CLONING OF EUKARYOTIC ELONGATION FACTOR 3 FROM PHYTOPHTHORA INFESTANS

CLONING OF EUKARYOTIC ELONGATION FACTOR 3 FROM ​ PHYTOPHTHORA  INFESTANS    Rachael Han, Rayleen Hu, Shawn Kant, Siddharth Kantamneni, Alon Millet,   ...
Author: Kathlyn Snow
4 downloads 0 Views 659KB Size
CLONING OF EUKARYOTIC ELONGATION FACTOR 3 FROM ​ PHYTOPHTHORA  INFESTANS    Rachael Han, Rayleen Hu, Shawn Kant, Siddharth Kantamneni, Alon Millet,   Meera Sakthivel, Kush Shah, Stephanie Tang, Parisorn Thepmankorn,   Alice Vinogradsky, Ronald Wang, Rachel Weinstein    Advisor: Dr. Stephen Dunaway  Assistant: Mitchell Dittus      ABSTRACT    Eukaryotic elongation factor three (eEF3) is a highly conserved ATPase essential for  the survival of most, if not all, lower eukaryotic organisms.  Required for the elongation  process of protein translation, eEF3 is critical in aiding with the removal of deacylated tRNA  from the E­site of the ribosomal complex.  Found exclusively within lower eukaryotes such as  fungi, but absent in higher eukaryotes, eEF3 has important implications as a future drug target  against pathogenic fungi; inhibition of eEF3 would directly induce death in fungi but have no  anticipated deleterious effects of any kind on host cells. In order to better understand the  mechanisms by which eEF3 functions, this study presents an attempt at cloning​  ​ the eEF3 gene  from ​ P. infestans​ , commonly known as “potato blight,” via the Gibson Assembly process.  Transformation of ​ E. coli ​ with plasmid DNA containing the cloned ​ P. infestans​  eEF3 is also  detailed.  However, the transformation ultimately failed due to partially degraded ampicillin,  resulting in a lesser concentration of viable anti­bacterial chemicals, which was evidenced by a  DNA smear rather than clear, delineated bands. Despite failing to accomplish the ultimate goal,  possible avenues are addressed regarding future research in the realm of identification and  validation of eEF3 inhibition as a potential drug target against pathogenic fungi.     KEYWORDS​ : eukaryotic elongation factor 3, antifungal drug target, ​ P. infestans​ , Gibson  Assembly, plasmid shuffle      INTRODUCTION    Due to the omnipresence of the bacteria and viruses that dominate the domain of  diseases, pathogenic fungi have largely been forgotten for the better part of medical history (1).  However, over the past twenty years, the situation has changed dramatically due to the  astronomical increase of invasive fungal infections, especially in the emergency room.  This  phenomenon can be attributed to a variety of reasons.  For one, many fungi once thought to be  nonpathogenic have been deemed otherwise, creating a significant re­identification crisis for  researchers (1).    In addition, many emergency room patients possess severely compromised immune  systems as a result of intensive therapies and procedures – chemotherapy and radiation therapy  [8­1] 

for cancer treatment, organ transplant recoveries, or major surgery recoveries – that  dramatically heighten the likelihood of fungal infection occurrences (1).  Under such  circumstances, pathogenic fungi gain easy access into patients’ bodies and have opportune  chances to propagate illness.  Symptoms of some of the most prevalent fungal diseases include  wheezing, chest pains, vomiting blood, chills and fevers.    Furthermore, in the period of time between the years 2007 and 2009, there has been a  27% increase in the demand for antifungal drugs. This notable increase is 67 times greater than  the increase in demand for antibacterial and antiviral drugs over the same time frame,  emphasizing the extent of the proliferation of invasive fungal infections in the recent past.  Unfortunately, the mortality rate for critically ill patients with invasive fungal infections  remains staggeringly high despite the increase in drug usage: current survival rates hover  around 42% to 46% (1).  Common antifungal treatments, such as amphotericin B, result in a  wide array of negative side effects in patients that often cause new problems, compounding the  actual fungal infection itself with issues such as nephrotoxicity and hepatotoxicity; side effects  of amphotericin B specifically include convulsions, hallucinogenic vision, wheezing, unusual  bleeding, rashes, and potentially fever, all of which naturally render doctors incredibly hesitant  to prescribe the medication (2).  Therefore, given the current situation concerning invasive  fungal infections in the United States, as well as around the world, and the ineffectiveness of  current modes of therapy, there is a dire need for a new approach to treatment or a new kind of  drug designed specifically for combatting fungal infections.    While there is a plethora of fungal diseases which afflict numerous organisms, one of  the most destructive quasi­fungal diseases is caused by an oomycete known as ​ Phytophthora  infestans​ , more commonly known as potato blight.  This plague is cause for great concern,  since it targets the third most essential food source for the entire human population.  About two  hundred years ago, the widespread Irish potato famine of the 1840s was a very well­known  example of the ability of ​ P. infestans ​ to rapidly wipe out entire crop harvests, leaving little for  farmers to salvage; more than one million people died and another 1.5 million fled from  Ireland during the 1840s because of the sweeping famine, immigrating primarily to the United  States.  Fortunately, the discovery of the existence of microorganisms in the 1860s by means of  the development of germ theory as well as the ensuing creation of fungicides prevented further  spread of the scourge.  Within the past 20 years, however, the infamous epidemic has  reemerged, this time in Russia and other nations around the globe, with significantly greater  resistance to the potato’s natural defenses and various fungicides, eliminating upwards of 70%  of crops each year (3).     The recurrence of this newer, more robust ​ P. infestans​  can attribute its severity to the  high mutation rate of the oomycete, which allows the pathogen to overcome many  impediments, both natural and artificial (3).  Since oomycetes are capable of sexual  reproduction, the genome of individuals within a population can vary widely. Rapid  reproduction can spread resistance genes among the members of the population through the  recombination that occurs during gamete production (4).  Worse still is the fact that oomycetes,  when fertilized, release spores into the air, further dispersing the plague throughout crops.  This  does not mean, however, that preventing ​ P. infestans​  from reproducing sexually would halt  [8­2] 

their genetic mutation.  Earlier studies have shown that asexually reproducing oomycetes have  not only high variation within a population, but also immense genomic instability; in other  words, the genes can transmute rather easily, further hindering scientists’ ability to synthesize a  drug to combat the disease (5).  Moreover, there may be mechanisms within the potato blight  that drive the rapid evolutionary changes which threaten plants and perplex many scientists (6).  While this highly plastic affliction poses a serious and widespread threat to the potato crop,  there may be hope for treatment through a crucial protein known as eukaryotic elongation  factor 3.    All organisms, from simple fungi to humans, rely on proper translation for protein  synthesis.  As with many other cellular processes, translation is highly complex, involving the  interaction of  multiple different proteins and ribonucleic acids (RNA).  Of the translational  proteins involved, eEF3 is one of the most important in lower eukaryotic organisms such as  yeast and other fungi, and works together with eukaryotic elongation factors one and two  (eEF1 and eEF2) in translation to produce viable proteins (7).  eEF3 is a single peptide with an  internal structure that allows it to interact with tRNA synthetases, most likely to monitor the  availability of aminoacylated tRNA needed for further peptide elongation.  It also interacts  with deacylated tRNA in the ribosomal E site for its removal, thereby allowing aminoacylated  tRNA to bind to the ribosomal A site, which in turn allows the elongation process to continue  and the forming polypeptide chain to grow.  The eEF3 protein N­terminus, so­called because  of the end amine group (NH​ ), interacts with the ribosomal protein subunits, allowing it to bind  2​ with the ribosome and carry out its function in translation.  The carboxyl (COOH) C­terminal  end of the eEF3 contains positively charged lysines, enabling it to interact with the ribosome,  and acts as the main area of the protein that binds to the ribosomal subunits.  Structurally, eEF3  serves another function as an ATPase and has a repeated, medium­sized domain of around 200  amino acids; such domains include the HEAT, ABC1, & ABC2 domains (Fig. 1).  Furthermore, the protein also has two nucleotide­binding sequence motifs, and while its  functional significance is not completely understood, the two motifs are implicated in the ATP  hydrolytic activity of eEF3, which is essential for the role the protein plays in effective  translation (9).        Figure 1. ​ eEF3 crystal structure.  ​ General  structure of eukaryotic elongation factor 3  (eEF3) from ​ S. cerevisiae ​ and some of the  protein domains (HEAT, ABC1, ABC2,  HB) associated with it. ADP is adenosine  diphosphate, ABC1/2 are ATP Binding  Cassette 1/2, and 4HB is 4 Helix Bundle  (8).        [8­3] 

During translation, eEF3 maintains the crucial role of governing the removal of the  deacylated tRNA from the exit site, or the E site (Fig. 2).  The ribosomal E­site contains the  40S subunit head and the L1 stalk, which regulate the tRNA’s presence in the E­site.  eEF3  affects the two aforementioned structures, by moving the L1 stalk into a position unlocking the  E­site and thus allowing the tRNA to leave the ribosome (Fig. 3).  The chromodomain  (residues 761­869) of the ABC2 domain in eEF3 is involved in the movement of the L1 stalk.  By governing the removal of the deacylated tRNA from the E­site of the ribosome, eEF3  allows for the continuation of translation, resulting in elongation of the polypeptide and  eventual  completion of a protein product (8).                                     

Figure 2. ​ Model of eEF3 function. ​ eEF3 is responsible for the removal of spent tRNA from  the E site of the ribosome, but exists only in lesser eukaryotes like fungi (8).      Figure 3. ​ eEF3 protein  structure. ​ Diagram  demonstrates the position of the  A and E sites relative to other  structures of the ribosome. The  movement of the L1 stalk from  the closed to open position, and  the switch of the chromodomain  of the eEF3 needed for  movement of the L1 stalk are  represented by the arrows (8).     

[8­4] 

eEF3 is uniquely required by fungus­like organisms in the translational process of  protein synthesis.  Ribosomes in various other low level and high level eukaryotes do not  require eEF3.  Serving no known function in such organisms, the protein is neither present nor  expressed in upper level eukaryotes such as humans.  For instance, mammalian 80S ribosomes  do not require additional protein factors, such as eEF3, for protein synthesis (10).  Several  lower level, non­fungal eukaryotes also do not utilize this elongation factor.  For example, in  metazoans, ribosomes possess bound factors, not soluble factors, that perform an eEF3­like  function.  One such bound factor is RbbA, ribosome­bound ATPase, which is found in  Escherichia coli​  (11).  However, this elongation factor is required in various fungi.  Ascomycete and basidiomycete yeast both possess a functioning eEF3 (10).  As a matter of  fact, the eEF3 in ​ Candida albicans​ , a diploid fungus yeast, was even functionally conserved  within  ​ S. cerevisiae​ , an ascomycete yeast.  Constructed with 1050 amino acids, the ​ Candida  albicans​  eEF3 shares a 94% identity with the ​ S. cerevisiae​  eEF3 in the region of the protein  that contains its catalytic domain (12).  Since eEF3 is not conserved in higher level eukaryotes,  it is an ideal antifungal drug target as it eliminates the threat of host toxicity.    Within fungi and other lower level eukaryotes, eEF3 is known to be a vital factor in  protein translation, and thus cell survival as well (13).  One such eukaryote is ​ S. cerevisiae​ .  In  the current investigation, ​ S. cerevisiae​  serves as a model organism to determine if eEF3 can be  functionally conserved within a wider variety of species.  ​ S. cerevisiae​ , more commonly  known as baker’s yeast, is often used as a model for more complex fungi and potentially even  humans.  The proteome of ​ S. cerevisiae​  contains orthologs for nearly thirty percent of human  genes associated with disease, making it a suitable model for studying gene expression and  regulation (14).  While the goal of the research performed and further detailed in this paper  consisted of cloning ​ P. infestans​  eEF3 via the Gibson Assembly process, the overarching  question at hand is determining whether the eEF3 gene could be functionally conserved  amongst a wider variety of fungi.  To do so, it is necessary to determine if the eEF3 from ​ P.  infestans​  would be capable of functionally replacing the eEF3 in the ​ S. cerevisiae​ .  If eEF3  were to be conserved within these organisms, there is a potential for use in developing a more  universalized antifungal drug that may combat fungal diseases without any harm of any kind to  the human host.      MATERIALS AND METHODS    Preparation of LB Broth and LB Agar   The Luria­Bertani broth was prepared by combining 10 g/L of tryptone (DIFCO  Fisher­Scientific, Pittsburgh, PA), 10 g/L sodium chloride (Sigma­Aldrich, St. Louis, MO),  and 5 g/L of yeast extract (DIFCO Fisher­Scientific) with doubly distilled water before  adjusting pH to 7.0 with 1.0 N sodium hydroxide (Sigma­Aldrich).  Luria­Bertani agar was  prepared in precisely the same manner as Luria­Bertani broth, but with the addition of 20 g/L  of agar (DIFCO Fisher­Scientific). Both solutions were autoclaved prior to inoculation with  bacteria.       [8­5] 

Preparation of Plasmid Vector  In order to create a viable plasmid vector capable of binding with the target eEF3 gene,  a restriction digest on the plasmid vector targeting specific points within the DNA sequence is  necessary.  All reagents and materials for the digestion were acquired from New England  Biolabs.  After isolation of vector DNA, a digestion reaction was prepared as 25% (v/v) vector  DNA solution, 10% (v/v) Cut Smart Buffer solution, 5% (v/v) XhoI restriction enzyme, and  5% (v/v) BamHI restriction enzyme for total 20 μL with ddH​ O.  Restriction enzymes were  2​ acquired from Integrated DNA Technologies (Coralville, IA).  Digestion solutions were  incubated at 37°C for 60 minutes.    Gel Electrophoresis of Digested Plasmid Vector  DNA digests were stained with gel loading dye (New England Biolabs, Ipswich, MA)  for visibility and 20 μL of stained DNA were added to each well of a 1% (w/v) agarose gel.  The gel was run under a 100V current for 45 minutes before the gel was extracted from the  chamber and analyzed to identify the correct section of isolated vector plasmid.    Recovery of Plasmid Vector from Agarose Gels  All reagents and materials for recovery of plasmid vector from agarose gels were  acquired from Zymo Research (Irvine, CA).  Recovery of DNA was performed as per  Zymoclean kit directions.  DNA was sliced from the gel above UV light and weighed to the  nearest 0.1 mg.  Three volumes of agarose dissolving buffer were added to each gel slice and  the solution was incubated at 50°C for 10 minutes.  The dissolved gel was loaded into the spin  column­collection tube complex and centrifuged at 13,000 rpm for 30 seconds.  The flow  through was discarded and 200 μL of DNA wash buffer was added.  After centrifugation at  13,000 rpm for 30 seconds, the flow through was discarded and 6 μL of doubly distilled water  was added to the vial.  The column was moved to a 1.5 mL tube, and after a third  centrifugation at 13,000 rpm for 30 seconds, the resulting flow through containing the  recovered plasmid vector was stored at 4°C until further experimentation.     Gibson Assembly Reaction   Gibson Assembly is a process by which multiple strands of overlapping DNA  molecules can be joined together using an isothermal, single­reaction method. All reagents and  materials for the Gibson Assembly were acquired from New England Biolabs, and directions  were followed as per the protocol given by the supplier.  The eEF3 gene that was to be  integrated into the plasmid vector, supplied by Integrated DNA Technologies (Coralville, IA),  was divided into two sections ​ approximately 1600 base pairs each​ .  After the digestion of the  plasmid vector, the Gibson Assembly reaction was prepared with 4 μL of the gel­purified  vector, 2 μL eEF3 Gene Block 1, 2 μL eEF3 Gene Block 2, 2 μL distilled water, and 10 μL  Gibson Assembly Master Mix. The reaction was incubated at 50°C waterbath for 15 minutes to  facilitate the annealing of ​ the two lab formulated DNA strands of ​ P. infestans ​ eEF3 gene to the  plasmid, creating a completed recombinant plasmid for transfection into ​ E. coli ​ (Fig. 4).          [8­6] 

Growth Conditions of ​ E. coli  E. coli ​ was incubated at 37°C in LB broth containing 50 μg/mL of ampicillin, which  served as a marker and helped to determine which of the resulting ​ E. coli ​ colonies contained  the desired plasmid. 

  Figure 4. ​ Gibson Assembly concept​ .  A schematic representation of the Gibson Assembly  process with two eEF3 inserts and 15­20 bp overlapping ends.      Transformation of ​ E. coli  Competent DH5α ​ E. coli​  was acquired from Invitrogen (Carlsbad, CA) and  transformed in a 5:2 ratio (v/v) of bacteria to plasmid solution from the Gibson assembly.  After pulse spinning to mix thoroughly, the bacteria was incubated on ice for 30 minutes  before being heat shocked in a 42°C water bath for exactly 30 seconds.  The transformed  bacteria were then allowed to grow in 1 mL of outgrowth media (New England Biolabs).  After  1 hour of incubation at 37°C in a shaking incubator, the bacteria was pelleted by centrifugation  at 13,000 rpm for 30 seconds.  The supernatant was discarded and the pellet was resuspended  in 200 μL of SOC outgrowth media before being plated onto LB agar plates by means of glass  spreading beads. Plates were incubated for 24 hours at 37°C to allow colonies to develop.     Isolation of ​ P. infestans eEF3 Plasmid from ​ E. coli  All materials and reagents for the isolation of DNA were acquired from QIAGEN  (Germantown, MD).  After development of colonies, bacteria were swabbed with an  inoculation loop and allowed to grow in microcentrifuge tubes containing LB media with 50  µg​ /mL of ampicillin.  The bacteria were pelleted by centrifugation at 13,000 rpm for 3 minutes  at room temperature.  After resuspension in 250 μL of Buffer P1, 250 μL of Buffer P2 was  [8­7] 

added and mixed thoroughly into the solution by inversion four to six times.  350 μL of Buffer  N3 was added to each of the tubes.  Tubes were inverted four to six times.  The solutions were  then centrifuged at 13,000 rpm for 10 minutes.  The pellet was discarded and the supernatant  was transferred to a QIAprep spin column by decanting.  After 60 seconds of centrifugation at  13,000 rpm, the flow through was discarded and the column was washed with 750 μL Buffer  PE.  Flow through was discarded again and centrifuged again to remove residual buffer before  the column was moved to a clean microcentrifuge tube.  50 μL of sterile water was added to  the center of the column.  DNA was eluted by centrifugation at 13,000 rpm for 60 seconds.    Digestion of​  P. infestans​  eEF3 Plasmid  All reagents and materials for the digestion were acquired from New England Biolabs.  After isolation and purification of ​ P. infestans ​ plasmid, a digestion reaction was prepared as  25% (v/v) ​ P. infestans ​ plasmid, 10% (v/v) Cut Smart Buffer solution, 5% (v/v) XhoI restriction  enzyme, and 5% (v/v) BamHI restriction enzyme made up to 20 μL with ddH​ O.  Restriction  2​ enzymes were acquired from Integrated DNA Technologies. Recognition sites for the  restriction enzymes are shown below (Fig. 5).      Figure 5. ​ Recognition  sites for restriction  enzymes​ . A  schematic of the  recognition sites for  XhoI and BamHI, the  two restriction  enzymes used in the  DNA digests (13).                                     [8­8] 

RESULTS    In Figure 6, gel electrophoresis was performed to separate DNA that was digested using  restriction enzymes BamHI and XhoI. In the gel, the DNA isolated was the plasmid vector  which would later be used in the Gibson Assembly to insert lab­produced ​ P. infestans ​ eEF3  gene. Correctly isolating the digested plasmid vector is important because it ensures that the  digested pieces of the vector will not once again bind to each other, and Gene Block 1 and 2  can bind to the correct sequence to create the final vector plasmid.  Lane 1 and 5 contained  DNA digest samples while Lane 3 served as the control, the ladder. The gel was then placed on  a UV box and the visible bright orange bands were cut from the agar gel to isolate the DNA. A  ZymoClean protocol was used to isolate the digested DNA from the agar for use in the Gibson  Assembly.        Lane               8       7        6       5       4        3        2        1                                          Figure 6.​  Gel electrophoresis of DNA digest. ​ This figure shows a recreated image of the gel  electrophoresis of DNA digest. In order to avoid prolonged exposure to ultraviolet (UV)  radiation, an image of the gel could not be taken. Note the gel background is purple and the  bands were bright orange due to some UV radiation. Lane 1 and 5 contain digested DNA.  Lane 3 contains the marker. Bands are linearized plasmid after cutting by BamHI and XhoI  restriction enzymes.    [8­9] 

In Figure 7, lanes one, two, three, six, seven, and eight contained the digested plasmid  vector DNA that was purified from ​ E. coli​ . Lane four contained the DNA marker which was  used as a control to compare the bands from the samples.  Lane five contained the undigested  vector DNA to ensure that there was DNA present within our samples. Because the digested  plasmid vector DNA was once again digested using restriction enzymes BamHI and XhoI, the  P. infestans ​ eEF3 gene would have been cut away and separated as the ends of the gene  contain the DNA sequence targeted by the two restriction enzymes. The gel was therefore used  to determine if the ​ P. infestans ​ eEF3 gene was present within the plasmids transformed into  and copied by the ​ E. coli​ , as the gel isolates DNA fragments based on their size and length.  Since there is little to no chance of mutations creating a DNA fragment with the same length  and DNA sequence endpoints as the ​ P. infestans ​ eEF3 gene, the gel ensures that the correct  plasmid was transformed into the ​ E. coli​ .      Lane   8        7        6        5       4     3         2        1                                                   

Figure 7. ​ Gel electrophoresis of purified ​ E. coli ​ plasmid. ​ This figure shows an image  taken of the gel from the electrophoresis after isolation of the plasmid from ​ E. coli​ . Lane 4  contains the marker, lane 5 contains the undigested sample, and all other lanes are digested  plasmid DNA. Note the existence of smears rather than clearly delineated bars in all lanes  with samples (lanes 1,2,3,6,7, and 8).   [8­10] 

  The results were inconclusive, as no distinct bands of DNA were formed in the final gel  electrophoresis. Rather, faint smears of DNA can be seen along the entire length of the lanes.  As a result, it can be determined that the ​ P. infestans ​ eEF3 plasmid was not successfully  transformed into the ​ E. coli​  or cloned, because the presence of any plasmid in the sample  would have formed distinct bands on the gel.  No distinct band is visible for the undigested  DNA sample due to DNA shearing by rough micropipetting.      DISCUSSION    In this study, the question was asked whether the eEF3 gene from ​ P. infestans ​ could be  successfully cloned into ​ E. coli​  bacteria for further use.  Thus, the purpose of the research  project was to clone the ​ P. infestans ​ eEF3 gene successfully so that it might be transformed  into other fungal organisms. Future studies can be conducted with the hopes of showing the  potential of eEF3 as a universal antifungal drug target due to functional conservation of the  protein from evolution.    Initially, the DNA vector plasmid was digested using the restriction enzymes BamHI  and XhoI in order to create complementary sequences on the ends of the plasmid that would  allow Gene Blocks 1 and 2 to attach.  A gel electrophoresis was conducted using the digested  plasmid to separate the different pieces of the plasmid.  The desired portion of the digested  plasmid was then successfully identified and cut out of the agar by comparing the bands to the  ladder under ultraviolet light.  As shown in Figure 6, the first gel electrophoresis was  successful because we observed the presence of bands of different lengths, allowing for the  isolation of the segments of the plasmid which were 8 kb to recombine with eEF3 in Gibson  Assembly.  It is essential to note that an image could not be taken due to the risk of prolonged  exposure of UV light to the DNA in the gel, since strong radiation like UV light poses the risk  of causing excessive damage to DNA.  After running a successful gel, the laboratory­made ​ P.  infestans ​ eEF3 gene could then be used in the Gibson Assembly reaction to be integrated into  the isolated plasmid vector from the gel.      After the processes of ​ E. coli​  growth, purification, and digestion previously detailed in  Materials and Methods​ , a second gel electrophoresis was run to ascertain the presence and  state of DNA in the samples (Fig. 7).  The lanes in the agarose gel that did not contain the  marker presented cloudy­clear columns rather than clearly visible, separate bands.  These white  columns are smears of ​ E. coli​  genomic DNA, indicating that the entire ​ E. coli​  bacterial genome  was completely digested by restriction enzymes instead of any bacterial plasmid – the intended  target of digestion. The restriction enzymes cut the genomic DNA into segments of numerous  varying lengths, essentially causing bands to appear all along the gel columns; this occurrence  resulted in the observation of a smear. The appearance of multiple smears rather than clear,  delineated bands on the final gel (Fig. 7) was at first glance unexpected considering the  existence of multiple surviving colonies on the LB­ampicillin agar plates.     [8­11] 

In order to check if the transformation of ​ P. infestans ​ had successfully worked, BamHI  and XhoI restriction enzymes were used on vectors that were run in lanes one, two, three, six,  seven, and eight of the gel.  Even when just one restriction enzyme is used on a whole bacterial  genome, said genome will be cut into a broad spectrum of DNA fragments of differing sizes.  In this case, two restriction enzymes, BamHI and XhoI were used; as such, there was an even  wider spectrum of lengths of the DNA fragments.  Hence, not a single fragment could form a  distinctive band, resulting in the smear­like appearance of bands on the gel.  Although a similar  manifestation was visible in lane five, the reason for that appearance is different.    The DNA run in lane five was undigested, so the restriction enzymes could not have cut  it into different lengths.  Therefore, there is a high possibility that the smear in lane five was  due to the shearing of the DNA during micropipetting, which occurs when the micropipette is  handled too roughly.  In addition, genomic DNA is much larger than plasmid DNA, so it would  be more prone to being sheared inadvertently through micropipetting. Large, undigested  fragments of DNA are fragile and will not remain intact after being disturbed rapidly, such as  when the contents of tube are mixed after micropipetting by moving fluid in and out of the  micropipette.  The result of such actions is DNA shearing, which is evident in the gel column  lane five (15).    One potential explanation for the aforementioned phenomenon is the possibility that  the plasmid containing the ampicillin resistance gene and the ​ P. infestans​  eEF3 gene simply  integrated into the bacterial chromosomal plasmid.  Horizontal integration in bacteria and  archaea alike allows for the movement and transfer of genetic material without descent.  The  integration would have rendered the transformation attempt ineffective, allowing the bacteria  to survive on the ampicillin plates without the original vector plasmid.  If purification of the  vector plasmid was attempted, there would be nothing to purify.  In practice, however, this  integration occurs with sufficiently low probability for it not to be the only cause nor the  principal reason for the observed result.     Another feasible reason for the lack of defined bands in the gel is the potential for  nonfunctional or expired reagents, resulting in the failure of the plasmid isolation protocol.  This conjecture is also highly unlikely considering the reliability of commercial DNA isolation  kits.  In addition, these specific kits were subsequently tested in another study, and the results  confirmed that the kit was fully functional and had no contamination.     The single most likely explanation for the lack of bands on the final gel is a failure in  the transformation of ​ E. coli​ .  When examined in conjunction with other plates of  LB­ampicillin grown with the same aliquot of ampicillin, the ampicillin sample was found to  be partially degraded.  As a result, the working concentration of ampicillin in the  LB­ampicillin plates was functionally too low, resulting in a lack of selective pressure and  growth of non­transformed ​ E. coli​  that contained no extrachromosomal plasmid. This led  directly to a lack of isolated DNA from the MiniPrep. Thus, the bacterial chromosomal DNA  was purified instead and was digested by the restriction enzymes at indiscriminate locations,  yielding the entire range of DNA length. This resulted in a smear appearing on the gel rather  [8­12] 

than discrete bands. In the case of the supposed undigested sample, shearing of DNA from  pipetting likely broke the chromosomal plasmid as well, resulting in the same smeared pattern.     Columns six and eight contained slightly less visible smears than the other columns.  This development can be attributed to potentially smaller volumes of digested DNA, either as a  result of random selection of bacterial colonies with less plasmid DNA or the loss of DNA in  the process of isolation.  Another possibility lay in the actual pipetting of the DNA itself.  As  the pipette was depressed, some DNA may have escaped from the well into the buffer solution  surrounding it, preventing the full volume of bacterial DNA from undergoing the  electrophoresis process.      Ultimately, the goal of the project was not accomplished, as the second gel  electrophoresis analysis of eluted DNA resulted in a lack of bands appearing, indicating that  elution of DNA was unsuccessful.  All the same, given the success of all steps prior to the  failed transformation of ​ E. coli​ , it is exceedingly likely that repeating the same protocols with a  new aliquot of ampicillin would result in the expected bands appearing on the final gel.      CONCLUSION    Had the ampicillin not degraded, the cloning of the eEF3 gene would have likely been  successful.  However, the possibility that the plasmid was not present in the bacteria cannot be  ruled out since the final results merely confirmed that the colony chosen for the gel did not  have the plasmid.  Therefore, it can only be determined that the ​ E. coli​  colony used for gel  electrophoresis did not contain the recombinant plasmid due to the fact that degraded  ampicillin was used on the plates, so there was no selection for ampicillin­resistant bacteria to  grow.    In future studies, if fully functional ampicillin were to be used and the eEF3 gene were  to be successfully transformed into ​ E. coli​  with confirmation via gel electrophoresis, further  research could be conducted to investigate the potential functional conservation of eEF3 in  lower eukaryotic organisms.  This could be explored by transforming the ​ P. infestans​  plasmid  that contains eEF3 into budding yeast, or ​ S. cerevisiae​ ,​  ​ and applying selective pressures to  promote the survival of budding yeast that take up the ​ P. infestans ​ eEF3­containing plasmid  and eject its own through the process of plasmid shuffling (Fig. 8).    In order to determine if the transformation was successful and if the ​ P. infestans​  eEF3  could functionally replace the ​ S. cerevisiae​  eEF3, auxotrophic markers could be integrated into  the recombinant plasmid.  One such marker, leucine, is an amino acid commonly used in  studies dealing with ​ S. cerevisiae​ .  LEU2 is a gene useful in encoding the enzymatic pathways  necessary for leucine synthesis (16).  In growth media lacking leucine, cells lacking the  recombinant plasmid with a gene encoding for LEU2 would be unable to survive.  Since the  original ​ S. cerevisiae​  plasmid does not contain the leucine marker while the recombinant  plasmid from ​ P. infestans​  does, this would select for the growth of budding yeast cells that  took up the recombinant plasmid.  [8­13] 

  Furthermore, the ​ S. cerevisiae​  plasmid would contain a copy of the the URA3 gene.  As  another way to use such auxotrophic markers to place selective pressure on the yeast, ​ S.  cerevisiae​  could be placed on growth plates covered in 5­fluoroorotic acid, or 5­FOA.  5­FOA  is a fluorinated derivative of pyrimidine orotic acid used to select for the absence of the URA3  gene.  The URA3 gene codes for an enzyme that will convert 5­fluoroorotic acid into a toxic  compound that induces apoptosis, thus urging the yeast to expunge its own DNA and accept  the introduced plasmid (17).          Figure 8. ​ Plasmid shuffle schematic.  Visual demonstration of insertion of  recombinant DNA into yeast on 5­FOA  and the subsequent ejection of the  original ​ S. cerevisiae​  plasmid. ​ WT ​ eEF3  is the normal ​ S. cerevisiae ​ gene, ​ PI  eEF3 is the transfected ​ P. infestans  gene, and ​ AMP​  is the ampicillin  resistance gene (12).              Currently, most medications for treating invasive fungal infections are either quite  ineffective or hazardous to the health of the patient due to numerous negative side effects  including host toxicity and antibiotic resistance, meaning that a new form of treatment is  critical.  If the functional conservation of eEF3 in lower eukaryotic organisms was confirmed  in future studies through methods such as that detailed above, those results would render eEF3  an ideal drug target to combat detrimental diseases like potato blight and other fungal or  similar pathogens.  Such a universal antifungal drug would prove instrumental in efforts to  control the outbreaks of most invasive fungal infections, both saving many human lives and  protecting the integrity of global food supplies in the process.                  [8­14] 

ACKNOWLEDGEMENTS    We extend our sincerest gratitude and thanks to the following people and groups for their  assistance in the completion of this project:    Dr. Stephen Dunaway, Mitchell Dittus, Astré Bouchier, Justyna Pupek, New Jersey Governor’s  School in the Sciences, Drew University, AT&T, Bayer Healthcare, Independent College Fund  of New Jersey/Johnson & Johnson, The Overdeck Family Foundation, NJGSS Alumnae,  Parents, and Corporate Matching Funds, The State of New Jersey, Board of Overseers of New  Jersey Governor’s School in the Sciences    The value of their help and mentorship throughout the process of this research endeavor cannot  be understated.                                                                  [8­15] 

      REFERENCES    1. Almudena, M., Manuela, A., & Cisneros, J. (2013). Does the current treatment of invasive  fungal infection need to be reviewed? ​ Enfermedades Infecciosas Y Microbiologica  Clinica,​  ​ 32​ (8), 523­528.    2. Kauffman, C. (2006). The Changing Landscape of Invasive Fungal Infections:  Epidemiology, Diagnosis, and Pharmacologic Options.​ Clinical Infectious Diseases,​  ​ 43​ .  doi:10.1086/504489    3. Garelik, G. (2002). AGRICULTURE: Taking the Bite Out of Potato Blight.​ Science,  1702­1704. doi:10.1126/science.298.5599.1702    4. Brurberg, M., Elameen, A., Le, V., Nærstad, R., Hermansen, A., Lehtinen, A., . . . Yuen, J.  (n.d.). Genetic analysis of Phytophthora infestans populations in the Nordic European  countries reveals high genetic variability. ​ Fungal Biology,​  335­342.  doi:10.1016/j.funbio.2011.01.003    5. Kamoun, S. (2003). Molecular Genetics of Pathogenic Oomycetes.​ Eukaryotic Cell,​  ​ 2​ (2),  191­199. doi:10.1128/EC.2.2.191­199.2003    6. Haas, B., Kamoun, S., Zody, M., Jiang, R., & Handsaker, R. (2009). Genome sequence  and analysis of the Irish potato famine pathogen Phytophthora infestans. ​ Nature  Magazine,​  ​ 461​ . doi:10.1038/nature08358    7. Triana­Alonso, F., Chakraburtty, K., & Nierhaus, K. (1995). The elongation factor 3  unique in higher fungi and essential for protein biosynthesis is an E site factor. ​ Journal of  Biological Chemistry,​  ​ 270​ (35), 20473­20478. Retrieved July 28, 2015, from PubMed  Central.    8. Andersen, C., Becker, T., Blau, M., Anand, M., Halic, M., Balar, B., & Beckmann, R.  (2006). Structure of eEF3 and the mechanism of transfer RNA release from the E­site.  Nature,​  663­668. doi:10.1038/nature05126    9. Chakraburtty, K. (2001). Elongation Factor 3 in Fungal Translation.​ ENCYCLOPEDIA OF  LIFE SCIENCES​ . doi:10.1038/npg.els.000068    10. Blakely, G., Hekman, J., Chakraburtty, K., & Williamson, P. (2001). Evolutionary  Divergence of an Elongation Factor 3 from Cryptococcus neoformans. ​ Journal of  Bacteriology,​  ​ 183​ , 2241­2248. doi:10.1128/JB.183.7.2241–2248.2001    [8­16] 

 

 

 

11. Visweswaraiah, J., Lee, S., Hinnebusch, A., & Sattlegger, E. (2012). Overexpression of  Eukaryotic Translation Elongation Factor 3 Impairs Gcn2 Protein Activation. ​ Journal of  Biological Chemistry,​  37757­37768. doi:doi/10.1074/jbc.M112.368266  12. Di Domenico, D., Lupisella, J., Sandbaken, M., & Chakraburtty, K. (1992). Isolation and  sequence analysis of the gene encoding translation elongation factor 3 from Candida  albicans. ​ Yeast,​  ​ 337​ (52). Retrieved July 28, 2015, from PubMed Central.  13. Kurata, S., Shen, B., Liu, J., Takeuchi, N., Kaji, A., & Kaji, H. (2012). Possible steps of  complete disassembly of post­termination complex by yeast eEF3 deduced from inhibition  by translocation inhibitors. ​ Nucleic Acids Research,​  264­276. doi:10.1093/nar/gks958  14. Karathia, H., Vilaprinyo, E., Sorribas, A., & Alves, R. (2011). Saccharomyces cerevisiae  as a Model Organism: A Comparative Study.​ PLoS ONE​ .  doi:10.1371/journal.pone.0016015 

  15. DNA Damage and PreCR. (2015). Retrieved July 29, 2015.    16. Pronk, J. (2002). Auxotrophic Yeast Strains in Fundamental and Applied Research.  APPLIED AND ENVIRONMENTAL MICROBIOLOGY,​  2095­2100.  doi:10.1128/AEM.68.5.2095­2100.2002     

17. Ko, N., Nishihama, R., & Pringle, J. (2008). Control of 5­FOA and 5­FU resistance by  Saccharomyces cerevisiae YJL055W. ​ Yeast,​  (25), 155­160. doi:10.1002/yea.1554 

[8­17] 

Suggest Documents