CHAPTER 3 Exponential and Logarithmic Functions

C H A P T E R 3 Exponential and Logarithmic Functions Section 3.1 Exponential Functions and Their Graphs . . . . . . . . . 265 Section 3.2 Logarith...
Author: Lindsey Hopkins
76 downloads 1 Views 3MB Size
C H A P T E R 3 Exponential and Logarithmic Functions Section 3.1

Exponential Functions and Their Graphs . . . . . . . . . 265

Section 3.2

Logarithmic Functions and Their Graphs

Section 3.3

Properties of Logarithms . . . . . . . . . . . . . . . . . 281

Section 3.4

Exponential and Logarithmic Equations . . . . . . . . . 289

Section 3.5

Exponential and Logarithmic Models

Review Exercises

. . . . . . . . 273

. . . . . . . . . . 303

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 Practice Test

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

C H A P T E R 3 Exponential and Logarithmic Functions Section 3.1

Exponential Functions and Their Graphs



You should know that a function of the form f x  a x, where a > 0, a  1, is called an exponential function with base a.



You should be able to graph exponential functions.



You should know formulas for compound interest.



(a) For n compoundings per year: A  P 1 

r n

. nt

(b) For continuous compoundings: A  Pert.

Vocabulary Check 1. algebraic



4. A  P 1 

2. transcendental r n



nt

3. natural exponential; natural

5. A  Pert

1. f 5.6  3.45.6  946.852

2. f x  2.3x  2.332  3.488

3. f    5  0.006

4. f x  23   23 

5. gx  50002x  500021.5

6. f x  2001.212x

5x

50.3

 0.544

 2001.212  24

 1767.767

 1.274  1025 7. f x  2x

9. f x  2x

8. f x  2x  1 rises to the right.

Increasing

Asymptote: y  1

Decreasing

Asymptote: y  0

Intercept: 0, 2

Asymptote: y  0

Intercept: 0, 1

Matches graph (c).

Intercept: 0, 1 Matches graph (a).

Matches graph (d). 10. f x  2x2 rises to the right. Asymptote: y  0 1 Intercept: 0, 4 

Matches graph (b).

11. f x  12 

x

y 5

x

2

1

0

1

2

f x

4

2

1

0.5

0.25

4 3 2

Asymptote: y  0

1 −3

−2

x

−1

1

2

3

−1

265

266

Chapter 3

12. f x  12 

x

Exponential and Logarithmic Functions 13. f x  6x

 2x

x

2

1

0

1

2

x

2

1

0

1

2

f x

0.25

0.5

1

2

4

f x

36

6

1

0.167

0.028

Asymptote: y  0

Asymptote: y  0

y

y 5

5

4

4

3

3

2 1 −3

−2

−1

x 1

2

−3

3

−2

−1

−1

x 1

2

3

−1

15. f x  2x1

14. f x  6x x

2

1

0

1

2

x

2

1

0

1

2

f x

0.028

0.167

1

6

36

f x

0.125

0.25

0.5

1

2

Asymptote: y  0

Asymptote: y  0 y

y

5

5

4

4

3

3

2

2

1 −3

−2

−1

1 x 1

2

−3

3

−2

x

−1

1

2

3

−1

−1

16. f x  4x3  3

y 7

x

1

0

1

2

3

f x

3.004

3.016

3.063

3.25

4

6 5 4

Asymptote: y  3

2 1 −3 −2 −1

17. f x  3x, gx  3x4 Because gx  f x  4, the graph of g can be obtained by shifting the graph of f four units to the right. 19. f x  2x, gx  5  2x Because gx  5  f x, the graph of g can be obtained by shifting the graph of f five units upward.

x 1

2

3

4

5

18. f x  4x, gx  4x  1 Because gx  f x  1, the graph of g can be obtained by shifting the graph of f one unit upward. 20. f x  10x, gx  10x3 Because gx  f x  3, the graph of g can be obtained by reflecting the graph of f in the y-axis and shifting f three units to the right. (Note: This is equivalent to shifting f three units to the left and then reflecting the graph in the y-axis.)

Section 3.1 21. f x  72  , gx   72 

x6

x

gx  f x  5, hence the graph of g can be obtained by reflecting the graph of f in the x-axis and shifting the resulting graph five units upward.

24. y  3x

2

25. f x  3x2  1

3

3

26. y  4x1  2 3

4

−6 −3

267

22. f x  0.3x, gx  0.3x  5

Because gx  f x  6, the graph of g can be obtained by reflecting the graph of f in the x-axis and y-axis and shifting f six units to the right. (Note: This is equivalent to shifting f six units to the left and then reflecting the graph in the x-axis and y-axis.) 23. y  2x

Exponential Functions and Their Graphs

−3

3

3

3 −1

−1

−1

5

−3

0

3 27. f 4   e34  0.472

28. f x  ex  e3.2  24.533

29. f 10  2e510  3.857  1022

30. f x  1.5e12x

31. f 6  5000e0.066  7166.647

32. f x  250e0.05x  250e0.0520  679.570

 1.5e120  1.956  1052 33. f x  e x

34. f x  ex

x

2

1

0

1

2

x

2

1

0

1

2

f x

0.135

0.368

1

2.718

7.389

f x

7.389

2.718

1

0.368

0.135

Asymptote: y  0

Asymptote: y  0

y

y

5

5

4

4

3

3

2

2

1 −3

−2

1 x

−1

1

2

−3

3

−1

−2

−1

x 1

2

3

−1

36. f x  2e0.5x

35. f x  3e x4 x

8

7

6

5

4

x

2

1

0

1

2

f x

0.055

0.149

0.406

1.104

3

f x

5.437

3.297

2

1.213

0.736

Asymptote: y  0

Asymptote: y  0

y

y 8

6

7

5

6 5

4

4

3

3

2

2

1

1 − 8 − 7 − 6 − 5 − 4 −3 −2 − 1

x 1

− 3 − 2 −1 −1

x 1

2

3

4

268

Chapter 3

Exponential and Logarithmic Functions

37. f x  2e x2  4

38. f x  2  ex5

x

2

1

0

1

2

x

0

2

4

5

6

f x

4.037

4.100

4.271

4.736

6

f x

2.007

2.050

2.368

3

4.718

Asymptote: y  4

Asymptote: y  2 y

y

−3 −2 −1

9 8 7 6 5

8

3 2 1

3

7 6 5 4

1 x

−1

1 2 3 4 5 6 7

3

4

5

6

7

41. st  2e0.12t 22

−4

−7

8

5 −10

−2

−1

42. st  3e0.2t

44. hx  ex2 4

4

− 16

17

−3

−2

−2

3

46.

3x1  33

4 0

0

3x1  27

23 0

43. gx  1  ex

20

2x3  16

47.

2x3  24

1 2x2  32

2x2  25

x13

x34

x  2  5

x2

x7

x  3

15 x1  125 15 x1  53 15 x1  15 3

49.

e3x2  e3

50.

2x  1  4

3x  1

2x  5

1 3

x  52

x  4 ex

2 3

 e2x

x 2  3  2x

52.

ex

2 6

 e5x

x 2  6  5x

x 2  2x  3  0

x 2  5x  6  0

x  3x  1  0

x  3x  2  0

x  3 or x  1

e2x1  e4

3x  2  3 x

x  1  3

51.

8

6

7

48.

2

40. y  1.085x

39. y  1.085x

45.

x 1

x  3 or x  2

Section 3.1

Exponential Functions and Their Graphs

53. P  $2500, r  2.5%, t  10 years



Compounded n times per year: A  P 1 

r n



nt



 2500 1 

0.025 n



10n

Compounded continuously: A  Pert  2500e0.02510 n

1

2

4

12

365

Continuous Compounding

A

$3200.21

$3205.09

$3207.57

$3209.23

$3210.04

$3210.06

54. P  $1000, r  4%, t  10 years



Compounded n times per year: A  1000 1 

0.04 n



10n

Compounded continuously: A  1000e0.0410

n

1

2

4

12

365

Continuous Compounding

A

$1480.24

$1485.95

$1488.86

$1490.83

$1491.79

$1491.82

55. P  $2500, r  3%, t  20 years



Compounded n times per year: A  P 1 

r n



nt



 2500 1 

0.03 n



20n

Compounded continuously: A  Pert  2500e0.0320 n

1

2

4

12

365

Continuous Compounding

A

$4515.28

$4535.05

$4545.11

$4551.89

$4555.18

$4555.30

56. P  $1000, r  6%, t  40 years



Compounded n times per year: A  1000 1 

0.06 n



40n

Compounded continuously: A  1000e0.0640

n

1

2

4

12

365

Continuous Compounding

A

$10,285.72

$10,640.89

$10,828.46

$10,957.45

$11,021.00

$11,023.18

57. A  Pert  12,000e0.04t t

10

20

30

40

50

A

$17,901.90

$26,706.49

$39,841.40

$59,436.39

$88,668.67

58. A  Pert  12,000e0.06t t

10

20

30

40

50

A

$21,865.43

$39,841.40

$72,595.77

$132,278.12

$241,026.44

269

270

Chapter 3

Exponential and Logarithmic Functions

59. A  Pert  12,000e0.065t t

10

20

30

40

50

A

$22,986.49

$44,031.56

$84,344.25

$161,564.86

$309,484.08

60. A  Pert  12,000e0.035t t

10

20

30

40

50

A

$17,028.81

$24,165.03

$34,291.81

$48,662.40

$69,055.23

61. A  25,000e0.087525

62. A  5000e0.07550

 $222,822.57



64. p  5000 1  (a)

63. C10  23.951.0410  $35.45

 $212,605.41

4 4  e0.002x



65. Vt  100e4.6052t (a) V1  10,000.298 computers

1200

(b) V1.5  10,004.472 computers (c) V2  1,000,059.63 computers 0

2000 0

(b) When x  500:



p  5000 1 



4  $421.12 4  e0.002500

(c) Since 600, 350.13 is on the graph in part (a), it appears that the greatest price that will still yield a demand of at least 600 units is about $350. 67. Q  2512 

t1599

66. (a) P  152.26e0.0039t

(a) Q0  25 grams

Since the growth rate is negative, 0.0039  0.39%, the population is decreasing.

(b) Q1000  16.21 grams

(b) In 1998, t  8 and the population is given by P8  152.26e0.00398  147.58 million.

(c)

30

In 2000, t  10 and the population is given by P10  152.26e0.003910  146.44 million. 0

(c) In 2010, t  20 and the population is given by P20  152.26e0.003920  140.84 million. t5715

(a) When t  0: Q  1012 

05715

 101  10 grams (b) When t  2000: Q  102 

1 20005715

 7.85 grams

(c)

Q

Mass of 14C (in grams)

68. Q  1012 

5000 0

12 10 8 6 4 2 t 4000

8000

Time (in years)

Exponential Functions and Their Graphs

x

Sample Data

Model

0

12

12.5

25

44

44.5

50

81

81.82

75

96

96.19

100

99

99.3

271

100 1  7e0.069x

69. y  (a)

Section 3.1

(b)

110

0

120 0

70. (a)

y (d)

100  63.14%. 1  7e0.06936

2 100 100  when 3 1  7e0.069x x  38 masses.

(b) p  107,428e0.150h

P

Atmospheric pressure (in pascals)

(c) When x  36:

120,000

 107,428e0.1508

100,000

 32,357 pascals

80,000 60,000 40,000 20,000 h 5

10

15

20

25

Altitude (in km)

271,801 99,990 .

71. True. The line y  2 is a horizontal asymptote for the graph of f x  10x  2.

72. False, e 

73. f x  3x2

74. gx  22x6  22x  26

 3x32 1

 6422x

2

 6422x

3 

 3x

1  3x 9

 644x  hx

 hx Thus, f x  gx, but f x  hx. 75. f x  164x

e is an irrational number.

and

f x  164x

Thus, gx  hx but gx  f x.

76. f x  5x  3

 5x

 424x

 1622x

gx  53x  53

 42x

 1622x

hx  5x3   5x  53

 hx

Thus, none are equal.

2x

 14   4 

1 x2

 gx Thus, f x  gx  hx.

272

Chapter 3

Exponential and Logarithmic Functions

77. y  3x and y  4x y 3

y = 3x

y = 4x

x

2

1

0

1

2

3x

1 9

1 3

1

3

9

4x

1 16

1 4

1

4

16

2 1

−2

x

−1

1

(a) 4x < 3x when x < 0.

2

−1

(b) 4x > 3x when x > 0. (b) gx  x23x

78. (a) f x  x2ex

6

5

−2

−2

7

10 −2

−1

Decreasing:  , 0, 2, 

Decreasing: 1.44, 

Increasing: 0, 2

Increasing:  , 1.44

Relative maximum: 2, 4e2

Relative maximum: 1.44, 4.25

Relative minimum: 0, 0



79. f x  1 

0.5 x

 and gx  e x

0.5

80. The functions (c) 3x and (d) 2x are exponential.

(Horizontal line)

4

f g −3

3 0

As x → , f x → gx. As x →  , f x → gx.



81. x2  y2  25 y2

82. x  y  2

 25 

y  x  2 and y   x  2, x ≥ 2

y  ± 25  x2

83. f x 

2 9x

y 12

Vertical asymptote: x  9

9 6

Horizontal asymptote: y  0 x

11

10

f x

1

2



x2 y

x2

3

8

7

2

1

−18 − 15

−6 −3 −3 −6 −9

x 3

Section 3.2 84. f x  7  x

y

Domain:  , 7

Logarithmic Functions and Their Graphs

85. Answers will vary.

6 4

x

9

2

3

6

7

y

4

3

2

1

0

2 −4

−2

x 2

4

6

8

−2 −4 −6

Section 3.2

Logarithmic Functions and Their Graphs



You should know that a function of the form y  loga x, where a > 0, a  1, and x > 0, is called a logarithm of x to base a.



You should be able to convert from logarithmic form to exponential form and vice versa. y  loga x ⇔ ay  x



You should know the following properties of logarithms. (a) loga 1  0 since a0  1. (b) loga a  1 since a1  a. (c) loga ax  x since ax  ax . (d) aloga x  x Inverse Property (e) If loga x  loga y, then x  y.



You should know the definition of the natural logarithmic function. loge x  ln x, x > 0



You should know the properties of the natural logarithmic function. (a) ln 1  0 since e0  1. (b) ln e  1 since e1  e. (c) ln ex  x since ex  ex . (d) eln x  x

Inverse Property

(e) If ln x  ln y, then x  y. ■

You should be able to graph logarithmic functions.

Vocabulary Check 1. logarithmic

2. 10

4. aloga x  x

5. x  y

3. natural; e

1. log4 64  3 ⇒ 43  64

2. log3 81  4 ⇒ 34  81

1 3. log7 49  2 ⇒ 72  491

1 1 4. log 1000  3 ⇒ 103  1000

2 5. log32 4  5 ⇒ 3225  4

6. log16 8  34 ⇒ 1634  8

1 7. log36 6  2 ⇒ 36 12  6

8. log8 4  23 ⇒ 823  4

9. 53  125 ⇒ log5 125  3

10. 82  64 ⇒ log8 64  2

1 11. 8114  3 ⇒ log81 3  4

3 12. 932  27 ⇒ log9 27  2

273

274

Chapter 3

Exponential and Logarithmic Functions

1 1 13. 62  36 ⇒ log6 36  2

1 1 14. 43  64 ⇒ log4 64  3

15. 70  1 ⇒ log7 1  0

16. 103  0.001 ⇒ log10 0.001  3

17. f x  log2 x

18. f x  log16 x f 4  log16 4  12 since 1612  4

f 16  log2 16  4 since 24  16 19. f x  log7 x

20. f x  log x

f 1  log7 1  0 since 70  1

21. gx  loga x

f 10  log 10  1 since 101  10

ga2  loga a2  2 by the Inverse Property

22. gx  logb x g

b3

  logb

23. f x  log x b3

f

 3 since

4 5

24. f x  log x

  log   0.097

1 f 500   log 5001  2.699

4 5

b3  b3 f x  log x

25.

26. f x  log x

f 12.5  1.097

27. log3 34  4 since 34  34

f 75.25  1.877 29. log   1 since 1  .

28. log1.5 1

30. 9log9 15

Since 1.50  1, log1.5 1  0.

Since aloga x  x, 9log9 15  15.

31. f x  log4 x

32. gx  log6 x

y

Domain: x > 0 ⇒ The domain is 0, .

Domain: 0, 

2

x-intercept: 1, 0

x-intercept: 1, 0

1

y

Vertical asymptote: x  0

2

y  log4 x ⇒ 4 y  x

1

Vertical asymptote: x  0 y  log6 x ⇒ 6 y  x

1 4

1

4

2

f x

1

0

1

1 2

−1

1

2

3

−1 −2

33. y  log3 x  2 4

x 2 −2

2  log3 x

−4

32  x

−2

x

1 6

1

6

6

y

1

0

1 2

1

The domain is 3, .

2

log3 x  2  0

4

6

8

10

12

y

x-intercept:

6

log4x  3  0

4 2

40  x  3

−6

9x The x-intercept is 9, 0.

x 2

1x3

−2

4x

−4

4

Vertical asymptote: x  0

The x-intercept is 4, 0.

y  log3 x  2

Vertical asymptote: x  3  0 ⇒ x  3

log3 x  2  y ⇒

32y

x

3

Domain: x  3 > 0 ⇒ x > 3

6

x-intercept:

2

34. hx  log4x  3

y

Domain: 0, 

1 −1

x

x

x

−1

y  log4x  3 ⇒ 4 y  3  x

x

27

9

3

1

1 3

x

34

1

4

7

19

y

1

0

1

2

3

y

1

0

1

2

6

8

10

Section 3.2 35. f x  log6x  2

Logarithmic Functions and Their Graphs

36. y  log5x  1  4

Domain: x  2 > 0 ⇒ x > 2

Domain: x  1 > 0 ⇒ x > 1

The domain is 2, .

The domain is 1, .

y

x-intercept: 0  log6x  2

4

x-intercept:

2

log5x  1  4  0

0  log6x  2

6 −2

1x2

−4

The x-intercept is 1, 0.

1

0

1

37. y  log

135 36 2

5

Domain:

x

x > 0 ⇒ x > 0 5

x-intercept:

x1

626 625

x

1 x 2

3

4

x

1.00032

1.0016

1.008

1.04

1.2

y

1

0

1

2

3

1

2

3

4

5

6

7

y

0.70

0.40

0.22

0.10

0

0.08

0.15

y 4

5  0 x

2 x 4

x  100 5

6

8

−2

x 1 ⇒ x5 5

−4

The x-intercept is 5, 0. Vertical asymptote:

1 625

x

The domain is 0, .

log

2

y  log5x  1  4 ⇒ 5y4  1  x

6y  2  x

f x

3

Vertical asymptote: x  1  0 ⇒ x  1

y  log6x  2

1

4

626

y  log6x  2

4

5

The x-intercept is 625, 0.

Vertical asymptote: x  2  0 ⇒ x  2

x

6

54  x  1

1  x

156

y

log5x  1  4

x

60  x  2



275

x 0 ⇒ x0 5

The vertical asymptote is the y-axis. 38. y  logx Domain: x > 0 ⇒ x < 0 The domain is  , 0.

x

1  100

 10

1

1

10

y

2

1

0

1

x-intercept: logx  0

y

100  x

2

1  x

1

The x-intercept is 1, 0.

−3

−2

x

−1

1

Vertical asymptote: x  0

−1

y  logx ⇒ 10y  x

−2

5

6

276

Chapter 3

Exponential and Logarithmic Functions

39. f x  log3 x  2

40. f x  log3 x

Asymptote: x  0

Asymptote: x  0

Point on graph: 1, 2

Point on graph: 1, 0

Matches graph (c).

Matches graph (f).

The graph of f x is obtained by shifting the graph of gx upward two units.

f x reflects gx in the x-axis.

41. f x  log3x  2

42. f x  log3x  1

Asymptote: x  2

Asymptote: x  1

Point on graph: 1, 0

Point on graph: 2, 0

Matches graph (d).

Matches graph (e).

The graph of f x is obtained by reflecting the graph of gx about the x-axis and shifting the graph two units to the left.

f x shifts gx one unit to the right.

43. f x  log31  x  log3 x  1

44. f x  log3x

Asymptote: x  1

Asymptote: x  0

Point on graph: 0, 0

Point on graph: 1, 0

Matches graph (b).

Matches graph (a).

The graph of f x is obtained by reflecting the graph of gx about the y-axis and shifting the graph one unit to the right.

f x reflects gx in the x-axis then reflects that graph in the y-axis.

45. ln 12  0.693 . . . ⇒ e0.693 . . .  12

46. ln 25  0.916 . . . ⇒ e0.916 . . .  25

47. ln 4  1.386 . . . ⇒ e1.386 . . .  4

48. ln 10  2.302 . . . ⇒ e2.302 . . .  10

49. ln 250  5.521 . . . ⇒ e5.521 . . .  250

50. ln 679  6.520 . . . ⇒ e6.520 .

51. ln 1  0 ⇒ e0  1

52. ln e  1 ⇒ e1  e

53. e3  20.0855 . . . ⇒ ln 20.0855 . . .  3

54. e2  7.3890 . . . ⇒ ln 7.3890 . . .  2

55. e12 1.6487 . . . ⇒ ln 1.6487 . . .  12

1 56. e13  1.3956 . . . ⇒ ln 1.3956 . . .  3

57. e0.5  0.6065 . . . ⇒ ln 0.6065 . . .  0.5

58. e4.1  0.0165 . . . ⇒ ln 0.0165 . . .  4.1

59. ex  4 ⇒ ln 4  x

60. e2x  3 ⇒ ln 3  2x

61. f x  ln x

62. f x  3 ln x

f 18.42  ln 18.42  2.913 63. gx  2 ln x g0.75  2 ln 0.75  0.575

f 0.32  3 ln 0.32  3.418 64. gx  ln x g12   ln 12  0.693

. .

 679

Section 3.2 65. gx  ln x

Logarithmic Functions and Their Graphs

66. gx  ln x

ge3  ln e3  3 by the Inverse Property

ge2  ln e2  2

67. gx  ln x

68. gx  ln x

ge23  ln e23 

 23

ge52  ln e52   52

by the Inverse Property

69. f x  lnx  1

70. hx  lnx  1

Domain: x  1 > 0 ⇒ x > 1

Domain: x  1 > 0 ⇒ x > 1

The domain is 1, .

The domain is 1, .

y 3

x-intercept:

2

0  lnx  1

1

e0  x  1

−1

2x

6

lnx  1  0

4

2

3

4

5

−1

2

3

4

f x

0.69

0

0.69

1.10

2

4

8

The x-intercept is 0, 0. Vertical asymptote: x  1  0 ⇒ x  1 y  lnx  1 ⇒ ey  1  x x

0.39

0

1.72

6.39

19.09

y

 12

0

1

2

3

72. f x  ln3  x

71. gx  lnx Domain: x > 0 ⇒ x < 0

Domain: 3  x > 0 ⇒ x < 3

y

The domain is  , 0.

2

The domain is  , 3.

x-intercept:

1

x-intercept:

0  lnx

−3

−2

y 3 2

ln3  x  0

x

−1

1

e0  3  x

e0  x 1  x

−2

−1

13x

−2

The x-intercept is 1, 0.

x 1

−3

The x-intercept is 2, 0.

x

0.5

1

2

3

Vertical asymptote: 3  x  0 ⇒ x  3

gx

0.69

0

0.69

1.10

y  ln3  x ⇒ 3  ey  x

74. f x  logx  1

73. y1  logx  1

x

2.95

2.86

2.63

2

0.28

y

3

2

1

0

1

75. y1  lnx  1 3

2

2

5

2

−1 −2

2x

Vertical asymptote: x  0 ⇒ x  0

−2

6

0x

Vertical asymptote: x  1  0 ⇒ x  1 1.5

x

−2

1x1

−3

x

2

e0  x  1

x 1

y

x-intercept:

−2

The x-intercept is 2, 0.

−1

277

−1

5

−2

0

−3

9

4

278

Chapter 3

Exponential and Logarithmic Functions

76. f x  lnx  2

78. f x  3 ln x  1

77. y  ln x  2 5

3

−4

4

−5

5 0

10

9

−1

−3

−6

80. log2x  3  log2 9

79. log2x  1  log2 4

x39

x14

x  12

x3 81. log2x  1  log 15

82. log5x  3  log 12

2x  1  15

5x  3  12

x7

5x  9 9

x5 83. lnx  2  ln 6

84. lnx  4  ln 2

x26

x42

x4

x6

85. lnx 2  2  ln 23

lnx 2  x  ln 6

86.

x 2  2  23

x2  x  6

x 2  25

x2  x  6  0

x  ±5

x  3x  2  0 x  2 or x  3

87. t  12.542 ln

x  x1000, x > 1000

(a) When x  $1100.65:



88. t  (a)



1100.65 t  12.542 ln  30 years 1100.65  1000 When x  $1254.68: t  12.542 ln

(b) Total amounts: 1100.651230  $396,234.00 (c) Interest charges: 396,234  150,000  $246,234 301,123.20  150,000  $151,123.20 (d) The vertical asymptote is x  1000. The closer the payment is to $1000 per month, the longer the length of the mortgage will be. Also, the monthly payment must be greater than $1000.

K

1

2

4

6

8

10

12

t

0

7.3

14.6

18.9

21.9

24.2

26.2

The number of years required to multiply the original investment by K increases with K. However, the larger the value of K, the fewer the years required to increase the value of the investment by an additional multiple of the original investment.

1254.68  20 years 1254.68  1000 

1254.681220  $301,123.20

ln K 0.095

(b)

t 25 20 15 10 5 K 2

4

6

8

10

12

Section 3.2

89. f t  80  17 logt  1, 0 ≤ t ≤ 12 (a)

Logarithmic Functions and Their Graphs

90.   10 log

10I  12

100

(a)   10 log

0

101   10 log10

(b)   10 log

12

279

0

  120 decibels

12

12 2

1010   10 log10

  100 decibels

10

12

(c) No, the difference is due to the logarithmic relationship between intensity and number of decibels.

(b) f 0  80  17 log 1  80.0 (c) f 4  80  17 log 5  68.1 (d) f 10  80  17 log 11  62.3 91. False. Reflecting gx about the line y  x will determine the graph of f x. 93. f x  3x, gx  log3 x

94. f x  5x, gx  log5 x

95 . f x  ex, gx  ln x

y

y 2

y

2

f

2

f

1

−2

92. True, log3 27  3 ⇒ 33  27.

g

1

g x

−1

f

1

1

−2

2

−1

1

−2

2

−1

−2

−2

−2

f and g are inverses. Their graphs are reflected about the line y  x.

40

g

The natural log function grows at a slower rate than the square root function.

2

f 1

f 0

x 1

4 x (b) f x  ln x, gx  

2

−1

15

g

The natural log function grows at a slower rate than the fourth root function.

−2

f

0

f and g are inverses. Their graphs are reflected about the line y  x.

(a)

1000 0

g −1

20,000 0

ln x x

x

1

5

10

102

104

106

f x

0

0.322

0.230

0.046

0.00092

0.0000138

(b) As x → , f  x  → 0. (c)

0.5

0

100 0

2

f and g are inverses. Their graphs are reflected about the line y  x.

97. (a) f x  ln x, gx  x

y

98. f x 

1

−1

96. f x  10x, gx  log10 x

−2

x

−1

−1

f and g are inverses. Their graphs are reflected about the line y  x.

g

x

280

Chapter 3

Exponential and Logarithmic Functions (b) True. y  loga x

99. (a) False. If y were an exponential function of x, then y  ax, but a1  a, not 0. Because one point is 1, 0, y is not an exponential function of x.

For a  2, y  log2 x. x  1, log2 1  0

(c) True. x  ay

x  2, log2 2  1

For a  2, x  2y.

x  8, log2 8  3

y  0, 20  1

(d) False. If y were a linear function of x, the slope between 1, 0 and 2, 1 and the slope between 2, 1 and 8, 3 would be the same. However,

y  1, 21  2 y  3, 23  8

m1 

10 31 2 1  1 and m2    . 21 82 6 3

Therefore, y is not a linear function of x. 100. y  loga x ⇒ ay  x, so, for example, if a  2, there is no value of y for which 2y  4. If a  1, then every power of a is equal to 1, so x could only be 1. So, loga x is defined only for 0 < a < 1 and a > 1.



101. f x  ln x (a)

102. (a) hx  lnx2  1 (b) Increasing on 1,  Decreasing on 0, 1

4

−1

8

(b) Increasing on 0,  Decreasing on  , 0

8

(c) Relative minimum: 0, 0

(c) Relative minimum: 1, 0

−9

−2

9

−4

For Exercises 103–108, use f x  3x  2 and g x  x3  1. 103.  f  g2  f 2  g2

104. f x  gx  3x  2  x3  1

 32  2  23  1

 3x  2  x3  1

87

 3x  x3  3

 15

Therefore,

 f  g1  31  13  3  3  1  3  1.

105.  fg6  f 6g6  36  2 63  1  20215

106.

f x 3x  2  3 gx x 1 f 3 02 Therefore, 0  3  2. g 0 1



 4300 107.  f g7  f g7

108. g f (x  g f x  g3x  2  3x  23  1

 f 73  1

Therefore,

 f 342

g f 3  3 3  23  1

 3342  2  1028

 73  1  344.

Section 3.3

Section 3.3 ■

Properties of Logarithms

You should know the following properties of logarithms. logb x log10 x ln x loga x  (a) loga x  loga x  log10 a ln a logb a (b) logauv  loga u  loga v (c) loga

 v   log u

a

lnuv  ln u  ln v

u  loga v

ln

(d) loga un  n loga u ■

Properties of Logarithms

 v   ln u  ln v u

ln un  n ln u

You should be able to rewrite logarithmic expressions using these properties.

Vocabulary Check log x ln x  log a ln a

1. change-of-base

2.

3. logauv  loga u  loga v This is the Product Property. Matches (c).

4. ln un  n ln u This is the Power Property. Matches (a).

u  loga u  loga v v This is the Quotient Property. Matches (b).

5. loga

1. (a) log5 x  (b) log5 x 

log x log 5 ln x ln 5

4. (a) log13 x  (b) log13 x 

7. (a) log2.6 x  (b) log2.6 x 

10. log7 4 

log x log13 ln x ln13 log x log 2.6 ln x ln 2.6

2. (a) log3 x  (b) log3 x 

5. (a) logx (b) logx

14. log20 0.125 

16. log3 0.015 

log 0.125 ln 0.125   0.694 log 20 ln 20

log 0.015 ln 0.015   3.823 log 3 ln 3

(b) log15 x 

log310 3  log x 10

6. (a) logx

3 ln310  10 ln x

(b) log7.1 x 

log 5 ln 5  1.161  log14 ln14

3. (a) log15 x 

ln x ln 3

8. (a) log7.1 x 

log 4 ln 4   0.712 log 7 ln 7

12. log14 5 

log x log 3

(b) logx

log x log 7.1

log x log15 ln x ln15

3 log34  4 log x 3 ln34  4 ln x

9. log3 7 

log 7 ln 7   1.771 log 3 ln 3

ln x ln 7.1

11. log12 4 

log 4 ln 4   2.000 log12 ln12

13. log90.4 

log 0.4 ln 0.4   0.417 log 9 ln 9

15. log15 1250 

17. log4 8 

log 1250 ln 1250   2.633 log 15 ln 15

log2 8 log2 23 3   log2 4 log2 22 2

281

282

Chapter 3

Exponential and Logarithmic Functions

18. log242  34  log2 42  log2 34

1 1 19. log5 250  log5125

 12 

 2 log2 4  4 log2 3

1  log5 125  log5 12

 2 log2

 log5

22

 4 log2 3

53

 log5

9 3 20. log 300  log 100

 log 3  log 100 21

 log 3  log 102

 3  log5 2

 4 log2 2  4 log2 3

 log 3  2 log 10

 4  4 log2 3

 log 3  2

21. ln5e6  ln 5  ln e6

22. ln

6  ln 6  ln e2 e2

 ln 5  6

23. log3 9  2 log3 3  2

 ln 6  2 ln e

 6  ln 5

 ln 6  2

1 24. log5 125  log5 53  3 log5 5  31  3

4 8  1 log 23  3 log 2  3 1  3 25. log2  4 2 4 2 4 4

3 6  log 613  1 log 6  1 1  1 26. log6  6 3 6 3 3

27. log4 161.2  1.2log4 16  1.2 log4 42  1.22  2.4

28. log3 810.2  0.2 log3 81

29. log39 is undefined. 9 is not in the domain of log3 x.

 0.2 log3 3

4

 0.24  0.8 30. log216 is undefined because 16 is not in the domain of log2 x.

31. ln e4.5  4.5

32. 3 ln e4  34 ln e  121  12

33. ln

1 e

4 e3  ln e34 34. ln 

 ln 1  lne 0



1 ln e 2



1 2

36. 2 ln e6  ln e5  ln e12  ln e5  ln

3 ln e 4

3  1 4

1  0  1 2 

35. ln e2  ln e5  2  5  7

e12 e5

3 4

37. log5 75  log5 3  log5

75 3

 log5 25

 ln e7

 log5 52

7

 2 log5 5 2

38. log4 2  log4 32  log4 412  log4 452 1 2

5 2

 log4 4  log4 4  121  521 3

39. log4 5x  log4 5  log4 x

Section 3.3

40. log3 10z  log3 10  log3 z

43. log5

5  log5 5  log5 x x

Properties of Logarithms

283

y  log y  log 2 2

41. log8 x4  4 log8 x

42. log

44. log6 z3  3 log6 z

45. lnz  ln z12 

47. ln xyz2  ln x  ln y  ln z2

48. log 4x2y  log 4  log x2  log y

1 ln z 2

 1  log5 x 3 t  ln t13  1 ln t 46. ln  3

 ln x  ln y  2 ln z 49. ln zz  12  ln z  lnz  12

50. ln

 ln z  2 lnz  1, z > 1



 log 4  2 log x  log y

x2  1  lnx2  1  ln x3 x3  lnx  1x  1  ln x3



 lnx  1  lnx  1  3 ln x

51. log2

a  1

9

 log2a  1  log2 9 

6

52. ln

x2  1

 ln 6  lnx2  112

1 log2a  1  log2 32 2

 ln 6 

1  log2a  1  2 log2 3, a > 1 2

xy  31 ln yx

xy

2

3

53. ln

 ln 6  lnx2  1

54. ln

3

 ln

1  ln x  ln y 3 1 1  ln x  ln y 3 3

y  x2

3

12

1 lnx2  1 2



 

1 x2 ln 3 2 y

1  ln x2  ln y3 2 1  2 ln x  3 ln y 2  ln x 

x z y   ln x 4

55. ln

4y

5

 ln z5

56. log2

1 ln y  5 ln z 2

yxz   log x  log y z 2 3

5

2

5

2 3

 log2 x y4  log2 z4



2

57. log5

z4

 log2 x  log2 y4  log2 z4

 ln x4  ln y  ln z5  4 ln x 

x y4

3 ln y 2

58. log

1 log2 x  4 log2 y  4 log2 z 2

xy4  log xy4  log z5 z5

 log5 x2  log5 y2  log5 z3

 log x  log y4  log z5

 2 log5 x  2 log5 y  3 log5 z

 log x  4 log y  5 log z

4 3 2 59. ln  x x  3  14 ln x3x2  3



1 3 4 ln x

 lnx2  3

60. lnx2x  2  lnx2x  2 12  lnxx  212

 14 3 ln x  lnx2  3

 ln x  lnx  212

 34 ln x  14 lnx2  3

 ln x  12 lnx  2

284

Chapter 3

Exponential and Logarithmic Functions

61. ln x  ln 3  ln 3x

64. log5 8  log5 t  log5

67.

8 t

62. ln y  ln t  ln yt  ln ty

63. log4 z  log4 y  log4

65. 2 log2x  4  log2x  42

66.

1 4 5x log3 5x  log35x14  log3  4

 ln

1 16x 4

70. 2 ln 8  5 lnz  4  ln 82  lnz  45  ln 64  lnz  45

x x  13

 ln 64z  45

71. log x  2 log y  3 log z  log x  log y2  log z3  log

2 log7z  2  log7z  223 3

68. 4 log6 2x  log62x4  log6

69. ln x  3 lnx  1  ln x  lnx  13

72. 3 log3 x  4 log3 y  4 log3 z  log3 x3  log3 y4  log3 z4

x xz3  log z3  log 2 y2 y

 log3 x3y4  log3 z4  log3

73. ln x  4lnx  2  lnx  2  ln x  4 lnx  2x  2  ln x  4 lnx2  4  ln x  lnx2  44  ln

x x2  44

74. 4ln z  lnz  5  2 lnz  5  4ln zz  5  lnz  52  lnzz  5 4  lnz  52  ln

75.

z y

z4z  54 z  52

1 1 2 lnx  3  ln x  lnx2  1  lnx  32  ln x  lnx2  1 3 3 1  ln xx  32  lnx2  1 3 

1 xx  32 ln 2 3 x 1

xxx  31

 ln

2

3

2

76. 23 ln x  lnx  1  lnx  1  2ln x3  lnx  1  lnx  1  2ln x3  lnx  1  lnx  1  2ln x3  lnx  1x  1  2 ln  ln

x2

x

2

x3 1

x3 1



2

x3y4 z4

Section 3.3

77.

Properties of Logarithms

1 1 log8 y  2 log 8 y  4  log 8 y  1  log 8 y  log 8 y  42  log 8 y  1 3 3 

1 log 8 y y  42  log 8 y  1 3

3  log 8  y  y  42  log 8 y  1

 log 8



3  y  y  42

y1



78. 12log4x  1  2 log4x  1  6 log4 x  12log4x  1  log4x  12  log4 x6  12log4x  1x  12  log4 x6  log4x  1x  1  log4 x6  log4x6x  1x  1

79. log2

32 log2 32  log2 32  log2 4  4 log2 4

The second and third expressions are equal by Property 2.

80. log770 

1 1 log7 70  log7 7  log7 10 2 2

81.   10 log

10I  12

1  1  log7 10 2

 10log I  log 1012

1 1   log7 10 2 2

 120  10 log I



 10log I  12

When I  106 :

1  log7 10 by Property 1 and Property 3 2

  120  10 log 106  120  106  60 decibels

82.   10 log

10I 

83.   120  10 log2I 

12

Difference  10 log

5

7

3.1610 10   10 log1.2610 10  12

12

 10log3.16  107  log1.26  105  10  3.16 1.26  10 

 10 log

7 5

 10log2.5079  102  10log250.79  24 dB

 120  10log 2  log I   120  10 log I   10 log 2 With both stereos playing, the music is 10 log 2  3 decibels louder.

285

286

Chapter 3

Exponential and Logarithmic Functions

84. f t  90  15 logt  1, 0 ≤ t ≤ 12 (a) f t  90  logt  115

(f) The average score will be 75 when t  9 months. See graph in (e).

(b) f 0  90

(g)

(c) f 4  90  15  log4  1  79.5

15  15 logt  1

(d) f 12  90  15  log12  1  73.3 (e)

75  90  15 logt  1 1  logt  1

95

101  t  1 t  9 months 0

12 70

85. By using the regression feature on a graphing calculator we obtain y  256.24  20.8 ln x. 86. (a)

(c)

80

0

30 0

(b) T  21  54.40.964 t T  54.40.964 t  21 See graph in (a). (d)

1  0.0012t  0.016 T  21 T

1  21 0.0012t  0.016

t (in minutes)

T C

T  21 C

lnT  21

1T  21

0

78

57

4.043

0.0175

5

66

45

3.807

0.0222

10

57.5

36.5

3.597

0.0274

15

51.2

30.2

3.408

0.0331

20

46.3

25.3

3.231

0.0395

25

42.5

21.5

3.068

0.0465

30

39.6

18.6

2.923

0.0538

5 0.07

80

0 0

30 0

0

30

30 0

0

(e) Since the scatter plot of the original data is so nicely exponential, there is no need to do the transformations unless one desires to deal with smaller numbers. The transformations did not make the problem simpler.

lnT  21  0.037t  4 T  e0.037t4  21 This graph is identical to T in (b).

Taking logs of temperatures led to a linear scatter plot because the log function increases very slowly as the x-values increase. Taking the reciprocals of the temperatures led to a linear scatter plot because of the asymptotic nature of the reciprocal function. 87. f x  ln x False, f 0  0 since 0 is not in the domain of f x. f 1  ln 1  0

88. f ax  f a  f x, a > 0, x > 0 True, because f ax  ln ax  ln a  ln x  f a  f x.

Section 3.3

89. False. f x  f 2  ln x  ln 2  ln

x  lnx  2 2

90. f x 

Properties of Logarithms

1 f x; false 2

f x  ln x can’t be simplified further.

f x   lnx  ln x12 

1 1 ln x  f  x  2 2

92. If f x < 0, then 0 < x < 1.

91. False. f u  2f v ⇒ ln u  2 ln v ⇒ ln u 

ln v2

⇒ u

 v2

True

93. Let x  logb u and y  logb v, then bx  u and by  v.

94. Let x  logb u, then u  bx and un  bnx. logb un  logb bnx  nx  n logb u

u bx  y  bxy v b Then logbuv  logbb xy  x  y  logb u  logb v.

95. f x  log2 x 

ln x log x  log 2 ln 2

96. f x  log4 x 

97. f x  log12 x 

2

3

−3

log x ln x  log 4 ln 4

6

−1

3

5

−3

−2

−3

log x ln x  log12 ln12

6

−3

99. f x  log11.8 x

98. f x  log14 x 

log x ln x  log14 ln14



log x ln x  log 11.8 ln 11.8



5

−1

−2

x ln x 101. f x  ln , gx  , hx  ln x  ln 2 2 ln 2 f x  hx by Property 2

log x ln x  log 12.4 ln 12.4

2

2

2

−1

100. f x  log12.4 x

−1

5

−2

5

−2

y 2 1

g

f=h x

1 −1 −2

2

3

4

287

288

Chapter 3

Exponential and Logarithmic Functions

102. ln 2  0.6931, ln 3  1.0986, ln 5  1.6094 ln 2  0.6931 ln 3  1.0986 ln 4  ln2

 2  ln 2  ln 2  0.6931  0.6931  1.3862

ln 5  1.6094 ln 6  ln2

 3  ln 2  ln 3  0.6931  1.0986  1.7917

ln 8  ln 23  3 ln 2  30.6931  2.0793 ln 9  ln 32  2 ln 3  21.0986  2.1972

 2  ln 5  ln 2  1.6094  0.6931  2.3025 ln 12  ln22  3  ln 22  ln 3  2 ln 2  ln 3  20.6931  1.0986  2.4848 ln 15  ln5  3  ln 5  ln 3  1.6094  1.0986  2.7080 ln 10  ln5

ln 16  ln 24  4 ln 2  40.6931  2.7724

 2  ln 32  ln 2  2 ln 3  ln 2  21.0986  0.6931  2.8903 ln 20  ln5  22  ln 5  ln 22  ln 5  2 ln 2  1.6094  20.6931  2.9956

ln 18  ln32

103.

24xy2 24xx3 3x4   ,x0 16x3y 16yy2 2y3

105. 18x3y4318x3y43 

107.

18x3y43  1 if x  0, y  0. 18x3y43

3x2  2x  1  0

104.

2x2

3



2x  3y

2

3



106. xyx1  y11 

108.

3y3 27y3  2 3 2x  8x 6

xy x1  y1



xy 1x  1y



xy2 xy   y  xxy x  y

4x2  5x  1  0

4x  1x  1  0

3x  1x  1  0 3x  1  0 ⇒ x 

 3y 

4x  1  0 ⇒ x  14

1 3

x10 ⇒ x1

x  1  0 ⇒ x  1

The zeros are x  14, 1. 2 x  3x  1 4

109.

5 2x  x1 3

110.

3x  1x  24

53  2xx  1

3x  x  8  0

15  2x2  2x

2

x

1 ± 12  438 23

1 ± 97  6

0  2x2  2x  15  2 ± 22  4215 x 22 2 ± 124 x 4 1 ± 31 x 2 The zeros are

1 ± 31 . 2

Section 3.4

Section 3.4 ■

Exponential and Logarithmic Equations

To solve an exponential equation, isolate the exponential expression, then take the logarithm of both sides. Then solve for the variable. 1. loga ax  x



2. ln ex  x

To solve a logarithmic equation, rewrite it in exponential form. Then solve for the variable. 1. aloga x  x



Exponential and Logarithmic Equations

2. eln x  x

If a > 0 and a  1 we have the following: 1. loga x  loga y ⇔ x  y 2. ax  ay ⇔ x  y



Check for extraneous solutions.

Vocabulary Check 2. (a) x  y (c) x

1. solve

1. 42x7  64 425 7

3. extraneous

2. 23x1  32

x5

(a)

(b) x  y (d) x



231 1

 64

Yes, x  5 is a solution. x2

(b)

1 64

No, x  2 is not a solution.

x  2  e25 

No, x  2  (b)

No, x  2 is not a solution. 4. 2e5x2  12

2e25 2

3e

25 3ee

e25

1 x  2  ln 6 5

(a)

 75

2e5152ln 6 2  2e2ln 62

is not a solution.

 2eln 6  2  6  12

x  2  ln 25

1 Yes, x  2  ln 6 is a solution. 5

3e2ln 25 2  3eln 25  325  75 Yes, x  2  ln 25 is a solution. (c)

x2 232 1  27  128

 64

3. 3ex2  75

 22  14

No, x  1 is not a solution. (b)

422 7  43 

(a)

x  1

(a)

43

x  1.219

x

(b)

3e1.2192  3e3.219  75

ln 6 5 ln 2

2e5[ln 65 ln 2 2  2eln 6ln 2 2

Yes, x  1.219 is a solution.

 2e2.5852  2  97.9995  195.999 No, x 

ln 6 is not a solution. 5 ln 2 x  0.0416

(c)

50.0416 2

2e

 2e1.792  26.00144  12

Yes, x  0.0416 is an approximate solution.

289

290

Chapter 3

Exponential and Logarithmic Functions

5. log43x  3 ⇒ 3x  43 ⇒ 3x  64

6. log2x  3  10

x  21.333

(a)

x  1021

(a)

321.333  64

log21021  3  log21024

Yes, 21.333 is an approximate solution.

Since 210  1024, x  1021 is a solution.

x  4

(b)

x  17

(b)

34  12  64

log217  3  log220

No, x  4 is not a solution.

Since 210  20, x  17 is not a solution.

x  64 3

(c)

364 3   64 Yes, x 

64 3

x  102  3  97

(c)

log297  3  log2100 Since 210  100, 102  3 is not a solution.

is a solution.

7. ln2x  3  5.8

8. lnx  1  3.8 x

(a)

1 2 3

 ln 5.8

x  1  e3.8

(a)

ln2 3  ln 5.8  3  lnln 5.8  5.8

ln1  e3.8  1  ln e3.8  3.8

No, x  12 3  ln 5.8 is not a solution.

Yes, x  1  e3.8 is a solution.

1 2

x  12 3  e5.8

(b)

x  45.701

(b)

ln2 3  e5.8  3  lne5.8  5.8

ln45.701  1  ln44.701  3.8

Yes, x  12 3  e5.8 is a solution.

Yes, x  45.701 is an approximate solution.

1 2

x  163.650

(c)

x  1  ln 3.8

(c)

ln2163.650  3  ln 330.3  5.8

ln1  ln 3.8  1  lnln 3.8  0.289

Yes, x  163.650 is an approximate solution.

No, x  1  ln 3.8 is not a solution.

9. 4x  16

10. 3x  243

11.

12 x  32

12.

14 x  64

4x  42

3x  35

2x  25

4x  43

x2

x5

x  5

x  3

x  5 13. ln x  ln 2  0 ln x  ln 2

ln x  ln 5

x2

x5

17. ln x  1 ln x

e

14. ln x  ln 5  0

e

1

18. ln x  7 ln x

e

e

7

15.

ex  2

x  3 16.

ex  4

ln ex  ln 2

ln e x  ln 4

x  ln 2

x  ln 4

x  0.693

x  1.386

19. log4 x  3 4log4 x



43

x  e1

x  e7

x  43

x  0.368

x  0.000912

x  64

20. log5 x  3 x  53 1

x  125 or 0.008

Section 3.4 21. f x  gx

22. f x  gx 27  9

2x  23

27x  2723 x

Point of intersection: 3, 8 2 2

25. e x  ex

Point of intersection:

2 8

e2 x  ex

26.

27.

2 2x

x  4x  2  0

2x 2  2x  0

x  log3 5 

x  0, x  1

2ex  10

x  log516 log 5 ln 5 or log 3 ln 3

x

4ex  91

33.

ex  9  19

ex  5

ex  91 4

ex  28

ln ex  ln 5

ln ex  ln 91 4

ln ex  ln 28

x  ln 5  1.609 34. 6x  10  47

35.

32x  80

36.

5x ln 6  ln 3000

2x ln 3  ln 80

ln 37 ln 6

5x 

ln 80 x  1.994 2 ln 3

x

x  2.015 37. 5t2  0.20 5t2 

1 5

5t2  51 t   1 2 t2 2x3  32 x  3  log2 32 x35 x8

65x  3000 ln 65x  ln 3000

ln 32x  ln 80

x  log6 37 x

x  ln 28  3.332

x  ln 91 4  3.125

6x  37

40.

ln 16 ln 5

x  1.723

x  1.465 32.

 ex2

5x  16

log3 3x  log3 5

2xx  1  0

2 3

30. 25x  32

43x  20 3x  5

x 2  x 2  2x

ex

By the Quadratic Formula x  1.618 or x  0.618.

x  2, x  4 29.

Point of intersection: 5, 0

x2  x  1  0

x 2  2x  8  0

x  1 or x  2 ex  ex

x5

x2  3  x  2

2x  x 2  8

0  x  1x  2

31.

x41

Point of intersection: 9, 2

23, 9

0  x2  x  2

2

elnx4 e0

x9

x  x2  2

28.

lnx  4  0

x  32

2 3

38.

43t  0.10 ln 43t  ln 0.10

39.

3x1  33 x13

ln 0.10 ln 4

x4

t

ln 0.10  0.554 3 ln 4

ln 3000 ln 6 ln 3000  0.894 5 ln 6

3x1  27

3t ln 4  ln 0.10 3t 

291

f x  gx

24.

log3 x  2

x

x3

f x  gx

23.

2 8 x

Exponential and Logarithmic Equations

292

Chapter 3

Exponential and Logarithmic Functions

23x  565

41.

82x  431

42.

ln 23x  ln 565

ln 82x  ln 431

3  x ln 2  ln 565

2  x ln 8  ln 431

3 ln 2  x ln 2  ln 565

2 ln 8  x ln 8  ln 431

x ln 2  ln 565  3 ln 2

x ln 8  ln 431  ln 82

x ln 2  3 ln 2  ln 565 x

x ln 8  ln 431  ln 64

3 ln 2  ln 565 ln 2

3

x

ln 565  6.142 ln 2

43. 8103x  12

44. 510x6  7

12 8

103x 

log 103x  log

10 x6 

32 

ln 5x1  ln 7 7 5

x  1 ln 5  ln 7 x1

ln 7 ln 5

x1

7 x  6  log 5



ln 7  2.209 ln 5

 6.146

 0.059 836x  40

47. e3x  12

36x  5

48.

x

6  x ln 3  ln 5

e2x  50 ln e2x  ln 50

3x  ln 12

ln 36x  ln 5

x 

35x1  21 5x1  7

7 x  6  log 5

3 1 x  log 3 2

6x

45.

7 5

log 10 x6  log

3 3x  log 2

46.

ln 431  ln 64  4.917 ln 8

2x  ln 50

ln 12  0.828 3

x

ln 5 ln 3

ln 50  1.956 2

ln 5 6 ln 3

x6

ln 5  4.535 ln 3

49. 500ex  300 ex  35 x  ln 35 x  ln 35  ln 53  0.511

50. 1000e4x  75 3 e4x  40 3 ln e4x  ln 40 3 4x  ln 40 3 x   14 ln 40

 0.648

51. 7  2ex  5

52. 14  3ex  11

2ex  2

3ex  25

ex  1

ex  25 3

x  ln 1  0

ln ex  ln 25 3 x  ln 25 3  2.120

Section 3.4 53. 623x1  7  9

log2 23x1

462x  3.5

8 3

6  2x  log4 3.5



3x  1 log2

55.

8462x  28

8  log2 3

x

6  2x 

83  loglog832  or lnln832 

1 log83  1  0.805 3 log 2





x3

ln 3.5  2.548 2 ln 4

ex  2ex  3  0 ex  5

(No solution)

57.

ln 3.5 ln 4

e2x  5ex  6  0

56.

ex  1ex  5  0 or

ln 3.5 ln 4

2x  6 

e2x  4ex  5  0 ex  1

ex  2 or ex  3

x  ln 5  1.609

x  ln 2  0.693 or x  ln 3  1.099

e2x  3ex  4  0

58. e2x  9ex  36  0

ex  1ex  4  0

ex2 9ex  36  0

ex  10 ⇒ ex  1

Because the discriminant is 92  4136  63, there is no solution.

Not possible since ex > 0 for all x. ex  40 ⇒ ex  4 ⇒ x  ln 4  1.386

59.

293

54. 8462x  13  41

623x1  16 23x1 

Exponential and Logarithmic Equations

500  20 100  e x2 500  20100  e x2

60.

400  350 1  ex 400  3501  ex

25  100  e x2

8  1  ex 7

e x2  75 x  ln 75 2

8  1  ex 7 1  ex 7

x  2 ln 75  8.635 ln

1  ln ex 7

x  ln

1 7

x  ln 71 x  ln 7 x  ln 7  1.946

61.

3000 2 2  e2x 3000  22  e2x 1500  2  e2x 1498  e2x ln 1498  2x x

ln 1498  3.656 2

294

62.

Chapter 3

Exponential and Logarithmic Functions

119 7 e  14

63.

6x

119  7e 6x  14



ln 1 

17  e 6x  14

0.065 365



31  e6x ln 31  ln

1  0.065 365  365t ln 1 

e 6x



365t

365t

64.



t

4  2.471 40 

9t

 21

65.



16  0.878 26  

3t ln 16 



12t

12t

 21.330

3t

3t

2  ln 2



0.10  ln 2 12

12t ln 1 

ln 21  0.247 9 ln 3.938225

t



0.10 12



9t ln 3.938225  ln 21

0.878 ln 16  26

1  0.10 12  ln 1 

ln 3.9382259t  ln 21



ln 4

365 ln1  0.065 365 

ln 31  0.572 6

3.9382259t  21

66.

 ln 4

0.065  ln 4 365

ln 31  6x x

4

t

 30

ln 2  6.960 12 ln1  0.10 12 

67. gx  6e1x  25 Algebraically:

 ln 30

15

6e1x  25



0.878  ln 30 26 t

6 −6

e1x 

ln 30  0.409 3 ln16  0.878 26 

25 6

1  x  ln

−30

256

x  1  ln

256

x  0.427 The zero is x  0.427. 68. f x  4ex1  15

69. f x  3e3x2  962

20

0  4ex1  15 15  4ex1 3.75 

ex1

ln 3.75  x  1 1  ln 3.75  x 1  ln 3.75  x 2.322  x The zero is 2.322.

Algebraically: −5

5

− 20

300 −6

9

3e3x2  962 e3x2 

962 3

−1200

 

3x 962  ln 2 3 x

 

2 962 ln 3 3

x  3.847 The zero is x  3.847.

Section 3.4 gx  8e2x3  11

70.

8e2x3  11

71. gt  e0.09t  3

5 −3

− 20

40

0.09t  ln 3

−15

x  0.478

−4

ln 3 0.09

t

x  1.5 ln 1.375

t  12.207

The zero is 0.478.

The zero is t  12.207.

72. f x  e1.8x  7

73. ht  e0.125t  8

e1.8x  7  0

Algebraically:

74. f x  e2.724x  29 e2.724x  29

e0.125t  80

e1.8x  7

2.724x  ln 29

e0.125t  8

e1.8x  7

x

0.125t  ln 8

1.8x  ln 7 x

8

e0.09t  3

2x  ln 1.375 3

295

Algebraically:

7

e2x3  1.375 

Exponential and Logarithmic Equations

ln 7 1.8

t

x  1.236

ln 8 0.125

The zero is 1.236.

t  16.636

x  1.081

10

The zero is t  16.636.

The zero is 1.081. 13

ln 29 2.724

−5

5

2 −40

40

−35 −5

5

−7

−10

75. ln x  3

76. ln x  2

x  e3  0.050

77. ln 2x  2.4 2x 

eln x  e2 x  e2  7.389

78. ln 4x  1

e2.4

eln 4x  e1

e2.4  5.512 x 2

4x  e x

80. log 3z  2

79. log x  6

81. 3 ln 5x  10

10log 3z  102

x  106  1,000,000.000

3z  100 100 z  33.333 3

83. ln x  2  1 x  2  e1

x2

e2

x  e2  2  5.389

84. ln x  8  5 eln x8  e5 x  8 

e5

x  8  e10 x  e10  8  22,034.466

ln 5x 

82. 2 ln x  7

10 3

ln x 

5x  e103 e103 x  5.606 5 85. 7  3 ln x  5 3 ln x  2 ln x 

e  0.680 4

 23

7 2

eln x  e72 x  e72  33.115 86. 2  6 ln x  10 6 ln x  8 ln x   43

x  e23

eln x  e43

 0.513

x  e43  0.264

296

Chapter 3

Exponential and Logarithmic Functions

87. 6 log30.5x  11

88. 5 log10x  2  11

log30.5x  11 6

log10x  2  11 5

3log30.5x  3116

10log10x2  10115

0.5x  3116

x  2  10115

x  23116  14.988

x  10115  2  160.489

89. ln x  lnx  1  2

90. ln x  lnx  1  1

x  1  2

lnxx  1  1

x  e2 x1

xx  1  e1

ln

x

elnxx1  e1 x2  x  e  0

x  e2x  1

x

x  e2x  e2

1 ± 1  4e 2

x  e2x  e2 The only solution is x 

x1  e2  e2 x

1  1  4e  1.223. 2

e2  1.157 1  e2

This negative value is extraneous. The equation has no solution. 91. ln x  lnx  2  1

92. ln x  lnx  3  1

lnxx  2  1

lnxx  3  1

xx  2 

e1

elnxx3  e1

x2  2x  e  0

xx  3  e1

x

2 ± 4  4e 2

x2  3x  e  0 x

2 ± 2 1  e   1 ± 1  e 2

The only solution is x 

The negative value is extraneous. The only solution is x  1  1  e  2.928. ln x  5  lnx  1  lnx  1

93.

lnx  5  ln x5

x1

x  1

x1 x1

x  5x  1  x  1 x2

 6x  5  x  1

x2  5x  6  0

x  2x  3  0 x  2 or x  3 Both of these solutions are extraneous, so the equation has no solution.

3 ± 9  4e 2

94.

3  9  4e  0.729. 2

lnx  1  lnx  2  ln x ln

x1

x  2  ln x x1 x x2 x  1  x2  2x 0  x2  3x  1

 3 ± 32  411 x 21 3 ± 13 x 2 3.303  x (The negative apparent solution is extraneous.)

95. log22x  3  log2x  4 2x  3  x  4 x7

Section 3.4

Exponential and Logarithmic Equations

297

96. logx  6  log2x  1 x  6  2x  1 7  x The apparent solution x  7 is extraneous, because the domain of the logarithm function is positive numbers, and 7  6 and 27  1 are negative. There is no solution. 97. logx  4  log x  logx  2

98. log2 x  log2x  2  log2x  6

x4  logx  2 x

log2xx  2  log2x  6

log





xx  2  x  6 x2

x4 x2 x x  4  x2  2x 0

x2

x60

x  3x  2  0 x  3 or x  2

x4

1 ± 17 x 2

Quadratic Formula

The value x  3 is extraneous. The only solution is x  2.

Choosing the positive value of x (the negative value is extraneous), we have x

1  17  1.562. 2 1 2 1 x log4  x1 2

100. log3 x  log3x  8  2

99. log4 x  log4x  1 



log3xx  8  2



3log3x

2 8x

 32

x2  8x  9

4log4xx1  412 x  412 x1

x2  8x  9  0

x  9x  1  0

x  2x  1

x  9 or x  1

x  2x  2

The value x  1 is extraneous. The only solution is x  9.

x  2 x2 101. log 8x  log1  x  2 log

8x 2 1  x 8x  102 1  x

8x  1001  x 

2x  251  x   25  25 x 2x  25  25 x

2x  252  25 x

2

4x2  100x  625  625x 4x2  725x  625  0 x

725 ± 7252  44625 2529 ± 5 33 725 ± 515,625   24 8 8

x  0.866 (extraneous) or x  180.384 The only solution is x 

2529  5 33  180.384. 8

298

Chapter 3

Exponential and Logarithmic Functions

102. log 4x  log12  x   2 log

12 4x x  2

10log4x (12 x   102 4x  100 12  x 4x  10012  x  4x  1200  100 x 4x  1200  100 x x  300  25 x

x  3002  25 x 

2

x2  600x  90,000  625x x2  1225x  90,000  0 x

1225 ± 12252  4190,000 2

x

1225 ± 1,140,625 2

x

1225 ± 125 73 2

x  78.500 extraneous or x  1146.500 The only solution is x 

1225  125 73  1146.500. 2

103. y1  7 y2 

104.

10

2x

From the graph we have x  2.807 when y  7. Algebraically:

ln

−8

10

ln

−2

2 ln

 ln 7

105. y1  3

x  e 3  20.086

18

4 lnx  2  10

y2  ln x

ln x  3

1 x 3

106. 10  4 lnx  2  0

5

3  ln x  0

10 − 200

The solution is x  2.197.

ln 7  2.807 ln 2

From the graph we have x  20.086 when y  3. Algebraically:

−2

1 x  3 2

2.197  x

x ln 2  ln 7 x

800

1  ex2 3

2x  7 2x

500  1500ex2

−5

30 −1

lnx  2  2.5 elnx2  e2.5 x  2  e2.5 x  e2.5  2 x  14.182 The solution is x  14.182.

−5

30 −3

Section 3.4 A  Pert

107. (a)

5000 

A  Pert

(b)

Exponential and Logarithmic Equations r  0.12

108. (a)

3  e0.085t

ln 2  0.085t

5000  2500e0.12t

7500  2500e0.12t

2  e0.12t

3  e0.12t

ln 2  ln e0.12t

ln 3  ln e0.12t

ln 2  0.12t

ln 3  0.12t

ln 3  0.085t

ln 2 t 0.085

ln 3 t 0.085

t  8.2 years

A  Pert

rt

0.085t

2  e0.085t

r  0.12

(b)

A  Pe

7500  2500e

2500e0.085t

t  12.9 years

299

ln 2 t 0.12

ln 3 t 0.12

t  5.8 years

t  9.2 years

109. p  500  0.5e0.004x p  350

(a)

(b)

p  300

350  500  0.5e0.004x

300  500  0.5e0.004x

300  e0.004x

400  e0.004x

0.004x  ln 300

0.004x  ln 400

x  1426 units



110. p  5000 1 

x  1498 units

4 4  e0.002x



(a) When p  $600:

(b) When p  $400:



600  5000 1  0.12  1 

4 4  e0.002x





400  5000 1 

4 4  e0.002x

0.08  1 

4  0.88 4  e0.002x



4 4  e0.002x

4  0.92 4  e0.002x

4  3.52  0.88e0.002x

4  3.68  0.92e0.002x

0.48  0.88e0.002x

0.32  0.92e0.002x

6  e0.002x 11

8  e0.002x 23

ln

6  ln e0.002x 11

ln

8  ln e0.002x 23

ln

6  0.002x 11

ln

8  0.002x 23

x

4 4  e0.002x

ln611  303 units 0.002

x

ln823  528 units 0.002

111. V  6.7e48.1t , t ≥ 0 (a)

(b) As t → , V → 6.7.

10

1.3  6.7e48.1t

(c)

Horizontal asymptote: V  6.7

0

1500 0

The yield will approach 6.7 million cubic feet per acre.

1.3  e48.1t 6.7 ln

67  13

t

48.1 t 48.1  29.3 years ln1367

300

Chapter 3

Exponential and Logarithmic Functions

112. N  68100.04x

113. y  7312  630.0 ln t, 5 ≤ t ≤ 12

When N  21:

7312  630.0 ln t  5800

21  6810

0.04x



630.0 ln t  1512

21  100.04x 68

ln t  2.4 t  e2.4  11

21 log10  0.04x 68 x

t  11 corresponds to the year 2001.

log102168  12.76 inches 0.04

114. y  4381  1883.6 ln t, 5 ≤ t ≤ 13 9000  4381  1883.6 ln t 4619  1883.6 ln t ln t 

4619  2.45222 1883.6

t  e2.45222  11.6 Since t  5 represents 1995, t  11.6 indicates that the number of daily fee golf facilities in the U.S. reached 9000 in 2001. 115. (a) From the graph shown in the textbook, we see horizontal asymptotes at y  0 and y  100. These represent the lower and upper percent bounds; the range falls between 0% and 100%. Females

(b) Males 50 

100 1  e0.6114x69.71

50 

1  e0.6114x69.71  2

1  e0.66607x64.51  2

e0.6114x69.71  1

e0.6667x64.51  1

0.6114x  69.71  ln 1

0.66607x  64.51  ln 1

0.6114x  69.71  0

0.66607x  64.51  0 x  64.51 inches

x  69.71 inches

116. P  (a)

100 1  e0.66607x64.51

0.83 1  e0.2n (c) When P  60% or P  0.60:

1.0

0.60  0

40 0

(b) Horizontal asymptotes: P  0, P  0.83 The upper asymptote, P  0.83, indicates that the proportion of correct responses will approach 0.83 as the number of trials increases.

1  e0.2n  e0.2n 

0.83 1  e0.2n 0.83 0.60 0.83 1 0.60

ln e0.2n  ln

0.60  1

0.2n  ln

0.60  1

0.83 0.83

ln n

0.60  1 0.83

0.2

 5 trials

Section 3.4

117. y  3.00  11.88 ln x  (a)

36.94 x

Exponential and Logarithmic Equations

118. T  201  72h (a) From the graph in the textbook we see a horizontal asymptote at T  20. This represents the room temperature.

x

0.2

0.4

0.6

0.8

1.0

y

162.6

78.5

52.5

40.5

33.9

100  201  72h

(b) (b)

301

5  1  72h

200

4  72h 0

4  2h 7

1.2 0

The model seems to fit the data well.

ln

7  ln 2

ln

7  h ln 2

(c) When y  30: 36.94 30  3.00  11.88 ln x  x

4

h

4

ln47 h ln 2

Add the graph of y  30 to the graph in part (a) and estimate the point of intersection of the two graphs. We find that x  1.20 meters.

h  0.81 hour

(d) No, it is probably not practical to lower the number of gs experienced during impact to less than 23 because the required distance traveled at y  23 is x  2.27 meters. It is probably not practical to design a car allowing a passenger to move forward 2.27 meters (or 7.45 feet) during an impact. 120. logau  v  loga uloga v

119. logauv  loga u  loga v

False.

True by Property 1 in Section 3.3.

2.04  log1010  100  log10 10log10 100  2

121. logau  v  loga u  loga v

122. loga

False.

uv  log

a

u  loga v

123. Yes, a logarithmic equation can have more than one extraneous solution. See Exercise 93.

True by Property 2 in Section 3.3.

1.95  log100  10  log 100  log 10  1 124. A  Pert

125. Yes.

(a) A  2P

ert

 2

 This doubles your money.





Pert

Time to Quadruple



2P  Pe

4P  Pert

(c) A  Per2t  Pertert  ertPert

2  ert

4  ert

ln 2  rt

ln 4  rt

(b) A 

Pertert



Time to Double

Pert

Pe2rt

ert

Doubling the interest rate yields the same result as doubling the number of years. If 2 > ert (i.e., rt < ln 2), then doubling your investment would yield the most money. If rt > ln 2, then doubling either the interest rate or the number of years would yield more money.

rt

ln 2 t r

2 ln 2 t r

Thus, the time to quadruple is twice as long as the time to double.

302

Chapter 3

Exponential and Logarithmic Functions

126. (a) When solving an exponential equation, rewrite the original equation in a form that allows you to use the One-to-One Property ax  ay if and only if x  y or rewrite the original equation in logarithmic form and use the Inverse Property loga ax  x.

128. 32  2 25  16

127. 48x2y5  16x2y43y



3



10  2

10  2

3 10  2

 2  25

3 3 3 25 15  375 129. 3 3  125  3  5 3

 4 2  10

 4 x y 2 3y

130.

(b) When solving a logarithmic equation, rewrite the original equation in a form that allows you to use the One-to-One Property loga x  loga y if and only if x  y or rewrite the original equation in exponential form and use the Inverse Property aloga x  x.

 10  2



131. f x  x  9

y

3 10  2  10  4

Domain: all real numbers x

3 10  2  6

y-axis symmetry



8 6 4

y

2

12

y-intercept: 0, 9

x

10  2

14

±1

0 9

10

±2

11

2

±3

x

−8 −6 − 4 − 2 −2

12

2

4

6

8

1

3

4

1  10  1 2

133. gx 

y

132. 8 6

2x, x  4, 2

x < 0 x ≥ 0

y 5

Domain: all real numbers x

4

4

3

x-intercept: 2, 0

2 x

−6 − 4 − 2 −2

2

4

6

8

2 1

y-intercept: 0, 4

x

−4 −3 − 2 − 1

−4 −6

−3

x

3

2

1

0.5

0

1

2

3

y

6

4

2

1

4

3

2

5

y

134. 6 4 1 −6

−4

−2

x 2

4

6

−2

−6

135. log6 9 

log10 9 ln 9   1.226 log10 6 ln 6

137. log34 5 

log10 5 ln 5   5.595 log1034 ln34

136. log3 4 

log10 4 ln 4   1.262 log10 3 ln 3

138. log8 22 

log10 22 ln 22   1.486 log10 8 ln 8

Section 3.5

Section 3.5 ■

Exponential and Logarithmic Models

303

Exponential and Logarithmic Models

You should be able to solve growth and decay problems. (a) Exponential growth if b > 0 and y  aebx. (b) Exponential decay if b > 0 and y  aebx.



You should be able to use the Gaussian model y  aexb c. 2



You should be able to use the logistic growth model a . y 1  berx



You should be able to use the logarithmic models y  a  b ln x, y  a  b log x.

Vocabulary Check 1. y  aebx; y  aebx

2. y  a  b ln x; y  a  b log x

4. bell; average value

5. sigmoidal

1. y  2ex4

3. normally distributed

3. y  6  logx  2

2. y  6ex4

This is an exponential growth model. Matches graph (c).

4. y  3ex2 5 2

This is a Gaussian model. Matches graph (a).

This is a logarithmic function shifted up six units and left two units. Matches graph (b).

This is an exponential decay model. Matches graph (e).

6. y 

5. y  lnx  1 This is a logarithmic model shifted left one unit. Matches graph (d).

7. Since A  1000e0.035t, the time to double is given by 2000  1000e0.035t and we have

1500  750e0.105t

ln 2  ln e0.035t

2  e0.105t

t

ln 2  19.8 years. 0.035

Amount after 10 years: A  1000e0.35  $1419.07

This is a logistic growth model. Matches graph (f).

8. Since A  750e0.105t, the time to double is given by 1500  750e0.105t, and we have

2  e0.035t ln 2  0.035t

4 1  e2x

ln 2  ln e0.105t ln 2  0.105t t

ln 2  6.60 years. 0.105

Amount after 10 years: A  750e0.10510  $2143.24

304

Chapter 3

Exponential and Logarithmic Functions

9. Since A  750ert and A  1500 when t  7.75, we have the following.

10. Since A  10,000ert and A  20,000 when t  12, we have

1500  750e7.75r

20,000  10,000e12r

2  e7.75r

2  e12r

ln 2  ln e7.75r

ln 2  ln e12r

ln 2  7.75r

ln 2  12r

r

ln 2  0.089438  8.9438% 7.75

r

Amount after 10 years: A  750e0.08943810  $1834.37

ln 2  0.057762  5.7762%. 12

Amount after 10 years: A  10,000e0.05776210  $17,817.97

11. Since A  500ert and A  $1505.00 when t  10, we have the following. 1505.00  r

12. Since A  600ert and A  19,205 when t  10, we have 19,205  600e10r

500e10r

19,205  e10r 600

ln1505.00500  0.110  11.0% 10

The time to double is given by 1000  500e0.110t t

ln 2  6.3 years. 0.110

ln

 ln e 19,205 600 

ln

 10r 19,205 600 

10r

r

ln19,205600  0.3466 or 34.66%. 10

The time to double is given by 1200  600e0.3466t t

13. Since A  Pe0.045t and A  10,000.00 when t  10, we have the following. 10,000.00 

14. Since A  Pe0.02t and A  2000 when t  10, we have 2000  Pe0.0210

Pe0.04510

P

10,000.00  P  $6376.28 e0.04510 The time to double is given by t 



15. 500,000  P 1  P



0.075 12



500,000 0.075 1220 1 12



500,000   $112,087.09 1.00625240

2000  $1637.46. e0.0210

The time to double is given by t 

ln 2  15.40 years. 0.045

1220

ln 2  2 years. 0.3466

16.



AP 1



500,000  P 1 

r n



nt

0.12 12

P  $4214.16



12(40)

ln 2  34.7 years. 0.02

Section 3.5

Exponential and Logarithmic Models

305

17. P  1000, r  11% n1

(a)

n  12

(b)

1  0.11t  2

1  0.11 12 

t ln 1.11  ln 2 t



12t ln 1 

ln 2  6.642 years ln 1.11

1  0.11 365  

365t ln 1 

365t



t

2

ln 2

12 ln1  0.11 12 

(d) Compounded continuously e0.11t  2



0.11  ln 2 365

0.11t  ln 2 ln 2

t

2

0.11  ln 2 12

n  365

(c)

12t

365 ln1 

0.11 365



t

 6.302 years

ln 2  6.301 years 0.11

18. P  1000, r  10.5%  0.105 (b) n  12

(a) n  1 ln 2  6.94 years ln1  0.105

t

t

(c) n  365 365 ln1  0.105 365 

3P  Pert

19.

12 ln1  0.105 12 

 6.63 years

(d) Compounded continuously ln 2

t

ln 2

t

 6.602 years

r

3  ert t

ln 3  rt

ln 3 (years) r

ln 2  6.601 years 0.105

2%

4%

6%

8%

10%

12%

54.93

27.47

18.31

13.73

10.99

9.16

ln 3 t r 20.

60

0

0.16 0

Using the power regression feature of a graphing utility, t  1.099r1. 21.

3P  P1  rt

r

3  1  rt ln 3  ln1  rt ln 3  t ln1  r ln 3 t ln1  r

t

ln 3 (years) ln1  r

2%

4%

6%

8%

10%

12%

55.48

28.01

18.85

14.27

11.53

9.69

 6.330 years

306

Chapter 3

22.

Exponential and Logarithmic Functions 23. Continuous compounding results in faster growth.

60

A  1  0.075 t  and A  e0.07t A 0.16

Amount (in dollars)

0 0

Using the power regression feature of a graphing utility, t  1.222r1.

A = e0.07t

2.00 1.75 1.50 1.25

A = 1 + 0.075 [[ t [[

1.00

t

2

4

6

8

10

Time (in years)

24. 2

(

1 C  Cek1599 2

25.

)

0.055 [[365t [[

A = 1 + 365

26.

1 C  Cek1599 2

0.5  ek1599 ln 0.5  ln 0

ln 0.5  k1599

10 0

1  ek1599 2

ek1599

A = 1 + 0.06 [[ t [[

k

512%

From the graph, compounded daily grows faster than 6% simple interest.

ln 0.5 1599

Given C  10 grams after 1000 years, we have

ln

1  ln ek1599 2

ln

1  k1599 2 k

y  10e ln 0.51599 1000

ln12 1599

Given y  1.5 grams after 1000 years, we have

 6.48 grams.

1.5  Ce ln121599 1000 C  2.31 grams.

27.

1 C  Cek5715 2

28.

1 C  Cek5715 2

0.5  ek5715

1  ek5715 2

ln 0.5  ln ek5715 ln 0.5  k5715 k

ln 0.5 5715

Given y  2 grams after 1000 years, we have 2  Ce ln 0.55715 1000 C  2.26 grams.

ln

1  ln ek5715 2

ln

1  k5715 2 k

ln12 5715

Given C  3 grams, after 1000 years we have y  3e ln125715 1000 y  2.66 grams.

29.

1 C  Cek24,100 2 0.5  ek24,100 ln 0.5  ln ek24,100 ln 0.5  k24,100 k

ln 0.5 24,100

Given y  2.1 grams after 1000 years, we have 2.1  Ce ln 0.524,100 1000 C  2.16 grams.

Section 3.5

30.

1 C  Cek24,100 2

y  aebx

31.

1  ln ek24,100 2

ln

1  k24,100 2

1 1  aeb0 ⇒ a  2 2

10  eb3

1 5  eb4 2

ln 10  3b ln 10  b ⇒ b  0.7675 3

10  e4b ln 10  ln e4b

Thus, y  e0.7675x .

ln12 k 24,100

307

y  aebx

32.

1  aeb0 ⇒ 1  a

1  ek24,100 2 ln

Exponential and Logarithmic Models

ln 10  4b

Given y  0.4 grams after 1000 years, we have

ln 10  b ⇒ b  0.5756 4

0.4  Ce ln1224,100 1000

Thus, y  12e0.5756x.

C  0.41 grams. y  aebx

33.

ln

y  aebx

34.

5  aeb0 ⇒ 5  a

1  aeb0 ⇒ 1  a

1  5eb4

1  eb3 4

1  e4b 5

ln

15  4b

14  ln e

ln

4  3b

ln15  b ⇒ b  0.4024 4

3b

1

ln14 b 3

Thus, y  5e0.4024x.

⇒ b  0.4621

Thus, y  e0.4621x .

35. P  2430e0.0029t (a) Since the exponent is negative, this is an exponential decay model. The population is decreasing.

(c) 2.3 million  2300 thousand 2300  2430e0.0029t

(b) For 2000, let t  0: P  2430 thousand people

2300  e0.0029t 2430

For 2003, let t  3: P  2408.95 thousand people ln

 0.0029t 2300 2430  t

ln23002430  18.96 0.0029

The population will reach 2.3 million (according to the model) during the later part of the year 2018. 36.

Country

2000

2010

Bulgaria

7.8

7.1

Canada

31.3

34.3

1268.9

1347.6

59.5

61.2

282.3

309.2

China United Kingdom United States —CONTINUED—

308

Chapter 3

Exponential and Logarithmic Functions

36. —CONTINUED— Canada:

(a) Bulgaria:

a  31.3

a  7.8

34.3  31.3eb10

7.1  7.8eb10 ln

7.1  10b ⇒ b  0.0094 7.8

ln

34.3  10b ⇒ b  0.00915 31.3

For 2030, use t  30.

For 2030, use t  30.

y  7.8e0.009430  5.88 million

y  31.3e0.0091530  41.2 million United States:

China:

ln

a  1268.9

a  282.3

1347.6  1268.9eb10

309.2  282.3eb10

1347.6  10b ⇒ b  0.00602 1268.9

ln

309.2  10b ⇒ b  0.0091 282.3

For 2030, use t  30.

For 2030, use t  30.

y  1268.9e0.0060230  1520.06 million

y  282.3e0.009130  370.9 million

United Kingdom: a  59.5 61.2  59.5eb10 ln

61.2  10b ⇒ b  0.00282 59.5

For 2030, use t  30. y  59.5e0.0028230  64.7 million (b) The constant b determines the growth rates. The greater the rate of growth, the greater the value of b. (c) The constant b determines whether the population is increasing b > 0 or decreasing b < 0. 37. y  4080ekt

y  10ekt

38.

65  10ek14

When t  3, y  10,000: 10,000  4080ek3 10,000  e3k 4080 ln

 3k 10,000 4080  k

ln10,0004080  0.2988 3

When t  24: y  4080e0.298824  5,309,734 hits

ln

 14k ⇒ k  0.1337 65 10 

For 2010, t  20: y  10e0.133720  $144.98 million

Section 3.5 39.

N  100ekt

Exponential and Logarithmic Models

N  250ekt

40.

280  250ek10

300  100e5k 3  e5k

1.12  e10k

ln 3  ln e5k

k

ln 3  5k

500  250e ln 1.1210 t 2  e ln 1.1210 t

N  100e0.2197t

ln 2 

200  100e0.2197t

41. R 

ln 2  3.15 hours 0.2197

t

1 t8223 e 1012 R

(a)



ln

1  5715k 2

1012 814

k

 

t 1012  ln 14 8223 8

ln12 5715

The ancient charcoal has only 15% as much radioactive carbon. 0.15C  Ce ln 0.55715 t

108   12,180 years old 12

14

ln 0.15 

1 t8223 1 e  11 (b) 1012 13

t

1012 et8223  11 13 

ln 2  61.16 hours ln 1.1210

1 C  Ce5715k 2

1 814

t  8223 ln

ln 101.12t

y  Cekt

42.

1 t8223 1 e  14 1012 8 et8223 

ln 1.12 10

N  250e ln 1.1210 t

ln 3 k  0.2197 5

t

ln 0.5 t 5715 5715 ln 0.15  15,642 years ln 0.5

 

t 1012  ln 8223 1311

t  8223 ln

 4797 years old 10 13  12 11

43. 0, 30,788, 2, 18,000 (a) m 

309

18,000  30,788  6394 20

a  30,788

(b)

32,000

18,000  30,788ek2

b  30,788

4500  e2k 7697

Linear model: V  6394t  30,788 ln

0

4 0

 2k 4500 7697  k

—CONTINUED—

(c)





4500 1 ln  0.268 2 7697

Exponential model: V  30,788e0.268t

The exponential model depreciates faster in the first two years.

310

Chapter 3

Exponential and Logarithmic Functions

43. —CONTINUED— (d)

t

1

3

V  6394t  30,788

$24,394

$11,606

V  30,788e

$23,550

$13,779

0.268t

(e) The linear model gives a higher value for the car for the first two years, then the exponential model yields a higher value. If the car is less than two years old, the seller would most likely want to use the linear model and the buyer the exponential model. If it is more than two years old, the opposite is true.

44. 0, 1150, 2, 550 (a) m 

550  1150  300 20

V  300t  1150 (c)

550  1150ek2

(b) ln

550 1150   2k ⇒ k  0.369

1200

V  1150e0.369t (d)

0

4 0

The exponential model depreciates faster in the first two years.

t

1

3

V  300t  1100

$850

$250

V  1150e0.369t

$795

$380

(e) The slope of the linear model means that the computer depreciates $300 per year, then loses all value in the third year. The exponential model depreciates faster in the first two years but maintains value longer. 45. St  1001  ekt 15  1001  ek1

(b)

85  100ek 85 100

 ek

0.85  ek ln 0.85  ln

S

Sales (in thousands of units)

(a)

ek

120 90 60 30 t 5 10 15 20 25 30

Time (in years)

k  ln 0.85 k  0.1625

(c) S5  1001  e0.16255  55.625  55,625 units

St  1001  e0.1625t 46. N  301  ekt (a)

N  19, t  20

N  25

(b)

25  301  e0.050t

19  301  e20k 30e20k  11 e20k 

11 30

 

11 ln e20k  ln 30 20k  ln

11 30 

k  0.050 So, N  301  e0.050.

5  e0.050t 30 ln

305   ln e

ln

305   0.050t

0.050t

t

ln530  36 days 0.050

Section 3.5 47. y  0.0266ex100 450, 70 ≤ x ≤ 116 2

(a)

Exponential and Logarithmic Models

48. (a)

311

0.9

0.04

4

7 0

70

115 0

(b) The average IQ score of an adult student is 100.

49. pt 

1000 1  9e0.1656t

(a) p5 

50. S 

1000  203 animals 1  9e0.16565 500 

(b)

(b) The average number of hours per week a student uses the tutor center is 5.4.

1000 1  9e0.1656t

(a)

500,000 1  0.6ekt 300,000 

1  0.6e4k 

5 3

0.6e4k 

2 3

1  9e0.1656t  2 9e0.1656t  1 e0.1656t

e4k 

1  9

k

1200

So, S  0

40 0

The horizontal asymptotes are p  0 and p  1000. The asymptote with the larger p-value, p  1000, indicates that the population size will approach 1000 as time increases.

51. R  log

I  log I since I0  1. I0

10 9

4k  ln

ln19 t  13 months 0.1656 (c)

500,000 1  0.6e4k

9 10

 

1 10 ln  0.0263 4 9

500,000 . 1  0.6e0.0263t

(b) When t  8: S

52. R  log

500,000  287,273 units sold. 1  0.6e0.02638

I  log I since I0  1. I0

(a) 7.9  log I ⇒ I  107.9  79,432,823

(a) R  log 80,500,000  7.91

(b) 8.3  log I ⇒ I  108.3  199,526,231

(b) R  log 48,275,000  7.68

(c) 4.2  log I ⇒ I  104.2  15,849

(c) R  log 251,200  5.40

53.   10 log

I where I0  1012 wattm2. I0

(a)   10 log

1010  10 log 102  20 decibels 1012

(b)   10 log

105  10 log 107  70 decibels 1012

(c)   10 log

108  10 log 104  40 decibels 1012

(d)   10 log

1  10 log 1012  120 decibels 1012

312

Chapter 3

54. I  10 log

Exponential and Logarithmic Functions

I where I0  1012 wattm2 I0

(a) 1011  10 log

  10 log

(b) 102  10 log

104  10 log 108  80 decibels 1012

(c) 104  10 log

55.

1011  10 log 101  10 decibels 1012

I I0

(d) 102  10 log

56.

 I  log 10 I0

102  10 log 1010  100 decibels 1012

  10 log10 1010 

10 10  10log II0 1010 

102  10 log 1014  140 decibels 1012

I I0

I I0

I  I01010

I I0

% decrease 

I0108.8  I0107.2  100  97% I0108.8

I  I010 10 % decrease 

I0109.3  I0108.0  100  95% I0109.3

57. pH  log H

58. pH  log H

log2.3  105  4.64 59.

5.8  log H

log 11.3  106  4.95 60.

5.8  log H

3.2  log H

103.2  H



105.8  10log H

H  6.3  104 mole per liter

105.8  H

H  1.58  106 mole per liter 61.

2.9  log H

2.9  log H

H  102.9 for the apple juice 8.0  log H

8.0  log H

H  108 for the drinking water 102.9 108

 105.1 times the hydrogen ion concentration of drinking water

63. t  10 ln

T  70 98.6  70

At 9:00 A.M. we have: t  10 ln

85.7  70  6 hours 98.6  70

From this you can conclude that the person died at 3:00 A.M.

62.

pH  1  log H

  pH  1  log H

10pH1  H

10pH1  H

10pH  10  H

The hydrogen ion concentration is increased by a factor of 10.

Section 3.5



Pr 12

64. Interest: u  M  M 



Principal: v  M 

Pr 12

1  12 r

1  12 r

313

12t

12t

(a) P  120,000, t  35, r  0.075, M  809.39

(c) P  120,000, t  20, r  0.075, M  966.71

800

800

u

u

v

v 0

35

0

0

20 0

(b) In the early years of the mortgage, the majority of the monthly payment goes toward interest. The principal and interest are nearly equal when t  26 years.



65. u  120,000

(a)

Exponential and Logarithmic Models

0.075t 1 1 1  0.07512





12t

1



150,000

0

The interest is still the majority of the monthly payment in the early years. Now the principal and interest are nearly equal when t  10.729  11 years.

24

(b) From the graph, u  $120,000 when t  21 years. It would take approximately 37.6 years to pay $240,000 in interest. Yes, it is possible to pay twice as much in interest charges as the size of the mortgage. It is especially likely when the interest rates are higher.

0

66. t1  40.757  0.556s  15.817 ln s t2  1.2259  0.0023s2 (a) Linear model: t3  0.2729s  6.0143 Exponential model: t4  1.5385e0.02913s or t4  1.53851.0296s (b)

t2

25

t4 t3

20

t1

100 0

(c)

s

30

40

50

60

70

80

90

t1

3.6

4.6

6.7

9.4

12.5

15.9

19.6

t2

3.3

4.9

7.0

9.5

12.5

15.9

19.9

t3

2.2

4.9

7.6

10.4

13.1

15.8

18.5

t4

3.7

4.9

6.6

8.8

11.8

15.8

21.2

Note: Table values will vary slightly depending on the model used for t4.











S2  3.4  3.3  5  4.9  7  7  9.3  9.5  12  12.5 

15.8  15.9  20  19.9  1.1 S3  3.4  2.2  5  4.9  7  7.6  9.3  10.4  12  13.1 

15.8  15.8  20  18.5  5.6 S4  3.4  3.7  5  4.9  7  6.6  9.3  8.9  12  11.9 

15.8  15.9  20  21.2  2.6

(d) Model t1: S1  3.4  3.6  5  4.6  7  6.7  9.3  9.4  12  12.5  15.8  15.9  20  19.6  2.0 Model t2: Model t3: Model t4:

The quadratic model, t2, best fits the data.

314

Chapter 3

Exponential and Logarithmic Functions

67. False. The domain can be the set of real numbers for a logistic growth function.

68. False. A logistic growth function never has an x-intercept.

69. False. The graph of f x is the graph of gx shifted upward five units.

70. True. Powers of e are always positive, so if a > 0, a Gaussian model will always be greater than 0, and if a < 0, a Gaussian model will always be less than 0.

71. (a) Logarithmic

72. Answers will vary.

(b) Logistic (c) Exponential (decay) (d) Linear (e) None of the above (appears to be a combination of a linear and a quadratic) (f) Exponential (growth) 73. 1, 2, 0, 5

74. 4, 3, 6, 1 y

(a)

y

(a) (0, 5)

5

6 4

(− 6, 1)

3 2

(− 1, 2)

−6

2 x

−4

2

−2

−1

2

3

−1

−6

(b) d  0  12  5  22  12  32  10 (c) Midpoint:

(b) d  6  42  1  32

12 0, 2 2 5   21, 72

 100  16  116  229 (c) Midpoint:

3 52  3 (d) m  0  1 1

76. 10, 4, 7, 0

y

y

(a)

8

6

(10, 4)

6 4

4

(3, 3)

2

2 −2 −2

x 2

4

6

8 10

14

(14, − 2)

−4

(7, 0) −2

2

4

6

x 8

10

−2 −4

−6

−6

−8

(b) d  14  32  2  32  112  52  146 (c) Midpoint: (d) m 

62 4, 32 1  1, 1

4 3  1 2   4  6 10 5

(d) m 

75. 3, 3, 14, 2 (a)

(4, −3)

−4

x 1

6

−2

1 −3

4

3 2 14, 3  22  172, 12

5 2  3  14  3 11

(b) d  10  72  4  02  9  16  25  5 (c) Midpoint: (d) m 

7 2 10, 0 2 4  172, 2

4 40  10  7 3

Section 3.5

77.

12,  41, 34, 0

78.

y

(a)

Exponential and Logarithmic Models

315

73, 16,  32,  31 y

(a) 2

1

1

1 2

( ( 3 ,0 4

(

1 , −1 2 4

(

3

3

( 2

2

3

(

 32  37   31  61 1  3     9.25 2

2

2

2

2

14 0  14  1 (d) m  34  12 14

79. y  10  3x



232 73, 132 16  56,  121  13  16 12 1   23  73 3 6

80. y  4x  1

y 3

Line

10

2

Slope: m  4

8 6

y-intercept: 0, 10

y-intercept: 0, 1

4

−3

−2

1

2

3

−1 −2

x

−2 −2

2

6

81. y  2x2  3

8

10 12

−3

82. y  2x2  7x  30

y

y  2x  02  3

2

−6

x

−1

2

Parabola

2

(c) Midpoint:

(d) m 

y

Slope: m  3

2

(b) d 

12 2 34, 142  0  58,  81

Line

2

−2

34  21  0   41 1 1 1         4 4 8

(b) d 

(c) Midpoint:

1

− 2, − 1

2

−1 2

x

−1

x

1

−1

( 73 , 16 (

−4

−2

x 2

4

6

−2

Vertex: 0, 3

 2x  5x  6  2x  4   7 2

y x

−4

2

−5

289 8

4

8

Parabola

74,  2898  5 x-intercepts:  2, 0, 6, 0 Vertex:

83. 3x2  4y  0 3x2  4y 4 3y

5

x2 

Parabola

4 3 2

Vertex: 0, 0

1

1 Focus: 0, 3 

− 4 −3 − 2 − 1

1

Directrix: y   3

y

x2  8y

6

Parabola

− 35

84. x2  8y  0

y 7

− 30

x 1

2

3

4

2

−6

−4

x

4 −2

Vertex: 0, 0

−4

Focus: 0, 2

−6

Directrix: y  2

−8 − 10

6

316

Chapter 3

85. y 

Exponential and Logarithmic Functions

4 1  3x

86. y 

Vertical asymptote: x 

x2 4  x  2  x  2 x  2

Vertical asymptote: x  2

1 3

Slant asymptote: y  x  2

Horizontal asymptote: y  0

y

y 10 3

8 6

1 −3

−2

−1

4 x 1

2

2

−1 −8

−2

−6

x

−4

4

−3

87. x2   y  82  25

88. x  42   y  7  4

y

x  42  y  7  4

14

Circle

12

Center: 0, 8

x  42    y  3

10 8

Radius: 5

Parabola

6 4

Vertex: 4, 3

2 −8 −6 −4 −2

y

x 2

4

6

8

x

−2

2 −2

P   14

−4

Focus: 4, 3.25

−6

Directrix: y  2.75

−8 − 10

89. f x  2x1  5

90. f x  2x1  1

Horizontal asymptote: y  5 5

x f x

3

5.02

5.06

1

Horizontal asymptote: y  1 0

5.3

5.5

1 6

3 9

5

x

21

f x

2 3

y

1

0

1

2

2

 32

 54

8

y

14

2

12

x

−2

10 8 6

−4

4

−6

2 −6 −4 −2

−8

x 2

4

6

8 10

− 10

91. f x  3x  4

y 5 4 3 2 1

Horizontal asymptote: y  4 x

4

2

1

0

1

2

f x

3.99

3.89

3.67

3

1

5

− 6 − 5 − 4 − 3 − 2 −1 −2 −3 −5

x 2 3 4

9

4

6

8

Review Exercises for Chapter 3 92. f x  3x  4

317

y

Horizontal asymptote: y  4

5

x

2

1

0

1

2

f x

389

323

3

1

5

2 1 − 5 − 4 −3 −2 − 1

x 1 2 3 4 5

−2 −3 −4 −5

93. Answers will vary.

Review Exercises for Chapter 3 1.

f x  6.1x

2.

f x  30x

3. f x  20.5x

f 3   303  361.784

f 2.4  6.12.4  76.699 4. f x  1278x5

5.

f   20.5  0.337

f x  70.2x f  11   70.211 

f 1  127815  4.181

f x  145x

6.

f 0.8  1450.8  3.863

 1456.529 7. f x  4x

8. f x  4x

9. f x  4x

Intercept: 0, 1

Intercept: 0,1

Intercept: 0, 1

Horizontal asymptote: x-axis

Horizontal asymptote: y  0

Horizontal asymptote: x-axis

Increasing on:  , 

Decreasing on:  , 

Decreasing on:  , 

Matches graph (c).

Matches graph (d).

Matches graph (a).

10. f x  4x  1

12. f x  4x, gx  4x  3

11. f x  5x

Intercept: 0, 2

gx  5x1

Horizontal asymptote: y  1

Since gx  f x  1, the graph of g can be obtained by shifting the graph of f one unit to the right.

Increasing on:  , 

Because gx  f x  3, the graph of g can be obtained by shifting the graph of f three units downward.

Matches graph (b). 2 2 14. f x  3  , gx  8  3 

1 13. f x  2 

x

x

gx   12 

x2

Because gx  f x  8, the graph of g can be obtained by reflecting the graph of f in the x-axis and shifting the graph of f eight units upward.

Since gx  f x  2, the graph of g can be obtained by reflecting the graph of f about the x-axis and shifting f two units to the left. 15. f x  4x  4

y

Horizontal asymptote: y  4

8

x

1

0

1

2

3

f x

8

5

4.25

4.063

4.016 2 x −4

x

−2

2

4

318

Chapter 3

Exponential and Logarithmic Functions 17. f x  2.65x1

16. f x  4x  3

Horizontal asymptote: y  0

Horizontal asymptote: y  3 x

2

1

0

1

2

f x

3.063

3.25

4

7

19

x

2

1

0

1

2

f x

0.377

1

2.65

7.023

18.61

y

y −6

1 1

2

3

6

9

−3

x

−6 −5 −4 −3 −2 −1

x

−3

3

−6

−2 −3

−9

−4 −5

− 12

−6

− 15

−7 −8

19. f x  5x2  4

18. f x  2.65x1

Horizontal asymptote: y  4

Horizontal asymptote: y  0 x

3

1

0

1

3

x

1

0

1

2

3

f x

0.020

0.142

0.377

1

7.023

f x

4.008

4.04

4.2

5

9

y

y 8

5 4

6

3 2 2

1 −3

−2

x

−1

1

2

x

3

−4

−1

−2

2

1 21. f x  2 

x

20. f x  2x6  5 Horizontal asymptote: y  5

4

 3  2x  3

Horizontal asymptote: y  3

x

0

5

6

7

8

9

x

2

1

0

1

2

f x

4.984

4.5

4

3

1

3

f x

3.25

3.5

4

5

7

y

y 8

6 4

6 2 −2

x −2

2

4

6

10 2

−4 −6

x −4

−2

2

4

Review Exercises for Chapter 3 22. f x  18 

x2

5

y

Horizontal asymptote: y  5

2 x

x

3

2

1

0

2

f x

3

4

4.875

4.984

5

−4

2

4

−2 −4 −6

23.

3x2  19

24.

3x2  32 x  2  2

13 x2  81 13 x2  34 13 x2  13 4

x  4

e5x7  e15

25.

e82x  e3

26.

8  2x  3

5x  7  15

2x  11

5x  22 x

x  2  4

x

22 5

11 2

x  2 27. e8  2980.958

28. e58  1.868

29. e1.7  0.183

30. e0.278  1.320

32. hx  2  ex2

31. hx  ex2 x

2

1

0

1

2

x

2

1

0

1

2

hx

2.72

1.65

1

0.61

0.37

y

0.72

0.35

1

1.39

1.63

y

y 3

7 6 5 4

−4 −3

3

−1

x 1

2

3

4

−2

2

−3 −4 −3 −2 −1

−4

x 1

2

3

4

−5

33. f x  e x2

34. st  4e2t, t > 0

x

3

2

1

0

1

t

1 2

1

2

3

4

f x

0.37

1

2.72

7.39

20.09

y

0.07

0.54

1.47

2.05

2.43

y y 7 5

6

4 3 2

2

1 − 6 − 5 − 4 −3 − 2 − 1

x 1

1

2 t 1

2

3

4

5

319

320

Chapter 3



35. A  3500 1 

Exponential and Logarithmic Functions 0.065 n



10n

or A  3500e0.06510

n

1

2

4

12

365

Continuous Compounding

A

$6569.98

$6635.43

$6669.46

$6692.64

$6704.00

$6704.39



36. A  2000 1 

0.05 n



30n

or A  2000e0.0530

n

1

2

4

12

365

Continuous

A

$8643.88

$8799.58

$8880.43

$8935.49

$8962.46

$8963.38

37. Ft)  1  et3 (a) F 12  0.154

(b) F2  0.487

(c) F5  0.811

3 38. Vt  14,000 4

t

(a)

39. (a) A  50,000e0.087535  $1,069,047.14

15,000

(b) The doubling time is

0

ln 2  7.9 years. 0.0875

10 0

(b) V2  14,00034   $7875 2

(c) According to the model, the car depreciates most rapidly at the beginning. Yes, this is realistic. 40. Q  10012 

t14.4

(a) For t  0: Q  10012 

014.4

(c)

 100 grams

(b) For t  10: Q  10012 

1014.4

 61.79 grams

Mass of 241Pu (in grams)

Q

100 80 60 40 20 t 20

40

60

80 100

Time (in years)

41.

43  64

42.

log4 64  3 44.

e0  1 ln 1  0

2532  125 3 log25 125  2

45.

f x  log x f 1000  log 1000  log 103  3

43.

e0.8  2.2255 . . . ln 2.2255 . . .  0.8

46. log9 3  log9 912  21

Review Exercises for Chapter 3 48. f x  log4 x

47. gx  log2 x g

1 8



f

   log2 23  3

log2 18

1 4



log4 14

321

49. log4x  7  log4 14  1

x  7  14 x7

50. log83x  10  log8 5

51. lnx  9  ln 4

52. ln2x  1  ln11

x94

3x  10  5

2x  1  11

x  5

3x  15

2x  12 x6

x5 53. gx  log7 x ⇒ x  7y Domain: 0, 

3

gx

1 7

1

1

0

55. f x  log

7 1

x

1 −2

49

−1

x 1

2

3

2 1

50

x −1

x1

4

−1

1

−1

2

3

4

5

4

6

8

10

−2

x-intercept: 1, 0

−2

2

3

log5 x  0

2

Vertical asymptote: x  0

y

Domain: 0, 

4

x-intercept: 1, 0

x

54. gx  log5 x ⇒ 5y  x

y

−3

Vertical asymptote: x  0

3x  ⇒ 3x  10

y

⇒ x  310 y

Domain: 0, 

1 25

1 5

1

5

25

gx

2

1

0

1

2

56. f x  6  log x

1

x

0.03

0.3

3

30

f x

2

1

0

1

8 6

log x  6

2

−1

10

6  log x  0

3

Vertical asymptote: x0

y

Domain: 0, 

y

x-intercept: 3, 0

x

3

4

2

x  106

x 2

4

5

−2

x  0.000001

−1 −2

x 2 −2

x-intercept: 0.000001, 0

−3

Vertical asymptote: x  0

57. f x  4  logx  5

x

Domain: 5, 

4

3

2

x

1

2

4

6

8

10

f x

6

6.3

6.6

6.8

6.9

7

1

0

y

1 7

f x

x-intercept: 9995, 0

4

3.70

3.52

3.40

3.30

3.22

6 5 4

Since 4  logx  5  0 ⇒ logx  5  4

3 2

x  5  104 x  10  5  9995. 4

Vertical asymptote: x  5

1 −6

−4 −3 −2 −1

x 1

2

322

Chapter 3

Exponential and Logarithmic Functions

58. f x  logx  3  1

y

Domain: 3,  logx  3  1  0 logx  3  1 x3

x

4

5

6

7

8

f x

1

1.3

1.5

1.6

1.7

5 4 3 2 1 x −1

101

1 2

4 5 6 7 8 9

−2 −3 −4 −5

x  3.1 x-intercept: 3.1, 0 Vertical asymptote: x  3 59. ln 22.6  3.118

60. ln 0.98  0.020

61. ln e12  12

62. ln e7  7

63. ln7  5  2.034

64. ln

65. f x  ln x  3 6 5

x-intercept: ln x  3  0

4

ln x  3

4

lnx  3  0

2

x  3  e0

2

x 2

x4

1

e3, 0

y

Domain: 3, 

3

x  e3



66. f x  lnx  3

y

Domain: 0, 

 83   1.530

x

−1

1

2

3

4

5

Vertical asymptote: x  0

4

x-intercept: 4, 0

−4

Vertical asymptote: x  3

1

2

3

1 2

1 4

x

3.5

4

4.5

5

5.5

f x

3

3.69

4.10

2.31

1.61

y

0.69

0

0.41

0.69

0.92



67. hx  lnx2  2 ln x

Domain:  , 0  0,

4

x-intercepts: ± 1, 0

2

3

Domain: 0, 

3

1 4

1 −4 −3 −2 −1

y

68. f x  14 ln x

y

2

3

1 x

ln x  0

x 1

2

ln x  0

4

1

−3

3

4

5

−2

x1

−4

2

−1

x  e0

−3

x-intercept: 1, 0

69.

x

± 0.5

±1

±2

y

1.39

0

1.39 2.20

±3

h  116 loga  40  176 h55  116 log55  40  176  53.4 inches

8

−2

x

Vertical asymptote: x  0

6

±4

Vertical asymptote: x  0

2.77

70. s  25 

13 ln1012 ln 3

 27.16 miles

x

1 2

1

3 2

2

5 2

3

y

0.17

0

0.10

0.17

0.23

0.27

71. log4 9  log4 9 

log 9  1.585 log 4 ln 9  1.585 ln 4

6

Review Exercises for Chapter 3

72. log12 200  log12 200 

log 200  2.132 log 12

73. log12 5 

ln 200  2.132 ln 12

75. log 18  log2

log12 5 

log 5  2.322 log12

 32

76. log2

ln 0.28  1.159 ln 3

log3 0.28 

1  log2 1  log2 12  0  log22 12

 log 2  2 log 3

 2 log2 22  log2 3  2 

 1.255

77. ln 20  ln22

log 0.28  1.159 log 3

74. log3 0.28 

ln 5  2.322 ln12

 3

log 3 log 2

 3.585

 5

78. ln 3e4  ln 3  ln e4

79. log5 5x2  log5 5  log5 x2

 ln 3  4

 2 ln 2  ln 5  2.996

 1  2 log5 x

 2.90

80. log10 7x 4  log 7  log x 4

81. log3

 log 7  4 log x

6 3

x

3 x  log3 6  log3 

 log33

 1  log3 2 

86. ln

 log7 x12  log7 4

1 log3 x 3



1 log7 x  log7 4 2

1 log3 x 3

y 4 1

2

 2 ln

y 4 1

 lnx  3  ln x  ln y

 2 ln y  1  2 ln 4

 lnx  3  ln x  ln y

 2 ln y  1  ln 16, y > 1 88. log6 y  2 log6 z  log6 y  log6 z2

87. log2 5  log2 x  log2 5x

 log6

91.

 log7 x  log7 4

 ln 3  ln x  2 ln y

x xy 3  lnx  3  ln xy

89. ln x 

4

84. ln 3xy2  ln 3  ln x  ln y 2

 2 ln x  2 ln y  ln z

85. ln

x

 2  log3 x13

 log3 3  log3 2 

83. ln x2y 2z  ln x2  ln y 2  ln z

82. log7

 

x 1 4 y  ln ln y  ln x  ln  4 4  y

1 3 x  4  log y7 log8x  4  7 log8 y  log8  8 3 3  log8 y7  x  4

323

y z2

90. 3 ln x  2 lnx  1  ln x3  lnx  12  ln x3x  12

92. 2 log x  5 logx  6  log x2  logx  65  log

x2 x  65

 log

1 x2x  65

324

93.

Chapter 3

Exponential and Logarithmic Functions

1 ln2x  1  2 lnx  1  ln2x  1  lnx  12 2  ln

2x  1

x  12

94. 5 lnx  2  lnx  2  3 ln x  lnx  25  lnx  2  ln x3  lnx  25  lnx  2  ln x3

 lnx  25  ln x3x  2  ln

95. t  50 log

x  25 x3x  2

18,000 18,000  h

(a) Domain: 0 ≤ h < 18,000 (b)

(c) As the plane approaches its absolute ceiling, it climbs at a slower rate, so the time required increases.

100

(d) 50 log

0

18,000  5.46 minutes 18,000  4000

20,000 0

Vertical asymptote: h  18,000 96. Using a calculator gives s  84.66  11 ln t.

ex  6

100. ln

ex

1 98. 6x  216

97. 8x  512 8x  83

6x  63

x3

x  3

101. log4 x  2

 ln 6

103. ln x  4

61

x  e4

x  4  16

6log6 x



x  16

x  ln 6  1.792 ex  12

105.

x  e3  0.0498

106.

ln ex  ln12

e3x2  40 ln e3x2  ln 40 3x  2  ln 40 x

ln 40  2  0.563 3

107. e4x  ex

109. 2x  13  35 2x  22 x  log2 22 

4x  x 2  3

3x  ln 25 x

14e3x2  560

2 3

e3x  25 ln e3x  ln 25

x  ln 12  2.485

108.

x  ln 3

102. log6 x  1

2

104. ln x  3

99. ex  3

log 22 ln 22 or log 2 ln 2

x  4.459

0  x 2  4x  3 0  x  1x  3

ln 25  1.073 3

x  1 or x  3

110. 6x  28  8 6x  20 log6 6x  log6 20 x  log6 20 x

ln 20  1.672 ln 6

Review Exercises for Chapter 3 111. 45x  68

112. 212x  190

5x  17

12x  95

ln 5x  ln 17

ln 12x  ln 95

x ln 5  ln 17

x ln 12  ln 95

ln 17  1.760 ln 5

x

x

113. e2x  7e x  10  0 ex  2

ex  2ex  4  0 ex  5

or

ln e x  ln 2

ex  2

ln e x  ln 5

x  ln 2  0.693

x  ln 5  1.609

115. 20.6x  3x  0

3x 

e8.2

x

x  1.386

 x. −12

6 −3

12

Graph y1  4e1.2x and y2  9. −6

The graphs intersect at x  0.676.

18

−6

6 −2

−2

120. ln 5x  7.2 5x  x

e8.2  1213.650 3

9

40.2x

118. 4e1.2x  9

16

Graph y1  25e0.3x and y2  12.



x  0.693

The x-intercepts are at x  7.038 and at x  1.527.

−10

119. ln 3x  8.2

x  ln 4

10

The x-intercepts are at x  0.392 and at x  7.480.

117. 25e0.3x  12

ex  4

x  ln 2

Graph y1  −10

The graphs intersect at x  2.447.

or

116. 40.2x  x  0

10

Graph y1  20.6x  3x.

e8.2

ln 95  1.833 ln 12

e2x  6ex  8  0

114.

e x  2e x  5  0

eln 3x

325

121. 2 ln 4x  15

e7.2

ln 4x 

7.2

e  267.886 5

15 2

eln 4x  e7.5 4x  e7.5 1 x  e7.5  452.011 4

122. 4 ln 3x  15 ln 3x 

123. ln x  ln 3  2

15 4

x

e154 3

 14.174

lnx  8  3

x 2 3

1 lnx  8  3 2

elnx3  e2

lnx  8  6

x  e2 3

x  8  e6

ln

3x  e154

124.

x  e6  8  395.429

x  3e  22.167 2

326 125.

Chapter 3

Exponential and Logarithmic Functions

lnx  1  2

126. ln x  ln 5  4

1 lnx  1  2 2

ln

lnx  1  4 elnx1



x 4 5 x  e4 5

e4

x  5e4  272.991

x  1  e4 x  e4  1  53.598 log8x  1  log8x  2  log8x  2

127.

log8x  1  log8 x1

128. log6x  2  log6 x  log6x  5

x2

x  2

log6

x x 2  log x  5 6

x2 x5 x

x2 x2

x  2  x2  5x

x  1x  2  x  2

0  x2  4x  2

x2  x  2  x  2

x  2 ± 6, Quadratic Formula

x2  0

Only x  2  6  0.449 is a valid solution.

x0 Since x  0 is not in the domain of log8x  1 or of log8x  2, it is an extraneous solution. The equation has no solution. 129. log1  x  1

130. logx  4  2

1  x  10

x  4  102

1

1 1  10 x

x  100  4

x  0.900

x  104

131. 2 lnx  3  3x  8

132. 6 logx 2  1  x  0

Graph y1  2 lnx  3  3x and y2  8.

Graph y1  6 logx 2  1  x. 12

10

(1.64, 8) −8

−9

16

9

−4

−2

The graphs intersect at approximately 1.643, 8. The solution of the equation is x  1.643. 133. 4 lnx  5  x  10 Graph y1  4 lnx  5  x and y2  10. 11

−6

12 −1

The graphs do not intersect. The equation has no solution.

The x-intercepts are at x  0, x  0.416, and x  13.627.

Review Exercises for Chapter 3 135. 37550  7550e0.0725t

134. x  2 logx  4  0

3  e0.0725t

Let y1  x  2 logx  4.

ln 3  ln e0.0725t

12

ln 3  0.0725t −8

t

16 −4

ln 3  15.2 years 0.0725

The x-intercepts are at x  3.990 and x  1.477. 136.

S  93 logd  65

137. y  3e2x3

283  93 logd  65

Exponential decay model

218  93 logd

Matches graph (e).

logd 

218 93

d  1021893  220.8 miles 139. y  lnx  3

138. y  4e2x3 Exponential growth model

Logarithmic model

Matches graph (b).

Vertical asymptote: x  3 Graph includes 2, 0 Matches graph (f).

140. y  7  logx  3

141. y  2ex4 3 2

142. y 

Logarithmic model

Gaussian model

Vertical asymptote: x  3

Matches graph (a).

Logistics growth model Matches graph (c).

Matches graph (d). 143.

y  aebx

144.

2  aeb0 ⇒ a  2 3

2eb4

1.5  e4b ln 1.5  4b

⇒ b  0.1014

Thus, y  2e0.1014x.

6 1  2e2x

y  aebx 1 1  aeb0 ⇒ a  2 2 1 5  eb5 2 10  e5b ln 10  5b ln 10 b 5 b  0.4605 1 y  e0.4605x 2

327

328

Chapter 3

Exponential and Logarithmic Functions

P  3499e0.0135t

145.

4.5 million  4500 thousand 4500 

ln

y  Cekt

146.

1 C  Ce250,000k 2

3499e0.0135t

4500  e0.0135t 3499

ln

1  ln e250,000k 2

 0.0135t 4500 3499 

ln

1  250,000k 2

t

ln45003499  18.6 years 0.0135

k

ln12 250,000

When t  5000, we have

According to this model, the population of South Carolina will reach 4.5 million during the year 2008.

y  Ce ln12250,000 5000  0.986C  98.6%C. After 5000 years, approximately 98.6% of the radioactive uranium II will remain.

147. (a) 20,000  10,000er5 2  e5r

2

40 ≤ x ≤ 100

1400  2000e3k

ln 2  5r

(a) Graph y1  0.0499ex71 128. 2

7  e3k 10

ln 2 r 5 r  0.138629

3k  ln

 13.8629% (b) A 

149. y  0.0499ex71 128,

148. N0  2000 and N3  1400 so N  2000ekt and:

k

10,000e0.138629

 $11,486.98

0.05

107 

ln710  0.11889 3

40

100 0

(b) The average test score is 71.

The population one year ago: N4  2000e0.118894  1243 bats

150. N 

157 1  5.4e0.12t

(a) When N  50: 50 

(b) When N  75: 157 1  5.4e0.12t

75 

1  5.4e0.12t 

157 50

1  5.4e0.12t 

5.4e0.12t 

107 50

5.4e0.12t 

e0.12t 

107 270

e0.12t 

0.12t  ln t

107 270

ln107270  7.7 weeks 0.12

157 1  5.4e0.12t 157 75 82 75 82 405

0.12t  ln t

82 405

ln82405  13.3 weeks 0.12

Problem Solving for Chapter 3

  10 log

151.

125  10 log 12.5  log 1012.5 

10  I

152. R  log I since I0  1.

16



I 1016

329

(a) log I  8.4



I  108.4  251,188,643 (b) log I  6.85

10  I

16

I  106.85  7,079,458 (c) log I  9.1

I 1016

I  109.1  1,258,925,412

I  103.5 wattcm2

154. False. ln x  ln y  lnxy  lnx  y

153. True. By the inverse properties, logb b2x  2x.

155. Since graphs (b) and (d) represent exponential decay, b and d are negative. Since graph (a) and (c) represent exponential growth, a and c are positive.

Problem Solving for Chapter 3 1. y  ax 0.5x

7

y2  1.2x

5

y3  2.0x

3

y1 

2. y1  ex

y

y2 

y3

6

y4  x

1

2

3

y4 0

6 0



y5  x

y1 −4 −3 −2 −1

y2 y5

y4  x

y2

2

y1

y3

y3  x3

y4

4

24

x2

x

The function that increases at the fastest rate for “large” values of x is y1  ex. (Note: One of the intersection points of y  ex and y  x3 is approximately 4.536, 93 and past this point ex > x3. This is not shown on the graph above.)

4

The curves y  0.5x and y  1.2x cross the line y  x. From checking the graphs it appears that y  x will cross y  ax for 0 ≤ a ≤ 1.44. 3. The exponential function, y  ex, increases at a faster rate than the polynomial function y  xn.

4. It usually implies rapid growth.

5. (a) f u  v  auv

6. f x 2  g x 2 

e

 ex 2



e

 2  e2x e2x  2  e2x  4 4



4 4

 au

 av

 f u  f v (b) f 2x  a2x  ax2

(b)

6

y = ex

2x

  e

x

2

 ex 2

 

1

 f x 2 7. (a)

x

(c)

6

6

y = ex

y1

y = ex

y2 −6

6 −2

−6

6 −2

−6

6

y3 −2



2



330

Chapter 3

Exponential and Logarithmic Functions

x x2 x3 x4    1! 2! 3! 4!

8. y4  1 

f x  e x  ex

9.

6

y4

y = ex

−6

y  e x  ex x

2

ey



3

ey

1

e2y  1 x ey

6 −2

x

− 4 − 3 − 2 −1

xe y  e2y  1

As more terms are added, the polynomial approaches ex.

1

2

3

4

−4

e 2y  xe y  10

x x2 x3 x4 x5     . . . 1! 2! 3! 4! 5!

ex  1 

y

4

ey 

x ± x2  4 2

Quadratic Formula

Choosing the positive quantity for e y we have



y  ln

ax  1 , a > 0, a  1 ax  1

10. f x 

x







x  x2  4 x  x2  4 . Thus, f 1x  ln . 2 2

11. Answer (c). y  61  ex 2 2

The graph passes through 0, 0 and neither (a) nor (b) pass through the origin. Also, the graph has y-axis symmetry and a horizontal asymptote at y  6.

ay  1 ay  1

xay  1  ay  1 xay  ay  x  1 ayx  1  x  1 x1 x1 ln

x1 y  loga  x1





xx  11 ln a

 f 1x

12. (a) The steeper curve represents the investment earning compound interest, because compound interest earns more than simple interest. With simple interest there is no compounding so the growth is linear. (b) Compound interest formula: A  5001  0.07 1 

1t

 5001.07t

Simple interest formula: A  Prt  P  5000.07t  500

A Compounded Interest

Growth of investment (in dollars)

ay 

(c) One should choose compound interest since the earnings would be higher.

13. y1  c1

12



1 c1 2

tk1

tk1

and y2  c2



1  c2 2



c1 1  c2 2

12

tk2

ln c1  ln c2  t t

1

k1  k1  ln12 2

1000

Simple Interest t 5 10 15 20 25 30

Time (in years)

B0  500

tk2 tk1

2

2000

200  500ak2

1 2

3000

14. B  B0akt through 0, 500 and 2, 200

tk2

cc   kt  kt  ln12

ln

4000

1

ln c1  ln c2 1k2  1k1 ln12

2  a2k 5 loga

25  2k 

1 2 loga k 2 5 B  500a 12 loga 25 t  500 a log a 25 t2  500

25

t2

Problem Solving for Chapter 3 15. (a) y  252.6061.0310t

16. Let loga x  m and logab x  n. Then x  am and x  abn.

(b) y  400.88t  1464.6t  291,782 2

(c)

am 

2,900,000

y2

amn 

a b

amn1 

1 b

y1 0 200,000

ab

n

85

(d) Both models appear to be “good fits” for the data, but neither would be reliable to predict the population of the United States in 2010. The exponential model approaches infinity rapidly.

loga

1 m  1 b n

1  loga

1 m  b n

1  loga

1 loga x  b logab x

ln x2  ln x2

17.

ln x2  2 ln x  0 ln xln x  2  0 ln x  0 or ln x  2 x  1 or

x  e2

18. y  ln x y1  x  1 y2  x  1  12x  12 y3  x  1  12x  12  13x  13 (a)

(b)

4

y1 −3

(c)

4

y = ln x

4

y = ln x 9

−3

−4

y3 9

y2

y = ln x

−3

9

−4

−4

19. y 4  x  1  12x  12  13x  13  14x  14

4

y = ln x

The pattern implies that ln x  x  1  12x  12  13x  13  14x  14  . . . .

−3

9

y4 −4

20. y  abx

y  axb

ln y  lnabx

ln y  lnax b

ln y  ln a  ln bx

ln y  ln a  ln x b

ln y  ln a  x ln b

ln y  ln a  b ln x

ln y  ln bx  ln a

ln y  b ln x  ln a

Slope: m  ln b

Slope: m  b

y-intercept: 0, ln a

y-intercept: 0, ln a

21. y  80.4  11 ln x 30

100

1500 0

y300  80.4  11 ln 300  17.7 ft3min

331

332

Chapter 3

Exponential and Logarithmic Functions

22. (a)

450  15 cubic feet per minute 30 15  80.4  11 ln x

(b)

11 ln x  65.4 ln x  x

V  xh

x  382

e65.411

9

0

Let x  floor space in square feet and h  30 feet. 11,460  x30

65.4 11

x  382 cubic feet of air space per child. 23. (a)

(c) Total air space required: 38230  11,460 cubic feet

If the ceiling height is 30 feet, the minimum number of square feet of floor space required is 382 square feet.

24. (a)

9

36

0

9

0

0

(b) The data could best be modeled by a logarithmic model.

(b) The data could best be modeled by an exponential model.

(c) The shape of the curve looks much more logarithmic than linear or exponential.

(c) The data scatter plot looks exponential.

(d) y  2.1518  2.7044 ln x

(d) y  3.1141.341x 36

9

0 0

9 0

9 0

(e) The model graph hits every point of the scatter plot. (e) The model is a good fit to the actual data.

25. (a)

26. (a)

9

0

9

10

0

0

(b) The data could best be modeled by a linear model. (c) The shape of the curve looks much more linear than exponential or logarithmic. (d) y  0.7884x  8.2566

(b) The data could best be modeled by a logarithmic model. (c) The data scatter plot looks logarithmic. (d) y  5.099  1.92 lnx

9

0

9 0

10

9 0

(e) The model is a good fit to the actual data.

0

9 0

(e) The model graph hits every point of the scatter plot.

Practice Test for Chapter 3

Chapter 3

Practice Test

1. Solve for x: x35  8. 1

2. Solve for x: 3x1  81. 3. Graph f x  2x. 4. Graph gx  ex  1. 5. If $5000 is invested at 9% interest, find the amount after three years if the interest is compounded (a) monthly.

(b) quarterly.

(c) continuously.

1 6. Write the equation in logarithmic form: 72  49. 1

7. Solve for x: x  4  log2 64. 4 825. 8. Given logb 2  0.3562 and logb 5  0.8271, evaluate logb 

1

9. Write 5 ln x  2 ln y  6 ln z as a single logarithm. 10. Using your calculator and the change of base formula, evaluate log9 28. 11. Use your calculator to solve for N: log10 N  0.6646 12. Graph y  log4 x. 13. Determine the domain of f x  log3x2  9. 14. Graph y  lnx  2.

15. True or false:

ln x  lnx  y ln y

16. Solve for x: 5x  41 1 17. Solve for x: x  x2  log5 25

18. Solve for x: log2 x  log2x  3  2

19. Solve for x:

ex  ex 4 3

20. Six thousand dollars is deposited into a fund at an annual interest rate of 13%. Find the time required for the investment to double if the interest is compounded continuously.

333