Chapter Objectives. Preparation of Alkenes Precursors Alcohols (especially in biological chemistry) Alkyl Halides (industrial chemistry)

Chapter Objectives Present reactions of alkenes and alkynes  Reactions related to those found in biology   Must know reactions Fall, 2007 1 Pr...
Author: Prosper Miles
0 downloads 2 Views 4MB Size
Chapter Objectives Present reactions of alkenes and alkynes  Reactions related to those found in biology 

 Must

know reactions

Fall, 2007

1

Preparation of Alkenes   

Precursors Alcohols (especially in biological chemistry) Alkyl Halides (industrial chemistry) O H

s tr o n g a c id

H d e h y d r a t io n X

s tro n g b a s e

H d e h y d r o h a lo g e n a t io n

Fall, 2007

2

Biological Dehydration  

Rarely done on free alcohol Generally done on molecules containing carbonyl and hydroxyl groups H2O

-

HO

CO2CO2-

O2C

Fall, 2007

aconitase

CO2O2C

CO2-

3

1

Reaction with X2  

Halogenation Reaction with Cl2 and Br2 C l2

Cl Cl

B r2

Br Br

Fall, 2007

4

Stereochemistry 

Reaction provides the trans product

Fall, 2007

5

Explanation  

Not a carbocation intermediate as shown Bromonium ion intermediate forms

H

H Br +

Br

H H

Br

Br-

Fall, 2007

6

2

Biological Halogenation   

Marine organisms Haloperoxidase H2O2 oxidizes Cl- or Br- to X+

Cl

Br Br

Cl

Fall, 2007

7

Reaction with X2 in H2O  

Cl2 in water yields HOHO-Cl (hypochlorous acid) Br2 in water yields HOHO-Br (hypobromous (hypobromous acid)

Br2/H2O

OH Br

Fall, 2007

8

Hydration of Alkenes  

Alkenes react with water to give alcohols Require high temperatures and pressures H2O



CH3CH2OH

Does not work well in the laboratory

Fall, 2007

9

3

Biological Hydration of Alkenes O

O O-

-O

O

fumarase

fumarate

 

OH

-O

O maleate

Relatively rare reaction Cellular constraints are not present.

Fall, 2007

10

Cellular Constraints Solvent is water  Narrow pH range  Fixed temperature  Limited elemental choice 

Fall, 2007

11

Laboratory Hydration of Alkenes Oxymercuration Mercuric Acetate in THF Markovnikov Product

Fall, 2007

12

4

Laboratory Hydration of Alkenes  

Hydroboration NonNon-Markovnikov Product

Fall, 2007

13

Mechanism of Hydroboration 

Borane is a Lewis acid



Alkene is Lewis base



Transition state involves anionic development on B



The components of BH3 add across C=C

Fall, 2007

14

Reduction and Oxidation 





Carbon always has 4 bonds  Oxidation changes are more difficult to see Reduction:  Increase in H content  Decrease in O content Oxidation:  Decrease in H content  Increase in O content

Fall, 2007

15

5

Reduction of Alkenes: Hydrogenation    

Addition of H2 Requires Pt or Pd catalyst (or NR) Heterogeneous Reaction Process is not in solution

Fall, 2007

16

Mechanism of Catalytic Hydrogenation  

Heterogeneous – reaction between phases Addition of HH-H is syn

Fall, 2007

17

Biological Reductions  

Rare Reaction Uses NADPH as reducing agent NH2

N O O

N H

HO

H

OH

O P O-

O

O O

P O

N N

OHO

O

N

-2

OPO2

NH2 Nicotinamide Adenine Dinucleotide Phosphate

Fall, 2007

18

6

Oxidation of Alkenes: Epoxides mcpba O

CH2Cl2 H O

OOH peroxide

mcpba = Cl

  

Reaction with a peracid Epoxide or oxirane Cyclic ether Fall, 2007

19

Epoxide Preparation 

From Halohydrin Br2/H2O

OH

base O

Br bromohydrin

Fall, 2007

20

Biological Epoxidation Present in variety of processes Does not involve peracids  Peroxides formed by reaction with O2  Very selective reaction (see Figure 7.8)  

Fall, 2007

21

7

Hydroxylation of Alkenes 

Diol formation H3O+

OH

O OH  

Laboratory and Biological Reaction Biological process useful for detoxification

Fall, 2007

22

Laboratory Hydroxylation   

Reaction with osmium tetroxide Stereochemistry of addition is syn (product is cis) cis) Product is a 1,21,2-dialcohol or diol (also called a glycol) glycol)

Fall, 2007

23

Reaction with Carbenes    

H2C: The carbene functional group Carbenes are electrically neutral with six electrons in the outer shell They add symmetrically to double bonds giving cyclopropanes

Fall, 2007

24

8

Formation of Dichlorocarbene   

Base removes proton from chloroform Stabilized carbanion remains Unimolecular Elimination of Clgives electron deficient species, dichlorocarbene

Fall, 2007

25

Reaction of Dichlorocarbene 

Addition of dichlorocarbene is stereospecific cis

Fall, 2007

26

Simmons-Smith Reaction   

Equivalent of addition of CH2: Reaction of diiodomethane with zinczinc-copper alloy produces a carbenoid species Forms cyclopropanes by cycloaddition

Fall, 2007

27

9

Radical Reactions   

Mechanism of addition of HBr was hotly debated NonNon-Markovnikov product was observed Peroxides form readily in starting material HBr

Br

HBr

Br

On occasion Br

+

Fall, 2007

28

Radical Reactions - HBr  

If reaction is done with HBr/peroxides HBr/peroxides Get the nonnon-Markovnikov product

HBr/peroxides Br

Fall, 2007

29

Radical Reactions: Polymer Formation Polymer – a very large molecule made of repeating units of smaller molecules (monomers)  Biological Polymers  Starch  Cellulose  Protein  Nucleic Acid 

Fall, 2007

30

10

Polymers  

Alkene polymerization Initiator used generally is a radical n

r e p e a t in g u n it

Fall, 2007

31

Mechanism Initiation  Propagation  Termination  See page 241 in text for details  High reactivity of radicals limits usefulness  Not true in biological chemistry 

Fall, 2007

32

Biological Radical Reactions Enzyme permits a single substrate at a time at the active site  Greater control over reactivity  Radical reactions are common  Example given on page 244 for biosynthesis of the PGAs 

Fall, 2007

33

11

Dienes 

Contain two double bonds



NonNon-conjugated Conjugated



Fall, 2007

34

Common Feature in Nature

Fall, 2007

35

Conjugation Absorption of visible light produces color Conjugated hydrocarbon with many double bonds are polyenes  Lycopene - red color in tomatoes  Carrotene – orange color  Extended conjugation in ketones (enones) enones) found in hormones such as progesterone  

Fall, 2007

36

12

Conjugated Dienes   

Chemistry is slightly different More stable than nonnon-conjugated dienes Heat of hydrogenation

Fall, 2007

37

Greater Stability Why?  Orbital Picture of alkene bonding 

Fall, 2007

38

Fall, 2007

39

13

Orbital picture of conjugated diene  Electrons are delocalized (spread(spread-out) over the entire pi framework  Impact upon the chemistry 

Fall, 2007

40

Fall, 2007

41

Reactions 

With HBr Br (71%) HBr

H

Br (29%)

H



Why?

Fall, 2007

42

14

Mechanism

Fall, 2007

43

Allylic Cation

Fall, 2007

44

Some Data X 1,2 product

Nucleophile Bromide Chloride

H

H

HX

1,2 Product 71% 30%

X 1,4 product

1,4 Product 29% 70%

If HBr is added at 0 oC we see the above data. If the reaction is done at 40 oC, we see 30% of the 1,2 product and 70% of the 1,4 product. How do we explain these results? Fall, 2007

45

15

A B+C    

B forms faster than C Energy of activation is lower for B than C C is more stable than B Constructing reaction energy diagram

energy B A

C

reaction progress

Fall, 2007

46

Thermodynamic Control 

    

Transition state leading to more stable species is higher in energy, therefore, it is easier to get to the less stable product Reaction is reversable At high temperatures, sufficient E for both reactions to occur A B (fast) and A C (slower) or B A C We see more stable product dominate.

Fall, 2007

47

Kinetic Control 

At low temperatures  Reaction is not reversable  Equilibrium is not reached  Insufficient energy for A to C  Sufficient energy for A to B  Less stable product dominates.

Fall, 2007

48

16

Reactions of Alkynes Alkynes are rare in biological chemistry  Chemistry is similar to alkenes  Generally less reactive than alkenes  Reactions can be stopped at alkene stage using one equivalent of the reagent 

Fall, 2007

49

Reactions with HX



Regiochemistry is Markovnikov

Fall, 2007

50

Reactions with X2

 

Initial addition gives trans intermediate Product with excess reagent is tetratetra-halide

Fall, 2007

51

17

Reactions with H2

 

Reduction using Pd or Pt does not stop Alkene is more reactive than alkyne

Fall, 2007

52

Reactions with H2

  

Lindler’s catalyst is poisoned Not as reactive Stops at ciscis-alkene Fall, 2007

53

Reduction using dissolving metals

   

Anhydrous ammonia (NH3) is a liquid below -33 ºC Alkali metals dissolve in liquid ammonia Provide a solution of e- in NH3 Alkynes are reduced to trans alkenes with sodium or lithium in liquid ammonia

Fall, 2007

54

18

Hydration of Alkynes 

Hydration (Hg+2) of terminal alkynes provides methyl ketones



Hydration (BH3) of terminal alkynes provides aldehydes

Fall, 2007

55

Alkyne Acidity: Acetylide Anion    

Terminal alkynes are weak Brø Brønsted acids pKa is approximately 25 alkenes and alkanes are much less acidic Reaction of strong anhydrous bases with a terminal acetylene produces an acetylide ion

Fall, 2007

56

Alkylation of Acetylide Anions Acetylide ions are nucleophiles Acetylide ions are bases  React with a primary alkyl halides  

Fall, 2007

57

19

PROBLEMS ON ALKENE CHEMISTRY

©2004 OCHeM.com

1. Answer the following questions concerning the three alkenes shown below. Your answer should use words and illustrations. 1

2

3

CH3

A

4

5

O

6

CH3

B

CF3

C

a) Which alkene would be most reactive with H+ ? Why?

b) Which alkene would be least reactive with H+ ? Why?

c) Which alkene would be most reactive under conditions of catalytic hydrogenation? Why?

d) Will all three alkenes undergo Markovnikov addition of HBr? If not, which alkene or alkenes won’t and why?

1

PROBLEMS ON ALKENE CHEMISTRY

©2004 OCHeM.com

2. Provide a mechanism for the following reaction. Then, predict the reaction energy diagram for the entire reaction in the space provided. In your diagram, you must indicate the ΔH of the reaction, label the activation energy (Ea) of the rate-determining step, and clearly identify all intermediates and products of the reaction. H Br

Energy

Br

Reaction Coordinate

2

PROBLEMS ON ALKENE CHEMISTRY

©2004 OCHeM.com

3. What starting materials & reagents are needed to produce the following compound?

Br

Br

4. Draw the major product of each of the following reactions. Be sure to include stereochemistry in your answers where appropriate. a)

CH3

Br 2

b)

H Cl CH3 CH3

c)

1) Hg(OAc) 2 / H2 O

CH3

2) NaBH4

1) BH3 •THF 2) H2O 2 , NaOH

d)

Cl 2

CH3 CH2 OH

3

Alkene Reactions • Addition Reactions - only one product • 1. Hydrogenation (H2): Alkene + Hydrogen --> Alkane • 2. Halogenation (X2): Alkene + diatomic halogen --> Dihaloalkane • 3. Halgenation (HX): Alkene + HX --> Haloalkane • 4. Hydration (HOH): Alkene + HOH --> alcohol • 5. Polymerization: Many alkenes add together into a long alkane chain

Alkene Reactions

1. Hydrogenation Reaction • Alkene + Hydrogen --> Alkane • Hydrogen molecule adds to carbons with double bond.

H3C

H C CH2

+

H2

H3C

H3C H C

C H

H

H

H

H2 C

CH3 H

H3C

C H

H C

H

H

1

Alkene Reactions

Alkene Reactions

2. Halogenation Reaction • Alkene + Halogen --> Dihaloalkane • Halogen molecule adds to carbons with double bond. Br

H3C

H C CH2

+

CH CH2

Br2

H3C

H3C

H C

C H

Br

Br

Br

H H H3C

C Br

H C

H

Br

2

Alkene Reactions

Unsymmetrical Addition Reactions • Markovnikov’s Rule • For double bonds that have unequal numbers of hydrogen atoms attached. • For unsymmetrical reactants such as HX and HOH • The hydrogen of the reactant goes to the carbon of the double bond that already has the most hydrogen atoms. “the rich get richer” • The -X or the -OH go the other carbon (the one with the least amount of hydrogen

3. Halogenation Reaction • Alkene + HX --> haloalkane • HCl molecule adds to carbons with double bond. H3C

H3C

H C

CH CH3

+ HCl

Cl

CH2

H3C

H C

C

H H

H Cl

H

Mark's Rule

H3C

C Cl

H C

H

H

3

Alkene Reactions

4. Hydration Reaction • Alkene + HOH --> alcohol • HOH molecule adds to carbons with double bond. H3C H3C

CH CH3

H C CH2

+

HOH

H3C

H C

HO

C

H

H HO

H

H H3C

C OH

H C

H

H

Mark's Rule

Alkene Reactions

4

5. Polymerization Reaction • Alkene + Alkene + Alkene --> long chain of carbons • Double bonds convert to single bonds H H H H H H C

C

H

C H

H C H

C

H

C H H

H

H

H

H

C

C H H H .C C.

H .C

H

H

H

H H C

C

H H .C

C.

H C.

H H

H

H C

C

H H

H

C H2

H2 C

C H2

H2 C

C H2

H2 C

Alkene Reactions

What is the structure for

Alkene Reactions

5

Alkene Reactions

Alkene Reactions

6

1. In the reaction shown below, only one product is formed. Why? OH +

H2SO4

H2O

2. Consider the following reaction.

H3C C H3C

Br

H

H

Br2

C

CCl4

H

H

H3C

CH3 Br

a. What is the IUPAC name for the starting material in this reaction? What is the stereochemistry of the starting material (if there is any)?

b. What is the IUPAC name for the product in this reaction?

3. Draw the major organic product formed (showing stereochemistry where applicable) for the reaction of the following alkene under each of the reaction conditions listed below.

CH3 CH3

C CH3

a)

HBr

HBr

b)

peroxides

H2O

c)

H+

Cl2 CCl4

Br2 H2O

1. Hg(OAc)2, H2O 2. NaBH4

CH

CH2

4. Draw the major organic product formed (showing stereochemistry where applicable) for the reaction of the following cycloalkene under each of the reaction conditions listed below. CH3

d)

e)

f)

g)

HBr

HBr peroxides

H2O H+

Cl2 CCl4

h)

i)

Br2 H2O

1. Hg(OAc)2, H2O 2. NaBH4 1. BH3 THF 2. H2O2/NaOH 1. OsO4 2. H2O2 1. O3 2. (CH3)2S H2 metal catalyst

Copyright, Arizona State University

Introduction to Synthesis (more...)

Alkenes II

1 Additional Reactions of Alkenes • here are a series of mainly oxidation reactions that we need to complete our survey of alkene chemistry • some are not "pretty", i.e. with complex mechanisms, some that are not fully known... • Some of the stuff here you will just have to "know", i.e. here is some of the "bad bit" of Organic 

1.1 Formation of cis-Diols (more) • TWO sets of reagents will accomplish this reaction The reaction

OH

cold KMnO4/-OH/H2O OR

syn-addition (same side)

OH

OsO4 / H2O2 The mechanisms

O

O

O O Mn

Mn O

O

O

HO

OH

O

OH

+ MnO2

syn-addition! don't need to know!!

-

OH





O O HO Mn O

O

aqueous workup





O O– HO Mn OH

O O HO Mn – O O



-

O



O

O

OH

radical reduction

O– + MnO2(OH)2

addition/elimination mechanism • although this is obviously complex, the important part is that the MnO4 ion starts the reaction by adding to both ends of the alkene at the same side, which is why a cis-diol must be formed • note that in mechanisms involving metal atoms, the metal has enough electrons and empty orbitals to give and take electrons on its own, almost at will (almost like cheating to an organic chemist!!)

O

O Os

O

O

O O Os O

H2O2

O

HO

OH

+ OsO4 catalyst • syn-addition! regenerated!

H2O2 don't need to know.....

Alkenes II

1

Copyright, Arizona State University

why TWO reagents? KMnO4 - inexpensive, used for large scale reactions, variable yields OsO4 - expensive, good yields, used in small scale syntheses • This illustrates the principle that in general there will always be more than one reagent to accomplish any transformation even if we only discuss one in this course Examples

cold KMnO4/-OH/H2O

H3C CH3 C C H H

OsO4 / H2O2

H3C H C C H CH3

OsO4 / H2O2

H

H

HO

OH

H3C CH3 H C C H HO OH

cis-diol

meso- diol

OH H3C H C C H CH HO (±) 3

OH

= HO

(±)

1.2 Formation of Epoxides and trans-Diols (more) New reagent

O

Cl

O

R C O OH peroxy acid

R O O R peroxide

O C O OH

R C OH carboxylic acid

meta-chloroperbenzoic acid (MCPBA)

Mechanism

O

C C

O

C

R

C C

H O

O

epoxide

+

O

C

R

O H carboxylic acid

• concerted mechanism - all bonds made and broken at the same time • no chance for bond rotation "in the middle" - stereospecific reaction! Examples

MCPBA

cis-alkene

O

cis-epoxide formed

• reaction is STEREOSPECIFIC Synthesis of a trans-Diol

H3C

CH3 C C

cis-alkene H

CH3 OH H (±) C C CH3 HO H ANTI-addition Alkenes II

MCPBA

H

LA/BA

H CH3 OH C C CH3 H O H H

O H3C C C CH3 H LB/BB H H3O+ H O

H H O LA/BA H

LA

H3C C C CH3 H H backside attack! O O H H LB/BB H H LB 2

Copyright, Arizona State University

+

• when H3O is a reagent, this means aqueous acid (e.g. HCl or H2SO4 in water) • the intermediate is an oxonium ion (onium means more than usual valence, in this case 3 for oxygen), compare with bromonium etc., • this reaction sequence makes a trans-diol as opposed to the cis-diols we saw above, so........

1. MCPBA trans-diol H

2. H3O

OsO4 H2O2

+

cis-diol H

OH

H

HO OH meso compound!

HO H (±) racemic mixture 1.3 Oxidative Cleavage of Alkenes: Ozonolysis (more) New reagent

ozone

=

O3

=

O

O

O

O

O

O

• has separated charges and more non-bonding electrons, much more reactive than molecular oxygen Mechanism

O

O

O

H3C

H C C

H3C

CH3

O O O H3C C C H H3C CH3 moloxide

O H3C C CH3

H3C H3C

C

O

C

O O ozonide

O

O C H

H3C

H C O + O C CH 3 H3C ketone aldehyde H3C

Me2S

H CH3

S

(reducing agent)

Me

Me

+

S O Me

Me don't need to know!!

• the ozonide is the primary product, but it is never isolated • in the presence of Me2S it is reduced to (in this case) are an aldehyde and ketone • if Me 2S is replaced by the oxidizing hydrogen peroxide, different products result.....

H3C

H C O + O C CH 3 H3C ketone aldehyde

1. O3 2. Me2S H3C

H C C

H3C

CH3

H3C

1. O3 2. H2O2

Alkenes II

H3C

3

C O +

ketone

O

C

OH

CH3 carboxylic acid

Copyright, Arizona State University

Examples

O 1. O3 1. O3

OH

HO

2. H2O2

O

O

H

H

2. Me2S

O H

1. O3

O O

2. Me2S

O O

2 Synthesis of Alkenes 2.1 From Alkyl Halides (seen before, review) • i.e. reactions of alkyl halides that have alkenes as the products • in useful reactions we want avoid carbocations, thus we want to do E2 elimination

Br H3C

base

CH

H3C

CH3

CH CH2

Which base to use to ensure elimination versus SN2???? Remember...... • E2 reaction is favored for 3Y halides Y • For 2 halides, E2 can be forced over SN2 by using a bulky base, see below Y • For 3 halides, a bulky base is not necessary, the product will be the Saytzeff product Y • For 3 halides, a bulky base will give the least substituted alkene, for steric reasons Examples of bulky bases

O

NH diisopropylamine (i-Pr2NH)



t-butoxide (t-BuO )

N dimethylpyridine

Example Reactions

Br –+

t-BuO K acetone • 2Y halide, use bulky base to ensure no SN2, get Saytzeff alkene product

Br

+–

Na OMe acetone

Alkenes II

4

Copyright, Arizona State University

• 3Y halide, use NON-bulky base (no SN2 not possible), get Saytzeff alkene product

t-BuO– +K acetone

Br

• 3Y halide, use BULKY base and get Non-Saytzeff (Hoffmann) alkene product Bottom line Y – • for 2 halides, use t-BuO to ensure no SN2 and to obtain Saytzeff product Y – – • for 3 halides, use CH3O to obtain Saytzeff product and t-BuO to obtain Hoffman product

2.2 From Alcohols (E1 and E2 elimination in a new context) The reaction

H C

OH C

conc. H2SO4

C

heat

C

+

H2O

• note a special kind of SOLVENT EFFECT here! In an aqueous medium, acid catalyzes water ADDITION to the alkene to make an alcohol. In conc. sulfuric acid medium, the acid helps to REMOVE water from an alcohol to make an alkene (the sulfuric acid DEHYDRATES the alcohol) Mechanism: you already know it - either an E1 or an E2 elimination! – • in the mechanism, H2O is the leaving group, OH is a poor leaving group (this is an important general principle that we will return to again later....)

H C

OH C

X

does not happen!

+

H C

C

OH

good nucleophile but poor leaving group

H

H C

OH2 C

H C

C

H2O

poor nucleophile but good leaving group

• in general, small neutral molecules such as water make excellent leaving groups, since they tend to contain low energy electrons Example

LB/BB OH

H OSO2OH

LA/BA

conc. H2SO4 major

heat OH2

H

E1

LA/BA

OSO2OH LB/BB

• 3Y and 2Y alcohols almost certainly E1 mechanism • carbocation intermediates means rearrangements • the sulfuric acid is the initial acid, the bisulfate anion is a likely base to deprotonate, recovering the acid catalyst

Alkenes II

5

Copyright, Arizona State University

Example

H OSO2OH LA/BA

LB/BB OH

conc. H2SO4 heat

LA/BA H

LA/BA

OSO2OH LB/BB OH2

H OSO2OH

OSO2OH LB/BB H

E2

H LA/BA

LB/BB • Almost certainly an E2 mechanism with a 1Y alcohol, but the first alkene product must get protonated, it is in conc. sulfuric acid after all, resulting in overall formation of a more substituted alkene • the final product is the SAME as if the mechanism was E1 followed by carbocation rearrangement

3 Synthesis of Alkyl Halides 3.1 From Alkanes (seen before, review)

Br2

Br

h Br2

Br

h • actually, this is a pretty poor reaction since it is unselective, but it is the only one we have for alkanes! Y • use only if all hydrogens are identical (first example) or there is an obvious 3 hydrogen (second example)

3.2 From Alkenes (seen before, review)

Br

NBS h

• we already learned that NBS is the best reagent to use for allylic bromination, don't use Br2 • to be safe, you CAN USE NBS and light for ALL RADICAL BROMINATIONS, including ALKANES

HBr Br HBr ROOR

Br

• Markivnokov and anti-Markovnikov addition to an alkene also forms an alkyl halide

Alkenes II

6

Copyright, Arizona State University

4 Summary of Reactions (more) • all of them so far!! (non-bonding electrons are not shown in this summary for simplicity)

Br

Br2, h

Br NBS, h

Br

+–

Na

(±)

CN SN2

CN

acetone

(and analogues)

Ph

Ph Br

+–

E2

Na O-t-Bu DMF

Ph

Ph

conc. H2SO4

OH

heat Br HBr

(±)

CCl4 OH H2O H2SO4

(±)

rearranged!

1. Hg(OAc)2/H2O

OH (±)

2. NaBH4

H

1. Hg(OAc)2/EtOH 2. NaBH4

OEt Br

Br2 CCl4

Br

Br2 CH3OH

Alkenes II

D

2. OH/H2O2 7

(±)

(±)

OCH3

1. BH3.THF –

Br

(±)

D H

OH

(±)

Copyright, Arizona State University

HBr ROOR

Br H

H2 Pd/C

H OH



dil. KMnO4/ OH or OsO4/H2O2

(±)

MCPBA

OH

O

1. MCPBA OH

+

2. H3O

1. O3

HO O

O

(±) OH

2. H2O2 1. O3

2. Me2S

O

O

H

• looks like a lot, actually not (there will be more next semester!!) • do not attempt to memorize these, to learn them WORK THE PROBLEMS. After you have worked the problems and understood the mechanisms you will realize that you actually know most of them or can work them out. After working the problems you might like to test yourself on the reactions above to make sure that you have all the details about reagents and conditions correct

Alkenes II

8

Copyright, Arizona State University

Copyright, Arizona State University

Alkenes II PROBLEMS Reaction Practice Provide the missing major organic product(s), reagents/conditions or reactant structure as required. O

+

1 (standard)

O OH

2 (standard)

O

HO

O

OH

conc. H2SO4

Answer Correct Y / N

heat

3 (standard)

Answer Correct Y / N

Answer Correct Y / N

1. HBr 2. NaOH

1. O3

4 (standard)

Answer Correct Y / N

2. Me2S OH

OH

OH

5 (challenging)

(ignore stereochemistry)

Answer Correct Y / N

O OH

6 (challenging)

O

Answer Correct Y / N

REMEMBER, doing problems is the ONLY WAY that you will learn organic chemistry. Keep track of exactly what problems you get correct and which incorrect. Keep coming back until you get them ALL correct.

Alkenes II

9

Copyright, Arizona State University

5 Synthesis • a large part of organic chemistry involves building larger or more complex molecules from smaller ones using a designed sequence of reactions, i.e. chemical synthesis • this involves putting a series of reactions together in sequence • here we will look at some simple example to practice this, later we will learn a more systematic method for solving complex synthesis problems, retrosynthesis • to do these problems you need to know the reactions, and PRACTICE, practice, practice, practice...... Example Problems: make the molecule on the right from the one on the left. this can not be done in one reaction. Give reagents and conditions and the intermediate molecules at each step.

???

+–

NBS, h

Na OCH3 acetone

Br

• brominate to get a functional group onto the alkene, then E2, which is the standard way to make an alkene

??? Br NBS, h

NBS, h Br Na+ –OMe acetone

• brominate to get a functional group onto the alkene, then E2, which is the standard way to make an alkene, then brominate again (note that I changed this example from the one that was originally in he notes, next semester you will see why)

???

Br

need to add –Br and –OCH3

(±)

OCH3 Br2

NBS, h

CH3OH

Br t-BuO– +K DMF • need to add Br AND -OMe, we know how to do that from an ALKENE, thus make the alkene first as usual

??? HBr X

NBS, h

HBr

Br

NBS, h X

ROOR

–+

Br Alkenes II

t-BuO K DMF 10

Copyright, Arizona State University

• need to add Br at a position that is not possible by direct bromination, the obvious way is by addition of HBr to an alkene Anti-Markovnikov, so first, make an alkene as usual

???

NBS, h Br

OCH3

–+

H3CO K HBr

–+

t-BuO K DMF

DMF Br

ROOR

• can't add -OMe to an alkane, so we need to a a functional group, a LEAVING group at that carbon, once we recognize this then the strategy is same as previous problem

OH OH

???

conc. H2SO4, heat H2SO4/H2O

• we have two ways to make an alcohol, SN2 or water addition to an alkene, the best thing to "do" with the starting alcohol is make an alkene, which decides for us which alcohol synthesis method to use

Alkenes II

11

Copyright, Arizona State University

Copyright, Arizona State University

Alkenes II PROBLEMS Cumulative Problems Provide a synthesis of the target molecule on the right from the starting molecule on the left. This cannot be done in one reaction. Give reagents, conditions and intermediate molecules at each step. Do not show any mechanisms or transient intermediates 1 (easier)

Answer Correct Y / N

CN

2 (easier) 3 (easier)

OH

Answer Correct Y / N Answer Correct Y / N

Br

4 (easier)

Answer Correct Y / N

OH

Br OCH3

5 (easier)

Answer Correct Y / N

6 (standard)

Answer Correct Y / N

OH

7 (standard)

Answer Correct Y / N

Br OH

8 (standard)

O

9 (standard)

O

H

H

10 (standard)

OH

Answer Correct Y / N Answer Correct Y / N Answer Correct Y / N

HO

See also the RETROSYNTHESIS Web Pages REMEMBER, doing problems is the ONLY WAY that you will learn organic chemistry. Keep track of exactly what problems you get correct and which incorrect. Keep coming back until you get them ALL correct.

Alkenes II

12

Copyright, Arizona State University

ALKENES AND ALKYNES – REACTIONS A STUDENT WHO HAS MASTERED THE MATERIAL IN THIS SECTION SHOULD BE ABLE TO: 1.

Given the starting materials and reaction conditions, predict the products of the following reactions of alkenes and alkynes. Markovnikov addition of acids to alkenes and alkynes, including the acid-catalyzed addition of water (hydration). Rearrangement is possible in the additions to alkenes; tautomerization occurs in the hydration of alkynes. Anti-Markovnikov addition of HBr. Addition of halogens (and halohydrin formation). These reactions are anti additions. In halohydrin formation, the OH goes to the more substituted carbon. Epoxidation, and the hydrolysis of the resulting epoxides to glycols (overall anti addition). Glycol formation using either KMnO4 (cold) or OsO4 (these are syn additions). Degradation of alkenes and alkynes using either ozonolysis or KMnO4 (hot) Addition of carbenes to alkenes

2.

Using any of the above reactions, propose syntheses of compounds that can be made using alkenes as starting materials or intermediates. As always, synthesis problems may require any reaction that you have studied in the course so far.

3.

Propose mechanisms, and predict and explain experimental results using your knowledge of mechanism. Important reactions include: Markovnikov additions (which proceed by protonation of the alkene to give a carbocation). Addition of bromine and bromohydrin formation (by formation of the bromonium ion). Hydrolysis of epoxides (under acid conditions the oxygen is protonated first).

4.

Identify unknown alkenes and alkynes when given either the products of ozonolysis or of KMnO 4 degradation. You will not be called on to distinguish between cis and trans isomers; these methods do not give that information. (Further information can be obtained from the index of hydrogen deficiency).

5.

Use the results of simple chemical tests in identifying unknown compounds. Data from IR spectra may also be used. Important tests include: Solubility in concentrated sulfuric acid (compounds containing only alkanes, halogens, and aromatic rings do not dissolve) Bromine in carbon tetrachloride (alkenes and alkynes give an immediate reaction, decolorizing the reddish-brown bromine solution) Potassium permanganate (cold, dilute) (alkenes and alkynes give an immediate brown precipitate; other compounds leave the permanganate solution purple) Silver nitrate in alcohol solution (gives a white precipitate with alkyl chlorides, a tan ppt. with alkyl bromides, a brown ppt. with alkyl iodides, no reaction when the halogen is attached to an sp2 carbon, and no reaction with other materials) Silver nitrate in ammonia (gives a white ppt. with terminal alkynes)

96

A STUDENT WHO HAS MASTERED THE OBJECTIVES ON THE PREVIOUS PAGE SHOULD BE ABLE TO SOLVE THE FOLLOWING PROBLEMS AND RELATED ONES: 1.1

Predict the major organic product or products of each of the following reactions. a) (CH3 )2 CHCH=CH2 + HCl -----> no peroxides b) CH3 CH2 CH2 CH=CH 2 + HBr ------------------> peroxides c) CH3 CH2 CH2 CH=CH 2 + HBr --------------->

d)

(cold, dilute) + KMnO4 ----------------->

e)

KOC(CH 3 )3 ----------------> CHCl3

f)

CCl4 + Br2 -------->

g)

+ Cl 2 + H2 O ----->

OH , H2 O, heat H3 O + KMnO4 --------------------> --------->

h)

COOH

HOOC i)

C H

j)

C

CCl4 + Br2 -------->

H CH2 I2 /Zn(Cu) ------------------> ether

97

1.2

For each of the following compounds, compare the reaction products from the addition of HBr in the presence of peroxides with the addition of HBr in the absence of peroxides. CH3 | a) CH3 —CH—CH=CH2

H b) CH=CH 2

2.

Propose a synthesis of each of these compounds, from the given starting material and any needed inorganic reagent and/or solvent. CH3 a)

CH3 from

Br

b) CH3 CH2 CHBr2 from CH3 C≡CH

OH c)

from OH

OH d)

Br from

OH

98

2.2

Propose a synthesis of each of these compounds from the given starting materials(s) and any needed inorganic reagents or solvents. CH3 CH3 a) from Br

b) CH3 CH2 CH2 CH2 Br from HC≡CH and CH3 CH2 I

c) (CH3 )3 CBr from (CH3 )2 CHCH 2 OH

OH d)

from OH

CH3 e)

C H

H

CH3 from

C CH3

C H

CH3 C H

f) (CH3 )2 CHCH 2 CH2 CH3 from (CH3 )2 C=CH 2 and H-C≡CNa

99

3.

Propose a mechanism for each of the reactions shown. OH H3 O a) O + H 2 O ----------> OH

b) (CH3 )2 CHCH=CH2 + HCl -----> (CH 3 )2 CClCH2 CH3

CH2 CH3 CH=CH 2 c)

H3 O + H 2 O ---------->

OH

d) CH3 CH2 CH=CH 2 + Br2 + I– -----> CH3 CH2 CH—CH 2 + Br– | | I Br

HO

CH2

H3 O + H 2 O ---------->

e)

CH3

CH2 f)

CH3

H3 O (trace) ------------------->

100

4.1

Identify each of these unknowns from the information given. O O O3 Zn || || a) C6 H12 ----> ------> CH3 C-CH3 + CH3 CH2 C-H H2 O O || CH3 CH2 C-H

b) C9 H16

O3 Zn ----> ------> H2 O

c) C6 H10

O O KMnO 4 , OH H3 O || || -------------------> ---------> HO-C-CH2 CH2 CH2 C-CH3 heat

O +

O

KMnO 4 , OH H3 O d) C10 H16 -------------------> ---------> heat 4.2

Predict the products of the following reactions. O3 Zn a) ----> ------> H2 O CH2 b) CH=CHCH3

5.1

CH2 CH2 CH2 COOH

H3 O KMnO 4 , OH ---------> -------------------> heat

Match each set of test results with one of the compounds shown. OH CH3 CH2 CH2 CH2 Br A

B

C

D

a) Decolorizes Br2 in CCl4 Soluble in H2 SO 4 No reaction with AgNO3 in ammonia b) No reaction with cold dilute KMnO4 No reaction with AgNO3 in alcohol Soluble in conc. H2 SO 4

101

CH3 CH2 CH2 C E

C-H

5.1

Unknowns, continued. The possibilities are: OH CH3 CH2 CH2 CH2 Br A

B

C

D

c) Gives a brown precipitate with cold dilute KMnO4 Gives a white precipitate with AgNO3 in ammonia Soluble in conc. H2 SO 4 d) No reaction with cold dilute KMnO4 No reaction with alcoholic AgNO3 Insoluble in conc. H2 SO 4 5.2

Describe simple chemical tests that can distinguish between: a) b) c) d) e)

cyclohexene and cyclohexyl bromide 1-hexene and 1-hexyne tert-butyl alcohol and tert-butyl bromide pentane and 1-pentene ethanol and 2-pentyne

102

CH3 CH2 CH2 C E

C-H

ANSWERS TO THE PROBLEMS: 1.1

Predict the major organic product or products of each of the following reactions. a) (CH3 )2 CHCH=CH2 + HCl -----> (CH 3 )2 CClCH2 CH3 no peroxides b) CH3 CH2 CH2 CH=CH 2 + HBr ------------------> CH3 CH2 CH2 CHBrCH 3 peroxides c) CH3 CH2 CH2 CH=CH 2 + HBr ---------------> CH3 CH2 CH2 CH2 CH2 Br (cold, dilute) + KMnO4 ----------------->

d)

OH OH

KOC(CH 3 )3 ----------------> CHCl3

e)

f)

+ Br2

Cl Cl Br

CCl4 -------->

+ enantiomer Br Cl

g)

+ Cl 2 + H2 O ----->

+ enantiomer + HCl OH COOH

OH , H2 O, heat H3 O + KMnO4 --------------------> --------->

h)

COOH COOH

HOOC i)

C H

j)

C

+ Br2

CCl4 -------->

H

COOH

HOOC C Br H

CH2 I2 /Zn(Cu) ------------------> ether

103

C Br H

+ enantiomer

1.2

Compare the addition of HBr in the presence and in the absence of peroxides to each of the following compounds. (Hint: Predict the products.) CH3 | a) CH3 —CH—CH=CH2

HBr, no peroxides

HBr, peroxides

(CH3 )2 CBr—CH2 CH3

(CH3 )2 CH—CH 2 CH2 Br

Note that both of these problems involve rearrangements in the absence of peroxides. Br HBr, no peroxides H CH2 CH3 b) CH=CH 2 H HBr, peroxides CH2 CH2 Br 2.1

Synthesis problems. These answers are in shorthand (not balanced equation) form.

a)

CH3

CH3

HBr, peroxides -------------------->

Br 2 HBr, peroxides b) CH3 C≡CH -----------------------> CH3 CH2 CHBr2

c)

C6 H5 CO3 H ---------------->

H2 O, H3 O O ----------------->

OH OH

d)

Br KOH, heat --------------->

C6 H5 CO3 H H2 O, H3 O ----------------> ----------------->

OH OH

(Last two steps as in c) above) 2.2

More synthesis: Br a)

CH3 Br2 , light ------------->

KOH HBr CH3 --------> -------------> peroxides heat

104

CH3 Br

NaNH 2 CH3 CH2 I b) HC≡CH -----------> HC≡CNa --------------> HC≡CCH2 CH3 and then H2 , Ni2 B HBr HC≡CCH2 CH3 ------------> H2 C=CHCH 2 CH3 ------------> CH3 CH2 CH2 CH2 Br peroxides H2 SO 4 , heat HBr, no peroxides c) (CH3 )2 CHCH 2 OH ----------------> (CH3 )2 CH=CH 2 ----------------------> (CH3 )3 CBr Br2 ------> light

d)

CH3 e)

C H

CH3 C H

Br KOH ------> heat

C6 H5 CO3 H H3 O ---------------> ---------> H2 O

Br2 NaNH 2 -------> CH3 CHBrCHBrCH 3 ---------> CH3 C CCl4

CH3 C

CCH3

CH3

Li, NH3 ----------->

C H

H C CH3

HBr, peroxides f) (CH3 )2 C=CH 2 ---------------------> (CH3 )2 CHCH 2 Br, then: H-C≡CNa (CH3 )2 CHCH 2 Br ---------------> (CH3 )2 CHCH 2 C≡CH, then: 2H2 , Pt (CH3 )2 CHCH 2 C≡CH ----------> (CH3 )2 CHCH 2 CH2 CH3

105

CCH3

OH OH

then

3)

Mechanisms. Note that balanced equations are used throughout. OH H3 O a) O + H 2 O ----------> OH O + H3O

----->

O

H + H2 O OH

O H + H2 O -----> OH 2 OH

OH + H2 O ----->

+ H3O

OH 2

OH

b) (CH3 )2 CHCH=CH2 + HCl -----> (CH 3 )2 CClCH2 CH3 (CH3 )2 CHCH=CH2 + HCl -----> (CH 3 )2 CHCHCH 3 + Cl H | (CH3 )2 C—CHCH 3 -----> (CH3 )2 C—CH2 CH3 (CH3 )2 C—CH2 CH3 + Cl -----> (CH 3 )2 CClCH2 CH3

CH=CH 2 c)

CH2 CH3

H3 O + H 2 O ---------->

OH CHCH 3

CH=CH 2 + H3 O

+ H2O

----->

CHCH 3

CH2 CH3 ----->

H CH2 CH3 + H 2 O -----> CH2 CH3 OH 2

CH2 CH3 OH 2 CH2 CH3

+ H 2 O ----->

106

OH

+ H3 O

3)

Mechanisms, continued. Note again that balanced equations are used throughout. d) CH3 CH2 CH=CH 2 + Br2 + I– -----> CH3 CH2 CH—CH 2 + Br– | | I Br CH3 CH2 CH=CH 2 + Br—Br -----> CH 3 CH2 CH—CH 2 Br CH3 CH2 CH—CH 2 + I

-----> CH3 CH2 CH—CH 2 I

Br HO

CH2

CH3

H3 O + H 2 O ---------->

e)

CH2

CH3 + H3 O

---------->

+ H2O

H3 C OH 2

CH3

+ H 2 O ------> OH 2

H3 C

HO CH3 + H3 O

+ H 2 O ------> CH3

CH2 f)

H3 O (trace) -------------------> CH3

CH2 + H3 O

----->

CH3

+ H2 O CH3

H + H2 O ----->

+ H3 O

107

Br

+ Br

4.1

The unknowns are: a) CH3 CH2 CH=C(CH 3 )2 CH3

CHCH 2 CH3

d)

c) 4.2

b)

The products are: O3 Zn ----> ------> H2 O

a)

O CHO

H3 O KMnO 4 , OH -------------------> ---------> heat CH=CHCH3 CH2

b)

O O || || + HCCH2 CH O + CH3 COOH COOH

+ CO2

5.1

The unknowns are: a) B; b) A; c) E; d) C

5.2

Descriptions of simple chemical tests that can distinguish between the pairs. (Only one answer is required.) a) Cyclohexene gives no reaction with alcoholic AgNO3 , while cyclohexyl bromide gives a white precipitate. Cyclohexene reacts with bromine in carbon tetrachloride and with cold dilute potassium permanganate, and dissolves in concentrated sulfuric acid; cyclohexyl bromide does none of these things. b) 1-Hexene gives no reaction with AgNO3 in ammonia, while 1-hexyne gives a white precipitate. c) tert-Butyl alcohol dissolves in concentrated sulfuric acid, while tert-butyl bromide does not. The bromide gives a white precipitate with AgNO3 in alcohol, while the tert-butyl alcohol does not react. d) 1-Pentene decolorizes bromine in carbon tetrachloride, gives a brown precipitate with cold dilute potassium permanganate, and dissolves in conc. sulfuric acid. Pentane does not react with any of these reagents. e) 2-Pentyne reacts with bromine in carbon tetrachloride and with cold dilute potassium permanganate; ethanol does neither of these things.

108

Name ___________________________________________________ Eighth Drill Test (Sample) Organic Chemistry 2210 DR Answer All Questions 1)

Predict the major organic product or products the following reaction. CH3 CH2 CH2 CH=CH 2 + C6 H5 CO3 H ------>

2)

Propose a synthesis of each of the following compounds from the given starting material and any needed inorganic reagents or solvents. OH a) from OH b)

Br Br

from

c) (CH3 )3 COH from (CH 3 )2 CHCH 2 OH

3)

Propose a mechanism for each of the reactions shown. H3 O+ a) CH3 CH2 CH=CH 2 + H2 O -------> CH3 CH2 CHOHCH3

Br b)

+ Br2 + Cl ----> Br + Cl

4)

Give the structures of these unknowns from the information given. O O3 Zn, H2 O || a) C8 H16 ----> -----------> 2 CH3 CH2 CH2 C-H KMnO 4 , base, heat acid b) C8 H14 ------------------------> ------>

5)

O + CH3 CO2 H

Which of these compounds gives a peak in the IR spectrum near 1640 cm-1 , is soluble in conc. H2 SO 4 , reacts with cold alkaline KMnO4 , and gives no reaction with either silver nitrate in ethanol or Ag(NH3 )2 +? A. CH3 CH=CH 2

B. CH3 C≡C-H

C. CH 3 CH2 CH3

109

D. CH 3 CH2 OH

E. CH 3 CH2 Cl

Name _________________________________________________ Eighth Drill Test (Sample B) Organic Chemistry 2210 DR Answer All Questions 1)

Predict the major organic product of each of the following reactions. H2 SO 4 a) CH3 CH=CH 2 + H2 O ----------> b)

2)

peroxides CH3 + HBr ------------->

Propose a synthesis of each. You may use any needed inorganic reagents and solvents. a) (CH3 )3 CCl from (CH3 )3 COH

b) bicyclo[3.1.0]hexane from cyclopentene

c) trans-1,2-cyclohexanediol from bromocyclohexane

3)

Propose a mechanism for each of the reactions shown. For problem a), first complete the equation by predicting the product. H3 O a) O + H 2 O ---------->

b) CH3 CH=CH 2 + Br2 + Cl

4)

Which of the compounds shown is soluble in conc. H2 SO 4 , reacts with cold alkaline KMnO 4 , and gives no reaction with either AgNO3 in alcohol or Ag(NH3 )2 +? A. CH3 CH2 Br

5)

------> CH3 CHClCH2 Br + Br

B. CH3 CH2 OH

C. CH 3 CH=CH 2

D. CH 3 C≡C-H

Give the structures of the unknowns from the information given. O KMnO 4 , base, heat acid || a) C7 H12 ------------------------> ------> HO O O | | || O3 Zn, H2 O b) C7 H14 ----> -----------> H +

110

E. CH3 CH2 CH3 O || OH

Type and definition of reaction: 1. Substitution (pg. 1025) The replacement of one atom (or group) by another atom (or group). Note substitution is the only way to add a halogen to an alkane.

Example propane + Br2

Reaction equation, structural formulas, names, conditions: H

H

(H)Br (H)Br H

H

catalyst H

C

C

C

H

H

H

H

+

Br

H

Br

heat, (pressure)

C

C

C

H

H

H

H

+

Br(H)

Product: 2-bromopropane or 1-bromopropane, also could be 1,2- or 1,3- or 1,1- or 2,2-dibromopropane) 2. Halogenation (pg. 1023) The addition of a halogen (group VII element) to a multiple bond (the halogen atoms add across a pi bond).

propene + Cl2 H3C

H3C CH

CH2

Cl

+

CH

Cl room temp.

CH2

Cl

Cl

1,2-dichloropropane 3. Hydrogenation (pg. 1023) The addition of H2 to a multiple bond (across a pi bond). (Hydrogenation, also known as saturation, is used commercially in the production of margarine).

1-butene + H2

4. Hydrolysis (pg. 1023) The addition of a water molecule to a double bond.

propene + H2O

H3C H2C

catalyst CH

CH2

+

H

H3C H2C

H

CH

heat, pressure

CH2

H

H

butane H3C

acid catalyst CH

H3C CH

CH2 + H2O

CH2

(HO)H

OH(H)

2-propanol or 1-propanol 5. Elimination (pg.1027) The loss of a small molecule from a larger molecule. When the small molecule is H2O the process is also referred to as “condensation” or “dehydration”.

ethanol

H

H

catalyst H

C

C

H

OH

H C

heat H

H C

H

H

+

H

O

H

ethene

water

H

Type and definition of reaction: 6. Esterification (pg. 1030) The condensation reaction that joins an alcohol with a carboxylic acid to produce an ester.

Example producing isopentyl acetate

Reaction equation, structural formulas, names, conditions: H3C CH

+

CH2

H3C

CH2 OH

O CH

C

heat

CH3

HO

3-methyl-1-butanol (isopentyl alcohol)

H3C

H+

O

ethanoic acid (acetic acid)

CH2

H3C

+

C

CH2 O

H2O

CH3

3-methylbutyl ethanoate water (isopentyl acetate)

7. Polymerization The conversion of “monomers” into “polymers”. I.e. the joining of small molecules to form large molecules with repeating units. a) addition (pg. 1023) eth(yl)ene monomer catalytic process H 2C

CH2

...

CH2 CH2

CH2 CH2

CH2 CH2

n

CH2 CH2

...

polyeth(yl)ene b) condensation (pg. 1031)

8. Oxidation (pg. 1028) (More) oxygen atoms are placed on an organic molecule.

General Reaction (for Dacron replace R1 with -CH2-CH2- and R2 with benzene. ethanal + K2Cr2O7

O HO

R1

+

OH

HO

C

O R2

C

O OH

...

R1 O

diol dicarboxylic acid (ethylene glycol) (terephthalic acid) H

C

O R2

C

polyester (Dacron)

O

H

O

C

C

O

R1

...

+ H2O

Cr2(SO4)3

K2Cr2O7

H

C H

C

H +

H H2SO4

room temp.

O

H

H

+

K2SO4 H2O

ethanoic acid 1. Define addition reaction. Which of these reactions are addition reactions? Which reaction is the opposite of an addition reaction? 2. Define condensation reaction. Which of these reactions are condensation reactions? 3. Based on these reactions how could you make the following chemicals (draw reaction, showing reactants, products and conditions. Also indicate the type of reaction): 1,2-dichlorocyclopentane, octane (using 4-octyne), 2,2,3,3-tetrabromopentane, 1-butene, propanoic acid, ethanol, ethyl propanoate.

Unit 5 Review: Hydrocarbons 1. Briefly define or explain the significance of the following terms: a) acetylene h) aromatic b) acyclic i) bond energy c) addition reaction j) calorimeter d) aliphatic k) cyclic e) alkane l) endothermic f) alkene m) exothermic g) alkyne n) fractionation

o) p) q) r) s) t) u)

monomer organic chemistry petroleum polymer saturated hydrocarbon unsaturated hydrocarbon Wöhler

2. What general formula describes a) alkanes, b) alkenes, c) alkynes, d) cycloalkanes? 3. Draw the structural diagram for benzene. 4. For 3-methylpentane draw the a) complete structural diagram, b) condensed structural diagram, and c) line structural diagram 5. a) Write a balanced equation for the complete combustion of hexane. b) Write two possible balanced equations for the incomplete combustion of hexane. 6. Draw structures for these compounds: a) 2-methylbutane b) 4-propyl-3-heptene c) 5-ethyl-4,4,5-trimethyldecane d) cis-1,3-dimethylcyclohexane

Name these structures: CH3 f

e

CH3 CH CH2 CH2 C CH3 CH3

CH

H 2C

CH 2 CH 2

CH3

7. Identify each pair as structural isomers, geometric isomers, or neither e a) cyclopentane, pentane b) 1,1-dichloroethene, trans-1,2-dichloroethene c) cis-1,2-dichlorocyclopentane, trans-1,2-dichlorocyclopentane d) cis-1,2-dichlorocyclopentane, trans-1,3-dichlorocyclopentane

CH 3

CH

HC

CH2

Br

Br

Cl

C

C

C

H

H

f

H

Cl

H C

Cl

H C Cl H

C

Cl C

H

H

C Cl

8. Using Br2(aq), how can you easily distinguish between ethane, ethene, and ethyne? 9. Using a table of bond energies calculate the heat of reaction when excess Br2 reacts with a) 1 mole of ethene, b) 1 mole of ethyne. 10. Differentiate the following terms with respect to definition, symbol, and units: a) heat capacity, b) specific heat capacity, c) heat of reaction, d) specific heat, e) molar heat of reaction 11. A forensics lab receives a small 0.16 g sample of metal. To identify the metal they heat it using exactly 3.0 J of energy. The temperature rises from 20°C to 98°C. What is the unknown metal (see pg. 568)? 12. 50.0 grams of butane is placed in a calorimeter. The 350 grams of water in the calorimeter rose from 19.7°C to 21.2°C. a) Calculate the heat released by the butane. b) Calculate the molar heat of reaction. 13. There is something wrong with each of the following names. Identify the error in each case (often the correct name can be determined by trying to draw the structure and then renaming it). a) 5-methyl-3-hexyne c) 1,2-dichlorocyclobutane e) 2-ethyl-2-methylhexane b) 3,3-dimethyl-3-hexyne d) 3-methyloctene f) 2,3-dimethyl-4-ethylnonane