CHAPTER 6 Additional Topics in Trigonometry

C H A P T E R 6 Additional Topics in Trigonometry Section 6.1 Law of Sines . . . . . . . . . . . . . . . . . . . . . . . . 532 Section 6.2 Law of C...
Author: Peter Atkins
43 downloads 0 Views 3MB Size
C H A P T E R 6 Additional Topics in Trigonometry Section 6.1

Law of Sines . . . . . . . . . . . . . . . . . . . . . . . . 532

Section 6.2

Law of Cosines . . . . . . . . . . . . . . . . . . . . . . . 539

Section 6.3

Vectors in the Plane

Section 6.4

Vectors and Dot Products

Section 6.5

Trigonometric Form of a Complex Number . . . . . . . . 571

. . . . . . . . . . . . . . . . . . . . 549 . . . . . . . . . . . . . . . . . 562

Review Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592 Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606 Practice Test

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609

C H A P T E R 6 Additional Topics in Trigonometry Section 6.1



Law of Sines

If ABC is any oblique triangle with sides a, b, and c, then a b c   . sin A sin B sin C



You should be able to use the Law of Sines to solve an oblique triangle for the remaining three parts, given: (a) Two angles and any side (AAS or ASA) (b) Two sides and an angle opposite one of them (SSA) 1. If A is acute and h  b sin A: (a) a < h, no triangle is possible. (b) a  h or a > b, one triangle is possible. (c) h < a < b, two triangles are possible. 2. If A is obtuse and h  b sin A: (a) a ≤ b, no triangle is possible. (b) a > b, one triangle is possible.



The area of any triangle equals one-half the product of the lengths of two sides and the sine of their included angle. 1 1 1 A  2ab sin C  2ac sin B  2bc sin A

Vocabulary Check 1. oblique

2.

1.

b sin B

C b

2.

C  180  A  B  105 a 20 sin 45 b  202  28.28 sin B  sin A sin 30

532

105°

a 20 sin 105  38.64 sin C  sin A sin 30

a 40°

B

Given: A  30, B  45, a  20

c

b

45° c

1 ac sin B 2

C

a = 20

30° A

3.

A

c = 20

B

Given: B  40, C  105, c  20 A  180  B  C  35 a

c 20 sin 35 sin A   11.88 sin C sin 105

b

c 20 sin 40 sin B   13.31 sin C sin 105

Section 6.1 3.

4.

C 25° A

C b

a = 3.5

b

a 135° 10°

35° c

Law of Sines

B

A

c = 45

Given: A  25, B  35, a  3.5

Given: B  10, C  135, c  45

C  180  A  B  120

A  180  B  C  35

b

a 3.5 sin B  sin 35  4.75 sin A sin 25

a

c 45 sin 35 sin A   36.50 sin C sin 135

c

3.5 a sin C  sin 120  7.17 sin A sin 25

b

45 sin 10 c sin B   11.05 sin C sin 135

5. Given: A  36, a  8, b  5 sin B 

b sin A 5 sin 36   0.36737 ⇒ B  21.55 a 8

C  180  A  B  180  36  21.55  122.45 c

a 8 sin C  sin 122.45  11.49 sin A sin 36

6. Given: A  60, a  9, c  10 sin C 

c sin A 10 sin 60   0.9623 ⇒ C  74.21 or C  105.79 a 9

Case 1

Case 2

C  74.21

C  105.79

B  180  A  C  45.79

B  180  A  C  14.21

b

a 9 sin 45.79 sin B   7.45 sin A sin 60

7. Given: A  102.4, C  16.7, a  21.6 B  180  A  C  60.9

b

a 9 sin 14.21 sin B   2.55 sin A sin 60

8. Given: A  24.3, C  54.6, c  2.68 B  180  A  C  101.1

b

a 21.6 sin B  sin 60.9  19.32 sin A sin 102.4

a

c 2.68 sin 24.3 sin A   1.35 sin C sin 54.6

c

a 21.6 sin C  sin 16.7  6.36 sin A sin 102.4

b

c 2.68 sin 101.1 sin B   3.23 sin C sin 54.6

9. Given: A  83 20, C  54.6, c  18.1 B  180  A  C  180  83 20  54 36  42 4

10. Given: A  5 40, B  8 15, b  4.8 C  180  A  B  166 5

a

c 18.1 sin A  sin 83 20   22.05 sin C sin 54.6

a

b 4.8 sin 5 40 sin A   3.30 sin B sin 8 15

b

c 18.1 sin B  sin 42 4   14.88 sin C sin 54.6

c

b 4.8 sin 166 5 sin C   8.05 sin B sin 8 15

B

533

534

Chapter 6

Additional Topics in Trigonometry

11. Given: B  15 30 , a  4.5, b  6.8 sin A 

a sin B 4.5 sin 15 30   0.17685 ⇒ A  10 11 b 6.8

C  180  A  B  180  10 11  15 30  154 19 c

6.8 b sin C  sin 154 19   11.03 sin B sin 15 30

12. Given: B  2 45, b  6.2, c  5.8 sin C 

c sin B 5.8 sin 2 45   0.04488 ⇒ C  2.57 or 2 34 b 6.2

A  180  B  C  174.68, or 174 41 b 6.2 sin 174.68 sin A   11.99 sin B sin 2 45

a

13. Given: C  145, b  4, c  14

14. Given: A  100, a  125, c  10 sin C 

b sin C 4 sin 145   0.16388 ⇒ B  9.43 sin B  c 14

B  180  A  C  75.48

A  180  B  C  180  9.43  145  25.57 a

c sin A 10 sin 100   0.07878 ⇒ C  4.52 a 125

b

c 14 sin A  sin 25.57  10.53 sin C sin 145

a 125 sin 75.48 sin B   122.87 sin A sin 100

15. Given: A  110 15 , a  48, b  16 sin B 

b sin A 16 sin 110 15   0.31273 ⇒ B  18 13 a 48

C  180  A  B  180  110 15  18 13  51 32 c

a 48 sin C  sin 51 32   40.06 sin A sin 110 15

16. Given: C  85 20, a  35, c  50 sin A 

a sin C 35 sin 85 20   0.6977 ⇒ A  44.24, or 44 14 c 50

B  180  A  C  50.43, or 50 26 b

C sin B 50 sin 50.43   38.67 sin C sin 85 20

17. Given: A  55, B  42, c 

3 4

C  180  A  B  83

18. Given: B  28, C  104, a  3 A  180  B  C  48

a

c 0.75 sin A  sin 55  0.62 sin C sin 83

b

5 a sin B 38 sin 28   2.29 sin A sin 48

b

0.75 c sin B  sin 42  0.51 sin C sin 83

c

5 a sin C 38 sin 104   4.73 sin A sin 48

5 8

Section 6.1 19. Given: A  110, a  125, b  100

Law of Sines

535

20. Given: a  125, b  200, A  110

b sin A 100 sin 110   0.75175 ⇒ B  48.74 sin B  a 125

No triangle is formed because A is obtuse and a < b.

C  180  A  B  21.26 c

a sin C 125 sin 21.26   48.23 sin A sin 110 22. Given: A  76, a  34, b  21

21. Given: a  18, b  20, A  76 h  20 sin 76  19.41

sin B 

Since a < h, no triangle is formed.

b sin A 21 sin 76   0.5993 ⇒ B  36.82 a 34

C  180  A  B  67.18 c

a sin C 34 sin 67.18   32.30 sin A sin 76

23. Given: A  58, a  11.4, c  12.8 sin B 

b sin A 12.8 sin 58   0.9522 ⇒ B  72.21 or B  107.79 a 11.4

Case 1

Case 2

B  72.21

B  107.79

C  180  A  B  49.79

C  180  A  B  14.21

c

a 11.4 sin 49.79 sin C   10.27 sin A sin 58

24. Given: a  4.5, b  12.8, A  58

c

a 11.4 sin 14.21 sin C   3.30 sin A sin 58

25. Given: A  36, a  5

h  12.8 sin 58  10.86

(a) One solution if b ≤ 5 or b 

Since a < h, no triangle is formed. (b) Two solutions if 5 < b < (c) No solution if b >

(a) One solution if b ≤ 10 or b 

(c) No solutions if b >

10 . sin 60

10 . sin 60

10 . sin 60

(b) Two solutions if 315.6 < b


5 sin 36

27. Given: A  10, a  10.8

26. Given: A  60, a  10

(b) Two solutions if 10 < b
1 2165

This is not possible. In general, if the sum of any two sides is less than the third side, then they cannot form a triangle. Here 10  5 is less than 16.

54. (a) Working with ODC, we have cos   This implies that 2R 

a2 . R

a . cos 

Since we know that a b c   , sin A sin B sin C we can complete the proof by showing that cos   sin A. The solution of the system A  B  C  180

(b) By Heron’s Formula, the area of the triangle is Area  ss  as  bs  c. We can also find the area by dividing the area into six triangles and using the fact that the area is 12 the base times the height. Using the figure as given, we have 1 1 1 1 1 1 Area  xr  xr  yr  yr  zr  zr 2 2 2 2 2 2  rx  y  z  rs. rs  ss  as  bs  c ⇒

Therefore:

CA

 B

r

is   90  A. Therefore: 2R 

A

a a a .   cos  cos90  A sin A

z

B

β α A

y

x D

α O α−C

z

r

β R

s  as s bs  c.

R

y x

C C

B

Section 6.2

Law of Cosines

547

55. a  25, b  55, c  72 1 (a) Area of triangle: s  25  55  72  76 2

(b) Area of circumscribed circle:

Area  7651214  570.60

cos C 

(c) Area of inscribed circle:

 51214   7.51 76

r

R

s  as  bs  c s



252  552  722  0.5578 ⇒ C  123.9 22555



1 c  43.37 (see #54) 2 sin C

Area   R2  5909.2

(see #54

Area   r 2  177.09 56. Given: a  200 ft, b  250 ft, c  325 ft s

200  250  325  387.5 2

Radius of the inscribed circle: r 

137.562.5  64.5 ft (see #54) s  as s bs  c  187.5387.5

Circumference of an inscribed circle: C  2r  264.5  405.2 ft

57.

1 b2  c2  a2 1 bc1  cos A  bc 1  2 2 2bc





1 2bc  b2  c2  a2  bc 2 2bc



58.



a2  b2  2bc  c2 4

1  b  c  a b  c  a 4



a2  b  c2 4 a  b  c 2



bca 2



bca 2







abc 2



a  b  c 2



abc 2

 2

60. arccos 0 





63. arcsin 

 3

.

3

2





abc 2

61. arctan3 

   3

a  b  c 2

64. arccos 

 3

3

2

    arccos

3

2

 5  6 6

66. Let u  arccos 3x

2x and 1

1

 2









65. Let   arcsin 2x, then

1  4x2



2bc  a2  b2  c2 1  bc 2 2bc





62. arctan 3   arctan 3

sec  



1  b  c2  a2 4

59. arcsin1  

sin   2x 

1 1 a2  b2  c2 bc1  cos A  bc 1  2 2 2bc

1 2x

cos u  3x 

3x . 1

1

u

θ

3x 1 − 4x 2

tanarccos 3x  tan u 

1  9x2

3x

1 − 9x 2

548

Chapter 6

Additional Topics in Trigonometry

67. Let   arctanx  2, then tan   x  2  cot  

68. Let u  arcsin

x2 and 1

1 . x2

x−2

sin u 

θ



1

x1 2

x1 . 2

cos arcsin

2



70. x  2 cos , 

5  25  5 sin 2 5  251 

sin2



 2  4  4 cos2   2  41  cos2 

1 1 cos 

 2  4 sin2   2  2 sin 

csc  is undefined.



71.  3  x2  9, x  3 sec 

2

2

 sin  ⇒ cos  

 3  9

sec2

2

2

sec  

1 1   2 cos  22

csc  

1 1    2 sin   22

72. x  6 tan , 

 3  3 sec 2  9

  <  < 2 2

12  36  x2

  1

12  36  6 tan 2

 3  3 tan 

12  36  36 tan2 

3

12  361  tan2 

3

sec   1  tan   2

cot  

  <  < 2 2

 2  4  2 cos 2

cos   1

tan   

2

 2  4  x2

5  5 cos 

sec  

4 − (x − 1) 2

4  x  12



69. 5  25  x2, x  5 sin 

u

x1  cos u 2

1   3  3

2

12  36 sec2 

23  3

12  6 sec  2  sec 

1   3 tan 

cos  

csc    1  cot2    1   3 2  2 sin2  

12

2

1 2

1

sin2   1  sin   ± csc  

1 3  4 4

34  ± 23 

1 1 2 23  ± ± sin  ± 32 3 3

x−1

Section 6.3



 5 73. cos  cos  2 sin 6 3

5  5    6 3 6 3 sin 2 2





   sin x   2 cos 74. sin x  2 2









 2 cos

x



  x 2 2 2

7  sin 12 4

 2 sin





Vectors in the Plane

x

sin

   x 2 2 2







2x2 sin 2

2

 2 cos x sin 

Section 6.3

Vectors in the Plane

\



A vector v is the collection of all directed line segments that are equivalent to a given directed line segment PQ .



You should be able to geometrically perform the operations of vector addition and scalar multiplication.



The component form of the vector with initial point P   p1, p2 and terminal point Q  q1, q2 is \

PQ  q1  p1, q2  p2  v1, v2  v. ■

The magnitude of v  v1, v2 is given by v  v12  v22.



If v  1, v is a unit vector.



You should be able to perform the operations of scalar multiplication and vector addition in component form. (a) u  v  u1  v1, u2  v2



(b) ku  ku1, ku2 

You should know the following properties of vector addition and scalar multiplication. (a) u  v  v  u

(b) u  v  w  u  v  w

(c) u  0  u

(d) u  u  0

(e) cdu  cdu

(f) c  du  cu  du

(g) cu  v  cu  cv

(h) 1u  u, 0u  0



(i) cv  c v v . v



A unit vector in the direction of v is u 



The standard unit vectors are i  1, 0 and j  0, 1. v  v1, v2 can be written as v  v1i  v2 j.



A vector v with magnitude v and direction  can be written as v  ai  bj  vcos i  vsin j, where tan   b a.

Vocabulary Check 1. directed line segment

2. initial; terminal

3. magnitude

4. vector

5. standard position

6. unit vector

7. multiplication; addition

8. resultant

9. linear combination; horizontal; vertical

549

550

Chapter 6

Additional Topics in Trigonometry

1. v  4  0, 1  0  4, 1

2. u  3  0, 4  4  3, 8

uv

v  0  3, 5  3  3, 8 uv

3. Initial point: 0, 0

4. Initial point: 0, 0

Terminal point: 3, 2

Terminal point: 4, 2

v  3  0, 2  0  3, 2

v  4  0, 2  0  4, 2

v  32  22  13

v  42  22  20  25

5. Initial point: 2, 2

6. Initial point: 1, 1

Terminal point: 1, 4

Terminal point: 3, 5

v  1  2, 4  2  3, 2

v  3  1, 5  1  4, 6

v  32  22  13

v  42  62  52  213

7. Initial point: 3, 2

8. Initial point: 4, 1

Terminal point: 3, 3

Terminal point: 3, 1

v  3  3, 3  2  0, 5

v  3  4, 1  1  7, 0

v 

v  72  02  7

02



52

 25  5

9. Initial point: 1, 5

10. Initial point: 1, 11

Terminal point: 15, 12

Terminal point: 9, 3

v  15  1, 12  5  16, 7

v  9  1, 3  11  8, 8

v 

162



72

 305

v  82  82  82

11. Initial point: 3, 5

12. Initial point: 3, 11

Terminal point: 5, 1

Terminal point: 9, 40

v  5  3, 1  5  8, 6 v 

82



62

v  9  3, 40  11  12, 29

 100  10

v  122  292  985

13. Initial point: 1, 3

14. Initial point: 2, 7

Terminal point: 8, 9

Terminal point: 5, 17

v  8  1, 9  3  9, 12

v  5  2, 17  7  7, 24

v  9  12  225  15 2

15.

v  72  242  25

2

y

17.

16. 5v

y

y

u+v 5v

v

v x

−v

u x

v x

Section 6.3 18. u  v

Vectors in the Plane

551

1 20. v  2 u

19. u  2v y

y

y

u v

u + 2v

x

v − 12 u

2v

u−v

x

−v

− 12 u u

x

21. u  2, 1, v  1, 3 (a) u  v  3, 4

(c) 2u  3v  4, 2  3, 9  1, 7

(b) u  v  1, 2

y

y

y

5 4

u+v

x

2

v

3

−6

u

1

2

−4

−2

2

4

6

x −3

1

−1

2u

2

3

−2

−1

1

2

3

−6

u x 1

2

3

4

5

−v

−1

2u − 3v

−3v

u−v

− 10

22. u  2, 3, v  4, 0 (b) u  v  2, 3

(a) u  v  6, 3 y

(c) 2u  3v  4, 6  12, 0  8, 6

y 6

8

y

5 6

10

4

8

2u − 3v

u−v

u

4

u+v

2

2

x 4

6

2

−3v

−v v

2u

4

2

u

x

−5 −4 −3 −2 −1

1

2

− 10 − 8 − 6 − 4 − 2

x 2

4

6

−4

8

−6 −8

23. u  5, 3, v  0, 0 (a) u  v  5, 3  u

u=u+v

y

y

7

7

12

6

6

10

5

5

4

4

u=u−v

3

2

1

1 −7 −6 −5 −4 −3 −2 −1

8 6 4

v

x 1

2u = 2u − 3v

3

2 v −7 −6 −5 −4 −3 −2 −1

(c) 2u  3v  2u  10, 6

(b) u  v  5, 3  u

y

x 1

2

−3v

− 12 − 10 − 8 − 6 − 4 − 2 −2

2

x

552

Chapter 6

Additional Topics in Trigonometry

24. u  0, 0, v  2, 1 (c) 2u  3v  0, 0  6, 3

(b) u  v  2, 1

(a) u  v  2, 1

 6, 3

y

y

y

1

3

u

2

−3

v=u+v

1

−2

1

2

x

1

−1 −3

− 3v = 2u − 3v

3

−4

−3

−1

2u

−2

−2

x

−1

−7 −6 −5 −4 −3 −2

−1

−v = u − v

u

1

x 1

−5 −6 −7

25. u  i  j, v  2i  3j

3

5

2

u−v 4

10

−v

x −1

y

2u − 3v 12

u

1 −2

 4i  11j

y

y

−3

(c) 2u  3v  2i  2j  6i  9j

(b) u  v  i  4j

(a) u  v  3i  2j

u

u+v

−2

−3

v

−3

8

−3v

3 −1 −2

x

−1

1

2

3

−1

2u x

−8 −6 −4 −2 −2

2

4

6

26. u  2i  j, v  i  2j (b) u  v  i  j

(a) u  v  3i  3j

2u  3v  4i  2j  3i  6j  i  4j

y

y 4

u+v

(c)

y

2

3

u

1

3 2 1

2u

2

v

−2

u −4

−3

−2

1

− 6 − 5 −4 − 3

2

x

−1

1 2 3 4

−1

u−v

x

−1

x

−1

−v

1

−2

−1

2u − 3v

− 3v

−5 −6 −7

27. u  2i, v  j (c) 2u  3v  4i  3j

(b) u  v  2i  j

(a) u  v  2i  j

y

y

y 1

3

1

2u

u 2 1

−1

u+v

v

−1

u −1

1

−1

x 2

x 3

−2

3 −3

−v

u−v

−1

1

2

3

−1 −2 −3 −4

−3v

2u − 2v

x

Section 6.3

Vectors in the Plane

553

28. u  3j, v  2i

y

 6i  6j

y

u−v

u+v

3

(c) 2u  3v  6j  6i

(b) u  v  2i  3j

(a) u  v  2i  3j

y

u

u

2

8

2

2u − 3v 1

1

v −1

1

2

2u 4

−v

x

−3

3

−2

−1

x

−1

1

2

−3v

−1 −8

−6

−4

x

−2

2

−2

29. v 

1 1 1 u 3, 0  3, 0  1, 0 u 3 32  02

30. u  0, 2 v

1 1 0, 2 u u 02  22

1  0, 2  0, 1 2

31. u 

1 1 1 v 2, 2  2, 2 v 22  22 22  



1 1 , 2 2





2 2



 

33. u 

35. u 

2

,

2

32. v  5, 12 u

1 1 v 5, 12 52  122 v 

1 5, 12 13



135 ,  1312

1 1 1 6i  2j v 6i  2j  40 v 62  22

34. v  i  j



1 1 3 6i  2j  j i 10 10 210

u



10 310 i j 10 10

1 1 w  4j  j w 4



1 v v 1 12  12

i  j 

1 2

i  j 

2

2

i

36. w  6i v

1 1 w 6i w 62  02

1  6i  i 6

37. u 

1 1 1 i  2j w i  2j  w 12  22 5 

25 5 2 1 j i i j 5 5 5 5

38. w  7j  3i v

1 1 3i  7j w w 32  72



3 58

i

7 58

j

358 758 i j 58 58

2

2

j

554

Chapter 6

39. 5

u1 u  5 3 1 3 3, 3  35 2 3, 3 2



41. 9

Additional Topics in Trigonometry

40. v  6

2

52, 52  52 2, 52 2

6

u1 u  9 2 1 5 2, 5  929 2, 5 2



u1 u  6 31

2

1829, 4529  182929, 452929

 10

43. u  4  3, 5  1

uu  10 0 1

2

u  3i  8j 46. u  0  6, 1  4

45. u  2  1, 3  5  3, 8

u  6, 3

 3i  8j

u  6i  3j

48. v  34 w  34 i  2j

47. v  32u  j

 3i 



  3,

 32

3 4i





3 2j



49. v  u  2w

 

 2i  j  2i  2j

3 3 4, 2

 4i  3j  4, 3

y

y

w

2

y

2w

4

1

1

3 w 4

−1

3

2

x

−1

u + 2w

3

x 1

1

2

2 1

u

−1 x

3u 2

−2

3 −1

51. v  123u  w

50. v  u  w   2i  j  i  2j  i  3j  1, 3





1 2j





7 2,

 12

 2i  j  2i  2j



 5j  0, 5 y

−2

2 1

−2

u −2 4 1 (3u + w) 2

−1 −1

1

−2

2

1 w 2

x

x

x

−1

w

−u

5

u

y

3

2

7 2i

4

52. v  u  2w

 126i  3j  i  2j

y

−u + w



44. u  3  0, 6  2

 7i  4j

3 2j

1 10, 0  102

1

u  3, 8





1010, 0  10, 0

 7, 4

3 2 2i

3, 3

31 2 3, 3   62, 62   32, 32

42. v  10

2

 32

3u 2

−3

−2w

−4

u − 2w

3

Section 6.3 53. v  3cos 60i  sin 60ºj

54.

v  8cos 135 i  sin 135 j

555

55. v  6i  6j

v  8,   135

v  3,   60

Vectors in the Plane

v  62  62  72  62 tan  

6  1 6

Since v lies in Quadrant IV,   315. v  5i  4j

56.

57. v  3 cos 0, 3 sin 0

v  5  4  41 2

tan   

58. v  cos 45, sin 45

 3, 0

2

4 5



y

22, 22 y

2

Since v lies in Quadrant II,   141.3.

1

1

x 1

2

3

45° −1

x 1

59. v 

72 cos 150, 27 sin 150

 

73 7 , 4 4



60. v  

y

52 cos 45, 25 sin 45

52 52 , 4 4

61. v  32 cos 150, 32 sin 150





 

36 32 , 2 2



y

y 5

4

3 4

3

3

2

2

2

150° −4

−3

−2

1

1

x

−1

45°

1

1

62. v   43 cos 90, 43 sin 90



 0, 43

−5

x

−1





63. v  2 

y

2

1 12  32

2 10



6

10

5

4

i  3j

64. v  3

−6

−4

−2

3



10 310 310 j , 5 5 5





1 3i  4j  42

2





y 3

3

x 4

1

9 12 9 12  i j , 5 5 5 5

90° 2

x

−1

3  3i  4j 5

y

2

−2

3

i  3j

i

−3

−1

10 8

−4

150°

6

2

−2 2

1

1

x

−1 −1

x

1

2

1 −1

2

3

556

Chapter 6

Additional Topics in Trigonometry

65. u  5 cos 0, 5 sin 0  5, 0

u  4 cos 60, 4 sin 60   2, 23 

66.

v  4 cos 90, 4 sin 90  0, 4

v  5 cos 90, 5 sin 90  0, 5

u  v   2, 4  23 

u  v  5, 5 67. u  20 cos 45, 20 sin 45   102, 102 

u  50 cos 30, 50 sin 30   253, 25

68.

43.301, 25

v  50 cos 180, 50 sin 180  50, 0 u  v   102  50, 102 

v  30 cos 110, 30 sin 110 10.261, 28.191 u  v 33.04, 53.19

69. v  i  j

y

w  2i  2j

1

v

u  v  w  i  3j

x

−1

w  22

1 −1

v  w  10 cos  

u

α

v  2

v2



2

w

−2

w2

 v  2v w

w2



2  8  10 0 22  22

  90 70. v  i  2j

y

w  2i  j

2

u  v  w  i  3j cos  

v2



w2

 v  2v w

1

w2



5  5  10 0 255

  90

Force Two: v  60 cos  i  60 sin  j Resultant Force: u  v  45  60 cos  i  60 sin  j u  v  45  60 cos 2  60 sin 2  90 2025  5400 cos   3600  8100 5400 cos   2475 cos  

2475

0.4583 5400

 62.7

u

θ −2

−1 −1 −2

71. Force One: u  45i

v

x

w

2

Section 6.3 72. Force One: u  3000i Force Two: v  1000 cos  i  1000 sin  j Resultant Force: u  v  3000  1000 cos  i  1000 sin  j u  v  3000  1000 cos 2  1000 sin 2  3750 9,000,000  6,000,000 cos   1,000,000  14,062, 500 6,000,000 cos   4,062, 500 cos  

4,062,500

0.6771 6,000,000

 47.4 73.

u  300i v  125 cos 45i  125 sin 45j 



R  u  v  300  R 

2





74.



125 125 i j 2 2

 300  1252  1252

125 2 tan   125 300  2

125 125 i j 2 2

2



398.32 newtons

⇒  12.8

u  2000 cos 30 i  2000 sin 30j

y

1732.05i  1000j v  900 cos45i  900 sin45j

2000

636.4i  636.4j u  v 2368.4 i  363.6j u  v 2368.42  363.62 2396.19 tan  

363.6

0.1535 ⇒  8.7 2368.4

75. u  75 cos 30i  75 sin 30ºj 64.95i  37.5j v  100 cos 45i  100 sin 45j 70.71i  70.71j w  125 cos 120i  125 sin 120j 62.5i  108.3j u  v  w 73.16i  216.5j u  v  w 228.5 pounds tan 

216.5

2.9593 73.16

 71.3º

u+v x

900

Vectors in the Plane

557

558

Chapter 6

Additional Topics in Trigonometry

u  70 cos 30 i  70 sin 30j 60.62i  35j

76.

v  40 cos 45i  40 sin 45j 28.28i  28.28j w  60 cos 135i  60 sin 135j 42.43i  42.43j u  v  w  46.48i  35.71j u  v  w 58.61 pounds tan 

35.71

0.7683 46.47

 37.5 77. Horizontal component of velocity: 70 cos 35 57.34 feet per second Vertical component of velocity: 70 sin 35 40.15 feet per second 78. Horizontal component of velocity: 1200 cos 6 1193.4 ftsec Vertical component of velocity: 1200 sin 6 125.4 ftsec \

79. Cable AC : u  ucos 50i  sin 50j \

Cable BC : v  vcos 30i  sin 30j Resultant: u  v  2000j u cos 50  v cos 30  0 u sin 50  vsin 30  2000 Solving this system of equations yields: TAC  u 1758.8 pounds TBC  v 1305.4 pounds \

80. Rope AC : u  10i  24j The vector lies in Quadrant IV and its reference angle is arctan 5 . 12

u  u cosarctan

12 5

 i  sinarctan j 12 5

\

Rope BC : v  20i  24j The vector lies in Quadrant III and its reference angle is arctan5 . 6

v  v cosarctan 65  i  sinarctan 65 j Resultant: u  v  5000j 6 u cosarctan 12 5   v cosarctan 5   0 6 u sinarctan 12 5   v sinarctan 5   5000

Solving this system of equations yields: TAC  u 3611.1 pounds TBC  v 2169.5 pounds 81. Towline 1: u  ucos 18i  sin 18j Towline 2: v  ucos 18i  sin 18j Resultant: u  v  6000i u cos 18  u cos 18  6000 u 3154.4 Therefore, the tension on each towline is u 3154.4 pounds.

Section 6.3 82. Rope 1: u  u cos 70i  sin 70j

70°

Rope 2: v  u cos 70i  sin 70j

Vectors in the Plane

70°

20° 20°

Resultant: u  v  100j u sin 70  u sin 70  100 u 53.2

100 lb

Therefore, the tension of each rope is u 53.2 pounds. y

83. Airspeed: u  875 cos 58i  875 sin 58j

N 140° W

Groundspeed: v  800 cos 50i  800 sin 50j

148°

Wind: w  v  u  800 cos 50  875 cos 58i  800 sin 50  875 sin 58j

2

138.7 kilometers per hour

Wind speed:

Wind direction: tan  Wind direction:

129.2065 50.5507

 68.6; 90    21.4

Bearing: N 21.4 E y

84. (a) N W

E S

28° 580 mph

45° x

60 mph

(b) The velocity vector vw of the wind has a magnitude of 60 and a direction angle of 45. vw  vwcos i  vwsin j  60cos 45i  60sin 45j  60cos 45i  sin 45j  60cos 45, sin 45, or  302, 302 (c) The velocity vector vj of the jet has a magnitude of 580 and a direction angle of 118. vj  vjcos i  vjsin j  580cos 118i  580sin 118j  580cos 118i  sin 118j  580cos 118, sin 118 —CONTINUED—

v

40°

Wind speed: w 50.5507  129.2065 2

S x

32°

50.5507i  129.2065j

Wind:

E

u w

559

560

Chapter 6

Additional Topics in Trigonometry

84. —CONTINUED— (d) The velocity of the jet (in the wind) is v  vw  vj  60cos 45, sin 45  580cos 118, sin 118  60 cos 45  580 cos 118, 60 sin 45  580 sin 118

229.87, 554.54 The resultant speed of the jet is v  229.872  554.542

600.3 miles per hour (e) If  is the direction of the flight path, then tan  

554.54

2.4124 229.87

Because  lies in the Quadrant II,   180  arctan2.4124 180  67.5  112.5. The true bearing of the jet is 112.5  90  22.5 west of north, or 360  22.5  337.5. 85. W  FD  100 cos 5030  1928.4 foot–pounds

86. Horizontal force: u  ui Weight: w  j Rope: t  t cos 135i  sin 135j

100 lb

u  w  t  0 ⇒ u  t cos 135  0 1  t sin 135  0

50°

t 2 pounds

30 ft

u 1 pound 87. True. See Example 1.

88. True. u  a2  b2  1 ⇒ a2  b2  1

89. (a) The angle between them is 0. (b) The angle between them is 180. (c) No. At most it can be equal to the sum when the angle between them is 0. 90. F1  10, 0, F2  5cos , sin   (a)

F1  F2  10  5 cos , 5 sin  

(b)

15

F1  F2  10  5 cos 2  5 sin 2  100  100 cos   25 cos2   25 sin2   54  4 cos   cos2   sin2 

2␲

0 0

 54  4 cos   1  55  4 cos  (c) Range: 5, 15 Maximum is 15 when   0. Minimum is 5 when   . (d) The magnitude of the resultant is never 0 because the magnitudes of F1 and F2 are not the same.

Section 6.3

Vectors in the Plane

91. Let v  cos i  sin j. v  cos2   sin2   1  1 Therefore, v is a unit vector for any value of . 92. The following program is written for a TI-82 or TI-83 or TI-83 Plus graphing calculator. The program sketches two vectors u  ai  bj and v  ci  dj in standard position, and then sketches the vector difference u  v using the parallelogram law.

93. u  5  1, 2  6  4, 4

PROGRAM: SUBVECT :Input “ENTER A”, A :Input “ENTER B”, B :Input “ENTER C”, C :Input “ENTER D”, D :Line (0, 0, A, B) :Line (0, 0, C, D) :Pause :A – C→E :B – D→F :Line (A, B, C, D) :Line (A, B, E, F) :Line (0, 0, E, F) :Pause :ClrDraw :Stop 94.

v  9  4, 4  5  5, 1

u  80  10, 80  60  70, 20 v  20  100, 70  0  80, 70

u  v  1, 3 or v  u  1, 3

u  v  70  80, 20  70  10, 50 v  u  80  70, 70  20  10, 50 96. x  8 sin 

95. x2  64  8 sec 2  64

64  x2  64  8 sin2 

 64sec2   1

 64  64 sin2 

 8tan2 

  8 tan  for 0 <  < 2

 81  sin2   8cos2   8 cos  for 0 < 
1 b 3

No solution

Review Exercises for Chapter 6

593

12. Given: B  25, a  6.2, b  4 sin A 

a sin B  0.65506 ⇒ A  40.92 or 139.08 b

Case 1: A  40.92

Case 2: A  139.08

C  180  25  40.92  114.08

C  180  25  139.08  15.92

c  8.64

c  2.60

13. Area  12bc sin A  1257sin 27  7.9

14. B  80º, a  4, c  8 Area  12ac sin B  12480.9848  15.8

1 1 15. Area  2ab sin C  2165sin 123  33.5

16. A  11, b  22, c  21 Area  12 bc sin A  12 22210.1908  44.1

17. tan 17 

h ⇒ h  x  50 tan 17 x  50

h

h  x tan 17  50 tan 17 tan 31 

31° x

17° 50

h ⇒ h  x tan 31 x

x tan 17  50 tan 17  x tan 31 50 tan 17  xtan 31  tan 17 50 tan 17 x tan 31  tan 17 x  51.7959 h  x tan 31  51.7959 tan 31  31.1 meters The height of the building is approximately 31.1 meters.

18. 162  w2  122  2w12 cos 140 w2  24 cos 140w  112  0 ⇒ w  4.83

19.

h 75  sin 17 sin 45 75 sin 17 h sin 45

45° 118°

h  31.01 feet

ft 75

62°

17° 28°

20. The triangle of base 400 feet formed by the two angles of sight to the tree has base angles of 90  22 30  67 30, or 67.5, and 90  15  75. The angle at the tree measures 180  67.5  75  37.5. 400 sin 75 b  634.683 sin 37.5 h  634.683 sin 67.5 h  586.4 The width of the river is about 586.4 feet.

45°

Tree A N W

E S

15°

h

22° 30' C

400 ft

B

h

594

Chapter 6

Additional Topics in Trigonometry

21. Given: a  5, b  8, c  10 a2

cos C 

  2ab b2

c2

22. Given: a  80, b  60, c  100

 0.1375 ⇒ C  97.90

a2  c2  b2  0.61 ⇒ B  52.41 2ac

cos B 

a2  b2  c2 6400  3600  10,000  2ab 28060

cos C 

 0 ⇒ C  90

A  180  B  C  29.69

sin A 

80  0.8 ⇒ A  53.13º 100

sin B 

60  0.6 ⇒ B  36.87º 100

23. Given: a  2.5, b  5.0, c  4.5 cos B 

a2  c2  b2  0.0667 ⇒ B  86.18 2ac

cos C 

a2  b2  c2  0.44 ⇒ C  63.90 2ab

A  180  B  C  29.92 24. Given: a  16.4, b  8.8, c  12.2 cos A 

b2  c2  a2 8.82  12.22  16.42   0.1988 ⇒ A  101.47 2bc 28.812.2

sin B 

b sin A 8.8 sin 101.47   0.5259 ⇒ B  31.73 a 16.4

C  180  101.47  31.73  46.80 25. Given: B  110, a  4, c  4 b

a2



c2

26. Given: B  150, a  10, c  20

 2ac cos B  6.55

A  C  12 180  110  35

b2  102  202  21020cos 150 ⇒ b  29.09 sin A 

a sin B 10 sin 150  ⇒ A  9.90 b 29.09

C  180  150  9.90  20.10 27. Given: C  43, a  22.5, b  31.4 c  a2  b2  2ab cos C  21.42 cos B 

a2  c2  b2  0.02169 ⇒ B  91.24 2ac

A  180  B  C  45.76 28. Given: A  62, b  11.34, c  19.52 a2  11.342  19.522  211.3419.52 cos 62 ⇒ a  17.37 sin B 

b sin A 11.34 sin 62  ⇒ B  35.20 a 17.37

C  180  62  35.20  82.80

Review Exercises for Chapter 6 29.

5 ft 8 ft

8 ft 28° 5 ft 152°

30.

595

15 m

a

20 m

b

20 m 34° 15 m 146°

s1

s2

a2  52  82  258cos 28  18.364 a  4.3 feet b2  82  52  285cos 152  159.636 b  12.6 feet

s12  152  202  2  15

 20 cos 34  127.58

s1  11.3 meters s22  15 2  202  2  15

 20 cos 146  1122.42

s2  33.5 meters

31. Length of AC  3002  4252  2300425 cos 115

32. d 2  8502  10602  28501060 cos 72  1,289,251

 615.1 meters

d  1135 miles N W d 5°

E S

850

67°

33. a  4, b  5, c  7 s

1060

34. a  15, b  8, c  10

abc 457  8 2 2

s

15  8  10  16.5 2

Area  16.51.58.56.5  36.979

Area  ss  as  bs  c  8431  9.80 35. a  12.3, b  15.8, c  3.7 s

36. a  38.1, b  26.7, c  19.4

a  b  c 12.3  15.8  3.7   15.9 2 2

Area  ss  as  bs  c

s

38.1  26.7  19.4  42.1 2

Area  42.1415.422.7  242.630

 15.93.60.112.2  8.36 37. u  4  22  6  12  61 v  6  02  3  22  61

38. u  3  12  2  42  210 v  1  32  4  22  210

u is directed along a line with a slope of

61 5  . 4  2 6

u is directed along a line with a slope of

2  4  3. 31

v is directed along a line with a slope of

3  2 5  . 60 6

v is directed along a line with a slope of

4  2  3. 1  3

Since u and v have identical magnitudes and directions, u  v. 39. Initial point: 5, 4

Since u and v have identical magnitudes and directions, u  v. 40. Initial point: 0, 1

Terminal point: 2, 1

7 Terminal point: 6, 2 

v  2  5, 1  4  7, 5

v   6  0, 72  1   6, 52

596

Chapter 6

Additional Topics in Trigonometry

41. Initial point: 0, 10

42. Initial point: 1, 5

Terminal point: 7, 3

Terminal point: 15, 9

v  7  0, 3  10  7, 7

v  15  1, 9  5  14, 4

43. v  8,   120 8 cos 120, 8 sin 120   4, 43

45. u  1, 3, v  3, 6

1 44. v  ,   225 2

12 cos 225, 21 sin 225   42,  42 46. u  4, 5, v  0, 1

(a) u  v  1, 3  3, 6  4, 3

(a) u  v  4  0, 5  1  4, 4

(b) u  v  1, 3  3, 6  2, 9

(b) u  v  4  0, 5  1  4, 6

(c) 3u  31, 3  3, 9

(c) 3u  34, 35  12, 15

(d) 2v  5u  23, 6  51, 3

(d) 2v  5u  20, 21  54, 55

 6, 12  5, 15  11, 3 47. u  5, 2, v  4, 4

 0  20, 2  25  20, 23 48. u  1, 8, v  3, 2

(a) u  v  5, 2  4, 4  1, 6

(a) u  v  1  3, 8  2  4, 10

(b) u  v  5, 2  4, 4  9, 2

(b) u  v  1  3, 8  2  2, 6

(c) 3u  35, 2  15, 6

(c) 3u  31, 38  3, 24

(d) 2v  5u  24, 4  55, 2

(d) 2v  5u  23, 22  51, 58

 8, 8  25, 10  17,18 49. u  2i  j, v  5i  3j

 6  5, 4  40  11, 44 50. u  7i  3j, v  4i  j

(a) u  v  2i  j  5i  3j  7i  2j

(a) u  v  7i  3j  4i  j  3i  4j

(b) u  v  2i  j  5i  3j  3i  4j

(b) u  v  7i  3j  4i  j  11i  2j

(c) 3u  32i  j  6i  3j

(c) 3u  37i  3j  21i  9j

(d) 2v  5u  25i  3j  52i  j

(d) 2v  5u  8i  2j  35i  15j

 10i  6j  10i  5j  20i  j 51. u  4i, v  i  6j

 27i  17j 52. u  6j, v  i  j

(a) u  v  4i  i  6j  3i  6j

(a) u  v  6j  i  j  i  5j

(b) u  v  4i  i  6j  5i  6j

(b) u  v  6j  i  j  i  7j

(c) 3u  34i  12i

(c) 3u  18j

(d) 2v  5u  2i  6j  54i

(d) 2v  5u  2i  2j  30j

 2i  12j  20i  18i  12j

 2i  28j

Review Exercises for Chapter 6 53. u  6i  5j, v  10i  3j

597

54. u  6i  5j, v  10i  3j

2u  v  26i  5j  10i  3j  22i  7j

4u  5v  24i  20j  50i  15j  26i  35j

y

v

2

 22, 7

 26,35

x −5

10

−2

y 20

20 25 30

x

− 60

−4

− 40

20

−5v

4u

−6 −8

2u + v

2u

4u − 5v − 40

− 10

− 60

− 12

55.

v  10i  3j

56. v  10i  3j

y

3v  310i  3j

1 2v

20

 30i  9j

y

 5i  32j   5, 32

8 6

10

 30, 9

3v

4

v

v

2

x 10

20

30

1 v 2 x

2

− 10

57. u  3, 4  3i  4j

58. u  6, 8  6i  8j

59. Initial point: 3, 4

60. Initial point: 2, 7

6

Terminal point: 5, 9

u  9  3i  8  4j  6i  4j

u  5  2, 9  7  7, 16  7i  16j 62. v  4i  j

v  10  10  200  102 2

tan  

2

10  1 ⇒   135 since 10

v is in Quadrant II. v  102i cos 135  j sin 135 v  7cos 60 i  sin 60 j

v  42  12  17 tan  

1 ,  in Quadrant IV ⇒   346 4

v  17cos 346 i  sin 346 j

64. v  3cos 150i  sin 150 j v  3,   150

v  7

  60 65.

66. v  4i  7j

v  5i  4j v  52  42  41 tan  

67.

8

Terminal point: 9, 8

61. v  10i  10j

63.

4

−2

4 ⇒   38.7 5

v  3i  3j

tan  

tan  

7 ,  in Quadrant II ⇒   119.7 4

68. v  8i  j

v  3  3  32 2

v  42  72  65

2

3  1 ⇒   225 3

v  82  12  65 tan  

1 ,  in Quadrant IV ⇒   352.9 8

10

598

Chapter 6

Additional Topics in Trigonometry

69. Magnitude of resultant:

70. Rope One:

23i  21j

c  852  502  28550 cos 165

u  ucos 30i  sin 30j  u

 133.92 pounds

Rope Two:

Let  be the angle between the resultant and the 85-pound force. cos  



v  u cos 30i  sin 30j  u 

133.92  85  50 2133.9285 2

2



2

2



1 i j 2

Resultant: u  v  uj  180j

 0.9953

u  180

⇒   5.6

Therefore, the tension on each rope is u  180 lb.

71. Airspeed: u  430cos 45i  sin 45j  2152i  j Wind: w  35cos 60  sin 60 j 

y



u  w 



N 135° W

35 i  3j 2

θ

35 353 i  2152 Groundspeed: u  w  2152  2 2



215 2 

35 2



2



E S x



45° u



353  2152 2

2

w

 422.30 miles per hour Bearing: tan  

17.53  2152 2152  17.5

  40.4   90    130.4 72. Airspeed: u  724cos 60i  sin 60j

y

 362i  3j Wind: w  32i Groundspeed  u  w  394i  3623j u  w  3942  36232  740.5 km hr tan  

3

3623 ⇒   57.9 394

724 30° x

32

Bearing: N 32.1 E 73. u  6, 7, v  3, 9 u  v  63  79  45 75. u  3i  7j, v  11i  5j u  v  311  75  2 77. u  3, 4 2u  6, 8 2u  u  63  84  50 The result is a scalar.

74. u  7, 12, v  4, 14 u  v  74  1214  140 76. u  7i  2j, v  16i  12j u  v  716  212  136 78. v  2, 1 v2  v  v  22  12  5; scalar

Review Exercises for Chapter 6 79. u  3, 4, v  2, 1

599

80. u  3, 4, v  2, 1

u  v  32  41  2

3u  v  332  41  32  6; scalar

uu  v  u2  2u  6, 8 The result is a vector.

81. u  cos

7 7 1 1 , i  sin j  2 2 4 4





82. u  cos 45 i  sin 45 j v  cos 300 i  sin 300 j

v  cos

3 1 5 5 i  sin j   , 6 6 2 2

cos  

 3  1 uv 11  ⇒  u v 22 12





Angle between u and v: 60  45  105

84. u   3, 3 , v   4, 33 

83. u   22, 4, v    2, 1 cos  

uv 8  ⇒   160.5 u v 243 86. u 

85. u  3, 8

cos  

uv 21  ⇒   22.4 u v 1243

 14,  12, v  2, 4

87. u  i

v  8u ⇒ Parallel

v  8, 3

v  i  2j

u  v  38  83  0

u

u and v are orthogonal.

v ku ⇒ Not parallel

v 0

⇒ Not orthogonal

Neither 88. u  2i  j, v  3i  6j u

v0

⇒ Orthogonal

89. u  4, 3, v  8, 2 w1  projvu 

v v  68 8, 2   174, 1 u

v

26



w2  u  w1  4, 3   u  w1  w2  

90. u  5, 6, v  10, 0 w1  projvu 

50 10, 0  5, 0

uv v v  100 2

13

2



13 16 4, 1  1, 4 17 17

13 16 4, 1  1, 4 17 17

91. u  2, 7, v  1, 1 w1  projvu 

v v   2 1, 1 u

v

5

2

w2  u  w1  5, 6  5, 0  0, 6

5  1, 1 2

u  w1  w2  5, 0  0, 6 w2 u  w1  2, 7 

52 1, 1

9  1, 1 2 5 9 u  w1  w2  1, 1  1, 1 2 2

600

Chapter 6

Additional Topics in Trigonometry \

93. P  5, 3, Q  8, 9 ⇒ PQ  3, 6

92. u  3, 5, v  5, 2 w1  projvu 



uv 25 v  5, 2 v2 29

\



w2  u  w1  3, 5  u  w1  w2 

W  v  PQ  2, 7

 3, 6  48

25 19 5, 2  2, 5 29 29

19 25 5, 2  2, 5 29 25 95. w  18,00048 12   72,000 foot-pounds

94. work  v  PQ

\

 3i  6j  10i  17j  30  102  132



97. 7i  02  72  7

\

96. W  cos  F PQ 

Imaginary axis

 cos 2025 pounds12 ft

10

 281.9 foot-pounds

8

7i 6 4 2

−6





98. 6i  6





99. 5  3i  52  32

Imaginary axis

 34

8

−2

2

4

Imaginary axis

5 + 3i

3

2 4

6

8

Real axis

2 1

−4 −6

−6i

−1 −1

−8





100. 10  4i  102  42  229

tan  

4 2

102.

z  5  12i

z  tan  

52



2

3

r  52  52  50  52

6

− 10 − 4i

1

101. 5  5i Imaginary axis

−12 − 10 −8 − 6

Real axis

5 7  1 ⇒   since the 5 4

complex number is in Quadrant IV.

−2 −4



5  5i  52 cos

−6

7 7  i sin 4 4



103. 33  3i 122

 13

12 ⇒   1.176 5

z  13cos 1.176  i sin 1.176

Real axis

−2

4

4

2

6

5

6

−8 −6 −4 −2

−4

r  33 2  32  36  6 tan  

3 1 5  ⇒  3 33 6

since the complex number is in Quadrant II.



33  3i  6 cos

5 5  i sin 6 6



4

5

Real axis

Review Exercises for Chapter 6

601

z  7

104.

z  7 tan  

0 0 ⇒  7

z  7cos   i sin  



105. (a) z1  23  2i  4 cos



(a ) z2  10i  10 cos

3 3  i sin 2 2



11 11  i sin 6 6



10 10  i sin 3 3

(b) z1z2  4 cos  40 cos

z1  z2

11 11  i sin 6 6





z2  23  i  4 cos





5 5  i sin 4 4

   i sin 6 6

5 5  i sin 4 4



17 17  i sin 12 12

 122 cos

5







(b) z1z2  32 cos



3 3  i sin 2 2

10 cos





107. 5 cos



11 11  i sin 6 6 2    cos  i sin 3 3 5 3 3  i sin 10 cos 2 2



4 cos

106. (a) z1  31  i  32 cos

z1  z2











4 cos 6  i sin 6 

5

 4  i sin 4  32 13 13 cos  i sin    4

12 12 4 cos  i sin  6 6

32 cos

   i sin 12 12



4



 54 cos

4 4  i sin 12 12



 625 cos  625 

   i sin 3 3



108.

4

4

2 cos 15  i sin 15 



5



 25 cos



 32 

12  23i

4 4  i sin 3 3

1 3  i 2 2

 16  163i



625 6253  i 2 2

109. 2  3i6  13cos 56.3  i sin 56.36

110. 1  i8  2cos 315  i sin 315

8

 133cos 337.9  i sin 337.9

 16cos 2520  i sin 2520

 13 0.9263  0.3769i

 16cos 0  i sin 0

 2035  828i

 16

3





602

Chapter 6

Additional Topics in Trigonometry



111. Sixth roots of 729i  729 cos

3 3 :  i sin 2 2



(a) and (c)

(b)



6  729 cos

3  2k 2 6



 i sin



3  2k 2 6



4

, k  0, 1, 2, 3, 4, 5

  32 32 k  0: 3 cos  i sin   i 4 4 2 2







7 7  0.776  2.898i  i sin 12 12



11 11  i sin  2.898  0.776i 12 12



5 5 32 32  i sin   i 4 4 2 2



19 19  i sin  0.776  2.898i 12 12



23 23  i sin  2.898  0.776i 12 12

k  1: 3 cos k  2: 3 cos k  3: 3 cos k  4: 3 cos k  5: 3 cos

Imaginary axis

−4

−2

4 −2



−4









112. (a) 256i  256 cos

   i sin 2 2



(b)

Imaginary axis 5

Fourth roots of 256i:

3

   2k  2k 2 2 4 256 cos   i sin , k  0, 1, 2, 3 4 4







   i sin 8 8



5 5  i sin 8 8





9 9  i sin 8 8





13 13  i sin 8 8

k  0: 4 cos k  1: 4 cos k  2: 4 cos k  3: 4 cos

1 −3

−1

1 2 3

−2 −3



−5

(c) 3.696  1.531i 1.531  3.696i 3.696  1.531i 1.531  3.696i



113. Cube roots of 8  8cos 0  i sin 0, k  0, 1, 2 (a) and (c)



3  8 cos

(b)

0  2k 0  2k  i sin 3 3





Imaginary axis



3

k  0: 2cos 0  i sin 0  2 2 2 k  1: 2 cos  i sin  1  3i 3 3







4 4  i sin  1  3i 3 3

k  2: 2 cos

Real axis



−3

−1

1

−3

3

Real axis

5

Real axis

Review Exercises for Chapter 6 114. (a) 1024  1024cos   i sin 

(b)

Imaginary axis

Fifth roots of 1024:



5 1024 cos 

5

  2k   2k , k  0, 1, 2, 3, 4  i sin 5 5



  k  0: 4 cos  i sin 5 5



k  1: 4 cos





3 3  i sin 5 5



7 7  i sin 5 5





9 9  i sin 5 5



k  4: 4 cos

2 3

Real axis

5

−5



(c) 3.236  2.351i

k  2: 4cos   i sin  k  3: 4 cos

1 −3 −2 −1

1.236  3.804i 4 1.236  3.804i 3.236  2.351i

115. x4  81  0 x4  81

Solve by finding the fourth roots of 81.

81  81cos   i sin 



4 81   4 81 cos 

  2k   2k  i sin , k  0, 1, 2, 3 4 4







Imaginary axis 4

  32 32 k  0: 3 cos  i sin   i 4 4 2 2







3 3 32 32  i sin   i 4 4 2 2



5 5 32 32  i sin   i 4 4 2 2



7 7 32 32  i sin   i 4 4 2 2

k  1: 3 cos k  2: 3 cos k  3: 3 cos

2



−4

−2

2

Real axis

4

−2



−4



116. x5  32  0

Imaginary axis

x5  32

3

32  32cos 0  i sin 0



3 32   5 32 cos 0  

2k 2k  i sin 0  5 5







1

−3

−1

k  0, 1, 2, 3, 4 k  0: 2cos 0  i sin 0  2



2 2  i sin  0.6180  1.9021i 5 5



4 4  i sin  1.6180  1.1756i 5 5



6 6  i sin  1.6180  1.1756i 5 5



8 8  i sin  0.6180  1.9021i 5 5

k  1: 2 cos k  2: 2 cos k  3: 2 cos k  4: 2 cos



−3

1

3

Real axis

603

604

Chapter 6

Additional Topics in Trigonometry

117. x3  8i  0 x3

Imaginary axis

 8i

Solve by finding the cube roots of 8i.

3 3 8i  8 cos  i sin 2 2





3 8i   3 8 cos 

3  2k 2 3





1

 i sin





   i sin  2i 2 2



7 7  i sin   3  i 6 6



11 11  i sin  3  i 6 6

k  0: 2 cos k  1: 2 cos k  2: 2 cos

3

3  2 k 2 3

−3



, k  0, 1, 2

3

−1

Real axis

−3







118. x3  1x2  1  0

Imaginary axis

x3  1  0

2

x2  1  0 x3  1

−2

2

Real axis

1  1cos 0  i sin 0



3 3  1  1 cos

0  2k 0  2k  i sin 3 3





, k  0, 1, 2

−2

1cos 0  i sin 0  1



2 2 1 3  i sin   i 3 3 2 2



4 4 1 3  i sin   i 3 3 2 2

1 cos 1 cos



x2  1  0 x2  1 1  1cos   i sin 



1  1 cos

  2k   2k  i sin , k  0, 1 2 2







k  0, 1



   i sin i 2 2



3 3  i sin  i 2 2

1 cos 1 cos





119. True. sin 90 is defined in the Law of Sines.

120. False. There may be no solution, one solution, or two solutions.

121. True, by the definition of a unit vector. v so v  vu u v

122. False, a  b  0.

Review Exercises for Chapter 6

123. False. x  3  i is a solution to x3  8i  0, not x2  8i  0.

124.

a b c   sin A sin B sin C

or

605

sin A sin B sin C   a b c

Also, 3  i2  8i  2  23  8i 0. 125. a2  b2  c2  2bc cos A b2  a2  c2  2ac cos B

126. A vector in the plane has both a magnitude and a direction.

c2  a2  b2  2ab cos C 127. A and C appear to have the same magnitude and direction.

128. u  v is larger in figure (a) since the angle between u and v is acute rather than obtuse.

129. If k > 0, the direction of ku is the same, and the magnitude is ku.

130. The sum of u and v lies on the diagonal of the parallelogram with u and v as its adjacent sides.

If k < 0, the direction of ku is the opposite direction of u, and the magnitude is k u.



131. (a) The trigonometric form of the three roots shown is: 4cos 60  i sin 60

132. (a) The trigonometric forms of the four roots shown are: 4cos 60  i sin 60

4cos 180  i sin 180

4cos 150  i sin 150

4cos 300  i sin 300 (b) Since there are three evenly spaced roots on the circle of radius 4, they are cube roots of a complex number of modulus 43  64. Cubing them yields 64.

4cos 60  i sin 603  64 4cos 180  i sin 1803  64

4cos 240  i sin 240 4cos 330  i sin 330 (b) Since there are four evenly spaced roots on the circle of radius 4, they are fourth roots of a complex number of modulus 44. In this case, raising them to the fourth power yields 128  1283i.

4cos 300  i sin 3003  64 133. z1  2cos   i sin  z2  2cos    i sin   z1z2  22cos      i sin      4cos   i sin   4 z1 2cos   i sin   z2 2cos    i sin    1cos      i sin      cos2    i sin2    cos 2 cos   sin 2 sin   isin 2 cos   cos 2 sin   cos 2  i sin 2 134. (a) z has 4 fourth roots. Three are not shown. (b) The roots are located on the circle at   30  90k, k  0, 1, 2, 3. The three roots not shown are located at 120, 210, 300.

606

Chapter 6

Additional Topics in Trigonometry

Problem Solving for Chapter 6 \

1. PQ 2  4.72  62  24.76 cos 25

P 4.7 ft

\

PQ  2.6409 feet

θ φ

25°

sin  sin 25  ⇒   48.78 4.7 2.6409

O

θ β

6 ft

γ

α Q

T

   180  25  48.78  106.22

      180 ⇒   180  106.22  73.78  106.22  73.78  32.44   180     180  48.78  32.44  98.78   180    180  98.78  81.22 \

PT 4.7  sin 25 sin 81.22 \

PT  2.01 feet 2.

3 mile  1320 yards 4

55° 300 yd 55°

35° 25°

x2  13202  3002  21320300cos 10

θ 1320 yd

x  1025.881 yards  0.58 mile

x

sin  sin 10  1320 1025.881 sin   0.2234

  180  sin10.2234   167.09 Bearing:   55  90  22.09 S 22.09 E

3. (a)

A

75 mi 30° 15° 135° x y 60° Lost party

(c)

B 75°

A 80° 20° 60°

10° 20 mi

Rescue party

27.452 mi

(b)

x 75 y 75  and  sin 15 sin 135 sin 30 sin 135 x  27.45 miles

y  53.03 miles

z Lost party

z2  27.452  202  227.4520 cos 20 z  11.03 miles sin  sin 20  27.45 11.03 sin   0.8511

  180  sin10.8511   121.7 To find the bearing, we have   10  90  21.7. Bearing: S 21.7 E

Problem Solving for Chapter 6

4. (a)

(b) 65°

sin C sin 65  46 52 sin C 

46 ft

607

46 sin 65  0.801734 52

C  53.296

52 ft

A  180  B  C  61.704 1 (c) Area  4652sin 61.704  1053.09 square feet 2 Number of bags:

a 52  sin 61.704 sin 65

1053.09  21.06 50

a

a  50.52 feet

To entirely cover the courtyard, you would need to buy 22 bags.

5. If u 0, v 0, and u  v 0, then (a)

u  1, 1,

v  1, 2,

u  2, (b)

v  5,

u  0, 1,

(c)

(d)

u  v  1 u  v  3, 2

v  18  32, u  v  13

 21 ,

 72

u  1, u 

 uu    vv    uu  vv   1 since all of these are magnitudes of unit vectors. u  v  0, 1

v  3, 3,

u  1,

52 sin 61.704 sin 65

5

2

v  2, 3, u  v  3, v  13, u  v 

,

u  2, 4,

v  5, 5,

9  494 

85

2

u  v  7, 1

u  20  25, v  50  52, u  v  50  52 6. (a) u  120j

120 (d) tan  40 ⇒   tan1 3 ⇒   71.565

v  40i

(e)

Up

(b) s  u  v  40i  120j

140 120 100

Up

80 140

60

120

s

100 80

v

u s

W

E −20

− 20

20 40 60 80 100

Down

v

20 W − 60

E −60

60 40

u

20 40 60 80 100

Down

(c) s  402  1202  16000  4010  126.49 miles per hour This represents the actual rate of the skydiver’s fall.

s  30i  120j s  302  1202  15300  123.69 miles per hour

608

Chapter 6

Additional Topics in Trigonometry 8. Let u v  0 and u w  0.

7. Initial point: 0, 0 Terminal point:

u

1

 v1 u2  v2 , 2 2



Then, u cv  dw  u cv  u dw



 cu v  du w



u  v1 u2  v2 1 , w 1  u  v 2 2 2

 c0  d0  0.

Initial point: u1, u2 Terminal point: w

u



v

Thus for all scalars c and d, u is orthogonal to cv  dw.

1 u  v1, u2  v2 2 1



1

 v1 u  v2  u1, 2  u2 2 2

1

 u1 v2  u2 1 ,  v  u 2 2 2



→ 9. W  cos F   PQ  and F1  F2 (a)

F1

If 1   2 then the work is the same since cos   cos .

θ1 θ2

F2 P

(b)

Q

If 1  60 then W1 

F1 60°

F2

If 2  30 then W2 

30° P

Q

→ 1 F   PQ 2 1 3

2

→ F2  PQ

W2  3 W1

The amount of work done by F2 is 3 times as great as the amount of work done by F1. 10. (a)



100 sin 

100 cos 

0.5

0.8727

99.9962

1.0

1.7452

99.9848

1.5

2.6177

99.9657

2.0

3.4899

99.9391

2.5

4.3619

99.9048

3.0

5.2336

99.8630

(b) No, the airplane’s speed does not equal the sum of the vertical and horizontal components of its velocity. To find speed: speed  v sin2  v cos2 (c) (i) speed  5.235 2  149.909 2  150 miles per hour (ii) speed  10.463 2  149.634 2  150 miles per hour

Practice Test for Chapter 6

Chapter 6

Practice Test

For Exercises 1 and 2, use the Law of Sines to find the remaining sides and angles of the triangle. 1. A  40, B  12, b  100

2.

C  150, a  5, c  20

3. Find the area of the triangle: a  3, b  6, C  130. 4. Determine the number of solutions to the triangle: a  10, b  35, A  22.5. For Exercises 5 and 6, use the Law of Cosines to find the remaining sides and angles of the triangle. 5. a  49, b  53, c  38

6.

C  29, a  100, b  300

7. Use Heron’s Formula to find the area of the triangle: a  4.1, b  6.8, c  5.5. 8. A ship travels 40 miles due east, then adjusts its course 12 southward. After traveling 70 miles in that direction, how far is the ship from its point of departure? 9. w  4u  7v where u  3i  j and v  i  2j. Find w. 10. Find a unit vector in the direction of v  5i  3j. 11. Find the dot product and the angle between u  6i  5j and v  2i  3j. 12. v is a vector of magnitude 4 making an angle of 30 with the positive x-axis. Find v in component form. 13. Find the projection of u onto v given u  3, 1 and v  2, 4. 14. Give the trigonometric form of z  5  5i. 15. Give the standard form of z  6cos 225  i sin 225. 16. Multiply 7cos 23  i sin 23 4cos 7  i sin 7. 5 5  i sin 4 4 . 3cos   i sin 





9 cos 17. Divide



19. Find the cube roots of 8 cos

18. Find 2  2i8.

   i sin . 3 3



20. Find all the solutions to x4  i  0.

609