Contents. Preface. About the author

Contents Preface xv About the author xxi 1 Some problems posed on vector spaces 1.1 Linear equations . . . . . . . . . . . . . . . . . . . . . . ...
2 downloads 3 Views 55KB Size
Contents

Preface

xv

About the author

xxi

1 Some problems posed on vector spaces 1.1 Linear equations . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 Systems of linear algebraic equations . . . . . . . . . . 1.1.2 Linear ordinary differential equations . . . . . . . . . . 1.1.3 Some interpretation: The structure of the solution set to a linear equation . . . . . . . . . . . . . . . . . . . 1.1.4 Finite fields and applications in discrete mathematics 1.2 Best approximation . . . . . . . . . . . . . . . . . . . . . . . 1.2.1 Overdetermined linear systems . . . . . . . . . . . . . 1.2.2 Best approximation by a polynomial . . . . . . . . . . 1.3 Diagonalization . . . . . . . . . . . . . . . . . . . . . . . . . 1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 7 8 8 11 13 17

2 Fields and vector spaces 2.1 Fields . . . . . . . . . . . . . . . . . . . . . . . . 2.1.1 Definition and examples . . . . . . . . . . 2.1.2 Basic properties of fields . . . . . . . . . . 2.2 Vector spaces . . . . . . . . . . . . . . . . . . . . 2.2.1 Examples of vector spaces . . . . . . . . . 2.3 Subspaces . . . . . . . . . . . . . . . . . . . . . . 2.4 Linear combinations and spanning sets . . . . . 2.5 Linear independence . . . . . . . . . . . . . . . . 2.6 Basis and dimension . . . . . . . . . . . . . . . . 2.7 Properties of bases . . . . . . . . . . . . . . . . . 2.8 Polynomial interpolation and the Lagrange basis 2.8.1 Secret sharing . . . . . . . . . . . . . . . . 2.9 Continuous piecewise polynomial functions . . . 2.9.1 Continuous piecewise linear functions . . 2.9.2 Continuous piecewise quadratic functions 2.9.3 Error in polynomial interpolation . . . . .

19 19 19 21 29 31 38 43 50 57 66 73 77 82 84 87 90

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

1 1 1 4

ix

x

Contents

3 Linear operators 3.1 Linear operators . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.1 Matrix operators . . . . . . . . . . . . . . . . . . . . . 3.2 More properties of linear operators . . . . . . . . . . . . . . . 3.2.1 Vector spaces of operators . . . . . . . . . . . . . . . . 3.2.2 The matrix of a linear operator on Euclidean spaces . 3.2.3 Derivative and differential operators . . . . . . . . . . 3.2.4 Representing spanning sets and bases using matrices . 3.2.5 The transpose of a matrix . . . . . . . . . . . . . . . . 3.3 Isomorphic vector spaces . . . . . . . . . . . . . . . . . . . . 3.3.1 Injective and surjective functions; inverses . . . . . . . 3.3.2 The matrix of a linear operator on general vector spaces 3.4 Linear operator equations . . . . . . . . . . . . . . . . . . . . 3.4.1 Homogeneous linear equations . . . . . . . . . . . . . 3.4.2 Inhomogeneous linear equations . . . . . . . . . . . . . 3.4.3 General solutions . . . . . . . . . . . . . . . . . . . . . 3.5 Existence and uniqueness of solutions . . . . . . . . . . . . . 3.5.1 The kernel of a linear operator and injectivity . . . . . 3.5.2 The rank of a linear operator and surjectivity . . . . . 3.5.3 Existence and uniqueness . . . . . . . . . . . . . . . . 3.6 The fundamental theorem; inverse operators . . . . . . . . . 3.6.1 The inverse of a linear operator . . . . . . . . . . . . . 3.6.2 The inverse of a matrix . . . . . . . . . . . . . . . . . 3.7 Gaussian elimination . . . . . . . . . . . . . . . . . . . . . . 3.7.1 Computing A−1 . . . . . . . . . . . . . . . . . . . . . 3.7.2 Fields other than R . . . . . . . . . . . . . . . . . . . 3.8 Newton’s method . . . . . . . . . . . . . . . . . . . . . . . . 3.9 Linear ordinary differential equations . . . . . . . . . . . . . 3.9.1 The dimension of ker(L) . . . . . . . . . . . . . . . . . 3.9.2 Finding a basis for ker(L) . . . . . . . . . . . . . . . . 3.9.2.1 The easy case: Distinct real roots . . . . . . 3.9.2.2 The case of repeated real roots . . . . . . . . 3.9.2.3 The case of complex roots . . . . . . . . . . . 3.9.3 The Wronskian test for linear independence . . . . . . 3.9.4 The Vandermonde matrix . . . . . . . . . . . . . . . . 3.10 Graph theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.10.1 The incidence matrix of a graph . . . . . . . . . . . . 3.10.2 Walks and matrix multiplication . . . . . . . . . . . . 3.10.3 Graph isomorphisms . . . . . . . . . . . . . . . . . . . 3.11 Coding theory . . . . . . . . . . . . . . . . . . . . . . . . . . 3.11.1 Generator matrices; encoding and decoding . . . . . . 3.11.2 Error correction . . . . . . . . . . . . . . . . . . . . . 3.11.3 The probability of errors . . . . . . . . . . . . . . . . . 3.12 Linear programming . . . . . . . . . . . . . . . . . . . . . . . 3.12.1 Specification of linear programming problems . . . . .

93 93 95 101 101 101 103 103 104 107 108 111 116 117 118 120 124 124 126 128 131 133 134 142 148 149 153 158 158 161 162 162 163 163 166 168 168 169 171 175 177 179 181 183 184

Contents 3.12.2 Basic theory . . . . . . . . . . . 3.12.3 The simplex method . . . . . . . 3.12.3.1 Finding an initial BFS 3.12.3.2 Unbounded LPs . . . . 3.12.3.3 Degeneracy and cycling 3.12.4 Variations on the standard LPs .

xi . . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

186 191 196 199 200 202

4 Determinants and eigenvalues 4.1 The determinant function . . . . . . . . . . . . . . 4.1.1 Permutations . . . . . . . . . . . . . . . . . 4.1.2 The complete expansion of the determinant 4.2 Further properties of the determinant function . . 4.3 Practical computation of det(A) . . . . . . . . . . 4.3.1 A recursive formula for det(A) . . . . . . . 4.3.2 Cramer’s rule . . . . . . . . . . . . . . . . . 4.4 A note about polynomials . . . . . . . . . . . . . . 4.5 Eigenvalues and the characteristic polynomial . . 4.5.1 Eigenvalues of real matrix . . . . . . . . . . 4.6 Diagonalization . . . . . . . . . . . . . . . . . . . 4.7 Eigenvalues of linear operators . . . . . . . . . . . 4.8 Systems of linear ODEs . . . . . . . . . . . . . . . 4.8.1 Complex eigenvalues . . . . . . . . . . . . . 4.8.2 Solving the initial value problem . . . . . . 4.8.3 Linear systems in matrix form . . . . . . . 4.9 Integer programming . . . . . . . . . . . . . . . . 4.9.1 Totally unimodular matrices . . . . . . . . 4.9.2 Transportation problems . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

205 206 210 212 217 221 224 226 230 232 235 241 251 257 259 260 261 265 265 268

5 The Jordan canonical form 5.1 Invariant subspaces . . . . . . . . . . . . . . . . . 5.1.1 Direct sums . . . . . . . . . . . . . . . . . . 5.1.2 Eigenspaces and generalized eigenspaces . . 5.2 Generalized eigenspaces . . . . . . . . . . . . . . . 5.2.1 Appendix: Beyond generalized eigenspaces 5.2.2 The Cayley-Hamilton theorem . . . . . . . 5.3 Nilpotent operators . . . . . . . . . . . . . . . . . 5.4 The Jordan canonical form of a matrix . . . . . . 5.5 The matrix exponential . . . . . . . . . . . . . . . 5.5.1 Definition of the matrix exponential . . . . 5.5.2 Computing the matrix exponential . . . . . 5.6 Graphs and eigenvalues . . . . . . . . . . . . . . . 5.6.1 Cospectral graphs . . . . . . . . . . . . . . 5.6.2 Bipartite graphs and eigenvalues . . . . . . 5.6.3 Regular graphs . . . . . . . . . . . . . . . . 5.6.4 Distinct eigenvalues of a graph . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

273 273 276 277 283 290 294 300 309 318 319 319 325 325 326 328 330

xii

Contents

6 Orthogonality and best approximation 6.1 Norms and inner products . . . . . . . . . . . . . . . . . . 6.1.1 Examples of norms and inner products . . . . . . . . 6.2 The adjoint of a linear operator . . . . . . . . . . . . . . . 6.2.1 The adjoint of a linear operator . . . . . . . . . . . . 6.3 Orthogonal vectors and bases . . . . . . . . . . . . . . . . . 6.3.1 Orthogonal bases . . . . . . . . . . . . . . . . . . . . 6.4 The projection theorem . . . . . . . . . . . . . . . . . . . . 6.4.1 Overdetermined linear systems . . . . . . . . . . . . 6.5 The Gram-Schmidt process . . . . . . . . . . . . . . . . . . 6.5.1 Least-squares polynomial approximation . . . . . . . 6.6 Orthogonal complements . . . . . . . . . . . . . . . . . . . 6.6.1 The fundamental theorem of linear algebra revisited 6.7 Complex inner product spaces . . . . . . . . . . . . . . . . 6.7.1 Examples of complex inner product spaces . . . . . . 6.7.2 Orthogonality in complex inner product spaces . . . 6.7.3 The adjoint of a linear operator . . . . . . . . . . . . 6.8 More on polynomial approximation . . . . . . . . . . . . . 6.8.1 A weighted L2 inner product . . . . . . . . . . . . . 6.9 The energy inner product and Galerkin’s method . . . . . 6.9.1 Piecewise polynomials . . . . . . . . . . . . . . . . . 6.9.2 Continuous piecewise quadratic functions . . . . . . 6.9.3 Higher degree finite element spaces . . . . . . . . . . 6.10 Gaussian quadrature . . . . . . . . . . . . . . . . . . . . . 6.10.1 The trapezoidal rule and Simpson’s rule . . . . . . . 6.10.2 Gaussian quadrature . . . . . . . . . . . . . . . . . . 6.10.3 Orthogonal polynomials . . . . . . . . . . . . . . . . 6.10.4 Weighted Gaussian quadrature . . . . . . . . . . . . 6.11 The Helmholtz decomposition . . . . . . . . . . . . . . . . 6.11.1 The divergence theorem . . . . . . . . . . . . . . . . 6.11.2 Stokes’s theorem . . . . . . . . . . . . . . . . . . . . 6.11.3 The Helmholtz decomposition . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

333 333 337 342 343 350 351 357 361 368 371 377 381 386 388 389 390 394 397 401 404 407 409 411 412 413 415 419 420 421 422 423

7 The spectral theory of symmetric matrices 7.1 The spectral theorem for symmetric matrices . . . . . 7.1.1 Symmetric positive definite matrices . . . . . . 7.1.2 Hermitian matrices . . . . . . . . . . . . . . . . 7.2 The spectral theorem for normal matrices . . . . . . . 7.2.1 Outer products and the spectral decomposition 7.3 Optimization and the Hessian matrix . . . . . . . . . 7.3.1 Background . . . . . . . . . . . . . . . . . . . . 7.3.2 Optimization of quadratic functions . . . . . . 7.3.3 Taylor’s theorem . . . . . . . . . . . . . . . . . 7.3.4 First- and second-order optimality conditions . 7.3.5 Local quadratic approximations . . . . . . . . .

. . . . . . . . . . .

425 425 428 430 434 437 440 440 441 443 444 446

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

Contents 7.4 7.5

Lagrange multipliers . . . . . . . . . . . . . . Spectral methods for differential equations . 7.5.1 Eigenpairs of the differential operator 7.5.2 Solving the BVP using eigenfunctions

xiii . . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

448 453 454 456

8 The singular value decomposition 8.1 Introduction to the SVD . . . . . . . . . . . . . . . . . . 8.1.1 The SVD for singular matrices . . . . . . . . . . . 8.2 The SVD for general matrices . . . . . . . . . . . . . . . 8.3 Solving least-squares problems using the SVD . . . . . . 8.4 The SVD and linear inverse problems . . . . . . . . . . . 8.4.1 Resolving inverse problems through regularization 8.4.2 The truncated SVD method . . . . . . . . . . . . . 8.4.3 Tikhonov regularization . . . . . . . . . . . . . . . 8.5 The Smith normal form of a matrix . . . . . . . . . . . . 8.5.1 An algorithm to compute the Smith normal form . 8.5.2 Applications of the Smith normal form . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

463 463 467 470 476 483 489 489 490 494 495 501

9 Matrix factorizations and numerical linear algebra 9.1 The LU factorization . . . . . . . . . . . . . . . . . . . . . . 9.1.1 Operation counts . . . . . . . . . . . . . . . . . . . . . 9.1.2 Solving Ax = b using the LU factorization . . . . . . . 9.2 Partial pivoting . . . . . . . . . . . . . . . . . . . . . . . . . 9.2.1 Finite-precision arithmetic . . . . . . . . . . . . . . . . 9.2.2 Examples of errors in Gaussian elimination . . . . . . 9.2.3 Partial pivoting . . . . . . . . . . . . . . . . . . . . . . 9.2.4 The PLU factorization . . . . . . . . . . . . . . . . . . 9.3 The Cholesky factorization . . . . . . . . . . . . . . . . . . . 9.4 Matrix norms . . . . . . . . . . . . . . . . . . . . . . . . . . 9.4.1 Examples of induced matrix norms . . . . . . . . . . . 9.5 The sensitivity of linear systems to errors . . . . . . . . . . . 9.6 Numerical stability . . . . . . . . . . . . . . . . . . . . . . . 9.6.1 Backward error analysis . . . . . . . . . . . . . . . . . 9.6.2 Analysis of Gaussian elimination with partial pivoting 9.7 The sensitivity of the least-squares problem . . . . . . . . . . 9.8 The QR factorization . . . . . . . . . . . . . . . . . . . . . . 9.8.1 Solving the least-squares problem . . . . . . . . . . . . 9.8.2 Computing the QR factorization . . . . . . . . . . . . 9.8.3 Backward stability of the Householder QR algorithm . 9.8.4 Solving a linear system . . . . . . . . . . . . . . . . . 9.9 Eigenvalues and simultaneous iteration . . . . . . . . . . . . 9.9.1 Reduction to triangular form . . . . . . . . . . . . . . 9.9.2 The power method . . . . . . . . . . . . . . . . . . . . 9.9.3 Simultaneous iteration . . . . . . . . . . . . . . . . . . 9.10 The QR algorithm . . . . . . . . . . . . . . . . . . . . . . . .

507 507 512 514 516 517 518 519 522 524 530 534 537 542 543 545 548 554 556 556 561 562 564 564 566 567 572

Contents

xiv

9.10.1 A practical QR algorithm . . . . . . . . . . . . 9.10.1.1 Reduction to upper Hessenberg form . 9.10.1.2 The explicitly shifted QR algorithm . 9.10.1.3 The implicitly shifted QR algorithm .

. . . .

. . . .

. . . .

. . . .

573 574 576 579

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

581 581 582 584 586 586 590 592 596 600 605 611

A The Euclidean algorithm A.0.1 Computing multiplicative inverses in Zp . . . . . . . . A.0.2 Related results . . . . . . . . . . . . . . . . . . . . . .

617 618 619

B Permutations

621

C Polynomials C.1 Rings of polynomials . . . . . . . . . . . . . . . . . . . . . . C.2 Polynomial functions . . . . . . . . . . . . . . . . . . . . . . C.2.1 Factorization of polynomials . . . . . . . . . . . . . . .

625 625 630 632

D Summary D.0.1 D.0.2 D.0.3 D.0.4

633 633 634 635 636

10 Analysis in vector spaces 10.1 Analysis in Rn . . . . . . . . . . . . . . . 10.1.1 Convergence and continuity in Rn 10.1.2 Compactness . . . . . . . . . . . . 10.1.3 Completeness of Rn . . . . . . . . 10.1.4 Equivalence of norms on Rn . . . 10.2 Infinite-dimensional vector spaces . . . . 10.2.1 Banach and Hilbert spaces . . . . 10.3 Functional analysis . . . . . . . . . . . . 10.3.1 The dual of a Hilbert space . . . . 10.4 Weak convergence . . . . . . . . . . . . . 10.4.1 Convexity . . . . . . . . . . . . . .

of analysis in R Convergence . . . . Completeness of R . Open and closed sets Continuous functions

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . . . . . . . . .

. . . .

. . . . . . . . . . .

. . . .

. . . . . . . . . . .

. . . .

. . . . . . . . . . .

. . . .

. . . . . . . . . . .

. . . .

. . . . . . . . . . .

. . . .

. . . . . . . . . . .

. . . .

. . . .

. . . .

. . . .

. . . .

Bibliography

637

Index

641