Computational methods for characterizing single neuron function under natural condition

Computational methods for characterizing single neuron function under natural condition Saturday, June 24, 2006 Michael CK Wu UC Berkeley, Biophysics...
Author: Louisa Lang
1 downloads 0 Views 2MB Size
Computational methods for characterizing single neuron function under natural condition

Saturday, June 24, 2006 Michael CK Wu UC Berkeley, Biophysics Graduate Group

MCK Wu, SV David & JL Gallant (2006) Complete Functional Characterization of Sensory Neurons by System Identification, Ann. Rev. of Neurosci. Vol. 29 Biophysics, UC Berkeley

~1~

6/24/2006

M. C-K Wu

Outline ™

The problem

™

The experiment

™

The data

™

The challenges

™

Method & solutions

™

Assessment of solutions & results

™

Applications

Biophysics, UC Berkeley

~2~

6/24/2006

M. C-K Wu

Outline ™

The problem

™

The experiment

™

The data

™

The challenges

™

Method & solutions

™

Assessment of solutions & results

™

Applications

Biophysics, UC Berkeley

~3~

6/24/2006

M. C-K Wu

The brain is modular

Biophysics, UC Berkeley

~4~

6/24/2006

M. C-K Wu

Visual areas and circuits

Biophysics, UC Berkeley

~5~

6/24/2006

M. C-K Wu

How to characterize single neuron function?

Biophysics, UC Berkeley

~6~

6/24/2006

M. C-K Wu

How to characterize single neuron function?

Visual stimulus: Movie

Biophysics, UC Berkeley

~7~

6/24/2006

M. C-K Wu

Spike counts

How to characterize single neuron function?

Visual stimulus: Movie

Biophysics, UC Berkeley

Neural response

~8~

6/24/2006

M. C-K Wu

Spike counts

How to characterize single neuron function?

Visual stimulus: Movie

Input

Neural response

Black Box

Spike counts (# of impulse per video frame)

Sequence of natural images

Biophysics, UC Berkeley

Output

~9~

6/24/2006

M. C-K Wu

Spike counts

How to characterize single neuron function?

Visual stimulus: Movie

Input

Sequence of natural images

Biophysics, UC Berkeley

Neural response

Black Box

f : \n → \+ Stimulus-Response Mapping Function

~ 10 ~

Output

Spike counts (# of impulse per video frame) 6/24/2006

M. C-K Wu

Outline ™

The problem

™

The experiment

™

The data

™

The challenges

™

Method & solutions

™

Assessment of solutions & results

™

Applications

Biophysics, UC Berkeley

~ 11 ~

6/24/2006

M. C-K Wu

How do we get our data?

Awake & Behaving Subject

Biophysics, UC Berkeley

~ 12 ~

6/24/2006

M. C-K Wu

How do we get our data?

Awake & Behaving Subject

Biophysics, UC Berkeley

~ 13 ~

6/24/2006

M. C-K Wu

How do we get our data?

Visual Stimulus x1, x2, x 3, …

Biophysics, UC Berkeley

Awake & Behaving Subject

~ 14 ~

Extracellular Single unit Recording Neural Response y 1 , y2 , y3 , …

6/24/2006

M. C-K Wu

How do we get our data?

Visual Stimulus x1, x2, x 3, …

Awake & Behaving Subject

Extracellular Single unit Recording Neural Response y 1 , y2 , y3 , …

Fixation Target

Biophysics, UC Berkeley

~ 15 ~

6/24/2006

M. C-K Wu

How do we get our data?

Awake & Behaving Subject

Visual Stimulus x1, x2, x 3, …

~0.5o

Extracellular Single unit Recording Neural Response y 1 , y2 , y3 , …

Fixation Target

Find where the neuron is looking? Biophysics, UC Berkeley

~ 16 ~

6/24/2006

M. C-K Wu

How to achieve natural condition in laboratory? ™

Traditional visual stimuli (simple & low dimensional).

noise

™

grating

bars

We use naturalistic stimulus (image sequences, movies).

natural scenes

Biophysics, UC Berkeley

~ 17 ~

6/24/2006

M. C-K Wu

Natural vision includes eye movements

Biophysics, UC Berkeley

~ 18 ~

6/24/2006

M. C-K Wu

Simulated free viewing

Biophysics, UC Berkeley

~ 19 ~

6/24/2006

M. C-K Wu

Outline ™

The problem

™

The experiment

™

The data

™

The challenges

™

Method & solutions

™

Assessment of solutions & results

™

Applications

Biophysics, UC Berkeley

~ 20 ~

6/24/2006

M. C-K Wu

An image is a point in Rn

x ∈ \n

x Biophysics, UC Berkeley

~ 21 ~

6/24/2006

M. C-K Wu

An image is a point in Rn

x ∈ \n

...

x Biophysics, UC Berkeley

~ 22 ~

6/24/2006

M. C-K Wu

An image is a point in Rn x1 x2 x3 x4

...

x= x∈\

n

...

xj xj+1 xj+2 xj+3

... ...

xn-3

xn-2 xn-1 xn

x Biophysics, UC Berkeley

~ 23 ~

6/24/2006

M. C-K Wu

An image is a point in Rn x1 x2 x3 x4

...

x= x∈\

n

...

xj xj+1 xj+2 xj+3

x ∈ \n

.

... ...

xn-3

xn-2 xn-1 xn

x Biophysics, UC Berkeley

~ 24 ~

6/24/2006

M. C-K Wu

The problem in another perspective

X = [ x1 ," , x N ]

T

s.t. xi ∈ \ n

Biophysics, UC Berkeley

~ 25 ~

6/24/2006

M. C-K Wu

The problem in another perspective f X = [ x1 ," , x N ]

T

s.t. xi ∈ \

Biophysics, UC Berkeley

~ 26 ~

n

Y = [ y1 ," , y N ]

T

s.t. yi ∈ \ +

6/24/2006

M. C-K Wu

The problem in another perspective f Y = [ y1 ," , y N ]

T

X = [ x1 ," , x N ]

T

s.t. xi ∈ \

s.t. yi ∈ \ +

n

\+

\n Biophysics, UC Berkeley

~ 27 ~

6/24/2006

M. C-K Wu

The problem in another perspective f Y = [ y1 ," , y N ]

T

X = [ x1 ," , x N ]

T

s.t. xi ∈ \

s.t. yi ∈ \ +

n

\+

\n Biophysics, UC Berkeley

~ 28 ~

6/24/2006

M. C-K Wu

The problem in another perspective f Y = [ y1 ," , y N ]

T

X = [ x1 ," , x N ]

T

s.t. xi ∈ \

s.t. yi ∈ \ +

n

\+

\n Biophysics, UC Berkeley

~ 29 ~

6/24/2006

M. C-K Wu

Outline ™

The problem

™

The experiment

™

The data

™

The challenges

™

Method & solutions

™

Assessment of solutions & results

™

Applications

Biophysics, UC Berkeley

~ 30 ~

6/24/2006

M. C-K Wu

Why is this hard? Input ™

Black Box

Output

High Dimensionality: Input have very high dimensionality.

Biophysics, UC Berkeley

~ 31 ~

6/24/2006

M. C-K Wu

Why is this hard? Input

Black Box

™

High Dimensionality: Input have very high dimensionality.

™

Sparse sampling: There is not enough samples to cover the vast input space densely.

Biophysics, UC Berkeley

~ 32 ~

Output

6/24/2006

M. C-K Wu

Why is this hard? Input

Black Box

™

High Dimensionality: Input have very high dimensionality.

™

Sparse sampling: There is not enough samples to cover the vast input space densely.

™

Unknown Input Statistics: Natural scene statistics are not well understood.

Biophysics, UC Berkeley

~ 33 ~

Output

6/24/2006

M. C-K Wu

Why is this hard? Input

Black Box

™

High Dimensionality: Input have very high dimensionality.

™

Sparse sampling: There is not enough samples to cover the vast input space densely.

™

Unknown Input Statistics: Natural scene statistics are not well understood.

Biophysics, UC Berkeley

™

~ 34 ~

Output

Non-Gaussian: Response are Poisson or Negative Binomial (over dispersed).

6/24/2006

M. C-K Wu

Why is this hard? Input

Black Box

™

High Dimensionality: Input have very high dimensionality.

™

Sparse sampling: There is not enough samples to cover the vast input space densely.

™

Output

™

Non-Gaussian: Response are Poisson or Negative Binomial (over dispersed).

™

High Noise: Neurophysiology data are very noisy, and we can’t tell the signal from noise.

Unknown Input Statistics: Natural scene statistics are not well understood.

Biophysics, UC Berkeley

~ 35 ~

6/24/2006

M. C-K Wu

Why is this hard? Input

Black Box

™

High Dimensionality: Input have very high dimensionality.

™

™

Output

™

Non-Gaussian: Response are Poisson or Negative Binomial (over dispersed).

Sparse sampling: There is not enough samples to cover the vast input space densely.

™

High Noise: Neurophysiology data are very noisy, and we can’t tell the signal from noise.

Unknown Input Statistics: Natural scene statistics are not well understood.

™

Large Scale Problem: Sample size ~ 8000 to 50,000.

Biophysics, UC Berkeley

~ 36 ~

6/24/2006

M. C-K Wu

Why is this hard? Input

Black Box

™

High Dimensionality: Input have very high dimensionality.

™

™

Output

™

Non-Gaussian: Response are Poisson or Negative Binomial (over dispersed).

Sparse sampling: There is not enough samples to cover the vast input space densely.

™

High Noise: Neurophysiology data are very noisy, and we can’t tell the signal from noise.

Unknown Input Statistics: Natural scene statistics are not well understood.

™

Large Scale Problem: Sample size ~ 8000 to 50,000.

The black box is an unknown highly nonlinear and stochastic function. Biophysics, UC Berkeley

~ 37 ~

6/24/2006

M. C-K Wu

Outline ™

The problem

™

The experiment

™

The data

™

The challenges

™

Method & solutions

™

Assessment of solutions & results

™

Applications

Biophysics, UC Berkeley

~ 38 ~

6/24/2006

M. C-K Wu

How do we estimate f ? ™

™

Goal: Given data = { stimulus xi & response yi }, i=1,2,…N, infer a function f (x) = y. T T Notations: X = [ x1 ," , x N ] and Y = [ y1 ," , y N ]

Biophysics, UC Berkeley

~ 39 ~

6/24/2006

M. C-K Wu

How do we estimate f ? ™

™

™ ™

Goal: Given data = { stimulus xi & response yi }, i=1,2,…N, infer a function f (x) = y. T T Notations: X = [ x1 ," , x N ] and Y = [ y1 ," , y N ] Assumption 1: samples in data are independent. Assumption 2: joint probability P ( X, Y, f ) exist.

Biophysics, UC Berkeley

~ 40 ~

6/24/2006

M. C-K Wu

How do we estimate f ? ™

™

™ ™

™

Goal: Given data = { stimulus xi & response yi }, i=1,2,…N, infer a function f (x) = y. T T Notations: X = [ x1 ," , x N ] and Y = [ y1 ," , y N ] Assumption 1: samples in data are independent. Assumption 2: joint probability P ( X, Y, f ) exist. Find the most probable [maximum a posteriori (MAP)] estimate of f given the data.

f * = arg max P ( f | X, Y ) = arg max ∏ i =1 p ( yi | xi , f ) p ( f ) N

Likelihood Biophysics, UC Berkeley

~ 41 ~

Prior 6/24/2006

M. C-K Wu

How do we estimate f ?

F = Space of all functions { f }

Biophysics, UC Berkeley

~ 42 ~

6/24/2006

M. C-K Wu

How do we estimate f ? ™

F = Space of all functions { f }

™

™ ™

F is usually too large. There are many functions that can fit the data with zero error. Overfit to noise Predict poorly

f(x)

x Biophysics, UC Berkeley

~ 43 ~

6/24/2006

M. C-K Wu

How do we estimate f ?

F = Space of all functions { f } Space of parameters { θ } M = Model class = { fθ }

f ← θ = arg max P ( θ | X, Y ) = arg max ∏ i =1 p ( yi | fθ ( xi ) ) p ( θ ) *

N

*

Biophysics, UC Berkeley

~ 44 ~

6/24/2006

M. C-K Wu

How do we estimate f ?

F = Space of all functions { f }

Noise Distribution & Data = {X, Y} Space of parameters { θ }

M = Model class = { fθ }

Likelihood p( Y | fθ(X) )



ML

.f

ML

f ← θ = arg max P ( θ | X, Y ) = arg max ∏ i =1 p ( yi | fθ ( xi ) ) p ( θ ) *

N

*

Biophysics, UC Berkeley

~ 45 ~

6/24/2006

M. C-K Wu

How do we estimate f ?

F = Space of all functions { f }

Noise Distribution & Data = {X, Y} Space of parameters { θ }

M = Model class = { fθ } Prior p( fθ )

.

f*

Likelihood p( Y | fθ(X) )

.θ Prior p( θ )

.f

ML

ML

θ*

.

f ← θ = arg max P ( θ | X, Y ) = arg max ∏ i =1 p ( yi | fθ ( xi ) ) p ( θ ) *

N

*

Biophysics, UC Berkeley

~ 46 ~

6/24/2006

M. C-K Wu

Outline ™

The problem

™

The experiment

™

The data

™

The challenges

™

Method & solutions

™

Assessment of solutions & results

™

Applications

Biophysics, UC Berkeley

~ 47 ~

6/24/2006

M. C-K Wu

How do we assess the model? ™

Prediction on a unseen validation data set.

Biophysics, UC Berkeley

~ 48 ~

6/24/2006

M. C-K Wu

How do we assess the model? ™

Prediction on a unseen validation data set. x1

y1

x2

y2

.

.

.

.

.

.

xN

yN

xN+1

yN+1

xN+2

yN+2

.

.

.

.

xN+M

yN+M

Biophysics, UC Berkeley

~ 49 ~

6/24/2006

M. C-K Wu

How do we assess the model?

Y=

=X

y1

x2

y2

.

.

.

.

.

.

xN

yN

x1

y1

x2

y2

.

.

.

.

xM

yM

Biophysics, UC Berkeley

~ 50 ~

6/24/2006

Validation (~10%) resp.

Validation (~10%) stim.

x1

Estimation (~90%) resp.

Prediction on a unseen validation data set. Estimation (~90%) stim.

™

M. C-K Wu

How do we assess the model?

. . .

y1 y2

x2

xN

Validation (~10%) stim.

Y=

=X

.

θ = arg max P ( θ | X , Y ) *

.

N

.

= arg max ∏ p ( yi | f θ ( x i ) ) p ( θ )

yN

i =1

x1

y1

x2

y2

.

.

.

.

xM

yM

Biophysics, UC Berkeley

~ 51 ~

6/24/2006

Validation (~10%) resp.

x1

Estimation (~90%) resp.

Prediction on a unseen validation data set. Estimation (~90%) stim.

™

M. C-K Wu

How do we assess the model?

. . .

y1 y2

x2

xN

Validation (~10%) stim.

Y=

=X

.

θ = arg max P ( θ | X , Y ) *

.

N

.

= arg max ∏ p ( yi | f θ ( x i ) ) p ( θ )

yN

i =1

x1

y1

x2

y2

.

fθ* ( x )

.

.

.

xM

yM

Biophysics, UC Berkeley

~ 52 ~

6/24/2006

Validation (~10%) resp.

x1

Estimation (~90%) resp.

Prediction on a unseen validation data set. Estimation (~90%) stim.

™

M. C-K Wu

How do we assess the model?

. . .

y1 y2

x2

xN

Validation (~10%) stim.

Y=

=X

.

θ = arg max P ( θ | X , Y ) *

.

N

.

= arg max ∏ p ( yi | f θ ( x i ) ) p ( θ )

yN

i =1

x1

ŷ1

y1

x2

ŷ2

y2

.

.

.

.

.

xM

ŷM

yM

.

Biophysics, UC Berkeley

fθ* ( x )

~ 53 ~

6/24/2006

Validation (~10%) resp.

x1

Estimation (~90%) resp.

Prediction on a unseen validation data set. Estimation (~90%) stim.

™

M. C-K Wu

How do we assess the model?

. . .

y1 y2

x2

xN

Validation (~10%) stim.

Y=

=X

.

θ = arg max P ( θ | X , Y ) *

.

N

.

= arg max ∏ p ( yi | f θ ( x i ) ) p ( θ )

yN

i =1

\+

x1

ŷ1

x2

ŷ2

y2

.

.

.

.

.

xM

ŷM

yM

.

Biophysics, UC Berkeley

fθ* ( x )

y1

\n ~ 54 ~

6/24/2006

Validation (~10%) resp.

x1

Estimation (~90%) resp.

Prediction on a unseen validation data set. Estimation (~90%) stim.

™

M. C-K Wu

How do we assess the model?

. . .

θ = arg max P ( θ | X , Y )

.

N

.

= arg max ∏ p ( yi | f θ ( x i ) ) p ( θ )

yN

i =1

ŷ1

x2

ŷ2

fθ* ( x )

.

.

.

xM

ŷM

Biophysics, UC Berkeley

.

*

x1 .

y1 y2

x2

xN

Validation (~10%) stim.

Y=

=X

y1 y2

rn(Ŷ,Y) Normalized correlation coefficient % explanable variance

~ 55 ~

. . yM

6/24/2006

Validation (~10%) resp.

x1

Estimation (~90%) resp.

Prediction on a unseen validation data set. Estimation (~90%) stim.

™

M. C-K Wu

Change our assumptions to improve prediction

F = Space of all functions { f }

Noise Distribution & Data = {X, Y} Space of parameters { θ }

M = Model class = { fθ } Prior p( fθ )

.

f*

Likelihood p( Y | fθ(X) )

.θ Prior p( θ )

.f

ML

ML

θ*

.

f ← θ = arg max P ( θ | X, Y ) = arg max ∏ i =1 p ( yi | fθ ( xi ) ) p ( θ ) *

N

*

Biophysics, UC Berkeley

~ 56 ~

6/24/2006

M. C-K Wu

What have people tried for f(x) ? N * θ = arg max ∏ i =1 p ( yi | fθ ( xi ) ) p ( θ ) Likelihood Statistical Gaussian Poisson Binomial Biophysical Integrate and fire model

Model Class Linear models f θ ( x ) = xT β Second order models fθ ( x ) = xT β + xT Bx Linearized models T fθ ( x ) = L ( x ) β Neural network models fθ ( x ) = a + w T tanh ( b + UT x ) Kernel regression models fθ ( x ) = Φ ( x ) , β

Biophysics, UC Berkeley

~ 57 ~

Prior Flat Gaussian Priors Spherical Independence Stimulus covariance Subspace priors Biophysical Smooth Sparse

6/24/2006

M. C-K Wu

How good are we doing?

V2 V4 33% V1 24% 41%

Biophysics, UC Berkeley

~ 58 ~

6/24/2006

M. C-K Wu

Future works

Biophysics, UC Berkeley

~ 59 ~

6/24/2006

M. C-K Wu

Outline ™

The problem

™

The experiment

™

The data

™

The challenges

™

Method & solutions

™

Assessment of solutions & results

™

Applications

Biophysics, UC Berkeley

~ 60 ~

6/24/2006

M. C-K Wu

Some potential applications

Biophysics, UC Berkeley

~ 61 ~

6/24/2006

M. C-K Wu

Some potential applications ™

Face recognition & biometrics

Terrorist target in database Can a computer recognize that these different faces are actually the same person?

Biophysics, UC Berkeley

~ 62 ~

6/24/2006

M. C-K Wu

Some potential applications ™

Face recognition & biometrics

™

Satellite image analysis Are there any tanks or airplanes?

Are there military installations?

Biophysics, UC Berkeley

~ 63 ~

6/24/2006

M. C-K Wu

Some potential applications ™

Face recognition & biometrics

™

Satellite image analysis

™

Non-annotated image content search

Biophysics, UC Berkeley

~ 64 ~

6/24/2006

M. C-K Wu

Some potential applications ™

Face recognition & biometrics

™

Satellite image analysis

™

Non-annotated image content search

™

Unmanned self navigating vehicles

Biophysics, UC Berkeley

~ 65 ~

6/24/2006

M. C-K Wu

Some potential applications ™

Face recognition & biometrics

™

Satellite image analysis

™

Non-annotated image content search

™

Unmanned self navigating vehicles

™

Medical imaging diagnosis

Biophysics, UC Berkeley

~ 66 ~

6/24/2006

M. C-K Wu

Some potential applications ™

Face recognition & biometrics

™

Satellite image analysis

™

Non-annotated image content search

™

Unmanned self navigating vehicles

™

Medical imaging diagnosis

™

Artificial vision for blindness

Biophysics, UC Berkeley

~ 67 ~

6/24/2006

M. C-K Wu

Reference MCK Wu, SV David & JL Gallant (2006) Complete Functional Characterization of Sensory Neurons by System Identification, Annual Review of Neuroscience Vol. 29 Biophysics, UC Berkeley

~ 68 ~

6/24/2006

M. C-K Wu

Acknowledgement Jack Gallant & The Gallant Lab (a.k.a. The G-Force)

NSF IGERT, DOE CSGF & Krell Institute

Biophysics, UC Berkeley

~ 69 ~

6/24/2006

M. C-K Wu

Biophysics, UC Berkeley

~ 70 ~

6/24/2006

M. C-K Wu

Suggest Documents