polynomials with one secret problem. In Advances in cryptology—EUROCRYPT 2005, volume 3494 of Lecture Notes in Comput. Sci., pages 354–370. Springer, Berlin, 2005. [651] [1778] W. W. Peterson. Error-correcting codes. The M.I.T. Press, Cambridge, Mass., 1961. [561, 574, 592, 602] [1779] W. W. Peterson and E. J. Weldon, Jr. Error-correcting codes. The M.I.T. Press, Cambridge, Mass.-London, second edition, 1972. [561, 573, 574, 581, 586, 588, 591, 593, 596, 597, 602] ¨ [1780] K. Petr. Uber die irreduzibilit¨ at eines polynoms mit ganzzahligen koeffizienten nach ˇ einem primzahlmodul. Casopis pro pˇestov´ an´i matematiky a fysiky, 66:85–94, 1937. [294, 299] [1781] D. Pierce and M. J. Kallaher. A note on planar functions and their planes. Bull. Inst. Combin. Appl., 42:53–75, 2004. [231, 234] [1782] J. Pila. Frobenius maps of abelian varieties and finding roots of unity in finite fields. Math. Comp., 55(192):745–763, 1990. [404, 406] [1783] G. Pirsic, J. Dick, and F. Pillichshammer. Cyclic digital nets, hyperplane nets, and multivariate integration in Sobolev spaces. SIAM J. Numer. Anal., 44:385–411, 2006. [378, 383] [1784] N. L. Pitcher. Efficient point-counting on genus-2 hyperelliptic curves. ProQuest LLC, Ann Arbor, MI, 2009. Thesis (Ph.D.)–University of Illinois at Chicago. [359, 360] [1785] A. K. Pizer. Ramanujan graphs and Hecke operators. Bull. Amer. Math. Soc. (N.S.), 23(1):127–137, 1990. [545] [1786] D. A. Plaisted. New NP-hard and NP-complete polynomial and integer divisibility problems. Theoret. Comput. Sci., 13:125–138, 1984. [309, 311] [1787] V. Pless. Q-codes. J. Combin. Theory Ser. A, 43(2):258–276, 1986. [581, 602]

797

798

Handbook of Finite Fields

[1788] V. Pless. Duadic codes and generalizations. In Eurocode ’92 (Udine, 1992), volume 339 of CISM Courses and Lectures, pages 3–15. Springer, Vienna, 1993. [581, 602] [1789] V. Pless. Introduction to the theory of error-correcting codes. Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons Inc., New York, third edition, 1998. A Wiley-Interscience Publication. [19, 20] [1790] V. S. Pless, W. C. Huffman, and R. A. Brualdi, editors. Handbook of coding theory. Vol. I, II. North-Holland, Amsterdam, 1998. [19, 20, 561, 582, 583, 590, 591, 602] [1791] L. Poinsot. R´eflexions sur les principes fondamentaux de la th´eorie des nombres. Journal de math´ematiques pures et appliqu´ees, 10:1–101, 1845. [39] [1792] P. Polito and O. Polverino. Linear blocking sets in PG(2, q 4 ). Australas. J. Combin., 26:41–48, 2002. [472, 475] [1793] P. Pollack. An explicit approach to hypothesis H for polynomials over a finite field. In Anatomy of Integers, volume 46 of CRM Proc. Lecture Notes, pages 259–273. Amer. Math. Soc., Providence, 2008. [410, 414] [1794] P. Pollack. A polynomial analogue of the twin primes conjecture. Proc. Amer. Math. Soc., 136(11):3775–3784, 2008. [410, 414] [1795] P. Pollack. Simultaneous prime specializations of polynomials over finite fields. Proc. Lond. Math. Soc., 97(3):545–567, 2008. [410, 414] [1796] P. Pollack. Revisiting gauss’s analogue of the prime number theorem for polynomials over finite fields. Finite Fields Appl., 16(4):290–299, 2010. [408, 414] [1797] J. M. Pollard. Monte Carlo methods for index computation (mod p). Math. Comp., 32(143):918–924, 1978. [629, 634] [1798] J. M. Pollard and C.-P. Schnorr. An efficient solution of the congruence x2 +ky 2 = m (mod n). IEEE Trans. Inform. Theory, 33(5):702–709, 1987. [651] [1799] O. Polverino. Small minimal blocking sets and complete k-arcs in PG(2, p3 ). Discrete Math., 208/209:469–476, 1999. Combinatorics (Assisi, 1996). [474, 475] [1800] O. Polverino. Small blocking sets in PG(2, p3 ). Des. Codes Cryptogr., 20(3):319–324, 2000. [472, 474, 475] [1801] O. Polverino and L. Storme. Small minimal blocking sets in PG(2, q 3 ). European J. Combin., 23(1):83–92, 2002. [474, 475] [1802] B. Poonen. Local height functions and the Mordell-Weil theorem for Drinfeld modules. Compositio Math., 97(3):349–368, 1995. [452] [1803] A. G. Postnikov. Ergodic problems in the theory of congruences and of Diophantine approximations. Proceedings of the Steklov Institute of Mathematics, No. 82 (1966). Translated from the Russian by B. Volkmann. American Mathematical Society, Providence, R.I., 1967. [282, 289] [1804] A. Pott, Y. Tan, T. Feng, and S. Ling. Association schemes arising from bent functions. Des. Codes Cryptogr., 59(1–3):319–331, Apr. 2011. [219, 224] [1805] B. Preneel et al. NESSIE security report. Technical Report D20-v2, New European Schemes for Signatures, Integrity, and Encryption, 2003. [666] [1806] F. P. Preparata. A class of optimum nonlinear double-error-correcting codes. Information and Control, 13:378–400, 1968. [601, 602] [1807] R. Pries and H. J. Zhu. p-rank stratification of artin-schreier curves. Ann. Inst. Fourier, to appear. [401, 402] [1808] M. Ptashne. A genetic switch: Phage lambda and higher organisms. 1992. [687,

Miscellaneous applications 692] [1809] S. Qi. On diagonal equations over finite fields. Finite Fields Appl., 3(2):175–179, 1997. [165, 170] [1810] G. Quenell. Spectral diameter estimates for k-regular graphs. Adv. Math., 106(1):122–148, 1994. [545] [1811] M. Rabin. Probabilistic algorithms in finite fields. SIAM Journal on Computing, 9(2):273–280, 1980. [295, 299] [1812] R. Raghavendran. Finite associative rings. Compositio Math., 21:195–229, 1969. [17] [1813] J. Rajsski and J. Tyszer. Primitive polynomials over gf(2) of degree upto 660 with uniformly distributed coefficients. J. Elect. Testing, 19(6):645–657, 2003. [67, 68] [1814] J. Ray and P. Koopman. Efficient high hamming distance crcs for embedded networks. In Dependable Systems and Networks, 2006. DSN 2006. International Conference on, pages 3 –12, june 2006. [524, 531] [1815] L. R´edei. L¨ uckenhafte Polynome u ¨ber endlichen K¨ orpern. Birkh¨auser Verlag, Basel, 1970. Lehrb¨ ucher und Monographien aus dem Gebiete der exakten Wissenschaften, Mathematische Reihe, Band 42. [468, 475] [1816] L. R´edei. Lacunary polynomials over finite fields. North-Holland Publishing Co., Amsterdam, 1973. Translated from the German by I. F¨oldes. [20, 468, 469, 470, 475] [1817] R. Ree. Proof of a conjecture of S. Chowla. J. Number Theory, 3:210–212, 1971. [40] [1818] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. J. Soc. Indust. Appl. Math., 8:300–304, 1960. [579, 601, 602] [1819] O. Reingold, S. Vadhan, and A. Wigderson. Entropy waves, the zig-zag graph product, and new constant-degree expanders. Ann. of Math. (2), 155(1):157– 187, 2002. [542, 543, 545] [1820] D. Ren, Q. Sun, and P. Yuan. Number of zeros of diagonal polynomials over finite fields. Finite Fields Appl., 7(1):197–204, 2001. Dedicated to Professor Chao Ko on the occasion of his 90th birthday. [166, 170] [1821] G. Rhin. R´epartition modulo 1 dans un corps de s´eries formelles sur un corps fini. Dissertationes Math. (Rozprawy Mat.), 95:75, 1972. [46, 49] [1822] C. Ritzenthaler. Optimal curves of genus 1,2 and 3. Publ. Math. Besancon (PMB), 2011. [364, 367] [1823] R. L. Rivest. Permutation polynomials modulo 2w . Finite Fields Appl., 7(2):287– 292, 2001. [185] [1824] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key cryptosystems. Comm. ACM, 21(2):120–126, 1978. [628, 634] [1825] A. M. Robert. The Gross-Koblitz formula revisited. Rend. Sem. Mat. Univ. Padova, 105:157–170, 2001. [110, 118] [1826] J. A. G. Roberts and F. Vivaldi. A combinatorial model for reversible rational maps over finite fields. Nonlinearity, 22(8):1965–1982, 2009. [282, 289] [1827] M. Roitman. On Zsigmondy primes. Proc. Amer. Math. Soc., 125(7):1913–1919, 1997. [45, 49] [1828] A. Rojas-Le´ on. Estimates for singular multiplicative character sums. Int. Math. Res. Not., (20):1221–1234, 2005. [123, 124, 127, 156, 158]

799

800

Handbook of Finite Fields

[1829] A. Rojas-Le´ on. Purity of exponential sums on An . Compos. Math., 142(2):295–306, 2006. [121, 127] [1830] A. Rojas-Leon and D. Wan. Moment zeta functions for toric Calabi-Yau hypersurfaces. Commun. Number Theory Phys., 1(3):539–578, 2007. [154, 156, 158] [1831] A. Rojas-Leon and D. Wan. Improvements of the Weil bound for Artin-Schreier curves. Math. Ann., 2011, to appear. [155, 158] [1832] S. Rønjom and T. Helleseth. A new attack on the filter generator. IEEE Trans. Inform. Theory, 53(5):1752–1758, 2007. [201, 204] [1833] L. R´ onyai and T. SzHonyi. Planar functions over finite fields. Combinatorica, 9(3):315–320, 1989. [232, 234] [1834] L. A. Rosati. Unitals in Hughes planes. Geom. Dedicata, 27(3):295–299, 1988. [484, 486] [1835] M. Y. Rosenbloom and M. A. Tsfasman. Codes for the m-metric. Problems Inform. Transmission, 33:45–52, 1997. [375, 383] [1836] R. Roth. Introduction to coding theory. Cambridge University Press, Cambridge, 2006. [561, 580, 584, 591, 602] [1837] R. M. Roth. Maximum-rank array codes and their application to crisscross error correction. IEEE Trans. Inform. Theory, 37(2):328–336, 1991. [699, 701] [1838] O. S. Rothaus. On “bent” functions. J. Combinatorial Theory Ser. A, 20(3):300– 305, 1976. [216, 224] [1839] I. F. R´ ua, E. F. Combarro, and J. Ranilla. Classification of semifields of order 64. J. Algebra, 322(11):4011–4029, 2009. [227, 229] [1840] K. Rubin and A. Silverberg. Supersingular abelian varieties in cryptology. In Advances in cryptology—CRYPTO 2002, volume 2442 of Lecture Notes in Comput. Sci., pages 336–353. Springer, Berlin, 2002. [359] [1841] I. M. Rubio and C. J. Corrada-Bravo. Cyclic decomposition of permutations of finite fields obtained using monomials. In Finite fields and applications, volume 2948 of Lecture Notes in Comput. Sci., pages 254–261. Springer, Berlin, 2004. [184, 185] [1842] I. M. Rubio, G. L. Mullen, C. Corrada, and F. N. Castro. Dickson permutation polynomials that decompose in cycles of the same length. In Finite fields and applications, volume 461 of Contemp. Math., pages 229–239. Amer. Math. Soc., Providence, RI, 2008. [184, 185] [1843] H.-G. R¨ uck. A note on elliptic curves over finite fields. Math. Comp., 49(179):301– 304, 1987. [342, 351] [1844] H.-G. R¨ uck. A note on elliptic curves over finite fields. Mathematics of Computation, 49(179):301–304, July 1987. [675] [1845] H.-G. R¨ uck and H. Stichtenoth. A characterization of Hermitian function fields over finite fields. J. Reine Angew. Math., 457:185–188, 1994. [166, 170, 366, 367] [1846] M. Rudnev. An improved sumproduct inequality in fields of prime order. Int. Math. Res. Notices. [129] [1847] A. Rudra. Limits to list decoding of random codes. IEEE Trans. Information Theory, IT-57:1398–1408, 2011. [599, 602] [1848] R. A. Rueppel. Analysis and design of stream ciphers. Communications and Control Engineering Series. Springer-Verlag, Berlin, 1986. With a foreword by James L. Massey. [270, 271, 274, 275, 281] [1849] R. A. Rueppel. Stream ciphers. In Contemporary cryptology, pages 65–134. IEEE,

Miscellaneous applications New York, 1992. [270, 271, 273, 281] [1850] W. M. Ruppert. Reduzibilit¨ at ebener Kurven. J. Reine Angew. Math., 369:167–191, 1986. [304, 305, 311] [1851] W. M. Ruppert. Reducibility of polynomials f (x, y) modulo p. J. Number Theory, 77(1):62–70, 1999. [304, 311] [1852] J. J. Rushanan. Topics in integral matrices and abelian group codes: generalized Q-codes. ProQuest LLC, Ann Arbor, MI, 1986. Thesis (Ph.D.)–California Institute of Technology. [581, 602] [1853] F. Ruskey, C. R. Miers, and J. Sawada. The number of irreducible polynomials and Lyndon words with given trace. SIAM J. Discrete Math., 14(2):240–245 (electronic), 2001. [25, 30] [1854] I. Z. Ruzsa. Essential components. Proc. London Math. Soc. (3), 54(1):38–56, 1987. [148] [1855] W. E. Ryan and S. Lin. Channel codes. Cambridge University Press, Cambridge, 2009. Classical and modern. [561, 602] [1856] A. Sackmann, M. Heiner, and I. Koch. Application of petri net based analysis techniques to signal transduction pathways. BMC Bioinformatics, 7(1):482, 2006. [685] [1857] H. Sadjadpour, N. Sloane, M. Salehi, and G. Nebe. Interleaver design for turbo codes. Selected Areas in Communications, IEEE Journal on, 19(5):831 –837, may 2001. [521, 523, 531] [1858] J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt, and P. K. Sorger. Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction. Molecular Systems Biology, 5, Dec. 2009. [683, 692] [1859] O. Sahin, H. Frohlich, C. Lobke, U. Korf, S. Burmester, M. Majety, J. Mattern, I. Schupp, C. Chaouiya, D. Thieffry, A. Poustka, S. Wiemann, T. Beissbarth, and D. Arlt. Modeling erbb receptor-regulated g1/s transition to find novel targets for de novo trastuzumab resistance. BMC Systems Biology, 3(1):1, 2009. [683, 692] [1860] S. Sakata. n-dimensional Berlekamp-Massey algorithm for multiple arrays and construction of multivariate polynomials with preassigned zeros. In Applied algebra, algebraic algorithms and error-correcting codes (Rome, 1988), volume 357 of Lecture Notes in Comput. Sci., pages 356–376. Springer, Berlin, 1989. [275, 281] [1861] S. Sakata. Extension of the Berlekamp-Massey algorithm to N dimensions. Inform. and Comput., 84(2):207–239, 1990. [275, 281] [1862] A. S˘ al˘ agean. On the computation of the linear complexity and the k-error linear complexity of binary sequences with period a power of two. IEEE Trans. Inform. Theory, 51(3):1145–1150, 2005. [274, 281] [1863] R. Sandler. The collineation groups of some finite projective planes. Portugal. Math., 21:189–199, 1962. [227, 229] [1864] P. Sarnak. Some applications of modular forms, volume 99 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1990. [533, 545] [1865] P. Sarnak. Kloosterman, quadratic forms and modular forms. Nieuw Arch. Wiskd. (5), 1(4):385–389, 2000. [111, 118] [1866] D. Sarwate and M. Pursley. Crosscorrelation properties of pseudorandom and related sequences. Proceedings of the IEEE, 68(5):593–619, 1980. [264]

801

802

Handbook of Finite Fields

[1867] D. V. Sarwate. An upper bound on the aperiodic autocorrelation function for a maximal-length sequence. IEEE Trans. Inform. Theory, 30(4):685–687, 1984. [694, 701] [1868] T. Sasaki, T. Saito, and T. Hilano. Analysis of approximate factorization algorithm. I. Japan J. Indust. Appl. Math., 9(3):351–368, 1992. [304, 311] [1869] T. Sasaki and M. Sasaki. A unified method for multivariate polynomial factorizations. Japan J. Indust. Appl. Math., 10(1):21–39, 1993. [304, 311] [1870] T. Sasaki, M. Suzuki, M. Kol´ aˇr, and M. Sasaki. Approximate factorization of multivariate polynomials and absolute irreducibility testing. Japan J. Indust. Appl. Math., 8(3):357–375, 1991. [304, 311] [1871] T. Satoh. The canonical lift of an ordinary elliptic curve over a finite field and its point counting. J. Ramanujan Math. Soc., 15(4):247–270, 2000. [406, 670] [1872] T. Satoh and K. Araki. Fermat quotients and the polynomial time discrete log algorithm for anomalous elliptic curves. Comment. Math. Univ. St. Paul., 47(1):81–92, 1998. [351] [1873] A. Scheerhorn. Trace- and norm-compatible extensions of finite fields. Appl. Algebra Engrg. Comm. Comput., 3(3):199–209, 1992. [94] [1874] A. Scheerhorn. Spur-kompatible Polynomfolgen u ¨ber endlichen K¨orpern. In S´eminaire Lotharingien de Combinatoire (Thurnau, 1992), volume 1993/33 of Pr´epubl. Inst. Rech. Math. Av., pages 73–79. Univ. Louis Pasteur, Strasbourg, 1993. [94] [1875] A. Scheerhorn. Iterated constructions of normal bases over finite fields. In Finite fields: theory, applications, and algorithms (Las Vegas, NV, 1993), volume 168 of Contemp. Math., pages 309–325. Amer. Math. Soc., Providence, RI, 1994. [94, 238, 242] [1876] A. Scheerhorn. Dickson polynomials and completely normal elements over finite fields. In Applications of finite fields (Egham, 1994), volume 59 of Inst. Math. Appl. Conf. Ser. New Ser., pages 47–55. Oxford Univ. Press, New York, 1996. [95] [1877] A. Scheerhorn. Dickson polynomials, completely normal polynomials and the cyclic module structure of specific extensions of finite fields. Des. Codes Cryptogr., 9(2):193–202, 1996. [95] [1878] A. Schinzel. Polynomials with special regard to reducibility, volume 77 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2000. [304, 311] [1879] B. Schmidt. Characters and cyclotomic fields in finite geometry, volume 1797 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2002. [512, 513, 519] [1880] K. Schmidt. Dynamical systems of algebraic origin, volume 128 of Progress in Mathematics. Birkh¨ auser Verlag, Basel, 1995. [282, 289] [1881] W. Schmidt. Equations over finite fields: an elementary approach. Kendrick Press, Heber City, UT, second edition, 2004. [19, 20] [1882] W. M. Schmidt. Equations over finite fields. An elementary approach. Lecture Notes in Mathematics, Vol. 536. Springer-Verlag, Berlin, 1976. [19, 20, 141, 151, 152, 157, 158] [1883] W. M. Schmidt. Construction and estimation of bases in function fields. J. Number Theory, 39(2):181–224, 1991. [275, 281] [1884] J. Scholten and H. J. Zhu. Families of supersingular curves in characteristic 2. Math. Res. Lett., 9(5-6):639–650, 2002. [402]

Miscellaneous applications [1885] J. Scholten and H. J. Zhu. Hyperelliptic curves in characteristic 2. Int. Math. Res. Not., (17):905–917, 2002. [399, 402] [1886] J. Scholten and H. J. Zhu. Slope estimates of Artin-Schreier curves. Compositio Math., 137(3):275–292, 2003. [399, 402] [1887] R. A. Scholtz. The spread spectrum concept. IEEE Trans. Commun., COM25(8):748–755, 1977. [695, 698, 701] [1888] R. A. Scholtz and L. R. Welch. GMW sequences. IEEE Trans. Inform. Theory, 30(3):548–553, 1984. [265] [1889] R. Schoof. Elliptic curves over finite fields and the computation of square roots mod p. Math. Comp., 44(170):483–494, 1985. [404, 406] [1890] R. Schoof. Elliptic curves over finite fields and the computation of square roots mod p. Mathematics of Computation, 44(170), Apr. 1985. [669] [1891] R. Schoof. Algebraic curves over F2 with many rational points. J. Number Theory, 41(1):6–14, 1992. [368, 372] [1892] R. Sch¨ urer. A new lower bound on the t-parameter of (t, s)-sequences. In Monte Carlo and quasi-Monte Carlo methods 2006, pages 623–632. Springer-Verlag, Berlin, 2008. [379, 383] [1893] M. P. Sch¨ utzenberger. A non-existence theorem for an infinite family of symmetrical block designs. Ann. Eugenics, 14:286–287, 1949. [513, 519] ˘ Schwarz. Contribution ` [1894] S. a la recluctibilit´e des polynˆomes dans la th´eorie des congruences. Vˇestnik Kn´ alovsk`e ˇcesk´e spol. nauk., pages 1–7, 1939. [294, 299] ˘ [1895] S. Schwarz. On the reducibility of polynomials over a finite field. Quart. J. Math. Oxford, 2(7):110–124, 1956. [294, 299] [1896] B. Segre. Ovals in a finite projective plane. Canad. J. Math., 7:414–416, 1955. [497] [1897] B. Segre. On complete caps and ovaloids in three-dimensional Galois spaces of characteristic two. Acta Arith., 5:315–332 (1959), 1959. [500] [1898] B. Segre. Introduction to Galois geometries. Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. I (8), 8:133–236, 1967. [497] [1899] I. Semaev. Construction of polynomials, irreducible over a finite field, with linearly independent roots. Mat. Sbornik, 135(4):520–532, 1988. In Russian; English translation in Math. USSR-Sbornik, 63(2):507-519, 1989. [297, 299] [1900] I. A. Semaev. Evaluation of discrete logarithms in a group of p-torsion points of an elliptic curve in characteristic p. Math. Comp., 67(221):353–356, 1998. [351] [1901] G. Seroussi and A. Lempel. Factorization of symmetric matrices and traceorthogonal bases in finite fields. SIAM J. Comput., 9(4):758–767, 1980. [73, 79] [1902] G. Seroussi and A. Lempel. On symmetric representations of finite fields. SIAM J. Algebraic Discrete Methods, 4(1):14–21, 1983. [418, 424] [1903] J.-P. Serre. G´eom´etrie alg´ebrique et g´eom´etrie analytique. Ann. Inst. Fourier, Grenoble, 6:1–42, 1955–1956. [449] [1904] J.-P. Serre. Abelian l-adic representations and elliptic curves. McGill University lecture notes written with the collaboration of Willem Kuyk and John Labute. W. A. Benjamin, Inc., New York-Amsterdam, 1968. [251, 252, 255] [1905] J.-P. Serre. Propri´et´es galoisiennes des points d’ordre fini des courbes elliptiques. Invent. Math., 15(4):259–331, 1972. [252, 255] [1906] J.-P. Serre. A course in arithmetic. Springer-Verlag, New York, 1973. Translated from the French, Graduate Texts in Mathematics, No. 7. [17]

803

804

Handbook of Finite Fields

[1907] J.-P. Serre. Majorations de sommes exponentielles. In Journ´ees Arithm´etiques de Caen (Univ. Caen, Caen, 1976), pages 111–126. Ast´erisque No. 41–42. Soc. Math. France, Paris, 1977. [126, 536, 545] [1908] J.-P. Serre. Quelques applications du th´eor`eme de densit´e de Chebotarev. Inst. ´ Hautes Etudes Sci. Publ. Math., (54):323–401, 1981. [252, 255, 349, 351] [1909] J.-P. Serre. Nombres de points des courbes alg´ebriques sur Fq . In Seminar on number theory, 1982–1983 (Talence, 1982/1983), pages Exp. No. 22, 8. Univ. Bordeaux I, Talence, 1983. [364, 367] [1910] J.-P. Serre. Sur le nombre des points rationnels d’une courbe alg´ebrique sur un corps fini. C. R. Acad. Sci. Paris S´er. I Math., 296(9):397–402, 1983. [364, 367, 368, 372] [1911] J.-P. Serre. Quel est le nombre maximum de points rationnels que peut avoir une courbe alg´ebrique de genre g sur un corps fini? Annuaire du Coll´ege de France, 84:397–402, 1984. [365, 367] [1912] J.-P. Serre. R´epartition asymptotique des valeurs propres de l’op´erateur de Hecke Tp . J. Amer. Math. Soc., 10(1):75–102, 1997. [538, 545] [1913] J.-P. Serre. On a theorem of Jordan. Bull. Amer. Math. Soc. (N.S.), 40(4):429–440 (electronic), 2003. [252, 255] [1914] J. A. Serret. Cours d’algebre sup´eeriure. Gauthier-Villars, Paris, Paris, 3rd edition, 1866. [31, 34] [1915] J. A. Serret. M´emoire sur la th´eorie des congruences suivant un module premier et suivant une fonction modularie irr´educible. M´em. Acad. Sci., Inst. de France, 1(35):617–688, 1866. [31, 34] [1916] J.-A. Serret. Cours d’alg`ebre sup´erieure. Tome I. Les Grands Classiques Gauthier´ Villars. [Gauthier-Villars Great Classics]. Editions Jacques Gabay, Sceaux, 1992. Reprint of the fourth (1877) edition. [39] [1917] H. Shacham and B. Waters, editors. Pairing-Based Cryptography — Pairing 2009, volume 5671 of Lecture Notes in Computer Science, Berlin, 2009. SpringerVerlag. [670] [1918] I. R. Shafarevich. Basic algebraic geometry. 1 Varieties in projective space. SpringerVerlag, second edition, 1994. [305, 311] [1919] R. Shaheen and A. Winterhof. Permutations of finite fields for check digit systems. Des. Codes Cryptogr., 57(3):361–371, 2010. [185] [1920] A. Shallue and C. E. van de Woestijne. Construction of rational points on elliptic curves over finite fields. In F. Hess, S. Pauli, and M. Pohst, editors, Algorithmic Number Theory — ANTS-VII, volume 4076 of Lecture Notes in Computer Science, pages 510–524, Berlin, 2006. Springer-Verlag. [678] [1921] A. Shamir. Efficient signature schemes based on birational permutations. In 1993, volume 773 of Lecture Notes in Computer Science, pages 1–12. Douglas R. Stinson, ed., 1993. [652, 656, 658] [1922] C. E. Shannon. A mathematical theory of communication. Bell System Tech. J., 27:379–423, 623–656, 1948. [561, 583, 602] [1923] C. E. Shannon. Communication theory of secrecy systems. Bell System Tech. J., 28:656–715, 1949. [626, 634] [1924] R. T. Sharifi. On norm residue symbols and conductors. J. Number Theory, 86(2):196–209, 2001. [103, 118] [1925] J. T. Sheats. The Riemann hypothesis for the Goss zeta function for Fq [T ]. J. Number Theory, 71(1):121–157, 1998. [456]

Miscellaneous applications [1926] G. B. Sherwood, S. S. Martirosyan, and C. J. Colbourn. Covering arrays of higher strength from permutation vectors. J. Combin. Des., 14(3):202–213, 2006. [549] [1927] I. P. Shestakov and U. U. Umirbaev. The Nagata automorphism is wild. Proc. Natl. Acad. Sci. USA, 100(22):12561–12563 (electronic), 2003. [652] [1928] G. Shimura and Y. Taniyama. Complex multiplication of abelian varieties and its applications to number theory, volume 6 of Publications of the Mathematical Society of Japan. The Mathematical Society of Japan, Tokyo, 1961. [251, 255] [1929] K. Shiratani and M. Yamada. On rationality of Jacobi sums. Colloq. Math., 73(2):251–260, 1997. [103, 118] [1930] I. Shmulevich, E. R. Dougherty, S. Kim, and W. Zhang. Probabilistic boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics, 18(2):261–274, February 2002. [685] [1931] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput., 26(5):1484–1509, 1997. [633, 634] [1932] V. Shoup. Removing Randomness From Computational Number Theory. PhD thesis, University of Wisconsin, Madison, 1989. [298, 299] [1933] V. Shoup. New algorithms for finding irreducible polynomials over finite fields. Mathematics of Computation, 54(189):435–447, Jan. 1990. [297, 298, 299] [1934] V. Shoup. On the deterministic complexity of factoring polynomials over finite fields. Inform. Process. Lett., 33(5):261–267, 1990. [146] [1935] V. Shoup. Fast construction of irreducible polynomials over finite fields. Journal of Symbolic Computation, 17(5):371–391, 1994. [297, 299] [1936] V. Shoup. A computational introduction to number theory and algebra. Cambridge University Press, Cambridge, second edition, 2009. [20] [1937] I. Shparlinski. On the distribution of irreducible trinomials. to appear in Canad. Math. Bull.. [57] [1938] I. Shparlinski. Finding irreducible and primitive polynomials. Applicable Algebra in Engineering, Communication and Computing, 4(4):263–268, Dec. 1993. [298, 299] [1939] I. Shparlinski. On the linear complexity of the power generator. Des. Codes Cryptogr., 23(1):5–10, 2001. [278, 281] [1940] I. Shparlinski. Cryptographic applications of analytic number theory, volume 22 of Progress in Computer Science and Applied Logic. Birkh¨auser Verlag, Basel, 2003. Complexity lower bounds and pseudorandomness. [19, 20, 141, 279, 281] [1941] I. Shparlinski. On the exponential sum-product problem. Indag. Math. (N.S.), 19(2):325–331, 2008. [130] [1942] I. Shparlinski and A. Winterhof. Noisy interpolation of sparse polynomials in finite fields. Appl. Algebra Engrg. Comm. Comput., 16(5):307–317, 2005. [141] [1943] I. E. Shparlinski. Computational and algorithmic problems in finite fields, volume 88 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1992. [19, 20] [1944] I. E. Shparlinski. A deterministic test for permutation polynomials. Comput. Complexity, 2(2):129–132, 1992. [173, 185] [1945] I. E. Shparlinski. Finite fields: theory and computation, volume 477 of Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht, 1999. The meeting point of number theory, computer science, coding theory and cryptography.

805

806

Handbook of Finite Fields

[19, 20] [1946] I. E. Shparlinski. Bounds of Gauss sums in finite fields. Proc. Amer. Math. Soc., 132(10):2817–2824 (electronic), 2004. [98, 118] [1947] I. E. Shparlinski. On the number of zero trace elements in polynomial bases for F2n . Rev. Mat. Complut., 18(1):177–180, 2005. [77, 79] [1948] I. E. Shparlinski. Playing ‘hide-and-seek’ with numbers: the hidden number problem, lattices and exponential sums. In Public-key cryptography, volume 62 of Proc. Sympos. Appl. Math., pages 153–177. Amer. Math. Soc., Providence, RI, 2005. [141] [1949] I. E. Shparlinski. On some dynamical systems in finite fields and residue rings. Discrete Contin. Dyn. Syst., 17(4):901–917, 2007. [282, 289] [1950] I. E. Shparlinski. On the distribution of angles of the Sali´e sums. Bull. Austral. Math. Soc., 75(2):221–227, 2007. [113, 118] [1951] I. E. Shparlinski. On the distribution of Kloosterman sums. Proc. Amer. Math. Soc., 136(2):419–425 (electronic), 2008. [113, 118] [1952] I. E. Shparlinski. On the distribution of arguments of Gauss sums. Kodai Math. J., 32(1):172–177, 2009. [97, 118] [1953] I. E. Shparlinski˘i. On primitive polynomials. Problemy Peredachi Informatsii, 23(3):100–103, 1987. [40, 66, 68] [1954] I. Shparlinskiy. On some problems of theory of finite fields, June 1990. [298, 299] [1955] F. Shuqin and H. Wenbao. Primitive polynomials over finite fields of characteristic two. Appl. Algebra Engrg. Comm. Comput., 14(5):381–395, 2004. [62] [1956] T. Siegenthaler. Correlation-immunity of nonlinear combining functions for cryptographic applications. IEEE Trans. Inform. Theory, 30(5):776–780, 1984. [201, 204] [1957] D. Silva, F. R. Kschischang, and R. K¨otter. A rank-metric approach to error control in random network coding. IEEE Trans. Inform. Theory, 54(9):3951–3967, 2008. [701] [1958] J. H. Silverman. Advanced topics in the arithmetic of elliptic curves, volume 151 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1994. [19, 20, 334, 351] [1959] J. H. Silverman. The arithmetic of dynamical systems, volume 241 of Graduate Texts in Mathematics. Springer, New York, 2007. [282, 283, 289] [1960] J. H. Silverman. Variation of periods modulo p in arithmetic dynamics. New York J. Math., 14:601–616, 2008. [287, 289] [1961] J. H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 2009. [19, 20, 334, 335, 337, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351] [1962] J. H. Silverman. A survey of local and global pairings on elliptic curves and abelian varieties. In Pairing-Based Cryptography (PAIRING 2010), volume 6478 of Lecture Notes in Comput. Sci., pages 377–396. Springer, Berlin, 2010. [346, 351] [1963] J. H. Silverman and J. Tate. Rational points on elliptic curves. Undergraduate Texts in Mathematics. Springer-Verlag, New York, 1992. [19, 20, 334, 351] [1964] M. K. Simon, J. K. Omura, R. A. Scholtz, and B. K. Levitt. Spread Sprctrum Communications Handbook. McGraw-Hill, Inc., 2002. [264] [1965] J. Singer. A theorem in finite projective geometry and some applications to number

Miscellaneous applications theory. Trans. Amer. Math. Soc., 43(3):377–385, 1938. [514, 519] [1966] M. Skalba. Points on elliptic curves over finite fields. Acta arithmetica, 117(3):293– 301, 2005. [678] [1967] C. Small. Solution of Waring’s problem mod n. Amer. Math. Monthly, 84(5):356– 359, 1977. [168, 170] [1968] C. Small. Sums of powers in large finite fields. Proc. Amer. Math. Soc., 65(1):35–36, 1977. [168, 170] [1969] C. Small. Waring’s problem mod n. Amer. Math. Monthly, 84(1):12–25, 1977. [168, 170] [1970] C. Small. Diagonal equations over large finite fields. Canad. J. Math., 36(2):249– 262, 1984. [165, 166, 170] [1971] C. Small. Permutation binomials. Internat. J. Math. Math. Sci., 13(2):337–342, 1990. [179, 185] [1972] C. Small. Arithmetic of finite fields, volume 148 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker Inc., New York, 1991. [19, 20, 164, 170, 179, 185] [1973] N. P. Smart. The discrete logarithm problem on elliptic curves of trace one. J. Cryptology, 12(3):193–196, 1999. [351] [1974] N. P. Smart. The exact security of ECIES in the generic group model. In B. Honary, editor, Cryptography and Coding, volume 2260 of Lecture Notes in Computer Science, pages 73–84, Berlin, 2001. Springer-Verlag. [667] [1975] N. Smart et al. ECRYPT II yearly report on algorithms and keysizes (2009-2010). Technical Report D.SPA.13, European Network of Excellence in Cryptology II, 2010. [666, 675] [1976] B. Smeets. The linear complexity profile and experimental results on a randomness test of sequences over the field Fq . presented at IEEE Int. Symp. on Information Theory 1988, June 19–24. [275, 281] [1977] B. Smeets and W. Chambers. Windmill generators: a generalization and an observation of how many there are. In Advances in cryptology—EUROCRYPT’88, volume 330 of Lecture Notes in Comput. Sci., pages 325–330. Springer, Berlin, 1988. [37, 38] [1978] M. H. M. Smid. Duadic codes. IEEE Trans. Inform. Theory, 33(3):432–433, 1987. [581, 602] [1979] S. L. Snover. The uniqueness of the Nordstrom-Robinson and the Golay binary codes. ProQuest LLC, Ann Arbor, MI, 1973. Thesis (Ph.D.)–Michigan State University. [601, 602] [1980] I. M. Sobol’. Distribution of points in a cube and approximate evaluation of integrals ˇ Vyˇcisl. Mat. i Mat. Fiz., 7:784–802, 1967. [373, 379, 382, 383] (Russian). Z. [1981] A. B. Sørensen. Projective Reed-Muller codes. IEEE Trans. Inform. Theory, 37(6):1567–1576, 1991. [587, 602] [1982] S. Sperber. On the p-adic theory of exponential sums. Amer. J. Math., 108(2):255– 296, 1986. [126, 396, 402] [1983] W. Stahnke. Primitive binary polynomials. Math. Comp., 27:977–980, 1973. [66, 68] [1984] M. Stamp and C. F. Martin. An algorithm for the k-error linear complexity of binary sequences with period 2n . IEEE Trans. Inform. Theory, 39(4):1398– 1401, 1993. [271, 274, 281]

807

808

Handbook of Finite Fields

[1985] H. M. Stark and A. A. Terras. Zeta functions of finite graphs and coverings. Adv. Math., 121(1):124–165, 1996. [545] [1986] A. Steel. Conquering inseparability: primary decomposition and multivariate factorization over algebraic function fields of positive characteristic. J. Symbolic Comput., 40(3):1053–1075, 2005. [306, 311] [1987] L. J. Steggles, R. Banks, O. Shaw, and A. Wipat. Qualitatively modelling and analysing genetic regulatory networks: a Petri net approach. Bioinformatics, 23:336–343, 2007. [685] [1988] A. Stein. Sharp upper bounds for arithmetic in hyperelliptic function fields. J. Ramanujan Math. Soc., 16(2):119–203, 2001. [357, 360] [1989] A. Stein. Explicit infrastructure for real quadratic function fields and real hyperelliptic curves. Glas. Mat. Ser. III, 44(64)(1):89–126, 2009. [357, 360] [1990] S. A. Stepanov. On the number of polynomials of a given form that are irreducible over a finite field. Mat. Zametki, 41(3):289–295, 456, 1987. [46, 49] [1991] S. A. Stepanov. Arithmetic of algebraic curves. Monographs in Contemporary Mathematics. Consultants Bureau, New York, 1994. Translated from the Russian by Irene Aleksanova. [19, 20, 142] [1992] J. Stern, D. Pointcheval, J. Malone-Lee, and N. Smart. Flaws in applying proof methodologies to signature schemes. In M. Yung, editor, Advances in Cryptology — CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages 93–110, Berlin, 2002. Springer-Verlag. [667] [1993] H. Stichtenoth. Algebraic function fields and codes. Universitext. Springer-Verlag, Berlin, 1993. [19, 20] [1994] H. Stichtenoth. Transitive and self-dual codes attaining the Tsfasman-Vl˘adut¸-Zink bound. IEEE Trans. Inform. Theory, 52(5):2218–2224, 2006. [372] [1995] H. Stichtenoth. Algebraic function fields and codes, volume 254 of Graduate Texts in Mathematics. Springer-Verlag, Berlin, second edition, 2009. [19, 20, 166, 170, 317, 319, 320, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 333, 361, 362, 363, 364, 365, 367, 368, 369, 370, 371, 372, 605, 612] [1996] H. Stichtenoth and C. P. Xing. Excellent nonlinear codes from algebraic function fields. IEEE Trans. Inform. Theory, 51:4044–4046, 2005. [612] [1997] L. Stickelberger. On a new property of the discriminants of algebraic number fields. (Ueber eine neue Eigenschaft der Discriminanten algebraischer Zahlk¨orper.). Verh. d. intern. Math.-Congr., 1:182–193, 1897. [35, 36, 38, 41] [1998] B. Stigler. Polynomial dynamical systems in systems biology. In Modeling and simulation of biological networks, volume 64 of Proc. Sympos. Appl. Math., pages 53–84. Amer. Math. Soc., Providence, RI, 2007. [282, 289] [1999] D. R. Stinson. On bit-serial multiplication and dual bases in GF(2m ). IEEE Trans. Inform. Theory, 37(6):1733–1736, 1991. [77, 79] [2000] D. R. Stinson. Cryptography. CRC Press Series on Discrete Mathematics and its Applications. Chapman & Hall/CRC, Boca Raton, FL, second edition, 2002. Theory and practice. [19, 20] [2001] D. R. Stinson. Combinatorial designs: Constructions and analysis. Springer-Verlag, New York, 2004. [20, 511, 558] [2002] D. R. Stinson. Cryptography. Discrete Mathematics and its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton, FL, third edition, 2006. Theory and practice. [19, 20, 634] [2003] D. R. Stinson, R. Wei, and L. Zhu. New constructions for perfect hash families and

Miscellaneous applications

[2004] [2005] [2006] [2007] [2008]

[2009] [2010] [2011]

[2012] [2013] [2014]

[2015]

[2016]

[2017] [2018]

[2019] [2020] [2021]

[2022]

related structures using combinatorial designs and codes. J. Combin. Des., 8(3):189–200, 2000. [552] K.-O. St¨ ohr and J. F. Voloch. Weierstrass points and curves over finite fields. Proc. London Math. Soc. (3), 52(1):1–19, 1986. [366, 367] T. Stoll. Complete decomposition of Dickson-type polynomials and related Diophantine equations. J. Number Theory, 128(5):1157–1181, 2008. [240, 242] T. Storer. Cyclotomy and difference sets. Lectures in Advanced Mathematics, No. 2. Markham Publishing Co., Chicago, Ill., 1967. [516, 519] W. W. Stothers. On permutation polynomials whose difference is linear. Glasgow Math. J., 32(2):165–171, 1990. [184, 185] D. R. Stoutemyer. Which polynomial representation is best? In Proceedings of the 1984 MACSYMA Users’ Conference: Schenectady, New York, July 23–25, 1984, pages 221–243, 1984. [301, 311] V. Strassen. Vermeidung von Divisionen. J. Reine Angew. Math., 264:182–202, 1973. [309, 311] S. J. Suchower. Subfield permutation polynomials and orthogonal subfield systems in finite fields. Acta Arith., 54(4):307–315, 1990. [187, 188] S. J. Suchower. Polynomial representations of complete sets of frequency hyperrectangles with prime power dimensions. J. Combin. Theory Ser. A, 62(1):46–65, 1993. [466, 467] B. Sudakov, E. Szemer´edi, and V. H. Vu. On a question of ErdHos and Moser. Duke Math. J., 129(1):129–155, 2005. [130] M. Sudan. Decoding of Reed Solomon codes beyond the error-correction bound. J. Complexity, 13(1):180–193, 1997. [597, 598, 602] M. Sugita, M. Kawazoe, and H. Imai. Gr¨obner basis based cryptanalysis of sha1. Cryptology ePrint Archive, Report 2006/098, 2006. http://eprint.iacr. org/. [665] Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa. A method for solving key equation for decoding Goppa codes. Information and Control, 27:87–99, 1975. [594, 602] J. Sun and O. Y. Takeshita. Interleavers for turbo codes using permutation polynomials over integer rings. IEEE Trans. Inform. Theory, 51(1):101–119, 2005. [184, 185] Q. Sun. The number of solutions of certain diagonal equations over finite fields. Sichuan Daxue Xuebao, 34(4):395–398, 1997. [166, 170] Pn Q. Sun and D. Q. Wan. On the solvability of the equation i=1 xi /di ≡ 0 (mod 1) and its application. Proc. Amer. Math. Soc., 100(2):220–224, 1987. [165, 166, 170] Pn Q. Sun and D. Q. Wan. On the Diophantine equation i=1 xi /di ≡ 0 (mod 1). Proc. Amer. Math. Soc., 112(1):25–29, 1991. [167, 170] Z.-W. Sun. On value sets of polynomials over a field. Finite Fields Appl., 14(2):470– 481, 2008. [167, 170, 192] T. Sunada. L-functions in geometry and some applications. In Curvature and topology of Riemannian manifolds (Katata, 1985), volume 1201 of Lecture Notes in Math., pages 266–284. Springer, Berlin, 1986. [545] T. Sunada. Fundamental groups and Laplacians. In Geometry and analysis on manifolds (Katata/Kyoto, 1987), volume 1339 of Lecture Notes in Math., pages 248–277. Springer, Berlin, 1988. [545]

809

810

Handbook of Finite Fields

[2023] A. V. Sutherland. Genus 1 point counting in essentially quartic time and quadratic space, Sept. 2010. Slides, http://math.mit.edu/~drew/NYU0910.pdf. [670] [2024] A. V. Sutherland. Genus 1 point-counting record modulo a 5000+ digit prime, July 2010. Posting to the Number Theory List, http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind1007&L= nmbrthry&T=0&F=&S=&P=287. [670] [2025] R. G. Swan. Factorization of polynomials over finite fields. Pacific J. Math., 12:1099–1106, 1962. [36, 38, 41, 66, 68] [2026] P. Sziklai. On small blocking sets and their linearity. J. Combin. Theory Ser. A, 115(7):1167–1182, 2008. [472, 475] [2027] T. SzHonyi. On the number of directions determined by a set of points in an affine Galois plane. J. Combin. Theory Ser. A, 74(1):141–146, 1996. [469, 475] [2028] T. SzHonyi. Blocking sets in Desarguesian affine and projective planes. Finite Fields Appl., 3(3):187–202, 1997. [472, 475] [2029] T. SzHonyi. Around R´edei’s theorem. Discrete Math., 208/209:557–575, 1999. Combinatorics (Assisi, 1996). [474, 475] [2030] P. Sz¨ usz. On a problem in the theory of uniform distribution. Comptes Rendus Premier Congr`es Hongrois, pages 461–472, 1952. (in Hungarian). [285, 289] [2031] L. Taelman. Special L-values of t-motives: a conjecture. Int. Math. Res. Not. IMRN, (16):2957–2977, 2009. [452, 453] [2032] L. Taelman. A Dirichlet unit theorem for Drinfeld modules. Math. Ann., 348(4):899– 907, 2010. [452, 453] [2033] L. Taelman. The Carlitz shtuka. J. Number Theory, 131(3):410–418, 2011. [453] [2034] L. Taelman. A herbrand-ribet theorem for function fields. Preprint, 2011. [455] [2035] L. Taelman. Special l-values of drinfeld modules. To appear in Ann. of Math., 2011. [454] [2036] Y. Taguchi. The Tate conjecture for t-motives. Proc. Amer. Math. Soc., 123(11):3285–3287, 1995. [452] [2037] T. Takagi, T. Okamoto, E. Okamoto, and T. Okamoto, editors. Pairing-Based Cryptography — Pairing 2007, volume 4575 of Lecture Notes in Computer Science, Berlin, 2007. Springer-Verlag. [670] [2038] T. Takahashi. Good reduction of elliptic modules. J. Math. Soc. Japan, 34(3):475– 487, 1982. [452] [2039] O. Y. Takeshita. Permutation polynomial interleavers: an algebraic-geometric perspective. IEEE Trans. Inform. Theory, 53(6):2116–2132, 2007. [184, 185] [2040] A. Tamagawa. The Tate conjecture and the semisimplicity conjecture for t-modules. S¯ urikaisekikenky¯ usho K¯ oky¯ uroku, (925):89–94, 1995. Algebraic number theory and arithmetic geometry (Japanese) (Kyoto, 1994). [452] [2041] Y. Tan, A. Pott, and T. Feng. Strongly regular graphs associated with ternary bent functions. J. Combin. Theory Ser. A, 117(6):668–682, 2010. [219, 224] [2042] T. Tao. Structure and randomness. American Mathematical Society, Providence, RI, 2008. Pages from year one of a mathematical blog. [262] [2043] T. Tao and V. Vu. Additive combinatorics, volume 105 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2006. [20, 130] [2044] V. Tarokh, N. Seshadri, and A. R. Calderbank. Space-time codes for high data rate wireless communication: performance criterion and code construction. IEEE

Miscellaneous applications Trans. Inform. Theory, 44(2):744–765, 1998. [700, 701] [2045] J. Tate. Endomorphisms of abelian varieties over finite fields. Invent. Math., 2:134– 144, 1966. [342, 344, 351, 363, 367] [2046] J. T. Tate. The arithmetic of elliptic curves. Invent. Math., 23:179–206, 1974. [334, 351] [2047] D. E. Taylor. The geometry of the classical groups, volume 9 of Sigma Series in Pure Mathematics. Heldermann Verlag, Berlin, 1992. [440, 442, 445, 446, 447] [2048] A. Terras. Fourier analysis on finite groups and applications, volume 43 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1999. [258, 260, 262, 533, 545] [2049] F. Thaine. On Gaussian periods that are rational integers. Michigan Math. J., 50(2):313–337, 2002. [98, 118] [2050] D. Thakur. Multizeta in function field arithmetic. In Proceedings of Banff Workshop. European Mathematical Society (EMS), Z¨ urich. [454, 456] [2051] D. S. Thakur. Function field arithmetic. World Scientific Publishing Co. Inc., River Edge, NJ, 2004. [19, 20, 448] [2052] J. A. Thas. Normal rational curves and k-arcs in Galois spaces. Rend. Mat. (6), 1:331–334, 1968. [498] [2053] J. A. Thas. The affine plane AG(2, q), q odd, has a unique one point extension. Invent. Math., 118(1):133–139, 1994. [501] [2054] N. Th´eriault. Index calculus attack for hyperelliptic curves of small genus. In Advances in cryptology—ASIACRYPT 2003, volume 2894 of Lecture Notes in Comput. Sci., pages 75–92. Springer, Berlin, 2003. [360] [2055] E. Thom´e. Fast computation of linear generators for matrix sequences and application to the block Wiedemann algorithm. In Proceedings of the 2001 International Symposium on Symbolic and Algebraic Computation, pages 323–331 (electronic), New York, 2001. ACM. [436] [2056] T. M. Thompson. From error-correcting codes through sphere packings to simple groups, volume 21 of Carus Mathematical Monographs. Mathematical Association of America, Washington, DC, 1983. [590, 602] [2057] T. Tian and W.-F. Qi. Typical primitive polynomials over integer residue rings. Finite Fields Appl., 15(6):796–807, 2009. [59] [2058] A. Tiet¨ av¨ ainen. On diagonal forms over finite fields. Ann. Univ. Turku. Ser. A I No., 118:10, 1968. [164, 170] [2059] A. Tiet¨ av¨ ainen. On the nonexistence of perfect codes over finite fields. SIAM J. Appl. Math., 24:88–96, 1973. [572, 583, 602] [2060] A. Tiet¨ av¨ ainen. A short proof for the nonexistence of unknown perfect codes over GF(q), q > 2. Ann. Acad. Sci. Fenn. Ser. A I, (580):6, 1974. [572, 601, 602] [2061] A. Topuzo˘ glu and A. Winterhof. Pseudorandom sequences. In Topics in geometry, coding theory and cryptography, volume 6 of Algebr. Appl., pages 135–166. Springer, Dordrecht, 2007. [282, 283, 289] ´ T´ [2062] A. oth. On the evaluation of Sali´e sums. Proc. Amer. Math. Soc., 133(3):643–645 (electronic), 2005. [117, 118] [2063] J. Tromp, L. Zhang, and Y. Zhao. Small weight bases for Hamming codes. In Computing and combinatorics (Xi’an, 1995), volume 959 of Lecture Notes in Comput. Sci., pages 235–243. Springer, Berlin, 1995. [58, 59] [2064] T. T. Truong. Degree complexity of a family of birational maps. II. Exceptional

811

812

Handbook of Finite Fields

cases. Math. Phys. Anal. Geom., 12(2):157–180, 2009. [283, 289] [2065] M. Tsfasman, S. Vl˘ adut¸, and D. Nogin. Algebraic geometric codes: basic notions, volume 139 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2007. [19, 20] [2066] M. A. Tsfasman and S. G. Vl˘ adut¸. Algebraic-geometric codes, volume 58 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1991. Translated from the Russian by the authors. [19, 20, 610, 612] [2067] M. A. Tsfasman, S. G. Vl˘ adut¸, and T. Zink. Modular curves, Shimura curves, and Goppa codes, better than Varshamov-Gilbert bound. Math. Nachr., 109:21–28, 1982. [367, 368, 372] [2068] M. A. Tsfasman, S. G. Vl˘ adut¸, and T. Zink. Modular curves, Shimura curves, and Goppa codes, better than Varshamov-Gilbert bound. Math. Nachr., 109:21–28, 1982. [611, 612] [2069] S. Tsujii, A. Fujioka, and T. Itoh. Generalization of the public key cryptosystem based on the difficulty of solving a system of non-linear equations. In Proc. 10th Symposium on Information Theory and Its applications, pages JA5–3, 1987. [652] [2070] S. Tsujii, K. Kurosawa, T. Itoh, A. Fujioka, and T. Matsumoto. A public key cryptosystem based on the difficulty of solving a system of nonlinear equations. ICICE Transactions (D) J69-D, 12:1963–1970, 1986. [652] [2071] W. J. Turner. Black box linear algebra with the linbox library. PhD thesis, 2002. [432, 436] [2072] G. Turnwald. Permutation polynomials of binomial type. In Contributions to general algebra, 6, pages 281–286. H¨older-Pichler-Tempsky, Vienna, 1988. [174, 179, 185] [2073] G. Turnwald. A new criterion for permutation polynomials. Finite Fields Appl., 1(1):64–82, 1995. [173, 184, 185, 189, 192] [2074] G. Turnwald. On Schur’s conjecture. J. Austral. Math. Soc. Ser. A, 58(3):312–357, 1995. [183] [2075] R. J. Turyn. The linear generation of Legendre sequence. J. Soc. Indust. Appl. Math., 12:115–116, 1964. [279, 281] [2076] R. J. Turyn. Character sums and difference sets. Pacific J. Math., 15:319–346, 1965. [517, 518, 519] [2077] R. J. Turyn. Hadamard matrices, Baumert-Hall units, four-symbol sequences, pulse compression, and surface wave encodings. J. Combinatorial Theory Ser. A, 16:313–333, 1974. [696, 701] [2078] S. Uchiyama. Sur le nombre des valeurs distinctes d’un polynˆome `a coefficients dans un corps fini. Proc. Japan Acad., 30:930–933, 1954. [192] [2079] S. Uchiyama. Sur les polynˆ omes irr´eductibles dans un corps fini. II. Proc. Japan Acad., 31:267–269, 1955. [43, 49] [2080] D. Ulmer. Jacobi sums, Fermat Jacobians, and ranks of abelian varieties over towers of function fields. Math. Res. Lett., 14(3):453–467, 2007. http://people.math.gatech.edu/ ulmer/research/papers/2007c-correction.pdf. [103, 118] [2081] A. Valette. Graphes de Ramanujan et applications. Ast´erisque, (245):Exp. No. 829, 4, 247–276, 1997. S´eminaire Bourbaki, Vol. 1996/97. [532, 545] [2082] E. R. van Dam and D. Fon-Der-Flaass. Codes, graphs, and schemes from nonlinear

Miscellaneous applications functions. European J. Combin., 24(1):85–98, 2003. [211, 213] [2083] G. van der Geer and M. van der Vlugt. Reed-Muller codes and supersingular curves. I. Compositio Math., 84(3):333–367, 1992. [402] [2084] G. van der Geer and M. van der Vlugt. On the existence of supersingular curves of given genus. J. Reine Angew. Math., 458:53–61, 1995. [401, 402] [2085] G. van der Geer and M. van der Vlugt. Quadratic forms, generalized Hamming weights of codes and curves with many points. J. Number Theory, 59(1):20– 36, 1996. [163] [2086] G. van der Geer and M. van der Vlugt. An asymptotically good tower of curves over the field with eight elements. Bull. London Math. Soc., 34(3):291–300, 2002. [371, 372] [2087] G. van der Geer and M. van der Vlugt. Tables of curves with many points. http://www.science.uva.nl/ geer/tables-mathcomp21.pdf, 2009. [364, 367] [2088] M. van der Put. A note on p-adic uniformization. Nederl. Akad. Wetensch. Indag. Math., 49(3):313–318, 1987. [456] [2089] J. H. van Lint. Introduction to coding theory, volume 86 of Graduate Texts in Mathematics. Springer-Verlag, Berlin, third edition, 1999. [19, 20, 499, 561, 563, 568, 570, 571, 572, 573, 574, 583, 584, 585, 586, 589, 602] [2090] J. H. van Lint and R. M. Wilson. A course in combinatorics. Cambridge University Press, Cambridge, 1992. [20, 548] [2091] P. C. van Oorschot and M. J. Wiener. Parallel collision search with cryptanalytic applications. J. Cryptology, 12(1):1–28, 1999. [629, 634] [2092] T. van Trung and S. Martirosyan. New constructions for IPP codes. Des. Codes Cryptogr., 35(2):227–239, 2005. [552] [2093] P. van Wamelen. New explicit multiplicative relations between Gauss sums. Int. J. Number Theory, 3(2):275–292, 2007. [103, 118] [2094] R. Varshamov. Estimate of the number of signals in error correcting codes. Dokl. Akad. Nauk. SSSR, 117:739–741, 1957. [571, 601, 602] [2095] R. Varshamov. A general method of synthesizing irreducible polynomials over Galois fields. Soviet Math. Dokl., 29(2):334–336, 1984. [297, 299] [2096] R. R. Varshamov. A certain linear operator in a Galois field and its applications (Russian). Studia, Sci. Math. Hunger., 8:5–19, 1973. [32, 34] [2097] R. R. Varshamov. Operator substitutions in a Galois field and their applications (Russian). Dokl. Akad. Nauk SSSR;, 211:768–771, 1973. [32, 34] [2098] R. R. Varshamov. A general method of synthesis for irreducible polynomials over Galois fields. Dokl. Akad. Nauk SSSR, 275(5):1041–1044, 1984. [32, 33, 34] [2099] R. R. Varshamov and G. Garakov. On the theory of self-dual polynomials over a Galois field (Russian). Bull. Math. Soc. Sci. Math. R. S. Roumania (N.S.), 13:403–415, 1969. [31, 34] [2100] R. C. Vaughan and T. D. Wooley. Waring’s problem: a survey. In Number theory for the millennium, volume III, pages 301–340. A. K. Peters, Natick, MA, 2002. [413, 414] [2101] A. Veliz-Cuba, A. S. Jarrah, and R. Laubenbacher. Polynomial algebra of discrete models in systems biology. Bioinformatics, 26(13):1637–1643, July 2010. [684, 685, 688, 692] [2102] A. Venkateswarlu and H. Niederreiter. Improved results on periodic multisequences with large error linear complexity. Finite Fields Appl., 16(6):463–476, 2010.

813

814

Handbook of Finite Fields

[276, 281] [2103] F. Vercauteren. Computing zeta functions of hyperelliptic curves over finite fields of characteristic 2. In Advances in cryptology—CRYPTO 2002, volume 2442 of Lecture Notes in Comput. Sci., pages 369–384. Springer, Berlin, 2002. [358, 360] [2104] F. Vercauteren. Optimal pairings. IEEE Transactions on Information Theory, 56(1):455–461, 2010. [673] [2105] E. R. Verheul. Evidence that XTR is more secure than supersingular elliptic curve cryptosystems. Journal of Cryptology, 17(4):277–296, 2004. [672] [2106] C.-M. Viallet. Algebraic dynamics and algebraic entropy. Int. J. Geom. Methods Mod. Phys., 5(8):1373–1391, 2008. [282, 283, 289] [2107] C. M. Viallet. Integrable lattice maps: QV , a rational version of Q4 . Glasg. Math. J., 51(A):157–163, 2009. [282, 283, 289] [2108] G. D. Villa Salvador. Topics in the theory of algebraic function fields. Mathematics: Theory & Applications. Birkh¨auser Boston Inc., Boston, MA, 2006. [317, 333, 367] [2109] G. Villard. Further analysis of coppersmith’s block wiedemann algorithm for the solution of sparse linear systems (extended abstract). In Proceedings of the 1997 international symposium on Symbolic and algebraic computation, ISSAC ’97, pages 32–39, New York, NY, USA, 1997. ACM. [436] [2110] G. Villard. Computing the Frobenius normal form of a sparse matrix. In Computer algebra in scientific computing (Samarkand, 2000), pages 395–407. Springer, Berlin, 2000. [432, 436] [2111] G. Villard. Algorithmique en alg`ebre lin´eaire exacte. M´emoire d’habilitation, Universit´e Claude Bernard Lyon 1, 2003. [432, 436] [2112] L. A. Vinh. The szemer´edi-trotter type theorem and the sum-product estimate in finite fields. Eur. J. Combinatorics, 32:1177–1181, 2011. [133] [2113] I. M. Vinogradov. Representation of an odd number as a sum of three primes. Comptes Rendus (Doklady), 15:191–294, 1937. [411, 414] [2114] U. Vishne. Factorization of trinomials over Galois fields of characteristic 2. Finite Fields Appl., 3(4):370–377, 1997. [37, 38, 41] [2115] S. G. Vl`eduts and Y. I. Manin. Linear codes and modular curves. In Current problems in mathematics, Vol. 25, Itogi Nauki i Tekhniki, pages 209–257. Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984. [458] [2116] S. G. Vl˘ adut¸ and V. G. Drinfeld. The number of points of an algebraic curve. Funktsional. Anal. i Prilozhen., 17(1):68–69, 1983. [367] [2117] J. F. Voloch. On the order of points on curves over finite fields. Integers, 7:A49, 4, 2007. [69, 70] [2118] J. F. Voloch. Symmetric cryptography and algebraic curves. In Algebraic geometry and its applications, volume 5 of Ser. Number Theory Appl., pages 135–141. World Sci. Publ., Hackensack, NJ, 2008. [207, 213] [2119] J. F. Voloch. Elements of high order on finite fields from elliptic curves. Bull. Aust. Math. Soc., 81(3):425–429, 2010. [70] [2120] J. von zur Gathen. Irreducible polynomials over finite fields. In Proc. 6th Conf. Foundations of Software Technology and Theoretical Computer Science, volume 241 of Springer Lecture Notes in Computer Science, pages 252–262, Delhi, India, 1986. [298, 299] [2121] J. von zur Gathen. Tests for permutation polynomials. SIAM J. Comput., 20(3):591–

Miscellaneous applications 602, 1991. [173, 185] [2122] J. von zur Gathen. Values of polynomials over finite fields. Bull. Austral. Math. Soc., 43(1):141–146, 1991. [191, 192] [2123] J. von zur Gathen. Irreducible trinomials over finite fields. Math. Comp., 72(244):1987–2000 (electronic), 2003. [38] [2124] J. von zur Gathen. Counting decomposable multivariate polynomials. Appl. Algebra Engrg. Comm. Comput., 22:165–185, 2011. [53, 54, 55] [2125] J. von zur Gathen, J. L. Ima˜ na, and C ¸ . K. Ko¸c, editors. Arithmetic of finite fields, volume 5130 of Lecture Notes in Computer Science, Berlin, 2008. Springer. Available electronically at http://www.springerlink.com/ content/978-3-540-69498-4. [20] [2126] J. von zur Gathen, M. Karpinski, and I. Shparlinski. Counting curves and their projections. Comput. Complexity, 6(1):64–99, 1996/97. [403, 406] [2127] J. von zur Gathen and M. N¨ ocker. Polynomial and normal bases for finite fields. J. Cryptology, 18(4):337–355, 2005. [42] [2128] J. von zur Gathen and V. Shoup. Computing Frobenius maps and factoring polynomials. Computational Complexity, 2(3):187–224, 1992. [295, 299] [2129] J. von zur Gathen and I. Shparlinski. Orders of Gauss periods in finite fields. Appl. Algebra Engrg. Comm. Comput., 9(1):15–24, 1998. [69, 70] [2130] J. von zur Gathen and I. Shparlinski. Constructing elements of large order in finite fields. In Applied algebra, algebraic algorithms and error-correcting codes (Honolulu, HI, 1999), volume 1719 of Lecture Notes in Comput. Sci., pages 404–409. Springer, Berlin, 1999. [70] [2131] J. von zur Gathen and I. Shparlinski. Gauß periods in finite fields. In Finite fields and applications (Augsburg, 1999), pages 162–177. Springer, Berlin, 2001. [69, 70] [2132] C. H. Waddington. Canalisation of development and the inheritance of acquired characters. Nature, 150:563–564, 1942. [690] [2133] L. I. Wade. Certain quantities transcendental over GF (pn , x). Duke Math. J., 8:701–720, 1941. [458] [2134] A. Wagner. On finite affine line transitive planes. Math. Z., 87:1–11, 1965. [480, 486] [2135] R. J. Walker. Determination of division algebras with 32 elements. In Proc. Sympos. Appl. Math., Vol. XV, pages 83–85. Amer. Math. Soc., Providence, R.I., 1963. [227, 229] [2136] D. Wan. On the Riemann hypothesis for the characteristic p zeta function. J. Number Theory, 58(1):196–212, 1996. [456] [2137] D. Wan. Generators and irreducible polynomials over finite fields. Math. Comp., 66(219):1195–1212, 1997. [44, 49, 126, 127] [2138] D. Wan. Computing zeta functions over finite fields. In Finite fields: theory, applications, and algorithms (Waterloo, ON, 1997), volume 225 of Contemp. Math., pages 131–141. Amer. Math. Soc., Providence, RI, 1999. [405, 406] [2139] D. Wan. Dwork’s conjecture on unit root zeta functions. Ann. of Math. (2), 150(3):867–927, 1999. [394] [2140] D. Wan. Higher rank case of Dwork’s conjecture. J. Amer. Math. Soc., 13(4):807– 852 (electronic), 2000. [394] [2141] D. Wan. Rank one case of Dwork’s conjecture. J. Amer. Math. Soc., 13(4):853–908

815

816

Handbook of Finite Fields

(electronic), 2000. [394] [2142] D. Wan. Rationality of partial zeta functions. Indag. Math. (N.S.), 14(2):285–292, 2003. [156, 158] [2143] D. Wan. Variation of p-adic Newton polygons for L-functions of exponential sums. Asian J. Math., 8(3):427–471, 2004. [398, 400, 402] [2144] D. Wan. Mirror symmetry for zeta functions. In Mirror symmetry. V, volume 38 of AMS/IP Stud. Adv. Math., pages 159–184. Amer. Math. Soc., Providence, RI, 2006. With an appendix by C. Douglas Haessig. [154, 158] [2145] D. Wan. Algorithmic theory of zeta functions over finite fields. In Algorithmic number theory: lattices, number fields, curves and cryptography, volume 44 of Math. Sci. Res. Inst. Publ., pages 551–578. Cambridge Univ. Press, Cambridge, 2008. [406] [2146] D. Wan. Lectures on zeta functions over finite fields. In Higher-dimensional geometry over finite fields, volume 16 of NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., pages 244–268. IOS, Amsterdam, 2008. [151, 154, 158] [2147] D. Wan. Modular counting of rational points over finite fields. Found. Comput. Math., 8(5):597–605, 2008. [404, 406] [2148] D. Q. Wan. On a problem of Niederreiter and Robinson about finite fields. J. Austral. Math. Soc. Ser. A, 41(3):336–338, 1986. [184, 185] [2149] D. Q. Wan. Permutation polynomials over finite fields. Acta Math. Sinica (N.S.), 3(1):1–5, 1987. [174, 179, 185] [2150] D. Q. Wan. Zeros of diagonal equations over finite fields. Proc. Amer. Math. Soc., 103(4):1049–1052, 1988. [166, 170] [2151] D. Q. Wan. An elementary proof of a theorem of Katz. Amer. J. Math., 111(1):1–8, 1989. [157, 158] [2152] D. Q. Wan. Permutation polynomials and resolution of singularities over finite fields. Proc. Amer. Math. Soc., 110(2):303–309, 1990. [174] [2153] D. Q. Wan. A generalization of the carlitz conjecture. In Finite fields, coding theory, and advances in communications and computing (Las Vegas, NV, 1991), volume 141 of Lecture Notes in Pure and Appl. Math., pages 431–432. Dekker, New York, 1993. [174, 185] [2154] D. Q. Wan. Newton polygons of zeta functions and L functions. Ann. of Math. (2), 137(2):249–293, 1993. [398, 402] [2155] D. Q. Wan. A p-adic lifting lemma and its applications to permutation polynomials. In Finite fields, coding theory, and advances in communications and computing (Las Vegas, NV, 1991), volume 141 of Lecture Notes in Pure and Appl. Math., pages 209–216. Dekker, New York, 1993. [173, 184, 185, 189, 192] [2156] D. Q. Wan. A classification conjecture about certain permutation polynomials. In Finite fields: Theory, Applications and Algorithms, volume 168 of Contemporary Math., pages 401–402. 1994. [184, 185] [2157] D. Q. Wan. Permutation binomials over finite fields. Acta Math. Sinica (N.S.), 10(Special Issue):30–35, 1994. [174, 179, 185] [2158] D. Q. Wan. A Chevalley-Warning approach to p-adic estimates of character sums. Proc. Amer. Math. Soc., 123(1):45–54, 1995. [157, 158] [2159] D. Q. Wan. Minimal polynomials and distinctness of Kloosterman sums. Finite Fields Appl., 1(2):189–203, 1995. Special issue dedicated to Leonard Carlitz. [111, 118] [2160] D. Q. Wan and R. Lidl. Permutation polynomials of the form xr f (x(q−1)/d ) and

Miscellaneous applications their group structure. Monatsh. Math., 112(2):149–163, 1991. [177, 185] [2161] D. Q. Wan, G. L. Mullen, and P. J.-S. Shiue. Erratum: “The number of permutation polynomials of the form f (x) + cx over a finite field”. Proc. Edinburgh Math. Soc. (2), 38(2):i, 1995. [467] [2162] D. Q. Wan, G. L. Mullen, and P. J.-S. Shiue. The number of permutation polynomials of the form f (x) + cx over a finite field. Proc. Edinburgh Math. Soc. (2), 38(1):133–149, 1995. [184, 185, 467] [2163] D. Q. Wan, P. J.-S. Shiue, and C. S. Chen. Value sets of polynomials over finite fields. Proc. Amer. Math. Soc., 119(3):711–717, 1993. [173, 185, 190, 191, 192] [2164] Z.-X. Wan. Geometry of Classical Groups over Finite Fields. Science Press, Beijing, second edition, 2002. [19, 20, 439, 441, 443, 446, 447] [2165] Z.-X. Wan. Lectures on finite fields and Galois rings. World Scientific Publishing Co. Inc., River Edge, NJ, 2003. [3, 17, 18, 19, 20] [2166] Z.-X. Wan. Finite fields and Galois rings. World Scientific Publishing Co. Inc., Singapore, 2012. [19, 20] [2167] L. Wang. On permutation polynomials. Finite Fields Appl., 8(3):311–322, 2002. [178, 185] [2168] L. Wang and Y. Zhu. F [x]-lattice basis reduction algorithm and multisequence synthesis. Sci. China Ser. F, 44(5):321–328, 2001. [275, 281] [2169] L.-C. Wang and F.-H. Chang. Tractable rational map cryptosystem (version 2). http://eprint.iacr.org/2004/046, ver. 20040221:212731. [657] [2170] L.-C. Wang and F.-H. Chang. Tractable rational map cryptosystem (version 4). http://eprint.iacr.org/2004/046, ver. 20060203:065450. [657] [2171] L.-C. Wang, Y.-H. Hu, F. Lai, C.-Y. Chou, and B.-Y. Yang. Tractable rational map signature. In Public key cryptography—PKC 2005, volume 3386 of Lecture Notes in Comput. Sci., pages 244–257. Springer, Berlin, 2005. [655] [2172] L.-C. Wang, B.-Y. Yang, Y.-H. Hu, and F. Lai. A “medium-field” multivariate public-key encryption scheme. In Topics in cryptology—CT-RSA 2006, volume 3860 of Lecture Notes in Comput. Sci., pages 132–149. Springer, Berlin, 2006. [657, 660] [2173] L.-P. Wang and H. Niederreiter. Enumeration results on the joint linear complexity of multisequences. Finite Fields Appl., 12(4):613–637, 2006. [275, 276, 281] [2174] L.-P. Wang, Y.-F. Zhu, and D.-Y. Pei. On the lattice basis reduction multisequence synthesis algorithm. IEEE Trans. Inform. Theory, 50(11):2905–2910, 2004. [275, 281] [2175] M. Wang. Linear complexity profiles and continued fractions. In Advances in cryptology—EUROCRYPT ’89 (Houthalen, 1989), volume 434 of Lecture Notes in Comput. Sci., pages 571–585. Springer, Berlin, 1990. [274, 281] [2176] M. Wang and I. F. Blake. Bit serial multiplication in finite fields. SIAM J. Discrete Math., 3(1):140–148, 1990. [75, 79] [2177] M. Z. Wang. Linear complexity profiles and jump complexity. Inform. Process. Lett., 61(3):165–168, 1997. [274, 281] [2178] P. S. Wang. An improved multivariate polynomial factoring algorithm. Math. Comp., 32(144):1215–1231, 1978. [304, 311] [2179] P. S. Wang and L. P. Rothschild. Factoring multivariate polynomials over the integers. Math. Comp., 29:935–950, 1975. [304, 311] [2180] Q. Wang. Cyclotomic mapping permutation polynomials over finite fields. In

817

818

[2181] [2182] [2183]

[2184] [2185]

[2186] [2187]

[2188]

[2189]

[2190] [2191] [2192] [2193]

[2194]

[2195]

[2196]

[2197] [2198]

Handbook of Finite Fields

Sequences, subsequences, and consequences, volume 4893 of Lecture Notes in Comput. Sci., pages 119–128. Springer, Berlin, 2007. [176, 177, 178, 185] Q. Wang. On inverse permutation polynomials. Finite Fields Appl., 15(2):207–213, 2009. [184, 185] Q. Wang. On generalized lucas sequences. Contemporary Math., 531:127–141, 2010. [178, 184, 185] Q. Wang, K. Wang, and Z. Dai. Implementation of multi-continued fraction algorithm and application to multi-sequence linear synthesis. In Sequences and their applications—SETA 2006, volume 4086 of Lecture Notes in Comput. Sci., pages 248–258. Springer, Berlin, 2006. [275, 281] Q. Wang and J. L. Yucas. Dickson polynomials over finite fields. submitted. [236, 239, 240, 241, 242] Y. Wang. Linear complexity versus pseudorandomness: on Beth and Dai’s result. In Advances in cryptology—ASIACRYPT’99 (Singapore), volume 1716 of Lecture Notes in Comput. Sci., pages 288–298. Springer, Berlin, 1999. [280, 281] K. L. Wantz. A new class of unitals in the Hughes plane. Geom. Dedicata, 70(2):125– 138, 1998. [484, 486] L. C. Washington. Introduction to cyclotomic fields, volume 83 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1997. [100, 109, 118] L. C. Washington. Elliptic curves. Discrete Mathematics and its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton, FL, 2003. Number theory and cryptography. [19, 20] L. C. Washington. Elliptic curves. Discrete Mathematics and Its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton, FL, second edition, 2008. Number theory and cryptography. [19, 20, 334, 351] ´ W. C. Waterhouse. Abelian varieties over finite fields. Ann. Sci. Ecole Norm. Sup. (4), 2:521–560, 1969. [341, 342, 347, 351] W. A. Webb. Waring’s problem in GF[q,x]. Acta Arith., 22:207–220, 1973. [413, 414] Pn C. Wei and Q. Sun. The least integer represented by i=1 xi /di and its application. Acta Math. Sinica (Chin. Ser.), 49(5):1021–1026, 2006. [166, 170] Q. Wei and Q. Zhang. On strong orthogonal systems and weak permutation polynomials over finite commutative rings. Finite Fields Appl., 13(1):113–120, 2007. [188] S. Wei, G. Chen, and G. Xiao. A fast algorithm for determining the linear complexity of periodic sequences. In Information security and cryptology, volume 3822 of Lecture Notes in Comput. Sci., pages 202–209. Springer, Berlin, 2005. [274, 281] S. Wei, G. Xiao, and Z. Chen. A fast algorithm for determining the linear complexity of a binary sequence with period 2n pm . Sci. China Ser. F, 44(6):453–460, 2001. [274, 281] S. Wei, G. Xiao, and Z. Chen. A fast algorithm for determining the minimal polynomial of a sequence with period 2pn over GF(q). IEEE Trans. Inform. Theory, 48(10):2754–2758, 2002. [274, 281] A. Weil. On some exponential sums. Proc. Nat. Acad. Sci. U. S. A., 34:204–207, 1948. [119, 127] A. Weil. Sur les courbes alg´ebriques et les vari´et´es qui s’en d´eduisent. Actualit´es

Miscellaneous applications

[2199] [2200] [2201]

[2202] [2203]

[2204] [2205]

[2206] [2207] [2208]

[2209] [2210] [2211] [2212] [2213] [2214] [2215] [2216] [2217]

Sci. Ind., no. 1041 = Publ. Inst. Math. Univ. Strasbourg 7 (1945). Hermann et Cie., Paris, 1948. [119, 127, 411, 414] L. Welch. Lower bounds on the maximum cross correlation of signals. IEEE Trans. Inform. Theory, 20(3):397–399, 1974. [266] L. R. Welch and E. R. Berlekamp. Error correction for algebraic block codes. U. S. Patent 4,633,470 (1986). [594, 602] E. J. Weldon, Jr. Euclidean geometry cyclic codes. In Combinatorial Mathematics and its Applications (Proc. Conf., Univ. North Carolina, Chapel Hill, N.C., 1967), pages 377–387. Univ. North Carolina Press, Chapel Hill, N.C., 1969. [588, 596, 602] C. Wells. The degrees of permutation polynomials over finite fields. J. Combinatorial Theory, 7:49–55, 1969. [175, 176, 185] G. Weng, W. Qiu, Z. Wang, and Q. Xiang. Pseudo-Paley graphs and skew Hadamard difference sets from presemifields. Des. Codes Cryptogr., 44(1-3):49–62, 2007. [231, 234] G. Weng and X. Zeng. Further results on planar do functions and commutative semifields. submitted. [227, 229, 233, 234] R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated empirical optimizations of software and the ATLAS project. Parallel Computing, 27(1–2):3–35, Jan. 2001. http://www.netlib.org/utk/people/JackDongarra/PAPERS/atlas_ pub.pdf. [427, 436] D. H. Wiedemann. Solving sparse linear equations over finite fields. IEEE Trans. Inform. Theory, 32(1):54–62, 1986. [432, 436] D. Wiedermann. An iterated quadratic extension of GF(2). Fibonacci Quart., 26(4):290–295, 1988. [33, 34] M. J. Wiener and R. J. Zuccherato. Faster attacks on elliptic curve cryptosystems. In S. Tavares and H. Meijer, editors, Selected Areas in Cryptography — SAC ’98, volume 1556 of Lecture Notes in Computer Science, pages 190–100, Berlin, 1999. Springer-Verlag. [668] M. L. H. Willems and J. A. Thas. A note on the existence of special Laguerre i-structures and optimal codes. European J. Combin., 4(1):93–96, 1983. [499] M. Willett. Matrix fields over GF(q). Duke Math. J., 40:701–704, 1973. [418, 424] K. S. Williams. On general polynomials. Canad. Math. Bull., 10:579–583, 1967. [190, 192] K. S. Williams. On exceptional polynomials. Canad. Math. Bull., 11:279–282, 1968. [189, 192] R. M. Wilson. Cyclotomy and difference families in elementary abelian groups. J. Number Theory, 4:17–47, 1972. [506, 507] S. Winograd. On multiplication of 2 × 2 matrices. Linear Algebra and Appl., 4:381– 388, 1971. [428, 436] A. Winterhof. On Waring’s problem in finite fields. Acta Arith., 87(2):171–177, 1998. [169, 170] A. Winterhof. A note on Waring’s problem in finite fields. Acta Arith., 96(4):365– 368, 2001. [169, 170] A. Winterhof. A note on the linear complexity profile of the discrete logarithm in finite fields. In Coding, cryptography and combinatorics, volume 23 of Progr. Comput. Sci. Appl. Logic, pages 359–367. Birkh¨auser, Basel, 2004. [279, 281]

819

820

Handbook of Finite Fields

[2218] A. Winterhof and C. van de Woestijne. Exact solutions to Waring’s problem for finite fields. Acta Arith., 141(2):171–190, 2010. [169, 170] [2219] E. Wirsing. Thin essential components. In Topics in number theory (Proc. Colloq., Debrecen, 1974), pages 429–442. Colloq. Math. Soc. J´anos Bolyai, Vol. 13. North-Holland, Amsterdam, 1976. [148] ¨ [2220] E. Witt. Uber steinersche systeme. Abh. Math. Sem. Univ. Hamburg, 12:265–275, 1938. [501] [2221] C. Wolf, A. Braeken, and B. Preneel. Efficient cryptanalysis of RSE(2)PKC and RSSE(2)PKC. In 2004, volume 3352 of Lecture Notes in Computer Science, pages 294–309, Sept. 8–10 2004. Extended version: http://eprint.iacr.org/ 2004/237. [655] [2222] J. K. Wolf. Adding two information symbols to certain nonbinary BCH codes and some applications. Bell System Tech. J., 48:2405–2424, 1969. [581, 602] [2223] J. Wolfmann. Formes quadratiques et codes `a deux poids. C. R. Acad. Sci. Paris S´er. A-B, 281(13):Aii, A533–A535, 1975. [163] [2224] J. Wolfmann. The number of solutions of certain diagonal equations over finite fields. J. Number Theory, 42(3):247–257, 1992. [165, 170] [2225] M. Wu, X. Yang, and C. Chan. A dynamic analysis of irs-pkr signaling in liver cells: A discrete modeling approach. PLoS ONE, 4(12):e8040, 12 2009. [683, 692] [2226] P.-C. Wu. Random number generation with primitive pentanomials. ACM Trans. Modeling and Computer Simulation, 11(4):346–351, 2001. [67, 68] [2227] G. Xiao and S. Wei. Fast algorithms for determining the linear complexity of period sequences. In Progress in cryptology – INDOCRYPT 2002, number 2551, pages 12–21, 2002. [274, 281] [2228] G. Xiao, S. Wei, K. Y. Lam, and K. Imamura. A fast algorithm for determining the linear complexity of a sequence with period pn over GF(q). IEEE Trans. Inform. Theory, 46(6):2203–2206, 2000. [274, 281] [2229] G. Z. Xiao and J. L. Massey. A spectral characterization of correlation-immune combining functions. IEEE Trans. Inform. Theory, 34(3):569–571, 1988. [201, 204] [2230] C. P. Xing. Goppa geometric codes achieving the Gilbert-Varshamov bound. IEEE Trans. Inform. Theory, 51:259–264, 2005. [611, 612] [2231] C. P. Xing and H. Niederreiter. A construction of low-discrepancy sequences using global function fields. Acta Arith., 73:87–102, 1995. [382, 383] [2232] C. P. Xing, H. Niederreiter, and K. Y. Lam. A generalization of algebraic-geometry codes. IEEE Trans. Inform. Theory, 45:2498–2501, 1999. [606, 612] [2233] C. P. Xing and S. L. Yeo. New linear codes and algebraic function fields over finite fields. IEEE Trans. Inform. Theory, 53:4822–4825, 2007. [607, 612] [2234] T. Yan. The geobucket data structure for polynomials. J. Symbolic Comput., 25(3):285–293, 1998. [301, 311] [2235] B.-Y. Yang and J.-M. Chen. All in the XL family: theory and practice. In Information security and cryptology—ICISC 2004, volume 3506 of Lecture Notes in Comput. Sci., pages 67–86. Springer, Berlin, 2005. [664, 665] [2236] B.-Y. Yang and J.-M. Chen. Building secure tame-like multivariate public-key cryptosystems: The new TTS. In ACISP 2005, volume 3574 of Lecture Notes in Computer Science, pages 518–531. Springer, July 2005. [655, 656, 662] [2237] B.-Y. Yang, J.-M. Chen, and Y.-H. Chen. TTS: High-speed signatures on a lowcost smart card. In CHES 2004, volume 3156 of Lecture Notes in Computer

Miscellaneous applications Science, pages 371–385. Springer, 2004. [655] [2238] J. Yang and Z. Dai. Linear complexity of periodically repeated random sequences. Acta Math. Sinica (N.S.), 11(Special Issue):1–7, 1995. A Chinese summary appears in Acta Math. Sinica 39 (1996), no. 1, 140. [276, 281] [2239] J. Yang, S. X. Luo, and K. Q. Feng. Gauss sum of index 4. II. Non-cyclic case. Acta Math. Sin. (Engl. Ser.), 22(3):833–844, 2006. [106, 118] [2240] J. Yang and L. Xia. Complete solving of explicit evaluation of Gauss sums in the index 2 case. Sci. China Math., 53(9):2525–2542, 2010. [106, 118] [2241] R. Yang. Newton polygons of L-functions of polynomials of the form xd +λx. Finite Fields Appl., 9(1):59–88, 2003. [399, 402] [2242] S. M. Yang and L. L. Qi. On improved asymptotic bounds for codes from global function fields. Des. Codes Cryptogr., 53:33–43, 2009. [612] [2243] M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM J. Algebraic Discrete Methods, 2(1):77–79, 1981. [434, 436] [2244] Y. Ye. A hyper-Kloosterman sum identity. Sci. China Ser. A, 41(11):1158–1162, 1998. [111, 118] [2245] A. M. Youssef and G. Gong. Hyper-bent functions. In Advances in cryptology— EUROCRYPT 2001 (Innsbruck), volume 2045 of Lecture Notes in Comput. Sci., pages 406–419. Springer, Berlin, 2001. [221, 224] [2246] J. Yu. Transcendence and Drinfel’d modules. Invent. Math., 83(3):507–517, 1986. [458] [2247] J. Yu. On periods and quasi-periods of Drinfel’d modules. Compositio Math., 74(3):235–245, 1990. [458] [2248] J.-D. Yu. Variation of the unit root along the Dwork family of Calabi-Yau varieties. Math. Ann., 343(1):53–78, 2009. [394, 402] [2249] J. Yuan, C. Carlet, and C. Ding. The weight distribution of a class of linear codes from perfect nonlinear functions. IEEE Trans. Inform. Theory, 52(2):712–717, 2006. [221, 224] [2250] J. Yuan and C. Ding. Four classes of permutation polynomials of F2m . Finite Fields Appl., 13(4):869–876, 2007. [182, 185] [2251] J. Yuan, C. Ding, H. Wang, and J. Pieprzyk. Permutation polynomials of the form (xp − x + δ)s + L(x). Finite Fields Appl., 14(2):482–493, 2008. [182, 185] [2252] P. Yuan. More explicit classes of permutation polynomials of F33m . Finite Fields Appl., 16(2):88–95, 2010. [182, 185] [2253] P. Yuan and X. Zeng. A note on linear permutation polynomials. Finite Fields Appl., in press. [172, 185] [2254] J. L. Yucas. Irreducible polynomials over finite fields with prescribed trace/prescribed constant term. Finite Fields Appl., 12(2):211–221, 2006. [25, 30, 49] [2255] J. L. Yucas and G. L. Mullen. Irreducible polynomials over GF(2) with prescribed coefficients. Discrete Math., 274(1-3):265–279, 2004. [26, 27, 30, 48, 49] [2256] H. Zassenhaus. On Hensel factorization I. J. Number Theory, 1(1):291–311, 1969. [304, 311] [2257] H. Zassenhaus. Polynomial time factoring of integral polynomials. ACM SIGSAM Bull., 15(2):6–7, 1981. [306, 311] [2258] X. Zeng, X. Zhu, and L. Hu. Two new permutation polynomials with the form k (x2 + x + δ)s + x over F2n . Appl. Algebra Engrg. Comm. Comput., 21(2):145–

821

822

Handbook of Finite Fields

150, 2010. [182, 185] [2259] Z. Zha, G. M. Kyureghyan, and X. Wang. Perfect nonlinear binomials and their semifields. Finite Fields Appl., 15(2):125–133, 2009. [233, 234] [2260] Z. Zha and X. Wang. New families of perfect nonlinear polynomial functions. J. Algebra, 322(11):3912–3918, 2009. [233, 234] [2261] Q. Zhang. Polynomial functions and permutation polynomials over some finite commutative rings. J. Number Theory, 105(1):192–202, 2004. [185, 188] [2262] Z. Zhao and X. Cao. A note on the reducibility of binary affine polynomials. Des. Codes Cryptogr., 57(1):83–90, 2010. [37, 38] [2263] K. Zhou. A remark on linear permutation polynomials. Finite Fields Appl., 14(2):532–536, 2008. [172, 185] [2264] H. J. Zhu. p-adic variation of L functions of one variable exponential sums. I. Amer. J. Math., 125(3):669–690, 2003. [399, 402] [2265] H. J. Zhu. Asymptotic variation of L functions of one-variable exponential sums. J. Reine Angew. Math., 572:219–233, 2004. [399, 401, 402] [2266] H. J. Zhu. L-functions of exponential sums over one-dimensional affinoids: Newton over Hodge. Int. Math. Res. Not., (30):1529–1550, 2004. [397, 399, 402] [2267] N. Zierler. Primitive trinomials whose degree is a Mersenne exponent. Information and Control, 15:67–69, 1969. [66, 68] [2268] M. E. Zieve. Some families of permutation polynomials over finite fields. Int. J. Number Theory, 4(5):851–857, 2008. [179, 185] [2269] M. E. Zieve. On some permutation polynomials over Fq of the form xr h(x(q−1)/d ). Proc. Amer. Math. Soc., 137(7):2209–2216, 2009. [176, 177, 179, 185] [2270] M. E. Zieve. Classes of permutation polynomials based on cyclotomy and an additive analogue. In Additive Number Theory, pages 355–361. Springer, 2010. [177, 180, 185] [2271] T. Zink. Degeneration of Shimura surfaces and a problem in coding theory. In Fundamentals of computation theory (Cottbus, 1985), volume 199 of Lecture Notes in Comput. Sci., pages 503–511. Springer, Berlin, 1985. [367] [2272] R. Zippel. Probabilistic algorithms for sparse polynomials. In EUROSAM ’79: Proceedings of the International Symposium on Symbolic and Algebraic Computation, number 72 in Lecture Notes in Comput. Sci., pages 216–226. SpringerVerlag, 1979. [310, 311] [2273] R. Zippel. Newton’s iteration and the sparse Hensel algorithm (Extended Abstract). In SYMSAC ’81: Proceedings of the fourth ACM Symposium on Symbolic and Algebraic Computation, pages 68–72, New York, 1981. ACM Press. [310, 311] [2274] Z. Zlatev. Computational methods for general sparse matrices, volume 65 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 1991. [434, 436] [2275] D. Zywina. Explicit class field theory for global function fields. 2011. [450]

Index (n, m)-function, 205 (t, m, s)-net, 373 (t, s)-sequence, 379 (T, s)-sequence, 379 L-function, 389, 392, 454 k-arc, 496 complete, 496 secant, 497 tangent, 497 k-cap, 500 complete, 500 k-normal, 29 m-sequence, 212 p-adic gamma function, 110 p-rank, 401 q-clan normalized, 485 t-polynomial, 28 t-reciprocal polynomial, 29 A(q), 367 AB function, 207 abelian variety has Fq point, 336 addition algorithm, 337 additive white Gaussian noise channel, 560 adjacent, 532 affine plane, 477 affine plane, 466 classical, 477 Desarguesian, 477 affine space, 489 agent-based model, 688 algebraic curve X0 (n), 251 Y0 (n), 251 modular, 251 normalization, 243 algebraic dynamical system, 282–287 algebraic entropy, 283 algebraic set absolutely irreducible, 244 component, 244 components, 244 definition field, 244 variety, 244

algebraic-geometry code, 604 almost perfect nonlinear, 182 alternate, 439 anomalous elliptic curve, 351 aperiodic correlation, 268 APN function, 207 approximation theorem, 319 Araki, Kiyomichi, 351 arc, 484 maximal, 484 trivial, 484 Artin, Emil, 409 asymptotic bounds, 573 asymptotic Gilbert-Varshamov bound, 610 asymptotic normalized rate, 573 Aut(E), 338 autocorrelation, 136, 264 automorphic collineation, 489 automorphism, 477 group, 477 of elliptic curve, 338 automorphism group of a BIBD, 503, 505 of elliptic curve, 340, 347 Baer subplane, 482 Baer subplane partition, 482 classical, 482 perfect, 483 balanced incomplete block design automorphism group, 503, 505 complete, 502 cyclic, 505 decomposable, 502 derived, 502 generated by a difference family, 505 isomorphic, 503 m-multiple, 502 nontrivial, 502 quasi-symmetric, 502 simple, 502 starter blocks, 503 symmetric, see symmetric design Barker sequence, 268 bases almost self-dual, 74 823

824 almost weakly self-dual, 78 almost weakly self-dual polynomial, 78 characterization, 12 complementary, 72 dual, 12, 72 normal, 12, 72 number of, 11 polynomial, 12, 73 primitive normal, 13 self dual, 12 self-dual, 72, 74 trace-orthogonal, 72 weakly self-dual, 74 weakly self-dual polynomial, 75 weakly self-dual polynomial over F2 , 75 bent function, 517 Maiorana-McFarland, 518 bent functions, 111 Berlekamp algorithm, 653 Bertini theorem, 305 BIBD, see balanced incomplete block design big-field, 653 binary erasure channel, 560 binary symmetric channel, 560 binomial coefficients congruences, 99 biquadratic reciprocity law, 138 birational, 652 Birch, Bryan, 341 bit-packing, 425, 426 bit-slicing, 425 black box, 308, 310 Blahut’s Theorem, 273 BLAS, 427 block cipher, 205 block weight, 609 blocking set, 486 small linear, 486 Boolean function, 197, 205 affine, 199 algebraic degree, 199 algebraic immunity, 201 algebraic normal form, 197 annihilator, 201 balanced, 199 bent, 200 derivative, 200 Hamming distance, 200 Hamming weight, 199 inverse Walsh transform, 199

Handbook of Finite Fields nonlinearity, 200 Parseval’s relation, 199 propagation criterion, 202 quadratic, 199 resilient, 201 semi-bent, 205 sign function, 198 strict avalanche criterion, 202 trace representation, 198 Walsh support, 198 Walsh transform, 198 Boolean network, 687 Boolean network model, 685, 687 bound, 570–574 asymptotic, 573 asymptotic Gilbert-Varshamov, 610 Elias, 573 Griesmer, 572 Hamming, 572 linear programming, 573 MRRW, 574 ¨ Niederreiter-Ozbudak, 611 Plotkin, 572 Singleton, 572, 604 sphere covering bound, 571 sphere packing, 572 TVZ, 611 Varshamov-Gilbert, 571 Weil, 212 Brewer sums, 99, 104 Cameron-Liebler line class, 486 canalyzing function, 690 nested, 690 parametrization of nested, 691 Car, Mireille, 413 Cartesian group, 225 Cauchy matrix, 435 Cayley graph, 112, 535 channel capacity, 561 character Hecke, 103 lifted, 101 power residue, 100, 109 restriction, 99 multiplicative, 96 order, 96 quadratic, 96, 694 trivial, 96 character sum, 518 Characteristic polynomial, 431

Miscellaneous applications characteristic polynomial of sequence, 270 Characteristic polynomials, 431–433, 436 Chebyshev polynomial, 115 check digit system, 136 chromatic number, 534 circle, 479 circle geometry, 510 circle method, 412 class group, 109 class number, 100 class number (of a function field), 362 Clifford’s theorem, 323 code, 560–601 Z4 , 599 Gray image, 599 Lee distance, 600 Lee weight, 600 residue, 599 torsion, 599 type, 599 algebraic-geometry, 604 alternant, 583 asymptotically good, 586 BCH, 210, 578 designed distance, 578 narrow sense, 578 primitive, 578 concatenated, 570 constant-dimension, 701 cyclic, 210, 575–589 defining set, 578 generator matrix, 576 generator polynomial, 575 parity check matrix, 576 cyclic with two zeros, 212 direct sum, 570 distance distribution, 564 distance invariant, 565 doubly even, 591 duadic, 581 splitting, 581 dual, 562 encoding, 565 Euclidean geometry, 588 even, 591 even-like, 581 external distance, 565 finite geometry, 587 formally self-dual, 591 four fundamental parameters, 565

825 function-field, 608 generalized Reed-Muller (GRM), 586 generalized RS (GRS), 580 generator matrix, 562 Golay binary, 583, 590 Golay ternary, 583, 590 Goppa, 584 Hamming, 566 Hermitian, 604 information set, 580 Justesen, 588 Kerdock, 601 linear, 210, 561–565 maximum distance separable (MDS), 572 MDS, 499 Melas, 212 minimum distance, 560 minimum distance decoding, 565 modifying, 569 nonlinear, 560 NXL, 606 octacode, 600 odd-like, 581 optical orthogonal, 696 parity check matrix, 562 perfect, 572 polynomial, 588 Preparata, 601 product, 570 projective geometry, 588 quadratic residue (QR), 582 rank distance, 699 rate, 560 Reed-Muller, 211, 567, 696 Reed-Solomon, 579, 604 self-dual, 562, 591 self-orthogonal, 562 simplex, 567 space-time, 699 subfield, 568 trace, 568 XNL, 607 coding theory, 100, 109, 111 coefficient ith, 43 first, 25 last, 25 coefficients first, 43 last, 43

826

Handbook of Finite Fields

cogredient, 440, 441 hermitian, 483 collineation, 477, 489 Newton polygon, 400 automorphic, 489 non-singular curve, 333 group, 477 ordinary, 400 complete mapping, 136 projective curve, 333 completely inseparable, 339 supersingular, 400 complex multiplication, 358 cyclic codes, 114 computational Diffie–Hellman problem, 351, cyclic digital net, 378 360 cyclic projectivity, 495 conductor, 347 cyclotomic coset, 135, 577 conic, 492 cyclotomic number, 104 conjecture cyclotomic numbers, 516 Barker sequence, 517 cyclotomy, 516 circulant Hadamard, 517 Davenport pair Lander, 515 over Fq , 253 Ryser, 515 over a number field, 253 conjugates, 10 de Jonqui`eres map, 652 conorm (of a divisor), 325 decisional Diffie–Hellman problem, 351 convex-dense decoder factorization, 308 maximum a posteriori, 560 coordinate frame, 490 maximum likelihood, 560 coordinate vector minimum distance, 561 of a hyperplane, 488 decoding, 591–599 of a point, 487 BCH code, 592 coordinates Berlekamp-Massey, 593 dual, 72 error evaluator polynomial, 593 primal, 72 error locator polynomial, 592 correlation, 490 extended Euclidean, 594 aperiodic, 694, 695 generalized minimum distance, 596 Hamming, 698 key equation, 593 periodic, 695, 696 list, 597 correlation measure, 280 majority logic, 595 cover Peterson-Gorenstein-Zierler, 592 branch points, 245 standard array, 565, 566 elliptic curve isogeny, 251 syndrome, 592 exceptional, 245 Welch-Berlekamp, 594 pr-exceptional, 253 Dedekind eta function, 114 properties, 245 Dedekind’s different theorem, 327 ramified point, 245 degree covering radius, 140 of an isogeny, 339 critical orbit, 142 degree zero divisor class group, 354 crosscorrelation, 264 degree zero divisor class number, 355 cryptanalysis Deligne’s theorem, 387, 390 differential, 205 dense polynomial representation, 302 linear, 205 density of primes, 408 cryptosystem dependency graph, 684 multivariate public key, 648 derivation, 330 symmetric, 205 derivative, 206 cubic reciprocity law, 138 Desarguesian, 467 curve algebraic curve, 332 design, 590

Miscellaneous applications Assmus-Mattson theorem, 590 symmetric, 513 determinant, 424 Moore, 424 Deuring, Max, 342, 349 diagonal equations, 100 Dickson polynomial, 113 difference families multiplier, 506 radical, 506 relative, 510 difference set, 512 cyclotomy, 516 Gordon-Mills-Welch, 515 Hadamard, 514 multiplier, 519 Paley, 514 planar, 514 Singer, 514 difference sets, 109 different (of a field extension), 327 different exponent, 327 differential (of a function field), 330 divisor of a differential, 331 differential module, 330 differential uniformity, 207 Diffie-Hellman triple, 148 digital (t, m, s)-net, 374 digital (t, m, s)-net over R, 374 digital (t, s)-sequence, 380 digital (t, s)-sequence over R, 380 digital (T, s)-sequence, 380 digital (T, s)-sequence over R, 380 digital method, 374, 380 digital strict (t, m, s)-net, 374 digital strict (t, m, s)-net over R, 374 digital strict (t, s)-sequence, 380 digital strict (t, s)-sequence over R, 380 digital strict (T, s)-sequence, 380 digital strict (T, s)-sequence over R, 380 dimension translation plane, 478 Dirichlet character, 410 discrepancy, 139, 281 discrete Fourier transform, 148, 274 discrete log cryptosystems, 100 discrete memoryless channel, 559 discrete model, 683 discriminant, 334 Displacement rank, 434 distinct degree factorization

827 multivariate, 306 division polynomial, 343 divisor balanced, 356 Cantor’s algorithm, 356 defined over L, 354 finitely effective, 355 Mumford representation, 356 NUCOMP, 356 reduced, 356 semi-reduced, 355 divisor (of a function field), 320 canonical class, 322 canonical divisor, 322, 331 class group Cl0 (F ), 362 degree of a divisor, 320 dimension of a divisor, `(A), 322 divisor class [D], 321 divisor class group Cl(F ), 321 divisor group Div(F ), 320 divisor of a differential, 331 divisor of poles (x)∞ , 321 equivalent divisors, 321 positive divisor, 320 prime divisor, 320 principal divisor, 321 principal divisor div(x), 321 zero divisor (x)0 , 321 divisor group of elliptic curve, 341 Drinfeld–Vlˇadut¸ bound, 367 dual basis multiplier, 75 dual isogeny, 339, 340 Frobenius map, 348 dual space chain, 381 duality theory, 381 duplication formula, 337 dynamical system polynomial, 684 ECDHP, 351 ECDLP, 351 Effinger, Gove, 410, 412 Eichler, Martin, 349 Eisenstein sum, 99 elation projective plane, 477 elements Bernoulli-Carlitz, 454 Elkies, Noam, 349 elliptic curve, 334

828 GL2 -type, 251 addition algorithm, 337 anomalous, 351 automorphism, 338 automorphism group, 340, 347 CM-type, 251 Diffie–Hellman problem, 351 discrete logarithm problem, 351 division polynomial, 343 divisor group, 341 dual isogeny, 339 duplication formula, 337 ECDHP, 351 ECDLP, 351 endomorphism, 338 endomorphism ring, 340, 347 formal group, 348 Frobenius map, 339 group law, 336 Hasse–Weil estimate, 341, 350 isogeny, 338 isogeny of degree 2, 339 isogeny theorem, 342, 344 isomorphic, 335, 336 kernel of multiplication-by-m, 338, 343 mass formula, 349 multiplication-by-m map, 338 nonsingular projective genus one, 335 number of points, 341, 350 ordinary, 348 over F2 , 336 Picard group, 341 point at infinity, 334 points defined over a field, 334 principal divisor iff deg 0 and sums to O, 341 supersingular, 348 Tate module, 344 Tate pairing, 346 torsion subgroup, 338, 343 transformation of coordinates, 335 Weil pairing, 344 zeta function, 350 elliptic curves, 103 complex multiplication, 251 embedding degree, 351 End(E), 338 endomorphism, 358 of elliptic curve, 338 endomorphism ring, 358 of elliptic curve, 340, 347

Handbook of Finite Fields entropy function, 573, 610 equation Artin-Schreier, 142 diagonal, 140, 164 hyperelliptic, 142 Kloosterman, 144 Equidistribution Kloosterman angles, 113 Sali´e angles, 113 equivalent, 466 ErdHos-Turan inequality, 139 error evaluator polynomial, 593 error locator polynomial, 592 error-rate exponent, 561 Euclidean geometry, 587 exceptional cover MacCluer’s Theorem, 245 Serre’s OIT Theorem, 252 Exceptional tower, 249 arithmetic monodromy, 249 cryptographic subtower, 251 Dickson subtower, 251 Redei subtower, 251 subtower, 250 exceptionality set number field, 246 over Fq , 246 excess, 76 exponential Carlitz, 450 Drinfeld, 450 extended Euclidean algorithm, 594 extension algebraic, 8 finite, 8 simple, 8 extension (of function fields), 323 Artin–Schreier extension, 329 constant field extension, 329 Kummer extension, 328 external distance, 565 factor of a symmetric matrix, 421 factorization convex-dense, 308 distinct degree multivariate, 306 irreducible bivariate, 303 multivariate, 305 separable, 301

Miscellaneous applications sparse, 306 squarefree multivariate, 302 Faltings, Gerd, 344 Family A, 268 Faure sequence, 381 FFLAS, 427 fiber product, 246 absolute components, 248 complementary components, 248 in TZ,Fq , 249 normalized, 247 set theoretic, 247 field cardinality, 4 cyclotomic, 450 definition, 3 existence and uniqueness, 6 number, 700 prime, 4 skew, 3 splitting, 6 subfield criterion, 6 field extension separable, 247 field-like structures division semiring, 16 nearfield, 16 neofield, 16 prequasifield, 15 presemifield, 16 quasifield, 16 semifield, 16 figure of merit, 377 Fill-in, 433 finite field embedding degree, 351 fixed point, 684 flock quadratic cone, 485 form algebraic normal, 696 modular, 457 quadratic, 159 trace, 161 formal group, 348 four fundamental parameters, 565 Four Russians (Method of), 425 Fourier coefficients, 145 frequency square, 464

829 orthogonal, 464 Frobenius automorphism, 10 Frobenius eigenvalues, 112 Frobenius endomorphism, 358 Frobenius endomorphism (acting on the Tate module), 363 eigenvalues of Frobenius, 363 Frobenius map, 339 dual of, 348 is purely inseparable, 339 isogeny factors through, 340 function almost bent, 207 almost perfect nonlinear, 207 balanced, 205 bent, 206 CCZ-equivalent, 209 component, 205 crooked, 211 Dobbertin, 213 EA-equivalent, 209 Euler’s Φ, 14, 432 Euler’s φ , 7 exponential, 449 Gold, 211 inverse, 208 M¨obius, 5 perfect nonlinear, 206 planar, 206, 230 plateaued, 205 R´eidi, 236 trace, 205 Welch, 213 function field, 317 constant field, 317 elliptic function field, 317, 331 Fermat function field, 365 Giulietti–Korchm´aros function field, 366 Hermitian, 604 Hermitian function field, 365 hyperelliptic function field, 317, 331 maximal function field, 365 rational function field, 317, 319, 321, 323 function-field code, 608 functional equation, 385, 387, 393 Fundamental Theorem of Projective Geometry, 489 fundamental unit, 355 Galois ´ Evariste, 6

830 field, 6 group, 10 ring, 17 theory, 6 Gauss multiplication formula for gamma functions, 103 Gauss sum estimates, 98 generalized quadratic, 116 Hecke, 117 in multi-quadratic field, 106 lifted, 101 primitive, 117 quadratic over Z/kZ, 116 quintic, 106 reciprocity, 116 reduction formula, 117 absolute value, 97 cubic, 107 equidistribution, 97, 107 of first kind, 137 of second kind, 137 prime ideal factorization, 109 pure, 102 quadratic, 106 quartic, 107 uniform distribution, 97 with character over Fq , 97 Gaussian elimination, 433 Gaussian period, 98 cubic, 107 duodecic, 108 quartic, 108 sextic, 107 generalized dual coordinates, 76 generalized quadrangle, 485 generalized Riemann hypothesis, 410 generating matrices, 375, 380 generator cyclotomic, 137 inversive, 144 linear congruential, 139 generator matrix, 562 genus (of a function field), 322 genus (of a plane curve), 323 genus one curve, 335 has Fq point, 336 geometric Frobenius, 389, 390 geometric Frobenius correspondence, 385 geometry affine, 697

Handbook of Finite Fields projective, 697 GMW sequences, 265 Gold exponents, 211 Gold sequences, 266 Goldbach problem, 411 Gr¨obner basis, 55 Gr¨obner fan, 689 graph, 532 adjacency matrix, 532 bipartite, 533 complete, 532 complete bipartite, 533 connected, 533 cycle, 533 degree, 532 diameter, 533 distance, 533 edge set, 532 eigenvalue, 532 loop, 532 Ramanujan, 532 regular, 532 simple, 532 spectrum, 532 strongly regular, 502 vertex set, 532 Gray map, 599 greatest common divisor (gcd), 6 Gross-Koblitz formula for Gauss sums, 110 for Jacobi sums, 110 Grothendieck trace formula, 390 Grothendieck’s formula L-function, 390 Zeta function, 386 Grothendieck-Ogg-Shafarevich formula, 393 group abelian, 3 doubly transitive, 245 general linear, 415, 437 multiplicative is cyclic, 6 orthogonal, 443, 446 primitive, 245 projective general linear, 437 projective orthogonal, 445 projective proper orthogonal, 445 projective special linear, 437 projective special unitary, 442 projective symplectic, 440 projective unitary, 442 proper orthogonal, 444

Miscellaneous applications regular automorphism, 513 special linear, 415, 437 special unitary, 441 symplectic, 439 unitary, 441 group law on elliptic curve, 336

831

HOLE, 659 Hom(E1 , E2 ), 338 homogeneous coordinates, 476 Hurwitz genus formula, 327 hyper-Kloosterman sum, 111 hyperbolic fibration, 485 agrees on a line, 485 regular, 485 Hadamard design, 502 hypercube, 465 Hadamard matrix, 106, 517 orthogonal, 465 Hall, Chris, 410 Hyperelliptic curve, 352 Hammersley net, 373, 375 finite points, 353 Hamming correlation, 269 imaginary, 352 Hamming distance, 499, 560 infinite places, 352 Hamming space, 375 points, 353 Hamming weight, 560 points at infinity, 353 Handshaking Lemma, 532 real, 352 Hankel matrix, 435 unusual, 352 hard, 30 hyperelliptic curve Hardy, G.H., 411, 412 baby step, 357 Hasse–Weil estimate, 341, 350 balanced divisor, 356 Hasse–Weil bound, 363 Cantor’s algorithm, 356 Hasse–Weil theorem, 363 complex multiplication, 358 Hasse-Davenport product formula for Gauss degree zero divisor class group, 354 sums, 103, 112 degree zero divisor class number, 355 Hasse-Davenport theorem on lifted Gauss Diffie–Hellman problem, 360 sums, 102 discrete logarithm problem, 360 Hasse-Davenport theorem on lifted Jacobi distance, 357 sums, 102 divisor defined over L, 354 Hasse-Weil estimante, 358 endomorphism, 358 Hayes, David, 409, 412 endomorphism ring, 358 HCDHP, 360 finitely effective divisor, 355 HCDLP, 360 Frobenius endomorphism, 358 Hecke L-function, 117 fundamental unit, 355 Hecke characters, 103 giant step, 357 Hensel lifting Hasse-Weil interval, 358 sparse, 307 HCDHP, 360 Hermite/Dickson criterion, 191 HCDLP, 360 hermitian IDLP, 360 curve, 483 index-calculus, 360 Hermitian code, 604 infrastructure, 357 Hermitian curve, 492 infrastructure discrete logarithm probhermitian curve, 483 lem, 360 Hermitian function field, 604 Jacobian, 355 hermitian matrix, 441 Miller’s algorithm, 359 Hermitian surface, 492 modified Tate-Lichtenbaum pairing, 359, Hermitian variety, 492 360 HFE, 653 Mumford representation, 356 Hilbert NUCOMP, 356 theorem, 305 reduced divisor, 356 Hilbert, David, 412 regulator, 355

832 semi-reduced divisor, 355 supersingular, 358, 360 Tate-Lichtenbaum pairing, 359 zeta function, 358 hyperelliptic curves, 106 Hyperelliptic equation, 352 Hyperelliptic involution, 353 hypergeometric character sums, 103, 104 hypergraph, 538 hyperoval, 484, 497 hyperplane at infinity, 489 hyperplane coordinates, 488 hyperplane net, 378 ideal, 575 principal, 575 IDLP, 360 Ihara’s bound, 365 Ihara’s quantity A(q), 367 Implicit Form, 650 independence number, 534 independent set, 533 infinity line, 477 point, 477 infrastructure, 357 baby step, 357 discrete logarithm problem, 360 distance, 357 giant step, 357 inseparability degree, 339 inseparable isogeny, 339 integer Weil, 120 integral basis, 326 integral closure, 325 integral domain, 3 integral equation, 325 intrinsic rank, 654 inversive plane, 479, 501, 510 circle, 501 classical, 501 egglike, 501 Miquelian, 480, 501 involution, 441 IP, 651 irreducibility test multivariate, 307 irreducible factorization

Handbook of Finite Fields bivariate, 303 multivariate, 305 isogenous, 338 isogeny, 338 defined over K, 338 degree of, 339 Drinfeld, 450 dual, 340 factors through Frobenius, 340 inseparable, 339 is a homomorphism, 340 is constant or surjective, 339 is unramified, 340 of degree 2, 339 product of, 340 separable, 339 sum of, 340 zero, 339 isogeny theorem, 342, 344 isomorphism, 477 of elliptic curves, 335, 336 isomorphism of polynomials, 651 isotopism, 226 Jacobi sum, 99, 137 congruences, 104 lifted, 102 quintic, 106 reduction formula, 100 cubic, 105 duodecic, 106 equidistribution, 101 multiple, 100 octic, 106 prime ideal factorization, 110 pure, 102 quadratic, 106 quartic, 105 sextic, 105 uniform distribution, 101 Jacobian, 355 Jacobian (of a curve), 362 Jacobsthal sum, 104 j-invariant, 334 equal iff isomorphic, 335 joint linear complexity, 271 k-error, 272 nth, 272 profile, 272 Kasami exponent, 210

Miscellaneous applications Kasami sequences, 267 kernel, 478 kernel of multiplication-by-m, 338, 343 key equation, 593 Kloosterman angle, 112 code, 144 sum, 144 Kloosterman sum, 111 congruences, 111, 114 degree, 111 equidistribution, 113 estimates, 112, 115 over Z/kZ, 117 reduction formula, 117 symmetric powers, 115 zeros, 111 lifted, 113 multiple, 111 power moments, 114 Kolmogorov complexity, 280 Krawtchouk polynomials, 564 Kronecker substitution, 425–427 Kronecker product, 464 Kronecker-product construction, 378 Kubota, R.M., 413 Kummer’s theorem, 326, 361 L-polynomial (of a function field), 363 functional equation, 363 lacunary polynomial, 308 Lagrange Interpolation Formula, 462 Lagrange interpolation formula, 14 lambda phage, 687 Lanczos, 433 Lang, Serge, 336, 349 largest prime survives, 45 lps pair, 45 latin orthogonal, 462 latin square, 374, 462 infinite, 463 mateless, 463 mutually orthoognal, 463 reduced, 462 lattice profile, 280 lattice test, 280 Laumon’s product formula, 393 Laurent polynomial non-degenerate, 122

833 law of quadratic reciprocity, 138 Lefschetz fixed point theorem, 386 Legendre sequence, 147, 266 lifted character, 101 lifted Gauss sum, 101 lifted Jacobi sum, 102 lifted Kloosterman sums, 113 limit cycle, 684 linear complexity, 147, 270 Fq -, 272 k-error, 271 nth, 270 profile, 271 linear feedback shift register, 270 linear recurring sequence, 270 linear translator, 181 linearity conjecture, 486 Littlewood, J.E., 411, 412 Logical Model, 687 logical model, 687 m-sequence, 265 M¨obius equivalence, 243 transformations, 243 MacWilliams identities, 563 MacWilliams transform, 564 mass formula, 349 matrix circulant, 419 circulant Hadamard, 517 companion, 418 generator, 562, 576 Hadamard, 135, 517 Hankel, 423 Hasse Witt, 401 involutory, 417 nilpotent, 417 orthogonal, 420 orthogonal , 444 orthogonal circulant, 420 parity check, 562, 576 proper orthogonal, 444 skew-symmetric, 421 symmetric, 421 systematic, 563 Toeplitz, 422 Vandermonde, 578 matrix-product construction, 378 maximal order, 347 maximal partial spread, 486

834 MDS code, 499 measure R-valued, 455 correlation, 146 well distribution, 146 Menezes, Alfred, 351 merit factor, 269 Miller’s algorithm, 359 Miller, Victor, 345 Miller’s algorithm, 345 minihyper, 486 Minimal polynomial, 431–433, 435, 436 minimal polynomial joint, 271 of sequence, 270 minimal sampling algorithm, 689 minimal sets algorithms, 689 minimum block weight, 609 minimum distance, 376, 499 Minkowski sum, 306 minus, 656 model selection, 689 model space, 689 modified Tate-Lichtenbaum pairing, 359, 360 module Carlitz, 450 class, 453 Drinfeld, 450 Hayes, 450 Tate-Drinfeld, 451 Tate-Shafarevich, 453 M¨ obius plane, 510 monodromy group arithmetic, 244 geometric, 244 monodromy precision Davenport pairs, 253 exceptional polynomial, 245 general exceptional covers, 245 pr-exceptional covers, 253 monomial, 212 Morita’s p-adic gamma function, 110 morphism cover, 244 Drinfeld, 450 flat, 250 multigraph, 532 multinomial coefficients, 109 multiplication-by-m map, 338 multiplier, 506, 519 multiply nested BIBD, 507

Handbook of Finite Fields multisequence, 271 Nq (g), 364 nebentypus, 115 nest, 479 plane, 479 replaceable, 479 nested canalyzing function, 690, 692 nested design multiply, 507 net (t, m, s)-, 373 cyclic digital, 378 digital (t, m, s)-, 374 digital strict (t, m, s)-, 374 Hammersley, 373, 375 hyperplane, 378 strict (t, m, s)-, 373 Netto triple system, 503, 504 newform, 114 Newton polyhedron, 122 Newton polytope, 306 Niederreiter sequence, 381 ¨ Niederreiter-Ozbudak bound, 611 Niederreiter-Xing sequence, 382 No sequences, 267 nonlinearity, 205 norm definitions, 11 properties, 11 normal rational curve, 496 NP-hard, 648 NP-hardness, 309 NRT space, 375 NRT weight, 375 NXL code, 606 Okamoto, Tatsuaki, 351 operator hyperdifferential, 455 optical orthogonal code(OOC), 269 orbit, 439 orbit length, 142 order, 347 affine plane, 477 conductor of, 347 in quadratic imaginary field, 347 of a finite field, 4 of an element, 6 projective plane, 476 ordered orthogonal array, 374

Miscellaneous applications

835

ordinary, 396 ordinary elliptic curve, 348 orthogonal array, 520 orthogonal system, 186 orthomorphism, 467 Ostrowski theorem, 306 oval, 497 complete, 497 ovoid, 500 Tits, 500

place at infinity, 319 pole of x, 319 prime element at a place, 318 ramification index, 324 ramified extension, 325 rational place, 319, 361 number of rational places N (F ), 361 relative degree, 324 residue class field of a place, 319 residue class map, 319 unramified extension, 325 zero of x, 319 planar equivalence, 231 planar function, 185 plane affine, 477 flag-transitive, 480 Andr´e, 479 Hall, 479 inversive, 479 nest, 479 projective, 476 PLE decomposition, 429 plus, 656 PN function, 206 Poincar´e duality, 386, 392 Poincar´e series, 112 point at infinity, 334 point set, 373 points special, 453 polar, 492 polarity, 490 Hermitian, 492 null, 492 ordinary, 492 orthogonal, 492 pseudo-, 492 symplectic, 492 unitary, 492 pole, 492 Pollack, Paul, 410 Polya-Vinogradov-Weil bound, 145 polygon generic, 398 Hodge, 396, 397 Newton, 394 polynomial κ-, 225 completely normal, 64 Dirichlet L-function, 411

p-density, 395 packed matrix multiplication, 426 pairing Miller’s algorithm, 359 modified Tate-Lichtenbaum, 359, 360 Tate-Lichtenbaum, 359 Paley construction, 135 parallelism, 477 parameter estimation, 689 parity check matrix, 562 partial-period correlation, 269 partition Baer subplane, 482 classical, 482 perfect, 483 path, 533 period Fourier expansion, 98 Carlitz, 450 period polynomial, 98 periodic correlation, 264 periodic point, 684 permanent, 424 permutation apn, 208 permutation polynomial, 376, 467 perspectivity projective plane, 477 elation, 477 Petri net, 688 phase space, 684 Picard–Fuchs differential operator, 349 Picard group of elliptic curve, 341 place, 318 completely splitting place, 325 degree of a place, 319 extension of a place, 324

836 normal, 60 primitive, 43 strong primitive normal, 64 absolute value of, 408 affine, 13 all one, 40 characteristic, 178 Chebychev conjugate, 246 complete mapping, 181 Dembowski-Ostrom, 232 Dickson, 191, 246 Dickson polynomial of the first kind, 235 Dickson polynomial of the second kind, 235 discriminant, 15, 36 even, 412 exceptional, 173, 212 existence of irreducible, 8 feedback, 273 Hasse, 398 indecomposable, 53 irreducible, 5 linearized, 13 Mattson-Solomon, 589 minimal, 8, 577 minimal value set, 189 monic original, 53 multivariate quadratic, 648 norm, 25, 43, 60 number of irreducible, 5 odd, 412 permutation, 171, 187, 376 permutation in several variables, 186 planar, 230 primitive, 7, 56 primitive normal, 57 reciprocal, 7, 56 ring of, 5 special, 454 stable, 142 syndrome, 584 trace, 25, 43, 60 Polynomial 3-Primes Theorem, 412 Polynomial Dynamical System, 684 Polynomial Generalized Riemann Hypothesis, 411 polynomial interpolation problem, 598 polynomial lattice, 376 Polynomial Prime Number Theorem, 408 Polynomial Twin Primes Theorem, 410 Polynomial Waring Theorem, 413

Handbook of Finite Fields polynomials with prescribed trace and norm, 100 power residue character, 100 power residue symbol, 109 primality testing, 100 prime ideal factorization of p, 108 primes in arithmetic progression, 409 primitive element, 6, 56 primitive part, 54 principal divisor on elliptic curve, 341 principal ideal domain (PID), 575 Principle of Duality, 488 problem hidden number, 141 sparse polynomial noisy interpolation, 141 Waring, 140 projective completion, 477 plane, 476 projective 1-space F points, 243 j-line, 251 projective geometry, 587 projective plane, 466 classical, 476 Desarguesian, 476 projective space, 487 hyperplane, 487 line, 487 plane, 487 point, 487 solid, 487 subspace, 487 projective spaces, 487–501 projectivity, 489 cyclic, 495 propagation rule, 378 pseudorandom graph, 534 pseudorandom number generator, 282, 283 pure number of weight w, 390 quadratic imaginary field order in, 347 quadratic nonresidue, 582 quadratic residue, 582 quadratic space, 159 Arf invariant, 160 non-degenerate, 160 radical, 159

Miscellaneous applications rank, 160 quadric, 492 elliptic, 494 hyperbolic, 494 parabolic, 494 quadric surface, 492 quality parameter, 373, 379 quantum computer, 648 quasifield, 225, 467, 478 quaternion algebra, 347, 348 radical, 28, 61 rainbow structure sequence, 655 Ramanujan sum, 116 ramification tame ramification, 327 wild, 253 wild ramification, 327 ramification locus (of a tower), 369 Rank, 429, 432–435 rank, 652 rational, 652 rational function composition factor definition field, 252 composition factors, 243 cyclic conjugate, 250 decomposable, 243 exceptional over Fq , 244 exceptional over a number field, 244 permutation over Fq , 247 Redei, 250 separable, 247 tame, 245 rational functions Davenport pair, 253 genus 0 problem, 253 rational point (rational place), 361 reciprocity, 490 REDQ, 426 Compression, 426, 427 Correction, 426, 427 reduction good-Drinfeld, 452 potentially good, 452 stable-Drinfeld, 452 Reed-Solomon code, 604 regulator, 355 regulus, 478 opposite, 478 Reordering, 433 replicator, 29

837 representation matrix, 439 residuacity, 104 resolvable BIBD Bose’s condition, 502 reverse engineering, 689 Riemann hypothesis, 385, 387, 390, 393 Riemann hypothesis (for function fields), 363 Riemann’s inequality, 323 Riemann’s theorem, 323 Riemann–Roch space L(A), 322 Riemann–Roch theorem, 322, 331 Riemann-Roch space, 603 Riemann–Roch theorem, 335 ring, 3 characteristic, 4 commutative, 3 division, 3 R¨ uck, Hans-Georg, 342 Sali´e angle, 113 Sali´e sum over Z/kZ, 117 over Fq , 112 Samaev, I., 351 Sato-Tate measure, 113, 114 Satoh, Takakazu,, 351 Schur’s Conjecture, 243 semifield definition, 225 nuclei, 228 separable factorization, 301 separable isogeny, 339 sequence, 694 (t, s)-, 379 (T, s)-, 379 Barker, 694 digital (t, s)-, 380 digital (T, s)-, 380 digital strict (t, s)-, 380 digital strict (T, s)-, 380 elliptic curve congruential, 279 explicit inversive congruential, 277 Faure, 381 frequency hopping, 698 generalized Lucas, 178 Golay, 695 inversive, 278 Legendre, 278, 694, 695 maximum length, 694, 695

838 Niederreiter, 381 Niederreiter-Xing, 382 nonlinear congruential, 278 power, 278 quadratic exponential, 277 recursive nonlinear, 278 Sidelnikov, 279 Sobol’, 382 strict (t, s)-, 379 strict (T, s)-, 379 van der Corput, 379, 380 Serre bound, 364 Serre’s explicit formulas, 364 Serre, J.P., 413 Serre, Jean-Pierre, 349 set difference, 212 simplest cubic, 100 simplex of reference, 490 Singer cycle, 495 Singer group, 495 Singleton bound, 604 singular point, 334 small-field, 653 Smart, Nigel, 351 Sobol’ sequence, 382 space affine, 489 Hamming, 375 NRT, 375 projective, 487 Riemann-Roch, 603 sparse factorization, 306 Sparse matrix, 433 sparse polynomial representation, 306 spectrum Walsh, 205 sphere, 571 spherical geometry, 510 spin, 30 splitting, 581 splitting locus (of a tower), 369 spread, 478, 494, 701 automorphism group, 478 partial maximal, 486 regular, 478 subregular, 479 square-free divisor, 61 W (r), 61

Handbook of Finite Fields radical, 61 squares, 512 St¨ohr–Voloch theory, 366 standard array, 566 starter block, 504 state space, 684 steady state, 684 Stein generator, 434 Steiner triple system 2-homogeneous, 504 Stickelberger’s congruence for Gauss sums, 109 straight-line program, 308, 309 straight-line programs without divisions, 309 strict (t, m, s)-net, 373 strict (t, s)-sequence, 379 strict (T, s)-sequence, 379 strict sum of polynomials, 413 strongly regular graph constructed from a quasi-symmetric design, 502 Structured matrix, 433 subgeometry, 495 subplane, 482 Baer, 482 subregular spread, 479 translation plane, 479 sum Kloosterman, 212 supersingular, 358, 360 supersingular elliptic curve, 348 mass formula, 349 supersingularity, 103 supersparse polynomial, 308 Swan theorem, 36 Sylvester generator, 434 symmetric, 665 symmetric design, 502 symmetric differential, 663 symmetry, 444 syndrome, 584, 592 syndrome polynomial, 584 Tame Transformation Method (TTM), 664 tangential coordinates, 488 Tate module, 344 Weil pairing on, 345 Tate pairing, 346 modified, 346 Tate, John, 342, 344, 346

Miscellaneous applications Tate-Lichtenbaum pairing, 359 tight set, 486 Tits ovoid, 500 Toeplitz matrix, 435 torsion subgroup, 338, 343 total degree, 388 tower (of function fields), 368 asymptotically good tower, 369 limit of a tower, 369, 370 recursive tower, 370 tame tower, 370 wild tower, 371 trace, 568 definitions, 10 properties, 11 trace of Frobenius, 341, 344, 350 trajectory, 282, 286, 287, 289 transform n-th order, 29 translation affine plane, 478 group, 478 line, 478 projective plane, 478 translation invariant, 29 transvection orthogonal, 446 symplectic , 440 unitary , 442 transversal, 478 regulus, 478 triangle inequality, 318 triangular map, 651 trinomial Mersenne, 66 triple system Netto, see Netto triple system Trotter, Hale, 349 TRSM, 429 Tsfasman–Vlˇ adut¸–Zink theorem, 367 TVZ bound, 611 twin primes, 409 twisted cubic, 496 Uniform distribution Kloosterman angles, 113 Sali´e angles, 113 unital, 483 Buekenhout nonsingular, 483 orthogonal, 483

839 embedded, 483 update schedule, 684 valuation, 318 valuation corresponding to a place, 318 valuation ring, 318 value set, 189 van der Corput sequence, 379, 380 Vandermonde matrix, 435 Vanstone, Scott, 351 variety Drinfeld modular, 457 function field, 244, 245 geometric point, 244 vector degree, 51 Vinogradov’s formula, 147 Vinogradov, I.M., 411 walk, 533 closed, 533 Waring problem, 412 Waring’s formula, 235 Waring’s number, 168 existence, 168 Waterhouse, William, 342 Webb, W.A., 413 Wedderburn, 4 Weierstrass ℘-function, 107 Weierstrass equation, 334 discriminant, 334 j-invariant, 334 nonsingular, 334 singular, 334 transformation of coordinates, 335 weight, 76 NRT, 375 Weil bound, 141 Weil conjecture, 385 Weil pairing, 344 computation of, 345 formulas for, 345 Weil, Andr´e, 344 Weil, Andr´e, 411, 412 Wiedemann, 432 wiring diagram, 684 XNL code, 607 zero isogeny, 339 Zeta function, 384 zeta function of a hyperelliptic curve, 358

840 of elliptic curve, 350 Poincar´e duality, 350 zeta function (of a function field), 362 Zsigmondy prime, 45 largest, 45

Handbook of Finite Fields