Chapter 5



Mateka JJL, Haniff MM, Bainey RS, Iliou CB. Interesting trends in incidence and mortality rates of colorectal cancer in the United States of America. J Gastroint Dig Syst., S6: 004. doi:10.4172/2161-069X.S6-004; 2013.


Lee YC, Lee Y-L, Chuang J-P, Lee J-C. Differences in survival between colon and





data.  PLoS




doi:10.1371/journal.pone.0078709; 2013. 3

Pisani P, Parkin DM, Ferlay J. Estimates of the worldwide mortality from eighteen major cancers in 1985. Implications for prevention and projections of future burden. Int J Cancer., 55: 891-903; 1993.


American Cancer Society: (2011) Colorectal Cancer Facts & Figures 2011-2013 : American



Atlanta. lorectal-cancer-facts-figures-2011-2013-page. 5

American Cancer Society :( 2011) Global Cancer Facts & Figures 2nd Edition. Atlanta:




2011. 6

Hastings J B.  Mass screening for colorectal cancer. Am J Surg., 127:228-233; 1974.


Scholefield J H. Screening for colorectal cancer. Br Med Bull., 64: 75-80; 2002.


Labianca R, Nordlinger B, Beretta G D, Brouquet A, Cervantes A. Primary colon cancer: ESMO clinical practice guidelines for diagnosis, adjuvant treatment and follow-up.







117     Amrita Centre for Nanosciences and Molecular Medicine   




Chapter 5

Cohen M H, Gootenberg J, Keegan P, Pazdur R. FDA drug approval summary: bevacizumab plus FOLFOX4 as second-line treatment of colorectal cancer. The Oncologist., 12: 356-361; 2007.

10 de Gramont A, Figer A, Seymour M, Homerin M, Hmissi A, Cassidy J, Boni C, Cortes-Funes H, Cervantes A, Freyer G, Papamichael D, Bail N L, Louvet C, Hendler D, de Braud F, Wilson C, Morvan F, Bonetti A. Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J Clin Oncol., 18: 2938-2947; 2000. 11 Longley D B, Harkin D P, Johnston P G. 5-Fluorouracil: mechanisms of action and clinical strategies. Nat. Rev. Cancer., 3: 330-338; 2003. 12 Klotz H P, Weder W, Largiader F. Local and systemic toxicity of intra-hepaticarterial 5-FU and high-dose or low-dose leucovorin for liver metastases of colorectal cancer. Surg Oncol., 3: 11-16; 1994. 13 Brown J R, Du Bois R N, COX-2: a molecular target for colorectal cancer prevention. J. Clin. Oncol., 23: 2840-2855; 2005. 14 Zhang H, Sun X F. Over expression of cyclooxygenase-2 correlates with advanced stages of colorectal cancer. Am. J. Gastroenterol., 97:1037-1041; 2002. 15 Sun Y, Tang X M, Half E, Kuo M T, Sinicrope F A. Cyclooxygenase-2 over expression reduces apoptotic susceptibility by inhibiting the cytochrome cdependent apoptotic pathway in human colon cancer cells. Cancer Res., 62: 63236328; 2002. 16 Zhang N, Yin Y, Xu S J, Chen W S. 5-Fluorouracil: mechanisms of resistance and reversal strategies. Molecules., 13:1551-1569; 2008 17 Tomozawa S, Tsuno N H, Sunami E, Hatano K, Kitayama J, Osada T, Saito S, Tsuruo T, Shibata Y, Nagawa H. Cyclooxygenase-2 over expression correlates with tumour recurrence, especially haematogenous metastasis of colorectal cancer. Br. J. Cancer., 83: 324-328; 2000. 18 Copur S, Aiba K, Drake JC, Allegra CJ, Chu E. Thymidylate synthase gene amplification in human colon cancer cell lines resistant to 5-fluorouracil. Biochem Pharmacol., 49:1419-1426; 1995. 118     Amrita Centre for Nanosciences and Molecular Medicine   



Chapter 5

19 Vlette S, Pulain L, Dssaulx E, Pepin D, Faussat A-M, Chambaz J, Lacorte J-M, Staede C, Lesuffleur T. Resistance of colon cancer cells to long-term 5fluorouracil exposure is correlated to the relative level of bcl-2 and bcl-xl in addition to bax and p53 status. Int. J. Cancer., 98:498-504; 2002. 20 Rougier P, Cutsem E V, Bajetta E, Niederle N, Possinger K , Labianca R, Navarro M, Morant R , Bleiberg H, Wils J , Awad L , Herait P, Jacques C. Randomised trial of irinotecan versus fluorouracil by continuous infusion after fluorouracil failure in patients with metastatic colorectal cancer. The Lancet., 352: 1407-1412; 1998. 21 Rossi S. Australian Medicines Handbook. Adelaide: The Australian Medicines Handbook Unit Trust. ISBN 978-0-9805790-9-3; 2013. 22 Heidelberger C. On the rational development of a new drug: the example of the fluorinated pyrimidines. Cancer Treat. Rep., 65:3-9; 1981. 23 Guerrero RLG, Issa K. Nano-engineering of complex systems: Smart nanocarriers for biomedical applications, biomedical engineering- from theory to applications, ISBN: 978-953-307-637-9, InTech, DOI: 10.5772/22918; 2011. 24 Eidi NM, Nagawa H, Tominagal NT, Fujii S, Sasak S, Fu CG, Takenoue T, Tsuruo T, Muto T. 5-Fluorouracil induces apoptosis in human colon cancer cell lines with modulation of Bcl-2 family proteins. Br J Cancer.78: 986-992; 1998. 25 Angelis PM, Svendsrud DH, Kravik KL, Stokke T. Cellular response to 5fluorouracil (5-FU) in 5-FU-resistant colon cancer cell lines during treatment and recovery. Mol Cancer., 5: 20-40; 2006. 26 Guglielmi AP, Sobrero AF. Second-line therapy for advanced colorectal cancer. Gastrointest Cancer Res., 1:57-63; 2007. 27 Wood AKK, Moertel CG. Chemotherapy for colorectal cancer. N. Engl. J. Med., 330: 1136-1142; 1994. 28 Cassidy J, Saltz L, Twelves C, Van CE, Hoff P, Kang Y, Saini JP, Gilberg F, Cunningham D. Efficacy of capecitabine versus 5-fluorouracil in colorectal and gastric cancers: a meta-analysis of individual data from 6171 patients. Ann. Oncol., 22:2604-2609; 2011. 119     Amrita Centre for Nanosciences and Molecular Medicine   



Chapter 5

29 Kodama Y, Fumoto S, Nishi J, Nakashima M, Sasaki H, Nakamura J, Nishida K. Absorption and distribution characteristics of 5-fluorouracil (5-FU) after an application to the liver surface in rats in order to reduce systemic side effects. Biol. Pharm. Bull., 31:1049-1052; 2008. 30 Zhang DQ, Qiang G, Zhu JH, Chen WC. Increase of cyclooxygenase-2 inhibition with celecoxib combined with 5-FU enhances tumor cell apoptosis and antitumor efficacy in a subcutaneous implantation tumor model of human colon cancer. World J. Surg Oncol., 11:16-28; 2013. 31 Sitki C, Keisuke A, James CD, Carmen JA, Edward C. Thymidylate synthase gene amplification in human colon cancer cell lines resistant to 5-fluorouracil. Biochem. Pharmacol., 49:1419-1426; 1995. 32 Sabine V, Laurent P, Elisabeth D, Dominique P, Faussat AM, Jean C, Lacorte JM, Cathy S, Thecla L. Resistance of colon cancer cells to long-term 5-fluorouracil exposure is correlated to the relative level of bcl-2 and bcl-xl in addition to bax and p53 status. Int. J. Cancer., 98:498-504; 2002. 33 Philippe R, Eric VC, Emilio B, Norbert N, Kurt P, Roberto L, Matilde N, Rudolf M, Harry B, Jacques W, Lucile A, Patrice H, Christian J. Randomised trial of irinotecan versus fluorouracil by continuous infusion after fluorouracil failure in patients with metastatic colorectal cancer. Lancet., 352:1407-1412; 1998. 34 Rangwala F, Williams K P, Smith G R, Thomas Z, Allensworth J L, Lyerly H K, Diehl A M, Morse M A, Devi G R. Differential effects of arsenic trioxide on chemosensitization in human hepatic tumor and stellate cell lines. BMC Cancer., 12: 402; 2012. 35 Deng L, Ren Z, Jia O, Wu W, Shen H, Wang Y. Schedule-dependent antitumor effects of 5-fluorouracil combined with sorafenib in hepatocellular carcinoma. BMC Cancer., 13:363; 2013. 36 Subbarayan PR, Lee K, Ardalan B: Arsenic trioxide suppresses thymidylate synthase in 5-FU-resistant colorectal cancer cell line HT29 in vtro re-sensitizing cells to 5-FU. Anticancer Res., 30:1157-1162; 2010.

120     Amrita Centre for Nanosciences and Molecular Medicine   



Chapter 5

37 Wehler TC, Hamdi S, Maderer A, Graf C, Gockel I, Schmidtmann I, Hainz M, Berger M. R., Theobald M, Galle P.R, Moehler M, Schimanski C C. Singleagent therapy with sorafenib or 5-FU is equally effective in human colorectal cancer xenograft-no benefit of combination therapy. Int J Colorectal Dis., 28: 385-398; 2013. 38 Gonzalez-Vallinas M, Molina S, Vicente G, de la Cueva A, Vargas T, Santoyo S, Garcia-Risco MR, Fornari T, Reglero G,Ramirez de Molina A. Antitumor effect of 5-fluorouracil is enhanced by rosemary extract in both drug sensitive and resistant colon cancer cells. Pharmacol Res., 72: 61-68; 2013. 39 de la Cueva A, de Molina A R, lvarez-Ayerza N A, Ramos MA, Cebrian A, et al. Combined 5-FU and ChoKa inhibitors as a new alternative therapy of colorectal cancer: evidence in human tumor-derived cell lines and mouse xenografts. PLoS ONE., 8(6): e64961; 2013 doi:10.1371/journal.pone.0064961. 40 Mehdi SM, Ali M, Cora L, Franziska B, Paviz S, Ajay G. Curcumin enhances the effect of chemotherapy against colorectal cancer cells by inhibition of NF-κB and Src protein kinase signaling pathways. Plos One., 8:e57218; 2013. 41 Fleming GF, Schilsky RL, Schumm LP, Meyerson A, Hong AM, Vogelzang NJ, Ratain MJ: Phase I and pharmacokinetic study of 24-hour infusion 5-fluorouracil and leucovorin in patients with organ dysfunction. Ann Oncol., 14:1142-1147; 2003. 42 Tong J, Xie G, He J, Li J, Pan F, Liang H. Synergistic antitumor effect of dichloroacetate in combination with 5-fluorouracil in colorectal cancer. J. Biomed. Biotechnol., 2011, 2011 (2011), Article ID 740564, 7 pages. 43 Ardalan B, Subbarayan PR, Ramos Y, Gonzalez M, Fernandez A, Mezentsev D, Reis I, Duncan R, Podolsky L, Lee K, et al: A phase I study of 5-fluorouracil/ leucovorin and arsenic trioxide for patients with refractory/relapsed colorectal carcinoma. Clin Cancer Res., 16: 3019-3027; 2010. 44 Jemal A, Siegel R, Ward E, Hao Y, Xu J. Cancer statistics. CA Cancer J Clin., 58: 71-96; 2008.

121     Amrita Centre for Nanosciences and Molecular Medicine   



Chapter 5

45 Andre T, Boni C, Mounedji BL, Navarro M, Tabernero J. Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med., 350:2343-2351; 2004. 46 Patel BB, Majumdar AP. Synergistic role of curcumin with current therapeutics in colorectal cancer: Minireview. Nutr. Cancer., 61:842-846; 2009. 47 Neugut AI, Lautenbach E, Abi RB, Forde KA. Incidence of adenomas after curative resection for colorectal cancer. Am. J. Gastroenterol., 91:2096-2098; 1996. 48 Odwyer ST, Renehan AG, Zwahlen M, Egger M. Risk of second primary colorectal cancer with particular reference to age at diagnosis. Colorectal Dis., 9:814-820; 2006. 49 Shitoh K, Konishi F, Miyakura Y, Togashi K, Okamolo T. Microsatellite instability as a marker in predicting metachronous multiple colorectal carcinomas after surgery: a cohort-like study. Dis. Colon Rectum, 45:329-333; 2002. 50 Hurwitz H, Fehrenbacher L, NovotnyW, Cartwright T, Hainsworth J. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med., 350:2335-2342; 2004. 51 Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev., 60:1650-1662; 2008. 52 Jung T, Kamm W, Breitenbach A, Kaiserling E, Xiao JX, Kissel T. Biodegradable nanoparticles for oral delivery of peptides: Is there a role for polymers to affect mucosal uptake. Eur. J. Pharm. Biopharm., 50:147-160; 2000. 53 Pinto RC, Neufeld RJ, Ribeiro AJ, Veiga A. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine, 2:8-21; 2006. 54 Wim HDJ, Paul JB. Drug delivery and nanoparticles: applications and hazards. Int. J. Nanomedicine, 3:133-149;2008. 55 Nazila K, Zeyu X, Pedro MV, Aleksandar FRM, Omid CF. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem. Soc. Rev., 41:2971-3010; 2012.

122     Amrita Centre for Nanosciences and Molecular Medicine   



Chapter 5

56 Nishikant CS, Nisha JK, Prashant DA. Nanoparticles: Advances in drug delivery systems. Res. J. Pharm. Boil. Chem. Sci., 3:922-929; 2012. 57 Jack HCM, Santosh A, Liangfang Z. Nanoparticle-assisted combination therapies for effective cancer treatment. Ther. Deliv., 1:323-334;2010. 58 Giuseppe C, Silke H, Umile GS, Ortensia IP, Nevio P, Francesca I. Carbon nanotubes hybrid hydrogels in drug delivery: a perspective review. BioMed Res. Int., 17:825017; 2014. 59 Honary S, Ebrahimi PHR. Optimization of size and encapsulation efficiency of 5FU loaded chitosan nanoparticles by response surface methodology. Current Drug Deliv., 10:742-752; 2013. 60 Illum L. Nanoparticulate systems for nasal delivery of drugs: a real improvement over simple systems. J. Pharm. Sci., 96:473-483; 2007. 61 Wu H, Zhu L, Torchilin V P. pH-sensitive poly (histidine)-PEG/DSPE-PEG copolymer micelles for cytosolic drug delivery. Biomaterials., 34:1213-1222; 2013. 62 Brannon-Peppas L, Blanchette J O. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev., 56:1649-1659; 2004. 63 Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer.Trends Pharmacol Sci., 30(11):592-599;2009. 64 Maeda H, Bharate G Y, Daruwalla J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm., 71: 409-419; 2009. 65 Wang A Z, Langer R, Farokhzad O C. Nanoparticle delivery of cancer drugs. Annu Rev Med., 63: 185-198; 2012. 66 Hamaguchi T, Matsumura Y, Suzuki M, Shimizu K, Goda R, Nakamura I, Nakatomi I,Yokoyama M, Kataoka K, Kakizoe T. NK105, a paclitaxelincorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. Br J Cancer., 92:1240-1246; 2005. 67 Fang J, Nakamura H, Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev., 63:136-151; 2011. 123     Amrita Centre for Nanosciences and Molecular Medicine   



Chapter 5

68 Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul., 41:189-207; 2001. 69 Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature., 407:249-257; 2000. 70 Cho K, Wang X, Nie S, et al. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res., 14:1310-1316; 2008. 71 Ruoslahti E, Bhatia SN, Sailor MJ. Targeting of drugs and nanoparticles to tumors. J. Cell Biol., 188: 759-768; 2010. 72 Barnabas W, Ambika RTV, Dharmesh KP, Josephine LJ, Priyadarshini SRB. Nanoparticles based on albumin: preparation, characterization and the use for 5flurouracil delivery. Int. J. Biol. Macromol., 51:874-878; 2012. 73 Vijaya KBN, Allan TP. A new method for the preparation of gelatin nanoparticles: Encapsulation and drug release characteristics. J. Appl. Polym. Sci., 121:3495-3500; 2011. 74 Madhusudana RK, Mallikarjuna B, Krishna RKSV, Siraj S, Chowdoji RK, Subha MCS. Novel thermo/pH sensitive nanogels composed from poly (Nvinylcaprolactam) for controlled release of an anticancer drug. Colloids Surf. B Biointerfaces, 102: 891-897; 2013. 75 Alina MT, Bogdan IC, Valentin N, Aurelia V. Investigations on nanoconfinement of low-molecular antineoplastic agents into biocompatible magnetic matrices for drug targeting. Colloids Surf. B Biointerfaces., 111:52-59; 2013. 76 Rajan M, Raj V, Abdullah AA, Murugan AM. Hyaluronidase enzyme core-5fluorouracil-loaded chitosan-PEG-gelatin polymer nanocomposites as targeted and controlled drug delivery vehicles. Int. J. Pharm., 453:514-522; 2013. 77 Ramesh CN, Rakesh K, Pandit JK. Chitosan coated sodium alginate–chitosan nanoparticles loaded with 5-FU for ocular delivery: in vitro characterization and in vivo study in rabbit eye. Eur. J. Pharm.Sci., 47:678-685; 2012. 78 Ting W, Ning W, Yingying Z, Wancui S, Xingmei G, Tiefu L. Solvent injectionlyophilization of tert-butyl alcohol/water cosolvent systems for the preparation of 124     Amrita Centre for Nanosciences and Molecular Medicine   



Chapter 5

drug-loaded solid lipid nanoparticles. Colloids Surf. B Biointerfaces, 79:254-261; 2010. 79 Haiyan C, Yueqing G, Yuzhu H, Zhiyu Q. Characterization of pH- and temperature-sensitive hydrogel nanoparticles for controlled drug release. J. Pharm. Sci. Technol., 61:4303-4313; 2007. 80 Glavas DM, Calis MSS, Crcarevska NG, Petrovska KV. Goracinova K. Wheat germ agglutinin-conjugated chitosan-Ca-alginate microparticles for local colon delivery of 5-FU: development and in vitro characterization. Int. J. Pharm., 381:166-175; 2009. 81 Li L, Wenyi G, Jiezhong C, Weiyu C, Zhi PX. Co-delivery of siRNAs and anticancer drugs using layered double hydroxide nanoparticles. Biomaterials, 35:3331-3339; 2014. 82 Choi GH, Min KH, Lee SC. Block copolymer-templated mineralization for pHresponsive robust nanocarriers of 5-fluorouracil. Macromol. Res., 22:329-336; 2014. 83 Raul O, Jose P, Consolacion M, Jose LA, Adolfina RM, Pablo JA, Octavio C, Raquel L, Ana S, Antonia A. 5-Fluorouracil-loaded poly (ε-caprolactone) nanoparticles combined with phage E gene therapy as a new strategy against colon cancer. Int. J. Nanomedicine., 7: 95-107; 2012. 84 Beatriz C, Rafael AB, Eva SF, José CP, Consolacion M, Laura C, Raul O, Jose LA. Nano- engineering of 5-fluorouracil-loaded magnetoliposomes for combined hyperthermia and chemotherapy against colon cancer. Eur. J. Pharm. Biopharm., 85: 329-338; 2013. 85 Sabitha M, Rejinold N S, Amrita N, Vinoth KL, Nair SV, Jayakumar R. Development and evaluation of 5-fluorouracil loaded chitin nanogels for treatment of skin cancer. Carbohydr. Polym., 91:48-57; 2013. 86 Shubhadeep B, Kacoli S, Tapan KP, Sujoy KG. Poly (styrene-co-maleic acid)based pH-sensitive liposomes mediate cytosolic delivery of drugs for enhanced cancer chemotherapy. Int. J. Pharm., 436:786-797; 2012.

125     Amrita Centre for Nanosciences and Molecular Medicine   



Chapter 5

87 Longzhang Z, Jingwei M, Nengqin J, Yu Z, Hebai S. Chitosan-coated magnetic nanoparticles as carriers of 5-Fluorouracil: preparation, characterization and cytotoxicity studies. Colloids Surf. B Biointerfaces., 68:1-6; 2009. 88 Christopher P, Alexandrine R, Carl L, Whitney E, Julian W. Iron oxide nanoparticles as drug delivery agents in MIA PaCa-2 pancreatic cells. Proc. SPIE 6441, From Conference Volume 6441, Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues V, 64411T 19; 2007. 89 Rejinold N S, Muthunarayanan M, Chennazhi KP, Nair SV, Jayakumar R. 5Fluorouracil



nanoparticles for cancer drug delivery

applications. Int. J. Biol. Macromol., 48:98-105; 2011. 90 Rejinold N S, Chennazhi KP, Nair SV, Tamura H, Jayakumar R. Biodegradable and thermo-sensitive chitosan-g-poly (N-vinylcaprolactam) nanoparticles as a 5fluorouracil carrier. Carbohydr Polym., 83: 776-786; 2011. 91 Raj KD, Saurabh S. Development of a novel probe sonication assisted enhanced loading of 5-FU in SPION encapsulated pectin nanocarriers for magnetic targeted drug delivery system. Eur. J. Pharm. Biopharm., 82:58-65; 2012. 92 Valentino L, Nunzio D, Antonio L, Angela L, Annalisa C, Francesco M L, Giulia A, Massimo F. Translocator protein ligand-PLGA conjugated nanoparticles for 5fluorouracil









10.1021/mp400536z , 2014. 93 Singh P, Gupta U, Asthana A, Jain NK. Folate and folate-PEG-PAMAM dendrimers: synthesis, characterization, and targeted anticancer drug delivery potential in tumor bearing mice. Bioconjug. Chem., 19: 2239-2252; 2008. 94 Moorthy G, Muniram S, Thangavel P, Murugan GD, Lonchin S. Spontaneous ultra fast synthesis of gold nanoparticles using Punica granatum for cancer targeted drug delivery. Colloids Surf. B Biointerfaces., 106:208-216; 2013. 95 Yichao W, Puwang L, Lijue C, Weimin G, Fanbo Z, Ling XK. Targeted delivery of 5-fluorouracil to HT-29 cells using high efficient folic acid-conjugated nanoparticles. Drug Deliv., doi:10.3109/10717544.2013.875603; 2014.

126     Amrita Centre for Nanosciences and Molecular Medicine   



Chapter 5

96 Cui YY, Wang YM, NM Li, Liu GS, Yang S, Tang GT, He DX,Tan XW, Hua W. In vitro and in vivo evaluation of pectin-based nanoparticles for hepatocellular carcinoma drug chemotherapy. Mol. Pharm., 11:638-644; 2014. 97 Bhadra D, Bhadra S, Jain S, Jain NK. A PEGylated dendritic nanoparticulate carrier of fluorouracil. Int.J. Pharm., 257:111–124; 2003. 98 Lai LF, Guo HX. Preparation of new 5-fluorouracil-loaded zein nanoparticles for liver targeting. Int. J.Pharm., 404:317–323; 2011. 99 Yiguang J, Xia R, Wei W, Lijing K, Erjuan N, Lina D, Jeremy B. 5-Fluorouracilloaded pH-responsive dendrimer nanocarrier for tumor targeting. Int. J. Pharm., 420: 378-384; 2011. 100 Sheetal

S, Anil

KB, Rakesh

KS, Amarnath


Delivery of hydrophobised 5-fluorouracil derivative to brain tissue through intravenous route using surface modified nanogels. J. Drug Target., 14: 8795;2006. 101 Ramesh CN, Rakesh K, Dhanawat M, Pandit JK. Modified PLA nano in situ gel: A potential ophthalmic drug delivery system. Colloids Surf. B Biointerfaces, 86:28-34; 2011. 102 Zhang Y, Li J, Lang M, Tang X, Li L, Shen X. Folate-functionalized nanoparticles for controlled 5-fluorouracil delivery. J. Colloid Interface Sci., 354: 202-209; 2011. 103 Yassin A E B, Anwer M K, Mowafy H A, El-Bagory I M, Bayomi M A, Alsarra I A. Optimization of 5-fluorouracil solid-lipid nanoparticles: a preliminary study to treat colon cancer. Int J Med Sci., 7:398-408; 2010. 104 Yan C, Gu J, Guo Y, Chen D. In vivo biodistribution for tumor targeting of 5fluorouracil loaded N-succinyl chitosan nanoparticles. The Pharm.Soc. Japan. 130: 801-804; 2010. 105 Li S, Wang A, Jiang W, Guan Z. Pharmacokinetic characteristics and anticancer effects of 5-fluorouracil loaded nanoparticles. BMC Cancer., 8:103; 2008. 106 Xibo M, Zhen C, Yushen J, Xiaolong L, Xin Y, Zhifei D, Jie T. SM5-1Conjugated PLA nanoparticles loaded with 5-fluorouracil for targeted 127     Amrita Centre for Nanosciences and Molecular Medicine   



Chapter 5

hepatocellular carcinoma imaging and therapy. Biomaterials., 35: 2878-2889; 2014. 107 Bansal SS, Vadhanam MV, Gupta RC. Development and in vitro-in vivo evaluation of polymeric implants for continuous systemic delivery of curcumin. Pharm Res., 2011; 28:1121-30. 108 Aggarwal BB, Sung B. Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends Pharmacol Sci., 30: 85-94; 2009. 109 Anand P, Thomas SG, Kunnumakkara AB, Sundaram C, Harikumar KB, Sung B, et al. Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochem Pharmacol., 76: 1590-611; 2008. 110 Anand P, Sundaram C, Jhurani S, Kunnumakkara AB, Aggarwal BB. Curcumin and cancer: an "old-age" disease with an "age-old" solution. Cancer Lett., 267: 133-164; 2008. 111 Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res., 23: 363-398; 2003. 112 Aggarwal S, Ichikawa H, Takada Y, Sandur SK, Shishodia S, Aggarwal BB. Curcumin (diferuloylmethane) down-regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of Ikappa B alpha kinase and Akt activation. Mol Pharmacol., 69: 195-206; 2006. 113 Johnson JJ, Mukhtar H. Curcumin for chemoprevention of colon cancer. Cancer Lett., 255: 170-181: 2007. 114 Duvoix A, Blasius R, Delhalle S, Schnekenburger M, Morceau F, Henry E, Dicato M, Diederich M. Chemopreventive and therapeutic effects of curcumin. Cancer Lett., 223:181-190; 2005. 115 Sa G, Das T. Anti cancer effects of curcumin: cycle of life and death. Cell Div., 2008, 3:14 Doi: 10.1186/1747-1028-3-14. 116 Sharma RA, Gescher AJ, Steward WP. Curcumin: the story so far. Cancer., 41:1955-1968; 2005.

128     Amrita Centre for Nanosciences and Molecular Medicine   


Eur J


Chapter 5

117 Maheshwari RK, Singh AK, Gaddipati J, Srimal RC. Multiple biological activities of curcumin: a short review. Life Sci., 78: 2081-2087; 2006. 118 Mehta K, Pantazis P, McQueen T, Aggarwal BB. Antiproliferative effect of curcumin (diferuloylmethane) against human breast tumor cell lines. Anticancer Drugs., 8: 470-481; 1997. 119 Li M, Zhang Z, Hill DL, Wang H, Zhang R. Curcumin, a dietary component, has anticancer, chemosensitization, and radiosensitization effects by down-regulating the MDM2 oncogene through the PI3K/mTOR/ETS2 pathway. Cancer Res., 67: 1988-1996; 2007. 120 Bar-Sela G, Epelbaum R, Schaffer M. Curcumin as an anti-cancer agent: review of the gap between basic and clinical applications. Curr Med Chem., 17: 190-197; 2010. 121 Thangapazham R L, Sharma A, Maheshwari R K. Multiple molecular targets in cancer chemoprevention by curcumin. The AAPS Journal., 8: E443-E449; 2006. 122 Tsai Y M, Chien C F, Lin L C, Tsai TH. Curcumin and its nano-formulation: the kinetics of tissue distribution and blood-brain barrier penetration. Int J Pharm., 416: 331-338; 2011. 123 Yallapu M M, Jaggi M, Chauhan SC. Curcumin nanoformulations: a future nanomedicine for cancer. Drug Discov Today., 17:71-80; 2012. 124 Anand P, Nair H B, Sung B, Kunnumakkara A B, Yadav V R, Tekmal R R, Aggarwal B B. Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochem Pharmacol., 79: 330-338; 2010. 125 Song Z, Feng R, Sun M, Guo C, Gao Y, Li L, Zhai G. Curcumin-loaded PLGAPEG-PLGA triblock copolymeric micelles: preparation, pharmacokinetics and distribution in vivo. J. Colloid Interface Sci., 354: 116-123; 2011. 126 Maya S, Sabitha M,

Nair S V,

Jayakumar R. Phytomedicine loaded

polymeric nanomedicines: potential cancer therapeutics. Adv. Polym Sci., 254: 203-239; 2013.

129     Amrita Centre for Nanosciences and Molecular Medicine   



Chapter 5

127 Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the antiinflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol., 41: 4059; 2009. 128 Aggarwal BB. Apoptosis and nuclear factor-kappa B: a tale of association and dissociation. Biochem Pharmacol., 60: 1033-1039; 2000. 129 Bierhaus A, Zhang Y, Quehenberger P, Luther T, Haase M, Muller M, et al. The dietary pigment curcumin reduces endothelial tissue factor gene expression by inhibiting binding of AP-1 to the DNA and activation of NF-kappa B. Thromb Haemost., 77:772-782; 1997. 130 Brennan P, O’Neill LA. Inhibition of nuclear factor kappaB by direct modification in whole cells-mechanism of action of nordihydroguaiaritic acid, curcumin and thiol modifiers. Biochem Pharmacol., 55:965-973; 1998. 131 Singh SV, Hu X, Srivastava SK, Singh M, Xia H, Orchard JL, et al. Mechanism of inhibition of benzo[a]pyrene-induced forestomach cancer in mice by dietary curcumin. Carcinogenesis., 19:1357-1360; 1998. 132 Reddy S, Rishi AK, Xu H, Levi E, Sarkar FH, Majumdar. APN: mechanisms of curcumin and EGF-receptor related protein (ERRP)-dependent growth inhibition of colon cancer cells. Nutr. Cancer., 55:185-194; 2006. 133 Zhang F, Altorki NK, Mestre JR, Subbaramaiah K, Dannenberg AJ. Curcumin inhibits cyclooxygenase-2 transcription in bile acid- and phorbol ester-treated human gastrointestinal epithelial cells. Carcinogenesis., 20:445-451; 1999. 134 Goel A, Boland CR, Chauhan DP. Specific inhibition of cyclooxygenase-2 (COX-2) expression by dietary curcumin in HT-29 human colon cancer cells. Cancer Lett., 172:111-118; 2001. 135 Surh Y-J, Molecular

Chun K-S, Cha H-H, Han S S, Keum Y-S, Park K-K, Lee S S. mechanisms






inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-κB activation. Mutat Res., 480-481:243-268; 2001.

130     Amrita Centre for Nanosciences and Molecular Medicine   



Chapter 5

136 Plummer SM, Holloway KA, Manson MM, Munks R J, Kaptein A, Farrow S, Howells L. Inhibition of cyclooxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-kappaB activation via the NIK/IKK signalling complex. Oncogene., 18: 6013-6020;1999. 137 Lev-Ari S, Strier L, Kazanov D, Madar-Shapiro L, Dvory-Sobol H, Pinchuk I, Marian B, Lichtenberg D, Arber N. Celecoxib and curcumin synergistically inhibit the growth of colorectal cancer cells. Clin Cancer Res., 11: 6738-6744; 2005. 138 Srimuangwong K, Tocharus C, Chintana P Y, Suksamrarn, Tocharus J. Hexahydrocurcumin enhances inhibitory effect of 5-fluorouracil on HT-29 human colon cancer cells. World J Gastroenterol., 18: 2383-2389; 2012. 139 Srimuangwong K,Tocharus C, Tocharus J, Suksamrar A, Chintana P Y. Effects of hexahydrocurcumin in combination with 5-fluorouracil on dimethylhydrazineinduced colon cancer in rats. World J Gastroenterol., 18:6951-6959; 2012. 140 Du B, Jiang L, Xia Q, Zhong L. Synergistic inhibitory effects of curcumin and 5fluorouracil on the growth of the human colon cancer cell line HT-29. Chemotherapy., 52: 23-28; 2006. 141 Patel B B, Sengupta R, Qazi S, Vachhani H, Yu Y, Rishi A K, Majumdar A P. Curcumin enhances the effects of 5-fluorouracil and oxaliplatin in mediating growth inhibition of colon cancer cells by modulating EGFR and IGF-1R. Int. J. Cancer., 122: 267-273; 2008. 142 Koo J Y, Kim H J, Jung K O, Park K Y. Curcumin Inhibits the growth of AGS human gastric garcinoma cells in vitro and shows synergism with 5-fluorouracil. J Med Food., 7: 117-121; 2004. 143 Kasim NA, Whitehouse M, Ramachandran C, Bermejo M, Lennernas H, Hussain AS, et al. Molecular properties of WHO essential drugs and provisional biopharmaceutical classification. Mol Pharm., 1:85-96; 2004. 144 Preetha A, Ajaikumar BK, Robert AN, Bharat BA. Bioavailability of curcumin: problems and promises. Mol. Pharm., 4:807-818; 2007.

131     Amrita Centre for Nanosciences and Molecular Medicine   



Chapter 5

145 Shehzad A, Khan S, Shehzad O, Lee YS. Curcumin therapeutic promises and bioavailability in colorectal cancer. Drugs Today., 46:523-532; 2010. 146 Pan MH, Huang TM, Lin JK. Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab Dispos., 27:486-494; 1999. 147 Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PS. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med., 64:353-356; 1998. 148 Wahlstrom B, Blennow G. A study on the fate of curcumin in the rat. Acta Pharmacol Toxicol., 43:86-92; 1978. 149 Sharma RA, Ireson CR, Verschoyle RD, Hill KA, Williams ML, Leuratti C, et al. Effects of dietary curcumin on glutathione S-transferase and malondialdehydeDNA adducts in rat liver and colon mucosa: relationship with drug levels. Clin Cancer Res., 7:1452-1458; 2001. 150 Ireson C, Orr S, Jones DJL, Verschoyle R, Lim C-K, Luo J-L, Howells L, Plummer S, Jukes R, Williams M, Steward W P, Gescher A. Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production. Cancer Res., 61:1058-1064; 2001. 151 Ravindranath V, Chandrasekhara N. In vitro studies on the intestinal absorption of curcumin in rats. Toxicology., 20:251-257; 1981. 152 Ravindranath V, Chandrasekhara N. Metabolism of curcumin-studies with [3H] curcumin. Toxicology., 22:337-344; 1981. 153 Wahlang B, Pawar YB, Bansal AK. Identification of permeability-related hurdles in oral delivery of curcumin using the Caco-2 cell model. Eur J Pharm Biopharm., 77: 275-282; 2011. 154 Vladimir B, Muhammed M, Ramaswamy R. Use of piperine as a bioavailability enhancer. US 5744161 A. US 08/550,496; 1998. 155 Ma Z, Haddadi A, Molavi O, Lavasanifar A, Lai R, Samuel J. Micelles of poly(ethylene




132     Amrita Centre for Nanosciences and Molecular Medicine   





Chapter 5

solubilization, stabilization, and controlled delivery of curcumin. J Biomed Mater Res A., 86: 300-310; 2008. 156 Thangapazham RL, Puri A, Tele S, Blumenthal R, Maheshwari RK. Evaluation of a nanotechnology-based carrier for delivery of curcumin in prostate cancer cells. Int J Oncol., 32:1119-1123; 2008. 157 Bisht S, Feldmann G, Soni S, Ravi R, Karikar C, Maitra A. Polymeric nanoparticle-encapsulated curcumin ("nanocurcumin"): a novel strategy for human cancer therapy. J Nanobiotechnology., 2007; 5:3. 158 Shaikh J, Ankola DD, Beniwal V, Singh D, Kumar MN. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci., 37: 223-230; 2009. 159 Ganta S, Amiji M. Co-administration of paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells. Mol Pharm., 6: 928-939; 2009. 160 Maiti K, Mukherjee K, Gantait A, Saha BP, Mukherjee PK. Curcumin phospholipid complex: preparation, therapeutic evaluation and pharmacokinetic study in rats. Int J Pharm., 330: 155-163; 2007. 161 Kim KH, Park HY, Nam JH, Park JE, Kim JY, Park MI, Chung KO, Park KY, Koo JY.The inhibitory effect of curcumin on the growth of human colon cancer cells (HT-29, WiDr) in vitro. Korean J. Gastroenterol., 45: 277-284; 2005. 162 Fang T, Tianli F, Yan Z, Yanan J, Xiaoyan Z. Curcumin potentiates the antitumor effects of 5-FU in treatment of esophageal squamous carcinoma cells through downregulating the activation of NF-kB signaling pathway in vitro and in vivo. Acta Biochim. Biophys. Sin., 44: 847-855; 2012. 163 Balasubramanian S, Girija A R, Nagaoka Y, Suzuki S I M, Kizhikkilot V, Yoshida Y, Maekawa T, Nair S D. Curcumin and 5-fluorouracil-loaded, folateand transferrin-decorated polymeric magnetic nanoformulation: a synergistic cancer therapeutic approach, accelerated by magnetic hyperthermia. Int J Nanomedicine., 9: 437-459; 2014. 133     Amrita Centre for Nanosciences and Molecular Medicine   



Chapter 5

164 Zhu R, Wu X, Xiao Y, Gao B, Xie Q, Liu H, Wang S. Synergetic effect of SLNcurcumin and LDH-5-Fu on SMMC-7721 liver cancer cell line. Cancer Biother Radiopharm., 28: 579-587; 2013. 165 Sathish SDK, Mahadevan S, Vijayaraghavan R, Asit BM, MacFarlane DR. Curcumin loaded poly (2-hydroxyethyl methacrylate) nanoparticles from gelled ionic liquid - in vitro cytotoxicity and anti-cancer activity in SKOV-3 cells. Eur. J. Pharm. Sci., 51: 34-44; 2014. 166 Wang P, Zhang L, Peng H, Li Y, Xiong J, Xu Z.  The formulation and delivery of curcumin with solid lipid nanoparticles for the treatment of on non-small cell lung cancer both in vitro and in vivo.  Mater Sci Eng C Mater Biol Appl., 33:48024808; 2013. 167 Mulik R, Mahadik K, Paradkar A. Development of curcuminoids loaded poly (butyl) cyanoacrylate nanoparticles: physicochemical characterization and stability study. Eur J Pharm Sci., 37: 395-404; 2009. 168 Mulik R S, Monkkonen J, Juvonen R O, Mahadik K R, Paradkar A R. ApoE3 mediated polymeric nanoparticles containing curcumin: apoptosis induced in vitro anticancer activity against neuroblastoma cells. Int J Pharm., 437:29-41; 2012. 169 Koppolu BP, Rahimi M, Nattama SP, Wadajkar A, Nguyen K. Development of multiple-layer polymeric particles for targeted and controlled drug delivery. Nanomedicine., 6: 355-361; 2010. 170 Yallapu MM, Gupta BK, Jaggi M, Chauhan SC. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J Colloid Interface Sci., 351: 19-29; 2010. 171 Sou K, Inenaga S, Takeoka S, Tsuchida E. Loading of curcumin into macrophages using lipid-based nanoparticles. Int J Pharm., 352: 287-293; 2008. 172 Nair KL, Arun K, Thulasidasan T, Deepa G, Ruby JA, Vinod GSK. Purely aqueous PLGA nanoparticulate formulations of curcumin exhibit enhanced anticancer activity with dependence on the combination of the carrier. Int J Pharm., 425: 44-52; 2012.

134     Amrita Centre for Nanosciences and Molecular Medicine   



Chapter 5

173 Wanisa P, Supachai Y, Pornsiri P, Chadarat A, Pornngarm L. Enhancement of cellular uptake and cytotoxicity of curcumin-loaded PLGA nanoparticles by conjugation with anti-P-glycoprotein in drug resistance cancer cells. Acta Pharm Sinic., 33: 823-831; 2012. 174 Mulik RS, Monkkonen J, Juvonen RO, Mahadik KR, Paradkar AR. Transferrin mediated solid lipid nanoparticles containing curcumin: enhanced in vitro anticancer activity by induction of apoptosis. Int J Pharm., 398: 190-203; 2010. 175 Chen J, Dai WT, He ZM, Gao L, Huang X, Gong JM, Xing HY, Chen WD. Fabrication and evaluation of curcumin-loaded nanoparticles based on solid lipid as a new type of colloidal drug delivery system. Ind J Pharm Sci., 75: 178-184; 2013. 176 Ratul KD, Naresh K,Utpal B. Encapsulation of curcumin in alginate-chitosanpluronic composite nanoparticles for delivery to cancer cells. Nanomedicine., 6: 153-160; 2010. 177 Abhishek S, Utpal B , Naresh K, Pranab G. Synthesis of novel biodegradable and self-assembling methoxy poly (ethylene glycol)-palmitate nanocarrier for curcumin delivery to cancer cells. Acta Biomater., 4: 1752-1761; 2008. 178 Bisht S, Feldmann G, Soni S, Ravi R, Karikar C, Maitra A. Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): a novel strategy for human cancer therapy. J Nanobiotechnology., 5: 1-18; 2007. 179 Rejinold NS, Sreerekha P, Chennazhi K, Nair SV. Jayakumar R. Biocompatible, biodegradable and thermo-sensitive chitosan-g-poly (N-isopropylacrylamide) nanocarrier for curcumin drug delivery. Int J Biol Macromol., 49: 161-172; 2011. 180 Anitha A, Deepagan V, Divya rani V, Menon D, Nair S, Jayakumar R. Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate-chitosan nanoparticles. Carbohyd Polym., 84: 1158-1164; 2011. 181 Anuchapreeda S, Fukumori Y, Okonogi S, Ichikawa H. Preparation of lipid nanoemulsions incorporating curcumin for cancer therapy. J Nanotechnol., 41: 111; 2012. 135     Amrita Centre for Nanosciences and Molecular Medicine   



Chapter 5

182 Liu J, Xu L, Liu C, Zhang D, Wang S, Deng Z. Preparation and characterization of cationic curcumin nanoparticles for improvement of cellular uptake. Carbohydr Polym., 90: 16-22; 2012. 183 Chin S F, Yazid S N A M, Pang S C. Preparation and characterization of starch nanoparticles for controlled release of curcumin. Int. J. Polym. Sci., 2014, Article ID 340121, 8 Pages; 2014. 184 Zanotto FA, Coradini K, Braganhol E, Schroder R, de Oliveira CM, Simoes PA. Curcumin-loaded








pharmacological efficacy of curcumin in glioma treatment. Eur J Pharm Biopharm., 83: 156-167; 2013. 185 Khan JA, Kainthan RK, Ganguli M, Kizhakkedathu JN, Singh Y, Maiti S. Water soluble nanoparticles from PEG-based cationic hyper branched polymer and RNA that protect RNA from enzymatic degradation. Biomacromolecules., 7:13861388; 2006. 186 Schluep T, Hwang J, Hildebrandt IJ, Czernin J, Choi CH, Alabi CA, et al. Pharmacokinetics and tumor dynamics of the nanoparticle IT-101 from PET imaging and tumor histological measurements. Proc Natl Acad Sci U S A., 106: 11394-11399; 2009. 187 Italia JL, Bhatt DK, Bhardwaj V, Tikoo K, Kumar MN. PLGA nanoparticles for oral delivery of cyclosporine: nephrotoxicity and pharmacokinetic studies in comparison to Sandimmune Neoral. J Control Release., 119: 197-206; 2007. 188 Grabovac V, Bernkop-Schnurch A. Development and in vitro evaluation of surface modified poly (lactide-co-glycolide) nanoparticles with chitosan-4thiobutylamidine. Drug Dev Ind Pharm., 33: 767-774; 2007. 189 Zhongfa L, Chiu M, Wang J, Chen W, Yen W, Fan-Havard P. Enhancement of curcumin oral absorption and pharmacokinetics of curcuminoids and curcumin metabolites in mice. Cancer Chemother Pharmacol., 69: 679-689; 2012. 190 Jiabei S, Chao B, Hok MC, Shaoping S, Qingwen Z, Ying Z. Curcumin-loaded solid lipid nanoparticles have prolonged in vitro antitumour activity, cellular

136     Amrita Centre for Nanosciences and Molecular Medicine   



Chapter 5

uptake and improved in vivo bioavailability. Colloids Surf. B., 111:367-375; 2013. 191 Khalil NM, do Nascimento TCF, Casa DM, Dalmolin LF, deMattos AC, Hoss I. Pharmacokinetics of curcumin-loaded PLGAand PLGA-PEG blend nanoparticles after oral administration in rats. Colloid Surf B., 101: 353-360; 2013. 192 Shelma R,

Sharma CP. In vitro and in vivo evaluation of curcumin loaded

lauroyl sulphated chitosan for enhancing oral bioavailability. Carbohydr Polym., 95: 441-448; 2013. 193 Vandita K, Indu PK. Evaluating potential of curcumin loaded solid lipid nanoparticles







histopathological alterations in mice brain. Food Chem Tox., 49: 2906-2913; 2011. 194 Shaikh J, Ankola DD, Beniwal V, Singh D, Kumar MN. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9- fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci., 37: 223-230; 2009. 195 Rajesh KG, Vinayak AD, Dimple K, Umesh TN, Gosavi SW, Rishi BS, Kalea SN, Suwarna D. Conjugation of curcumin with PVP capped gold nanoparticles for improving bioavailability. Mater Sci Eng C., 32: 2659-2663; 2012. 196 Mohanty C, Sahoo SK. The in vitro stability and in vivo pharmacokinetics of curcumin prepared as an aqueous nanoparticulate formulation. Biomaterials., 31: 6597-6611; 2010. 197 Song Z, Feng R, Sun M, Guo C, Gao Y, Li L. Curcumin-loaded PLGA- PEGPLGA triblock copolymeric micelles: preparation, pharmacokinetics and distribution in vivo. J Colloid Interface Sci., 354:116-123; 2011. 198 Ghahremankhani AA, Dorkoosh F, Dinarvand R. PLGA-PEG-PLGA tri-block co-polymers as in situ gel-forming peptide delivery system: effect of formulation properties on peptide release. Pharm Dev Technol., 13: 49-55; 2008.

137     Amrita Centre for Nanosciences and Molecular Medicine   



Chapter 5

199 Gao Y, Li Z, Sun M, Li H, Guo C, Cui J. Preparation, characterization, pharmacokinetics, and tissue distribution of curcumin nanosuspension with TPGS as stabilizer. Drug Dev Ind Pharm., 36: 1225-1234; 2010. 200 Zou P, Helson L, Maitra A, Stern ST, McNeil SE. Polymeric curcumin nanoparticle pharmacokinetics and metabolism in bile duct cannulated rats. Mol Pharm., 10: 1977- 1987; 2013. 201 Wenrui W, Rongrong Z, Qian X, Ang L, Yu X, Kun L, Hui L, Daxiang C, Yihan C, Shilong W. Int J Nanomedicine. 7: 3667-3677; 2012. 202 Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm., 5: 505-515; 2008. 203 Torchilin VP, Trubetskoy VS. Which polymers can make nanoparticulate drug carriers long-circulating. Adv Drug Deliv Rev., 16: 141-155; 1995. 204 Torchilin VP. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J., 9: 128-147; 2007. 205 Woodle MC. Surface-modified liposomes: assessment and characterization for increased stability and prolonged blood circulation. Chem Phys Lipids., 64: 249262; 1993. 206 Li SD, Huang L. Stealth nanoparticles: high density but sheddable PEG is a key for tumor targeting. J Control Release., 145: 178-181; 2010. 207 Romberg B, Hennink WE, Storm G. Sheddable coatings for long-circulating nanoparticles. Pharm Res., 25: 55-71; 2008. 208 Duncan R, Richardson SC. Endocytosis and intracellular trafficking as gateways for nanomedicine delivery: opportunities and challenges. Mol Pharm., 9: 23802402; 2012. 209 Khandare J, Calderon M, Dagia NM, Haag R. Multifunctional dendritic polymers in nanomedicine: opportunities and challenges. Chem Soc Rev., 41: 2824-2848; 2012. 210 Gong C, Deng S, Wu Q, Xiang M, Wei X, Li L, et al. Improving antiangiogenesis and anti-tumor activity of curcumin by biodegradable polymeric micelles. Biomaterials., 34: 1413-1432; 2013. 138     Amrita Centre for Nanosciences and Molecular Medicine   



Chapter 5

211 Babaei E, Sadeghizadeh M, Hassan ZM, Feizi MAH, Najafi F, Hashemi SM. Dendrosomal curcumin significantly suppresses cancer cell proliferation in vitro and in vivo. Int Immunopharmacol., 12: 226-234; 2012. 212 Dhule SS, Penfornis P, Frazier T, Walker R, Feldman J, Tan G. Curcumin loaded g-cyclodextrin liposomal nanoparticles as delivery vehicles for osteosarcoma. Nanomed Nanotechnol., 8: 440-451; 2012. 213 Ghosh D, Choudhury ST, Ghosh S, Mandal AK, Sarkar S, Ghosh A. Nanocapsulated






diethylnitrosamine induced hepatocellular carcinoma in rat. Chem Biol Interact., 195: 206-214; 2012. 214 Sinha V R, Kumria R. Polysaccharides in colon-specific drug delivery. Int. J. Pharm., 224: 19-38; 2001. 215 Rubinstein A. Natural polysaccharides as targeting tools of drugs to the human colon. Drug Dev. Res., 50: 435-439; 2000. 216 Vandamme T F, Lenourry A, Charrueau C, Chaumeil J. The use of polysaccharides to target drugs to the colon. Carbohydr. Polym., 48: 219-231; 2002. 217 Lemarchand C, Gref R, Couvreur P. Polysaccharide-decorated nanoparticles, Eur. J. Pharm. Biopharm., 58: 327-341; 2004. 218 Chen M C, Mi F-L, Liao Z-X, Hsiao C W, Sonaje K, Chung M-F, Hsu L-W, Sung H-W. Recent advances in chitosan-based nanoparticles for oral delivery of macromolecules. Adv Drug Deliv Rev., 65: 865-879; 2013. 219 Thanou M, Verhoef J, Junginger H, Oral drug absorption enhancement by chitosan and its derivatives. Adv. Drug Deliv. Rev., 52: 117-126; 2001. 220 Chen M C, Mi F L, Liao Z X, Sung HW. Chitosan: its applications in drugeluting devices. Adv. Polym. Sci., 243:185-230; 2011. 221 Rinaudo M. Chitin and chitosan: properties and applications. Prog Polym Sci., 31: 603-632; 2006.

139     Amrita Centre for Nanosciences and Molecular Medicine   



Chapter 5

222 Anitha A, Sowmya S, Sudheesh KPT, Deepthi S, Chennazhi K P, Ehrlich H, Tsurkan M, Jayakumar R. Chitin and chitosan in selected biomedical applications. Prog Polym Sci., In Press 2014. 223 Kanauchi O, Deuchi K, Imasato Y, Kobayashi E. Increasing effect of a chitosan and ascorbic acid mixture on fecal dietary fat excretion. Biosci. Biotechnol. Biochem., 58: 1617-1620;1994. 224 Maezaki Y, Tsuji K, Nakagawa Y, Kawai Y, Akimoto M, Tsugita T, Takekawa W, Terada A, Hara H, Mitsuoka T. Hypocholesterolemic effect of chitosan in adult males, Biosci. Biotechnol. Biochem. 57:1439-1444; 1993. 225 Arai K, Kinumari T, Fujita T. On the toxicity of chitosan. Bull. Tokai Reg. Fish. Res. Lab., 56: 889-892; 1986. 226 Roy K, Mao H Q, Huang S K, Leong K W. Oral gene delivery with chitosanDNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat. Med., 5: 387-391; 1999. 227 Sakloetsakun D, Perera G, Hombach J, Millotti G, Bernkop-Schnurch A. The impact of vehicles on the mucoadhesive properties of orally administrated nanoparticles: a case study with chitosan-4-thiobutylamidine conjugate. AAPS Pharm.Sci.Tech., 11:1185-1192; 2010. 228 Sonia T, Sharma C. Chitosan and its derivatives for drug delivery perspective, Adv. Polym. Sci., 243: 23-54; 2011. 229 Shi C, Zhu Y, Ran X, Wang M, Su Y, Cheng T. Therapeutic potential of chitosan and its derivatives in regenerative medicine. J Surg Res., 133: 185-192; 2006. 230 Dash M, Chiellini F, Ottenbrite RM, Chiellini E. Chitosan a versatile semisynthetic polymer in biomedical applications. Prog Polym Sci., 36: 981-014; 2006. 231 Khor E, Lim LY. Implantable applications of chitin and chitosan. Biomaterials 24: 2339-2349; 2003. 232 Amidi M, Mastrobattista E, Jiskoot Z, Hennink W E. Chitosan-based delivery systems for protein therapeutics and antigens. Adv. Drug Deliv. Rev., 62: 59-82; 2010. 140     Amrita Centre for Nanosciences and Molecular Medicine   



Chapter 5

233 Sonaje K, Lin K J, Tseng MT, Wey M P, Su FY, Chuang E Y, Hsu CW, Chen CT, Sung H W. Effects of chitosan-nanoparticle-mediated tight junction opening on the oral absorption of endotoxins. Biomaterials., 32: 8712-8721; 2011. 234 Lin Y H, Chen C T, Liang H F, Kulkarni AR, Lee P W, Chen C H, Sung H W. Novel nanoparticles for oral insulin delivery via the paracellular pathway. Nanotechnology., 18:105102; 2007. 235 Chen M C, Wong H S, Lin KJ, Chen HL,Wey S P, Sonaje K, Lin Y H, Chu CY, Sung H W. The characteristics, biodistribution and bioavailability of a chitosanbased nanoparticulate system for the oral delivery of heparin. Biomaterials., 30: 6629-6637; 2009. 236 Sarmento B, Ribeiro A, Veiga F, Ferreira D, Neufeld R. Oral bioavailability of insulin contained in polysaccharide nanoparticles. Biomacromolecules., 8: 30543060; 2007. 237 Nguyen H N, Wey SP, Juang J H, Sonaje K, Ho Y C, Chuang E Y, Hsu C W, Yen TC, Lin K J, Sung HW. The glucose-lowering potential of exendin-4 orally delivered via a pH-sensitive nanoparticle vehicle and effects on subsequent insulin secretion in vivo. Biomaterials., 32: 2673-2682;2011. 238 Prego C, Fabre M, Torres D, Alonso M. Efficacy and mechanism of action of chitosan nanocapsules for oral peptide delivery. Pharm. Res., 23: 549-556; 2006. 239 Moghaddam F A, Atyabi F, Dinarvand R. Preparation and in vitro evaluation of mucoadhesion and permeation enhancement of thiolated chitosan-pHEMA coreshell nanoparticles. Nanomed. Nanotech. Biol.Med., 5: 208-215; 2009. 240Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug Deliv. Rev., 62:83-99; 2010. 241 Sashiwa H, Aiba S. Chemically modified chitin and chitosan as biomaterials. Prog. Polym. Sci., 29: 887-908; 2004. 242 Kotze A F,Thanou M M, Lueben H L, De Boer A G, Verhoef J c, Junginger H E. Enhancement of paracellular drug transport with highly quaternized Ntrimethyl chitosan chloride in neutral environments: in vitro evaluation in intestinal epithelial cells (Caco2). J. Pharm. Sci., 88: 253-257; 1999. 141     Amrita Centre for Nanosciences and Molecular Medicine   



Chapter 5

243 Bayat A, Dorkoosh F A, Dehpour A R, Moezi L, Larijani B, Junginger H E, Rafiee-Tehrani M. Nanoparticles of quaternized chitosan derivatives as a carrier for colon delivery of insulin: ex vivo and in vivo studies. Int. J. Pharm., 356: 259266; 2008. 244 Amidi M, Romeijn S G, Borchard G, Junginger H E, Hennink WE, Jiskoot W. Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system. J. Control. Release., 111: 107-116; 2006. 245 Mi F L, Wu Y Y, Lin Y H, Sonaje K, Ho Y C, Chen CT, Juang J H, Sung H W. Oral delivery of peptide drugs using nanoparticles self-assembled by poly(γglutamic acid) and a chitosan derivative functionalized by trimethylation. Bioconjug. Chem., 19: 1248-1255; 2008. 246 Qian F, Cui F, Ding J, Tang C, Yin C. Chitosan graft copolymer nanoparticles for oral protein drug delivery: preparation and characterization. Biomacromolecules., 7 : 2722-2727; 2006. 247 Bayat A, Larijani B, Ahmadian S, Junginger H E, Rafiee-Tehrani M. Preparation and characterization of insulin nanoparticles using chitosan and its quaternized derivatives. Nanomed. Nanotechnol. Biol. Med., 4: 115-120; 2008. 248 Dorkoosh S F, Avadi M, Weinhold M, Bayat A, Delie F, Gurny R, Larijani B, Rafiee-Tehrani M, Junginger H. Permeation enhancer effect of chitosan and chitosan derivatives: comparison of formulations as soluble polymers and nanoparticulate systems on insulin absorption in Caco-2 cells. Eur. J. Pharm. Biopharm., 70: 270-278; 2008. 249 Kumar M N R V, Muzzarelli R A A, Muzzarelli C, Sashiwa H, Domb A J. Chitosan chemistry and pharmaceutical perspectives. Chem. Rev., 104: 60176084; 2004. 250 Jayakumar R, Prabaharan M, Nair S V, Tokura S, Tamura H, Selvamurugan N. Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Prog. Mater. Sci., 55: 675-709; 2010. 251 Jayakumar R, Prabaharan M, Reis RL, Mano JF. Graft copolymerized chitosanPresent status and applications. Carbohydr. Polym., 62: 142-158; 2005. 142     Amrita Centre for Nanosciences and Molecular Medicine   



Chapter 5

252 Jayakumar R, Nwe N, Tokura S, Tamura H. Sulfated chitin and chitosan as novel biomaterials. Int. J. Biol. Macromol., 40:175-181; 2007. 253 R. Jayakumar, N. Selvamurugan, S.V. Nair, S. Tokura, H. Tamura. Preparative methods of phosphorylated chitin and chitosan-an overview. International Journal of Biological Macromolecules., 43: 221-225; 2008. 254 Hirano S, Nagano N. Effects of chitosan, pectic acid, lysozyme and chitinase on the growth of several phytopathogens. Agri Biol Chem., 53: 3065-3066; 1989. 255 Kendra DF, Christian D, Hadwiger LA. Chitosan oligomers from Fusarium solani/pea intercations, chitinase/β-glucanase digestion of sporelings and from fungal wall chitin actively inhibit fungal growth and enhance drug resistance. Physiol Mol Plant Pathol., 35: 215-230;1989 256 Suzuki S, Watanabe T, Mikami T, Suzuki M. In: Proceedings of the 5th international conference on chitin and chitosan. USA: 96-105; 1990. 257 Sandford PA. In: Sjak-Braek G, Anthonsen T, Sandford PA, editors. Chitin and chitosan. London: Elsevier Applied Science., 51-69; 1990. 258 Rieux D, Fievez V, Garinot M, Schneider Y J, Preat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach.


Control. Release., 116: 1-27; 2006. 259 Sonaje K, Lin K J, Wang J J, Mi F L, Chen CT, Juang J H, Sung H W, Selfassembled pH-sensitive nanoparticles: a platform for oral delivery of protein drugs. Adv. Funct. Mater., 20: 3695-3700; 2010. 260 George M, Abraham T E. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan-a review. J. Control. Release., 114:1-14; 2006. 261 Bernkop-Schnurch A, Hornof M, Zoidl T. Thiolated polymers - thiomers: modification of chitosan with 2- iminothiolane. Int. J. Pharm., 260: 229-237; 2003. 262 Aspden TJ, Illum L, Skaugrad O. Chitosan as a nasal delivery system: evaluation of insulin absorption enhancement and effect of nasal membrane integrity using rat models. Eur. J. Pharm. Biop., 4: 23-31; 1996. 143     Amrita Centre for Nanosciences and Molecular Medicine   



Chapter 5

263 Senel S, Kremer MJ, Kaş S, Wertz PW, Hincal AA, Squier CA. Enhancing effect of chitosan on peptide drug delivery across buccal mucosa. Biomaterials., 21: 2067-2071; 2000. 264 Dodane V, Khan MA, Merwin JR. Effect of chitosan on epithelial permeability and structure. Int. J. Pharm., 10182: 21-32; 1999. 265 Liu XF, Guan YL, Yang DZ, Li Z, Yao KD. Antibacterial action of chitosan and carboxymethylated chitosan. J. Appl. Polym. Sci., 79: 1324-1335; 2001. 266 Chen XG, Park HJ. Chemical characteristics of O-carboxymethyl chitosan related to its preparation conditions. Carbohydr. Polym., 53: 355-359; 2003. 267 Muzzarelli RAA, Ramos V, Stanic V, Dubini B, Mattioli BM, Tosi G, Giardino R. Osteogenesis promoted by calcium phosphate N,N-dicarboxymethyl chitosan. Carbohydr. Polym., 36: 267-276; 1998. 268 Nishimura SI, Ikeuchi Y, Tokura S. The adsorption of bovine blood proteins onto the surface of O-carboxymethyl chitin. Carbohydr. Res., 134: 305-312; 1984. 269Nishimura SI, Nishi N, Tokura S. Activation of mouse-peritoneal macrophages by O-(carboxymethyl) chitins. Carbohydr. Res., 146:251-258; 1986. 270 Zhang L, Guo J, Zhou J, Yang G, Du YM. Blend membranes from carboxymethylated chitosan/alginate in aqueous solution. J. Appl. Polym. Sci., 77:610-616; 2000. 271 Ragnhild J, Hjerde N, Varum KM, Grasden H, Tokura S, Smidsrod O. Chemical composition of O-(carboxymethyl)-chitins in relation to lysozyme degradation rates. Carbohydr. Polym., 34:131-139; 1997. 272 Chen SC,WuYC, Mi FL. A novel pH-sensitive hydrogel composed of N, Ocarboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. J Control Release., 96: 285-300; 2004. 273 Du J, Dai J, Liu JL, Dankovich T. Novel pH-sensitive polyelectrolyte carboxymethyl Konjac glucomannan-chitosan beads as drug carriers. React. Funct. Polym., 66; 1055-1061; 2006. 274 Hayes ER. N, O-carboxymethyl chitosan and preparative method therefor. US patent: US4619995; 1986. 144     Amrita Centre for Nanosciences and Molecular Medicine   



Chapter 5

275 Wu KX, Li MN. The immuno regulation of carboxymethyl polysaccharides. Chin. Chem. Bull., 9: 54-58; 1989. 276 Jayakumar R, Reis RL, Mano JF. Chemistry and applications of phosphorylated chitin and chitosan. E-Polymers 035:1-16;2006. 277 Prabaharan M, Mano JF. Chitosan-based particles as controlled drug delivery systems. Drug Deliv., 12:41-57; 2005. 278 Prabaharan M, Mano JF. Chitosan derivatives bearing cyclodextrin cavities as novel adsorbent matrices. Carbohydr. Polym., 63:153-166;2006. 279 Prabaharan M, Mano JF. Stimuli-responsive hydrogels based on polysaccharides incorporated with thermo-responsive polymers as novel biomaterials. Macromol. Biosci., 6:991-1008; 2006. 280 Ravi Kumar MNV, Muzzarelli RAA, Muzzarelli A, Sashiwa H, Domb AJ. Chitosan chemistry and pharmaceutical perspectives. Chem. Rev., 104: 60176084; 2004. 281 Zhao ZP, Wang Z, Wang SC. Formation, charged characteristic and BSA adsorption behavior of carboxymethyl chitosan/PES composite MF membrane. J. Membr. Sci., 217:151-158; 2003. 282 Tokura S, Nishimura S, Sakairi N, Nishi N. Biological activities of biodegradable polysaccharide. Macromol. Symp., 101:389-396;1996. 283 Anitha A, Divya RaniVV, Krishna R, Sreeja V, Selvamurugan N, Nair SV, Tamura

H, Jayakumar






antibacterial studies of chitosan, O-carboxymethyl and N, O-carboxymethyl chitosan nanoparticles. Carbohydr. Polym., 78:672-677;2009. 284 Anitha A, Maya S, Deepa N, Chennazhi KP, Nair SV, Tamura H, Jayakumar R. Efficient water soluble O-carboxymethyl chitosan nanocarrier for the delivery of curcumin to cancer cells. Carbohydr. Polym., 83: 452-461; 2011. 285 Anitha A, Maya S, Deepa N, Chennazhi KP, Nair SV, Jayakumar R. Curcuminloaded N, O-carboxymethyl chitosan nanoparticles for cancer drug delivery. J. Biomater. Sci., 23:1381-1400; 2012.

145     Amrita Centre for Nanosciences and Molecular Medicine   



Chapter 5

286 Anitha A, Chennazhi KP, Nair SV, Jayakumar R. 5-Flourouracil loaded N, Ocarboxymethyl chitosan nanoparticles as an anticancer nanomedicine for breast cancer. J. Biomed. Nanotech., 8: 29-42; 2012. 287 Xiaowen S, Yumin D, Jianhong Y, Baozhong Z, Liping S. Effect of degree of substitution and molecular weight of carboxymethyl chitosan nanoparticles on doxorubicin delivery. J. Appl. Polym. Sci., 100: 4689-4696; 2006. 288 Wang Y, Liu L, Weng J, Qiqing Z. Preparation and characterization of selfaggregated nanoparticles of cholesterol-modified-O-carboxymethyl chitosan conjugates. Carbohydr. Polym., 69: 597-606; 2007. 289 Wang YS, Jiang Q, Li RS, Liu LL, Zhang QQ, Wang YM, Zhao J. Selfassembled nano particles of cholesterol-modified O-carboxymethyl chitosan as a novel carrier for paclitaxel. Nanotechnology, 19:145101; 2008. 290 Sumanta KS, Sanjay KM, Susmita S, Tapas KM, Sudip KG, Panchanan P. In vitro evaluation of folic acid modified carboxymethyl chitosan nanoparticles loaded with doxorubicin for targeted delivery. J. Mater. Sci. Mater. Med., 21:1587-1597; 2010. 291 Chao F, Zhiguo W, Changqing J, Ming K, Xuan Z, Yang L, Xiaojie C, Xiguang C. Chitosan/O-carboxymethyl chitosan nanoparticles for efficient and safe oral anticancer drug delivery: in vitro and in vivo evaluation. Int. J.Pharm., 457:158167; 2013. 292 Zhang X, Zhao J, Wen Y, Zhu C, Yang J, Yao F. Carboxymethyl chitosan-poly (amidoamine) dendrimer core-shell nanoparticles for intracellular lysozyme delivery. Carbohydr. Polym., 98: 1326-1334; 2013. 293 Guo H, Zhang D , Li C, Jia L, Liu G, Hao L, Zheng D, Shen J, Li T, Guo Y, Zhang


Self-assembled nanoparticles based




carboxymethyl chitosan-graft-stearic acid conjugates for delivery of doxorubicin. Int. J. Pharm., 458: 31-38; 2013. 294 Guo H, Zhang D , Li T, Li C, Guo Y, Liu G, Hao L, Shen J, Qi L, Liu X, Luan J, Zhang Q. In vitro and in vivo study of Gal-OS self-assembled nanoparticles for liver-targeting delivery of doxorubicin. J Pharm Sci., 2014 Article In Press. 146     Amrita Centre for Nanosciences and Molecular Medicine   



Chapter 5

295 Wang G, Jin L, Dong Y, Niu L, Liu Y, Ren F, Su X. Multifunctional Fe3O4CdTe@SiO2- carboxymethyl chitosan drug




towards magnetic targeted drug delivery and cell imaging. New J Chem., 38:700708; 2014. 296 Mathew EM, Mohan JC, Manzoor K, Nair S V, Tamura H, Jayakumar R. Folate conjugated carboxymethyl chitosan-manganese doped zinc sulphide nanoparticles for targeted drug delivery and imaging of cancer cells. Carbohydr Polym., 80: 442-448; 2010. 297 Wang Y, Yang X, Yang J, Wang Y, Chen R, Wu J, Liu Y, Zhang N. Selfassembled nanoparticles of methotrexate conjugated O-carboxymethyl chitosan: preparation, characterization and drug release behavior in vitro. Carbohydr. Polym., 86: 1665-1670; 2011. 298 Zheng H , Zhang X, Xiong F, Zhu Z, Lu B, Yin Y, Xu P, Du Y. Preparation, characterization, and tissue distribution in mice of lactosaminated carboxymethyl chitosan nanoparticles. Carbohydr. Polym., 83: 1139-1145; 2011. 299 Tan YL, Liu C-G. Self-aggregated nanoparticles from linoleic acid modified carboxymethyl chitosan: synthesis, characterization and application in vitro. Colloids Surf., B., 69: 178-182; 2009. 300 Liu F, Li M, Liu C, LiuY, LiangY, Wang F, Zhang N. Tumor-specific delivery and therapy by double-targeted DTX-CMCS-PEG-NGR conjugates. Pharm. Res., 31: 475-488; 2014. 301 Sayın B, Somavarapu S, Li X W, Thanou M, Sesardic D, Alpar H O, Senel S . Mono-N-carboxymethyl chitosan (MCC) and N-trimethyl chitosan (TMC) nanoparticles for non-invasive vaccine delivery. Int. J. Pharm., 363: 139-148; 2008. 302 Shen J-M, Tang W-J, Zhang X-L, Chen T, Zhang H-X. A novel carboxymethyl chitosan-based folate/Fe3O4/CdTe nanoparticle for targeted drug delivery and cell imaging. Carbohydr Polym., 88: 239-249; 2012. 303 Maya S, Kumar L G, Sarmento B,

Rejinold NS, Deepthy M, Nair

S V,

Jayakumar R. Cetuximab conjugated O-carboxymethyl chitosan nanoparticles for 147     Amrita Centre for Nanosciences and Molecular Medicine   



Chapter 5

targeting EGFR overexpressing cancer cells. Carbohydr Polym., 93: 661-669; 2013. 304 K.S. Snima, R. Jayakumar, A.G. Unnikrishnan, Shantikumar. V. Nair, VinothKumar Lakshmanan. O-Carboxymethyl chitosan nanoparticles for metformin delivery to pancreatic cancer cells. Carbohydr Polym., 89: 1003-1007; 2012. 305 Shinde U, Ahmed M H, Singh K. Development of drzolamide laded 6-Ocarboxymethyl chitosan nanoparticles for open angle glaucoma. J Drug Deliv., 2013: Article ID 562727, 15 Pages; 2013. 306 Sahu S K, Maiti S, Maiti T K, Ghosh S K, Pramanik P. Hydrophobically modified carboxymethyl chitosan nanoparticles targeted delivery of paclitaxel. J Drug Target., 19: 104-113; 2011. 307 Sun Y, Li X, Liang X, Wan Z, Duan Y.Calcium phosphate/octadecyl-quatemized carboxymethyl chitosan nanoparticles: an efficient and promising carrier for gene transfection. J Nanosci Nanotechnol., 13:5260-5266; 2013. 308 Thu H P, Huong L T T, Nhung H T M, Tham N T, Tu N D, Thi H T M, Hanh P T B, Nguyet T TM, Quy N T, Nam P H, Lam T D, Phuc N X, Quang Q T. Fe3O4/O-Carboxymethyl





chemotherapy and fluorescence imaging in HT29 cancer cell line. Chem. Lett., 40: No.11; 2011. 309 Kast C E, Bernkop-Schnurch A. Thiolated polymers-thiomers: development and in vitro evaluation of chitosan-thioglycolic acid conjugates. Biomaterials., 22: 2345-2352; 2001. 310 Wang X, Zheng C, Wu Z, Teng D, Zhang X, Wang Z, Li, C. Chitosan-NAC nanoparticles as a vehicle for nasal absorption enhancement of insulin. J. Biomed. Mater. Res. B Appl. Biomater., 88: 150-161; 2009. 311 Kafedjiiski K, Foger F, Werle M, Bernkop-Schnurch A. Synthesis and in vitro evaluation of a novel chitosan-glutathione conjugate. Pharm. Res., 22: 1480-1488; 2005.

148     Amrita Centre for Nanosciences and Molecular Medicine   



Chapter 5

312 Osuna B, Vauthier C, Farabollini A, Palmieri G F, Ponchel G. Mucoadhesion mechanism of chitosan and thiolated chitosan-poly (isobutyl cyanoacrylate) coreshell nanoparticles. Biomaterials., 28: 2233-2243; 2007. 313 Foger F, Schmitz T, Bernkop-Schnurch A. In vivo evaluation of an oral delivery system for P-gp substrates based on thiolated chitosan. Biomaterials., 27: 42504255; 2006. 314 Kafedjiiski K, Krauland A H, Hoffer M H, Bernkop-Schnurch A. Synthesis and in vitro evaluation of a novel thiolated chitosan. Biomaterials., 26: 819-826;2005. 315 Bernkop-Schnurch A. Thiomers: a new generation of mucoadhesive polymers. Adv. Drug Deliv. Rev., 57: 1569-1582; 2005. 316 Yin L, Ding J, He C, Cui L, Tang C, Yin C. Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery. Biomaterials., 30:5691-5700; 2009. 317 Kafedjiiski K, Hoffer M, Werle M, Bernkop-Schnurch A. Improved synthesis and







Biomaterials., 27: 127-135; 2006. 318 Leitner V M, Walker G F, Bernkop-Schnurch A. Thiolated polymers: evidence for the formation of disulphide bonds with mucus glycoproteins.Eur. J. Pharm. Biopharm., 56: 207-214; 2003. 319 Bernkop-Schnurch, 2003. Thiomers: a new generation of mucoadhesive polymers. Adv Drug Deliver Rev., 57: 1569-1582; 2005. 320 Bravo-Osuna I, Teutonico D, Arpicco S, Vauthier C, Ponchel G. Characterization of chitosan thiolation and application to thiol quantification onto nanoparticle surface. Int. J. Pharm., 340: 173-181; 2007. 321 Bernkop-Schnurch A, Pinter Y, Guggi D, Kahlbacher H, Schoffmann G, Schuh M, Schmerold I, Del Curto M D, Antonio M D, Esposito P. The use of thiolated polymers as carrier matrix in oral peptide delivery-proof of concept. J. Control. Release., 106:26-33; 2005.

149     Amrita Centre for Nanosciences and Molecular Medicine   



Chapter 5

322 Dunnhaupt S, Barthelmes J, Hombach J, Sakloetsakun D, Arkhipova V, Bernkop-Schnurch A. Distribution of thiolated mucoadhesive nanoparticles on intestinalmucosa. Int. J. Pharm., 408: 191-199; 2011. 323 Sajeesh S, Vauthier C, Gueutin C, Ponchel G, Sharma C P. Thiol functionalized polymethacrylic acid-based hydrogel microparticles for oral insulin delivery. Acta Biomater., 6: 3072-3080; 2010. 324 Martien R, Loretz B, Thaler M, Majzoob S, Bernkop-Schnurch A. Chitosanthioglycolic acid conjugate: an alternative carrier for oral nonviral gene delivery. J. Biomed. Mater. Res. A., 82: 1-9; 2007. 325 Wang X, Zheng C, Wu Z, Teng D, Zhang X, Wang Z, Li C, Chitosan-NAC nanoparticles as a vehicle for nasal absorption enhancement of insulin. J. Biomed. Mater. Res. B Appl. Biomater., 88: 150-161; 2009. 326 Colo GD, Zambito Y, Zaino C. Polymeric enhancers of mucosal epithelial permeability:





mechanism of action, safety issues. J. Pharm. Sci., 97:1652-1680; 2008. 327 Roldo M, Hornof M, Caliceti P, Bernkop SA. Mucoadhesive thiolated chitosans as platforms for oral controlled drug delivery: Synthesis and in vitro evaluation. Eur. J. Pharm. Biopharm., 57: 115-121; 2004. 328 Zhao X, Yin L, Ding J, Tang C, Gu S, Yin C, Mao Y. Thiolated trimethyl chitosan nanocomplexes as gene carriers with high in vitro and in vivo transfection efficiency. J Control Release., 144: 46-54; 2010. 329 Baumann H, Faust V. Concepts for improved regioselective placement of Osulfo, N-sulfo, N-acetyl, and N-carboxymethyl groups in chitosan derivatives, Carbohydr Res., 331(1):43-57;2001 330 Bernkop-Schnurch A, Krajicek ME. Mucoadhesive polymers as platforms for peroral peptide delivery and absorption: synthesis and evaluation of different chitosan-EDTA conjugates. J. Control. Rel., 50: 215-223; 1998. 331 Bernkop-Schnurch A, Scholler S, Biebel RG. Development of controlled drug release systems based on thiolated polymers. J Control Release., 66: 39-48; 2000.

150     Amrita Centre for Nanosciences and Molecular Medicine   



Chapter 5

332 Anitha A, Deepa N, Chennazhi K P, Nair S V, Tamura H, Jayakumar R. Development of mucoadhesive thiolated chitosan nanoparticles for biomedical applications. Carbohydr. Polym., 83: 66-73; 2011. 333 Talaei F, Azizi E, Dinarvand R, Atyabi F. Thiolated chitosan nanoparticles as a delivery system for antisense therapy: evaluation against EGFR in T47D breast cancer cells. Int J Nanomedicine., 6:1963-1975; 2011. 334 Saboktakin MR, Tabatabaie RM, Maharramov A, Ramazanov M A. Synthesis and in vitro evaluation of thiolated chitosan-dextran sulfate nanoparticles for the delivery of letrozole. J Pharm Educ Res., 1: 62-67; 2010. 335 Saboktakin MR, Tabatabaie RM, Maharramov A, Ramazanov M A. Synthesis and characterization of biodegradable thiolated chitosan nanoparticles as targeted drug delivery system. J Nanomedic Nanotechnol., S4:001. doi:10.4172/21577439.S4001; 2011. 336 Wang X, Zheng C, Wu Z M, Teng DG, Zhang X, Wang Z, Li C X. Chitosan- AC nanoparticles as a vehicle for nasal absorption enhancement of insulin. J. Biomed. Mater.Res. B, Appl. Biomater., 88B: 150-161; 2009. 337 Saremi S, Dinarvand R, Kebriaeezadeh A, Ostad SN, Atyabi F. Enhanced oral delivery of docetaxel using thiolated chitosan nanoparticles: preparation, in vitro and in vivo studies. Bio Med Research International., Article ID 150478; 2013. 338 Jiang L, Li X, Liu L, Zhang Q. Thiolated chitosan-modified PLA-PCL-TPGS nanoparticles for oral chemotherapy of lung cancer. Nanoscale Res Lett., 2013, 8:66. doi: 10.1186/1556-276X-8-66. 339 Yousefpour P, Atyabi F, Dinarvand R, Vasheghani-Farahani. Preparation and comparison of chitosan nanoparticles with different degrees of glutathione thiolation. Daru., 9:367-375;2011. 340 Patel D, Naik S, Chuttani K, Mathur R, Mishra AK, Misra A. Intranasal delivery of cyclobenzaprine hydrochloride-loaded thiolated chitosan nanoparticles for pain relief. J Drug Target., 21:759-769; 2013.

151     Amrita Centre for Nanosciences and Molecular Medicine   



Chapter 5

341 Shokrzadeh M, Ebrahimnejad P, Omidi M, Shadboorestan A, Zaalzar Z. Cytotoxity evaluation of docetaxel nanoparticles against HepG2 cell lines. JMUMS., 22:1-9; 2012. 342 Patel D, Naik S, Misra A. Improved transnasal transport and brain uptake of tizanidine HCl-loaded thiolated chitosan nanoparticles for alleviation of pain. J Pharm Sci., 101: 690-706; 2012. 343 Alamdarnejad G1, Sharif A, Taranejoo S, Janmaleki M, Kalaee MR, Dadgar M, Khakpour M. Synthesis and

characterization of thiolated carboxymethyl

chitosan-graft-cyclodextrin nanoparticles as a drug delivery vehicle for albendazole. J Mater Sci Mater Med., 24: 2013; 1939-1949. 344 Irene B-O, Schmitz T, Bernkop-Schnurch A, Christine Vauthier, Gilles Ponchel. Elaboration







nanoparticles. Int. J. Pharm., 316: 2006; 170-175. 345 Saboktakin MR, Tabatabaie RM, Maharramov A, Ramazanov MA. Synthesis and characterization of biodegradable thiolated chitosan nanoparticles as targeted drug delivery system. J Nanomedic Nanotechnol., S4:001. doi:10.4172/21577439.S4001; 2011. 346 Bernkop-Schnurch A, Guggi D, Pinter Y, Thiolated chitosans: development and in vitro evaluation of a mucoadhesive, permeation enhancing oral drug delivery system. J. Control Release., 94: 2004; 177-186. 347 Akhlaghi SP, Saremi S, Ostad SN, Dinarvand R, Atyabi F. Discriminated effects of thiolated chitosan-coated pMMA paclitaxel-loaded nanoparticles on different normal and cancer cell lines. Nanomedicine., 6: 2010; 689-697. 348 Bernkop-Schnurch A, Hornof M D, Guggi D. Thiolated chitosans. Eur. J. Pharm. Biopharm., 57: 2004; 9-17. 349 Ronny M, Brigitta L, Adolf M S, Bernkop-Schnurch A. Thiolated chitosan nanoparticles: transfection study in the Caco-2 differentiated cell culture. Nanotechnology., 19: 1-9; 2008.

152     Amrita Centre for Nanosciences and Molecular Medicine   



Chapter 5

350Bernkop-Schnurch A, Hornof M, Zoidl T. Thiolated polymers-thiomers: synthesis and in vitro evaluation of chitosan-2-iminothiolane conjugates. Int J Pharm., 260: 229-237; 2003. 351 Bernkop-Schnurch A, Kast CE, Guggi D. Review Permeation enhancing polymers in oral delivery of hydrophilic macromolecules: thiomer/GSH systems. J Control Release., 93: 95-103; 2003. 352 Saremi S, Atyabi F, Akhlaghi S P, Ostad S N, Dinarvand R. Thiolated chitosan nanoparticles for enhancing oral absorption of docetaxel: preparation, in vitro and ex vivo evaluation. Int J Nanomedicine., 6: 119-128; 2011. 353 Lee D-W, Shirley S A, Lockey R F, Mohapatra S S. Thiolated chitosan nanoparticles enhance anti-inflammatory effects of intranasally delivered theophylline. Respir Res., 7: 2006.doi:10.1186/1465-9921-7-112. 354 Hayes E R. N, O-carboxymethyl chitosan and preparative method therefore. US patent US 4619995 A. (1986). 355 Chen S C, Wu Y C, Mi F L, Lin YH, Yu L C, Sung H W. A novel pH sensitive hydrogel composed of N, O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. J Control Release., 96: 285-300; 2004. 356 Margit D H, Constantia E K, Bernkop-Schnurch A. In vitro evaluation of the viscoelastic properties of chitosan-thioglycolic acid conjugates. Eur J Pharm Biopharm., 55: 185-190; 2003. 357 Bernkop-Schnurch A, Schwarz V, Steininger S. Polymers with thiol groups: a new generation of mucoadhesive polymers. Pharm. Res., 16: 876-881; 1999. 358 Matsuhiro B, Presle L C, Saenz C, Urzua C C. Structural determination and chemical modifications of the polysaccharide from seeds of Prosopis chilensis Mol. (Stuntz). J. Chil. Chem. Soc., 51:813; 2006. 359 Devika R B, Varsha B P. Studies on effect of pH on cross-linking of chitosan with sodium tripolyphosphate: a technical note. AAPS Pharm Sci Tech., 7: E138E143; 2006.

153     Amrita Centre for Nanosciences and Molecular Medicine   



Chapter 5

360 Gan Q, Wang T, Cochrane C, McCarron P. Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery. Colloids Surf B., 44: 65-73; 2005. 361 Harboe M. A method for determination of hemoglobin in plasma by nearultraviolet spectrophotometry. Scand J Clin Lab Invest., 11:66-70; 1959. 362 Rao S B, Sharma C P. Use of chitosan as a biomaterial: studies on its safety and hemostatic potential. J. Biomed. Mater. Res., 34: 21-28; 1997. 363 Morris V B, Sharma C P. Folate mediated in vitro targeting of depolymerised trimethylated chitosan having arginine functionality. J Colloid Interface Sci., 348: 360-368; 2010. 364 Dobrovolskaia M A, Clogston J D, Neun B W, Hall J B, Patri A K, McNeil S E. Method for analysis of nanoparticle hemolytic properties in vitro. Nano Lett., 8: 2180-2187; 2008. 365 Hall J B, Dobrovolskaia M A, Patri A K, McNeil S E. Characterization of nanoparticles for therapeutics. Nanomedicine., 2: 789-803; 2007. 366 Harris SM, Jaweria T, Hamid AM, Rabia IY. Evaluation of drug release kinetics from ibuprofen matrix tablets using HPMC. Pak J Pharm Sci., 19:119-124; 2006. 367 Wan CP, Letchford K, Jackson JK, Burt HM. The combined use of paclitaxelloaded nanoparticles with a low-molecular-weight copolymer inhibitor of Pglycoprotein to overcome drug resistance. Int J Nanomedicine., 8: 379-391; 2013. 368Wang T, Kievit FM, Veiseh O, Arami H, Stephen ZR, Fang C, Liu Y, Ellenbogen RG, Zhang M. Targeted cell uptake of a non internalizing antibody through conjugation to iron oxide nanoparticles in primary central nervous system lymphoma. World Neurosurg., 80:134-141; 2013. 369 Chou TC, Talalay P: Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul., 22: 27-55;1984. 370 Chou TC, Motzer RJ, Tong Y, Bosl GJ: Computerized quantitation of synergism and antagonism of Taxol, topotecan and cisplatin against human teratocarcinoma

154     Amrita Centre for Nanosciences and Molecular Medicine   



Chapter 5

cell growth: a rational approach to clinical protocol design. J Natl Cancer Inst., 86: 1517-1524; 1994. 371 Reers M, Smith T W, Chen L B. J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential. Biochemistry., 30: 4480-4486; 1991. 372 Jung M, Berger G, Pohlen U, Pauser S, Reszka R, Buhr H J. Simultaneous determination of 5-fluorouracil and its active metabolites in serum and tissue by high-performance liquid chromatography. J Chromatogr B Biomed Sci App., 702: 193-202; 1997. 373 Choi S J, Oh J M, Choy J H. Biocompatible nanoparticles intercalated with anticancer drug for target delivery: pharmacokinetic and biodistribution study. J Nanosci. Nanotechnol., 10: 2913-2916; 2010. 374 Ma Z, Shayeganpour A, Brocks D R, Lavasanifar A, Samuel J. Highperformance liquid chromatography analysis of curcumin in rat plasma: application to pharmacokinetics of polymeric micellar formulation of curcumin, Biomed Chromatogr., 21: 546-552; 2007. 375 Zhang Y, Huo M, Zhou J, Xie S. PKSolver: an add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput Methods Programs Biomed., 99: 306-314; 2010. 376 Manjunath K, Venkateswarlu V. Pharmacokinetics, tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration. J Control Release., 107: 215-228; 2005. 377 Alexiou C, Arnold W, Hulin P, Klein R J, Renz H, Parak F G, Bergemann C, Lubbe A S. Magnetic mitoxantrone nanoparticle detection by histology, X-ray and MRI after magnetic tumor targeting. J. Magn. Magn. Mater., 225:187-193; 2001. 378 Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosanbased micro- and nanoparticles in drug delivery. J Control Release., 100: 5-28; 2004.

155     Amrita Centre for Nanosciences and Molecular Medicine   



Chapter 5

379 Gutierrez F M, Thi E P,Silverman JM, de Oliveira C C, Svensson S L, Hoek A V, Sanchez E M, Reiner N E, Gaynor E C, Pryzdial E LG, Conway E M, Orrantia E, Ruiz F, Av-Gay Y, Bach H. Antibacterial activity, inflammatory response, coagulation and cytotoxicity effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med., 8: 328-336; 2012. 380 Koziara J M, Oh J J, Akers W S, Ferraris S P, Mumper R J. Blood compatibility of cetyl alcohol/polysorbate-based nanoparticles. Pharm Res., 22: 1821-1828; 2005. 381 Lee D-W, Powers K, Baney R. Physicochemical properties and blood compatibility of acylated chitosan nanoparticles. Carbohydr Polym., 58:371-377; 2004. 382 Huang P, Li Z, Hu H, Cui D. Synthesis and characterization of bovine serum albumin-conjugated copper sulfide nanocomposites. Hindawi Publishing Corporation J. Nanomaterials. doi:10.1155/2010/641545 (2010). 383 Nagarwal R C, Singh P N, Kant S, Maiti P, Pandit J K. Chitosan nanoparticles of 5-fluorouracil for ophthalmic delivery: characterization, in-vitro and in-vivo study. Chem Pharm Bull., 59: 272-278; 2011. 384 Ha P T, Le M H, Hoang T M N,Thu T, Le H, Duong T Q, Tran T H H, Tran D L, Nguyen X P. Preparation and anti-cancer activity of polymer-encapsulated curcumin nanoparticles. Adv. Nat. Sci. Nanosci. Nanotechnol., 3: 035002; 2012. 385 Yallapu M M, Jaggi M, Chauhan S C. Beta-cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells. Coll. Surf. B., 79:113-125; 2010. 386 Lin FH, Lee YH, Jian CH, Wong JM, Shieh MJ, Wang CY. A study of purified montmorillonite intercalated with 5-fluorouracil as drug carrier. Biomaterials., 23:1981-1987; 2002. 387 Kean T, Thanou M. Biodegradation, biodistribution and toxicity of chitosan. Adv. Drug. Deliv. Rev., 62: 3-11; 2010.

156     Amrita Centre for Nanosciences and Molecular Medicine   



Chapter 5

388 Aranaz I, Mengíbar M, Harris R, Panos I, Miralles B, Acosta N, Galed G, Heras A.  Functional characterization of chitin and chitosan. Curr.Chem.Biol.,  3: 203-230; 2009. 389Gillies E R, Frechet J M J. pH-Responsive copolymer assemblies for controlled release of doxorubicin. Bioconjugate Chem., 16: 361-368; 2005. 390 Zhang H, Mardyani S, Chan W C W, Kumacheva E. Design of biocompatible chitosan microgels for targeted pH-mediated intracellular release of cancer therapeutics. Biomacromolecules., 7: 1568-1572; 2006. 391 Li XM, Xu YL, Chen G G,Wei P, Ping Q N. PLGA Nanoparticles for the oral delivery of 5-fluorouracil using high pressure homogenization-emulsification as the preparation method and in vitro/in vivo studies. 34: 107-115; 2008. 392Cheng M R, Li Q, Wan T, He B, Han J,Chen H-X, Yang F-X, Wang W, Xu H-Z, Ye T, Zha B-B. Galactosylated chitosan/5-fluorouracil nanoparticles inhibit mouse hepatic cancer growth and its side effects. World J Gastroenterol.,18: 6076-6087; 2012. 393 Wilson B, Ambika T V, Patel R DK, Jenita J L, Priyadarshini S R B. Nanoparticles based on albumin: preparation, characterization and the use for 5flurouracil delivery. Int. J. Biol. Macromol., 51: 874-878; 2012. 394 Lai L F, Guo H X. Preparation of new 5-fluorouracil-loaded zein nanoparticles for liver targeting. Int. J. Pharm., 404: 317-323; 2011. 395 Zhang C, Li G,Wang Y, Cui F, Zhang J, Huang Q. Preparation and characterization of 5-fluorouracil-loaded PLLA-PEG/PEG nanoparticles by a novel supercritical CO2 technique. Int J Pharm., 439: 272-281; 2012. 396 Zhang T, Li G, Guo L,Chen H. Synthesis of thermo-sensitive CS-gPNIPAM/CMC complex nanoparticles for controlled release of 5-FU. Int. J. Biol. Macromol., 51:1109-1115; 2012. 397 Yu B, Zhang Y, Zheng W, Fan C, Chen T. Positive surface charge enhances selective cellular uptake and anticancer efficacy of selenium nanoparticles. Inorg Chem., 51: 8956-8963; 2012.

157     Amrita Centre for Nanosciences and Molecular Medicine   



Chapter 5

398 Wang J-B, Qi L-L, Zheng S-D, Wu T-X. Curcumin induces apoptosis through the mitochondria-mediated apoptotic pathway in HT-29 cells. J Zhejiang Univ Sci B., 10: 93-102; 2009. 399 Wang X. The expanding role of mitochondria in apoptosis. Genes Dev., 15: 2922-2933; 2001. 400 Rashmi R, Santhosh K T R, Karunagaran D. Human colon cancer cells differ in their sensitivity to curcumin-induced apoptosis and heat shock protects them by inhibiting the release of apoptosis-inducing factor and caspases. FEBS Lett., 538:19-24;2003. 401 Cao J, Liu Y, Jia L, Zhou H M, Kong Y, Yang G, Jiang L P, Li Q J, Zhong LF. Curcumin induces apoptosis through mitochondrial hyperpolarization and mtDNA damage in human hepatoma G2 cells. Free Radic. Biol. Med., 43:968975; 2007. 402 Sakoff JA, Ackland SP.Thymidylate synthase inhibition induces S-phase arrest, biphasic mitochondrial alterations and caspase-dependent apoptosis in leukaemia cells. Cancer Chemother Pharmacol., 46: 477-487; 2000. 403 Agarwal M L, Taylor W R, Chernov M V, Chernova O B, Stark G R. The p53 network. J Biol Chem., 273:1-4; 1998. 404 Yan D, Chen C, Gu J, Qin J. Nanoparticles of 5-fluorouracil (5-FU) loaded Nsuccinyl-chitosan






characterization- in vitro drug release and antitumour activity. J. Pharm. Pharmacol., 58:1177-1186; 2006. 405 Hitzman CJ, Wattenberg LW, Wiedmann TS.  Pharmacokinetics of 5-fluorouracil in the hamster following inhalation delivery of lipid-coated nanoparticles. J Pharm Sci., 95:1196-1211; 2006. 406 Thomas AM, Kapanen A I, Hare J I, Ramsay E, Edwards K, Karlsson G, Bally MB. Development of a liposomal nanoparticle formulation of 5-fluorouracil for parenteral administration: formulation design, pharmacokinetics and efficacy. J Control Release., 150: 212-219; 2011.

158     Amrita Centre for Nanosciences and Molecular Medicine   



Chapter 5

407 Yan C, Gu J, Guo Y, Chen D. In vivo biodistribution for tumor targeting of 5fluorouracil (5-FU) loaded N-succinyl-chitosan (Suc-Chi) nanoparticles. The Pharm Soc Japan., 130: 801-804; 2010. 408 Schmidt S, Gonzalez D, Derendorf H. Significance of protein binding in pharmacokinetics and pharmacodynamics. J. Pharm. Sci. 99, 1107-1122; 2010 409 Ho D H, Townsend L, Luna M A, Bodey G P. Distribution and inhibition of dihydrouracil dehydrogenase activities in human tissues using 5-fluorouracil as a substrate. Anticancer Res., 6:781-784; 1986. 410 411 Moghimi S M, Hunter A C, Murray J C. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev., 53: 283-318; 2001. 412 Mastrobattista, E., Koning, G.A., Storm, G., 1999. Immunoliposomes for the targeted delivery of antitumor drugs. Adv. Drug Deliv. Rev., 40: 103–127; 1999. 413 Park, T.G., 1995. Degradation of poly (lactic-co-glycolic acid) microspheres: effect of copolymer composition. Biomaterials., 16: 1123-1130; 1995. 414 Narayanan S, Pavithran M, Viswanath A, Narayanan D, Mohan CC, Manzoor K, Menon D. Sequentially releasing dual-drug-loaded PLGA-casein core/shell nanomedicine: Design, synthesis, biocompatibility and pharmacokinetics. Acta Biomater., 10: 2112-2124; 2014. 415 Zhang Y, Bai Y, Jia J, Gao N, Li Y, Zhang R,Jiang G,Yan B. Perturbation of physiological systems by nanoparticles. Chem. Soc. Rev., 43: 3762-3809; 2014. 416 Cheng L, Jin C, Lv W, Ding Q, Han X. Developing a highly stable PLGA-mPEG nanoparticle loaded with cisplatin for chemotherapy of ovarian cancer. PloS one., 6: e25433; 2011. doi:10.1371/journal.pone.0025433. 417 Lim AYL, Segarra I, Srikumar Chakravarthi S, Akram S, John P Judson J P. Histopathology and biochemistry analysis of the interaction between sunitinib and paracetamol in mice. BMC Pharmacology., 2010, 10:14.

159     Amrita Centre for Nanosciences and Molecular Medicine   



Chapter 5

418 Diab K A E, Elmakawy A I, Abd-Elmoneim O M, Sharaf H A. Assessment of genotoxicity and histopathological changes induced by polyethylene glycol (PEG 6000) in male mice. J Cytol Histol., 3: 1000153; 2012. 419 Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems - a review (part 1). Trop J Pharm Res., 12: 255-264; 2013. 420 Ran S, Downes A, Thorpe PE. Increased exposure of anionic phospholipids on the surface of tumor blood vessels. Cancer Res., 62: 6132-6140; 2002. 421 Yang R, Han X, Shia, X, Cheng G, Shim Ch, Cui F. Cationic formulation of paclitaxel-loaded poly D,L-lactic-co-glycolic acid (PLGA) nanoparticles using an emulsion-solvent diffusion method. Asian J. Pharmaceut. Sci., 4: 89-95; 2009. 422 Reddy Y D, Dhachinamoorthi D, Sekhar K B C. Formulation and in vitro evaluation of antineoplastic drug loaded nanoparticles as drug delivery system. Afr J Pharm. Pharmacol., 7: 1592-1604; 2013. 423Ehrig K, Kilinc M O, Chen N G, Stritzker J, Buckel L, Zhang Q, Szalay A A. Growth inhibition of different human colorectal cancer xenografts after a single intravenous injection of oncolytic vaccinia virus GLV-1h68. J Transl Med., 11:79; 2013. 424 Guo J, Zhou A-W, Fu Y-C, Verma U-N, Tripathy D, Frenkel E P, Becerra C R. Efficacy of sequential treatment of HCT116 colon cancer monolayers and xenografts with docetaxel, flavopiridol, and 5-fluorouracil. Acta Pharm Sinic., 27 :1375-1381; 2006. 425 Bokacheva L, Kotedia K, Reese M, Ricketts S-A, Halliday J, Le1 C. H, Koutcher J A, Carlin S. Response of HT29 colorectal xenograft model to cediranib assessed with 18F-FMISO PET, dynamic contrast-enhanced and diffusion-weighted MRI. NMR Biomed., 26: 151-163; 2013. 426 Fanciullino R, Giacometti S, Mercier C, Aubert C, Blanquicett C, Piccerelle P, Ciccolini J. In vitro and in vivo reversal of resistance to 5-fluorouracil in colorectal cancer cells with a novel stealth double-liposomal formulation. Brit J Cancer., 97: 919- 926;2007.

160     Amrita Centre for Nanosciences and Molecular Medicine   



Chapter 5

427 Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A, Bets D, Mueser M, Harstrick A, Verslype C, et al.: Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med., 351 :337-345; 2004. 428 Folprecht G, Lutz MP, Schoffski P, Seufferlein T, Nolting A, Pollert P, Kohne CH: Cetuximab and irinotecan/5-fluorouracil/folinic acid is a safe combination for the first-line treatment of patients with epidermal growth factor receptor expressing metastatic colorectal carcinoma. Ann Oncol., 17: 450-456; 2006. 429 Saltz LB, Meropol NJ, Loehrer PJ Sr, Needle MN, Kopit J, Mayer R J.Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. 430 Alyssa M Master, Anirban Sen Gupta. EGF receptor-targeted nanocarriers for enhanced cancer treatment. Nanomedicine.,7:1895-1906; 2012. 431 Lee J J, Chu E. Sequencing of antiangiogenic agents in the treatment of metastatic colorectal cancer. Clin Colorectal Canc., 2014: Article In Press.

161     Amrita Centre for Nanosciences and Molecular Medicine