Community and ecosystem diversity

Community  and  ecosystem  diversity   A.  Priority  research  themes:   The   following   themes   were   considered   as   important   directions   ...
Author: Bathsheba Baker
5 downloads 0 Views 87KB Size
Community  and  ecosystem  diversity   A.  Priority  research  themes:   The   following   themes   were   considered   as   important   directions   for   future   research   due   to   the   limited   knowledge  in  Central  Africa  and  their  pertinence  for  understanding  the  dynamics  of  biodiversity  and   address  conservation  issues:   1.   Address   the   organization   of   community   diversity   with   an   evolutionary   and   functional   perspective.   Biological   inventories   are   necessary   but   not   sufficient   to   understand   the   dynamics   of   natural   communities.   Adding   phylogenetic   and   species   trait   information   help   assess   how   the   functional   roles   of   the   species  in   the   ecosystem,   the   evolutionary   relationships   among  species   and  the  biogeographic   history   of   species   affect   species   assembly.   Hence,   hypotheses   regarding   for   example   competition,   habitat   filtering   or   community   neutrality   can   be   tested   by   integrating   trait   and/or   phylogenetic   information   into   the   analysis   of   community   structure   (e.g.   Webb   et   al.   2002;   Hardy   &   Senterre   2007;   Emerson   &   Gillespie   2008;   Cavender-­‐Bares   et   al.   2009,   Schaefer   et   al.   2011).   Conducting   such   analyses   requires   species   phylogenies   and   databases   for   species   traits   and   niche   characteristics   in   addition  to  standardized  species  inventories  with  environmental  information.     Forest  tree  communities  are  among  the  best  inventoried  communities  in  Central  Africa  due  to  efforts   of  botanists  (e.g.  1  ha  plots)  and  the  inventories  conducted  by  forest  companies  for  management  and   exploitation   plans   (the   interest   of   such   data   to   address   ecological   questions   is   illustrated   by   e.g.   Parmentier   et   al.   2011,   Rejou-­‐Méchain   et   al.   2011).   As   phylogenies   of   tree   species   are   under   construction   using   DNA   barcodes,   community   phylogenetic   analysis   can   easily   be   applied   on   tree   communities   (e.g.   Hardy   &   Senterre   2007).   Short   term   research   efforts   requires   compiling/standardizing   datasets   (logging   companies   +   botanical   inventories),   creating   functional   trait   databases   (expert   knowledge   from   field   botanist)   and   developing   further   statistical   tools   for   characterizing  the  phylogenetic  and  functional  structure  of  communities.     Similar   studies   should   also   be   conducted   on   animal   communities.   However,   it   is   first   necessary   to   identify  key  sites  and  taxa  with  adequate  data  (e.g.  invertebrates,  fishes,  canopy  studies,  terrestrial   vertebrates).   2.  Impact  of  habitat  fragmentation  and  hunting  on  key  animal  species  (hornbills,  gorillas,…)  for   plant  species  regeneration.   Many  African  plants  depend  on  medium-­‐sized  to  large  animals  for  their  dispersal  and  regeneration.   Hunting  and  habitat  fragmentation  could  therefore  have  profound  consequences  on  the  vegetation   by   changing   the   relative   success   of   plant   species   according   to   their   regeneration   and   dispersal   syndromes   (e.g.   Muller-­‐Landau   2007,   Stoner   et   al.   2007,   Wang   et   al.   2007,   Wright   et   al.   2007).   However,   few   quantitative   assessments   of   the   impact   of   hunting   and   fragmentation   on   future   vegetation  changes  have  been  performed  in  Central  Africa  (e.g.  Blake  et  al.  2009,  Vanthomme  et  al.   2010).  The  relatively  intact  fauna  in  some  preserved  areas  of  Central  Africa  offer  the  opportunity  to   bridge  this  gap.  Research  projects  should  be  developed  to:   -­‐

compare  plant  regeneration  in  hunted  versus  intact  forests  harboring  similar  flora    

-­‐

understand   the   relationship   between   forest   size   and   community   structure   in   anciently   or   recently  fragmented  landscapes  and  non-­‐fragmented  landscapes  

  3.  Paleo-­‐environment  reconstruction   A   good   description   of   paleo-­‐environments   is   essential   to   infer   the   impact   of   past   climate   changes   and/or  human  activities  on  ecosystems  (e.g.  Adams  &  Faure  1997).  It  also  permits  to  scale  the  rate  of   change   of   ecosystems   and   their   resilience   to   disturbance,   providing   parameters   to   model   their   dynamic.  For  example,  palynological  data  from  sediments  proved  very  informative  to  document  the   vegetation  history  during  the  Holocene.  However,  most  data  in  Central  Africa  come  from  coastal  sites   (e.g.  Maley  &  Brenac  1998;  Bonnefille  2007,  Ngomanda  et  al.  2007).  It  is  therefore  important  identify   new   sites   suitable   for   pollen   analyses   within   the   Congo   basin   (cf.   CoForChange   project:   http://www.coforchange.eu).     While   paleo-­‐environment   studies   have   mostly   focused   on   vegetation,   biogeographic   and   phylogeographic   analyses   of   freshwater   species   (fishes,…)   should   provide   new   insights   on   the   history   of   hydrological   basins   (e.g.   Bermingham   &   Martin   1998).   This   largely   neglected   subject   in   Central   Africa  should  be  investigated  because  changes  in  the  delimitation  of  hydrological  basins  might  reveal   major  climatic  changes  related  to  the  amount  and  distribution  of  precipitations.   At  the  frontier  of  scientific  progresses,  the  ongoing  development  of  technologies  to  study  DNA  offer   new   perspectives   to   study   past   communities   using   ancient   DNA   (de   Bruyn   et   al.   2011).   Such   approaches   proved   successful   in   boreal   and   temperate   areas   (e.g.   Sønstebø   et   al.   2010).   Although   warm   tropical   regions   are   much   less   favorable   for   DNA   preservation,   pilot   studies   should   be   conducted   to   assess   whether   paleo-­‐botanical   and   zoological   communities   could   be   inferred   from   DNA  in  soil  sediments  using  next-­‐generation  sequencers.     4.  Consequences  on  communities  of  biological  invasions   Biological   invasions   constitute   a   major   threat   to   the   native   biodiversity,   especially   for   isolated   ecosystems   (e.g.   islands;   e.g.   Mooney   &   Cleland   2001).   In   Central   Africa   this   occurs   in   particular   in   river  and  lake  ecosystems  where  introduced  fish  species  can  cause  substantial  disturbances  (Balirwa   et   al.   2003)   which   are   not   much   documented   (García-­‐Berthou   2007).   Research   projects   must   be   developed  on  the  impact  of  aquaculture  on  invasive  fishes  and  the  resulting  changes  on  native  fish   species,  water  turbidity  and  the  invertebrate  communities.     While  continental  tropical  forest  ecosystems  are  relatively  resistant  towards  invasive  species,  there   are  exceptions.  One  of  these  is  a  small  stinging  invasive  ant,  Wassmania  auropunctata,  that  currently   spreads   into   African   forests   where   it   affects   both   vertebrate   (Walsh   et   al.   2004)   and   invertebrate   communities   (Kendra   2006).   However,   there   is   still   little   knowledge   on   its   impact   on   for   example   soil   communities   (e.g.   Le   Breton   et   al.   2003).   Hence,   studies   comparing   invaded   and   non-­‐invaded   sites   should  be  started.    

B.  Pertinence  for  conservation:   The  following  scientific  questions  are  particularly  relevant  for  conservation:   -­‐

What  are  the  most  diverse  /  original  communities  for  different  taxonomic  groups?  

-­‐

What  are  the  environmental  /  historical  determinants  of  biodiversity  patterns?  

-­‐

What  is  the  resistance  and  resilience  of  communities  with  respect  to  perturbations  (climate   changes,  fragmentation,  unsustainable  exploitation,  invasive  species,…)?  

  C.  Short-­‐term  /  long-­‐term  activities:   1.  Identification  of  existing  inventory  datasets  and  resources,  including  paleo-­‐data   2.  Identification/prioritization  of  new  sites  [select  range  of  habitats  and  levels  of  diversities]   3.  Conduct  pilot  studies  and  experiments  [perturbations;  past  community  reconstruction  from  DNA]   4.  Given  pilot  studies  results,  construct  large  integrative  projects  to  test  resistance  and  resilience   across  the  Congo  basin  on  many  taxonomic  components  and  with  a  strong  focus  on  functional   ecology  (interactions  among  guilds).   5.  Construct  and  parameterize  predictive  models  (e.g.  climate,  population  dynamics)     D.  Strategies  for  future  collaborations  (finance,  outreach,  collaborations,  evaluation)   1.  Solicit  interest  from  participants  at  the  conference  via  list  serve   2.  List  funding  agencies/programs  (with  deadlines  for  applications)     E.  Facilities  available  /  needed   Need  for  well  resolved  environmental  layers  (cf.  Michelle  Lee).   Assess  and  develop  existing  networks  of  paleosites.     Develop  a  high  density  network  of  climate  monitoring  stations  (take  contact  with  telephone   companies  for  partnerships  using  their  antennas).   Develop  a  network  of  hydrological  stations  in  Central  Africa  analogous  to  the  one  developed  by  IRD   in  West  Africa.   Extend  standardized  monitoring  programs  on  diverse  taxonomic  groups  throughout  Central  Africa   (focus  on  National  parks).      

Cited  references:   Adams  J.M.  &  Faure  H.  (1997)  (eds.),  QEN  members.  Review  and  Atlas  of  Palaeovegetation:   Preliminary  land  ecosystem  maps  of  the  world  since  the  Last  Glacial  Maximum.  Oak  Ridge   National  Laboratory,  TN,  USA.  http://www.esd.ornl.gov/ern/qen/adams1.html.     Balirwa,  J.  S.,  Chapman,  C.  A.,  Chapman,  L.  J.,  Cowx,  I.  G.,  Geheb,  K.,  Kaufman,  L.,  Lowe-­‐McConnell,  R.   H.,  Seehausen,  O.,  Wanink,  J.  H.,  Welcomme,  R.  L.  &  Witte,  F.  (2003).  Biodiversity  and  fishery   sustainability  in  the  Lake  Victoria  Basin:  an  unexpected  marriage?  BioScience  53,  703–715.   Bermingham  E,  Martin  AP:  Comparative  mtDNA  phylogeography  of  neotropical  freshwater  fishes:   testing  sharded  history  to  infer  the  evolutionary  landscape  of  lower  Central  America.  Mol  Ecol   1998,  7:499-­‐518.   Blake,  S.,  Deem,  S.  L.,  Mossimbo,  E.,  Maisels,  F.  and  Walsh,  P.  (2009).  Forest  Elephants:  Tree  Planters   of  the  Congo.  Biotropica,  41:  459–468.     de  Bruyn  M,  Hoelzel  AR,  Carvalho  GR,  Hofreiter  M.  (2011)  Faunal  histories  from  Holocene  ancient   DNA.  Trends  in  Ecology  &  Evolution  26:  405-­‐413.   Bonnefille  R  (2007)  Rainforest  responses  to  past  climate  changes  in  tropical  Africa.  In:  Tropical   rainforest  responses  to  climate  change  (eds  Bush  MB,  Flenley  JR),  pp.  117–170,  Praxis  Publishing,   Chichester.   Cavender-­‐Bares  J.,  Kozak,  K.,  Fine,  P.  &  Kembel,  S.  (2009).  The  merging  of  community  ecology  and   phylogenetic  biology.  Ecology  Letters,  12,  693-­‐715.   Emerson,  B.C.  &  Gillespie,  R.  G.  (2008).  Phylogenetic  analysis  of  community  assembly  and  structure   over  space  and  time.  Trends  in  Ecology  and  Evolution,  23,  619-­‐630.   García-­‐Berthou,  E.  (2007),  The  characteristics  of  invasive  fishes:  what  has  been  learned  so  far?.   Journal  of  Fish  Biology,  71:  33–55.   Hardy,  O.  J.  &  Senterre,  B.  (2007).  Characterizing  the  phylogenetic  structure  of  communities  by  an   additive  partitioning  of  phylogenetic  diversity.  Journal  of  Ecology,  95,  493–506.   Kendra  L.  W  (2006)  Impact  of  the  Little  Fire  Ant,  Wasmannia  auropunctata,  on  Native  Forest  Ants  in   Gabon.  Biotropica  38:     Le  Breton,  J.,  J.H.C.  Delabie,  J.  Chazeau,  and  H.  Jourdan.  2003.  Immediate  impacts  of  invasion  by   Wasmannia  auropunctata  (Hymenoptera:  Formicidae)  on  native  litter  ant  fauna  in  a  New   Caledonian  rainforest.  Austral.  Ecol.  28:  204-­‐209.   Maley  J,  Brenac  P  (1998)  Vegetation  dynamics,  palaeoenvironments  and  climatic  changes  in  the   forests  of  western  Cameroon  during  the  last  28,000  years  B.P.  Review  of  Paleobotany  and   Palynology,  99,  157–187.   Mooney,  H.A.  &  Cleland,  E.E.  (2001).  The  evolutionary  impact  of  invasive  species.  Proc.  Natl.  Acad.   Sci.  USA,  98,  5446–5451.   Muller-­‐Landau,  H.  C.  2007.  Predicting  the  long-­‐term  effects  of  hunting  on  plant  species  composition   and  diversity  in  tropical  forests.  Biotropica  39:  372-­‐384.   Ngomanda  A,  Jolly  D,  Bentaleb  I  et  al.  (2007)  Lowland  rainforest  response  to  hydrological  changes   during  the  last  1500  years  in  Gabon,  Western  Equatorial  Africa.  Quaternary  Research,  67,  411– 425.   Parmentier  I,  et  al.  (2011).  Predicting  alpha  diversity  of  African  rain  forests:  models  based  on  climate   and  satellite-­‐derived  data  do  not  perform  better  than  a  purely  spatial  model.  Journal  of   Biogeography  38:  1164-­‐1176.  

Réjou-­‐Mechain  M,  Flores  O,  Bourland  N,  Doucet  J-­‐L,  Fétéké  R  F,  Pasquier  A,  Hardy  OJ  (2011)  Spatial   aggregation  of  tropical  trees  at  multiple  spatial  scales.  Journal  of  Ecology  (in  press)   Schaefer  H,  Hardy  OJ,  Silva  L,  Barraclough  T,  Savolainen  V  (2011)  Testing  Darwin’s  naturalisation   hypothesis  in  the  Azores.  Ecology  Letters  14:389-­‐396.   Sønstebø,  J.  H.,  Gielly,  L.,  Brysting,  A.  K.,  Elven,  R.,  Edwards,  M.,  Haile,  J.,  Willerslev,  E.,  Coissac,  E.,   Rioux,  D.,  Sannier,  J.,  Taberlet,  P.  and  Brochmann,  C.  (2010).  Using  next-­‐generation  sequencing  for   molecular  reconstruction  of  past  Arctic  vegetation  and  climate.  Molecular  Ecology  Resources    10:   1009-­‐  1018  .   Stoner,  K.  E.,  P.  Riba-­‐Hern´Andez,  K.  Vulinec,  J.  E.  Lambert.  2007.  The  role  of  mammals  in  tropical   forest  regeneration  and  some  possible  consequences  of  their  elimination:  An  overview.  Biotropica   39:  316-­‐327.   Vanthomme  H,  Belle  B,  Forget  P-­‐M  (2010)  Bushmeat  Hunting  Alters  Recruitment  of  Large-­‐Seeded   Plant  Species  in  Central  Africa.  Biotropica  42:  672–679.   Wang,  B.  C.,  M.  T.  Leong,  T.  B.  Smith,  V.  L.  Sork.  2007.  Hunting  of  mammals  reduces  seed  removal   and  dispersal  from  the  Afrotropical  tree,  Antrocaryon  klaineanum  (Anacardiaceae).  Biotropica  39:   340-­‐347.   Webb,  C.  O.,  Ackerly,  D.  D,  McPeek,  M.  A.  &  Donoghue,  M.  J.  (2002).  Phylogenies  and  community   ecology.  Annual  Review  of  Ecology,  Evolution  and  Systematics,  33,  475–505.   Walsh,  P.  D.,  P.  Henschel,  K.  A.  Abernethy,  C.E.G.  Tutin,  P.  Telfer,  and  S.  A.  Lahm.  2004.  Logging   speeds  little  red  fire  ant  invasion  of  Africa.  Biotropica  36:  637-­‐641.   Wright,  S.  J.,  A.Hernandez,  R.  Condit.  2007.  The  bush  meat  harvest  alters  seedling  banks  by  favoring   lianas,  large  seeds,  and  seeds  dispersed  by  bats,  birds,  and  wind.  Biotropica  39:  363-­‐371.    

Suggest Documents