CHAPTER: 2 Review of Literature

64

2.1. Methods used for the analysis of drugs Analysis of drugs in pharmaceutical products and biological samples is growing in importance, both in the development of more selective and effective drugs and in understanding their therapeutic and toxic effects. Knowledge of drug levels in body fluids, such as serum and urine, allows the optimization of pharmacotherapy and provides a basis for studies of patient compliance, bioavailability, pharmacokinetics and the influences of co-medications. The quantitative and qualitative analysis of drugs and their metabolites has been applied extensively in pharmacokinetic studies because pharmacokinetic variables such as time to reach maximum plasma concentration, clearance and bioavailability have to be known for a new drug to be approved. In addition, therapeutic drug monitoring (TDM) is used to improve drug therapy. In contrast drugs of abuse, illicit drugs, intoxicating drugs and poisons are analyzed in clinical and forensic toxicology. The screening of drugs of abuse in body fluids is also important for identifying and treating users of these drugs and for monitoring drug addicts following withdrawal from therapy. Also, these analytes are often present at low concentrations in biological samples. Drug analyses have been performed using various analytical instruments under many circumstances including clinical control for diagnosis and treatment of diseases, doping control, forensic analysis and toxicology. An important place is occupied by chromatographic methods based on highperformance liquid chromatography (HPLC), thin layer chromatography (TLC), and gas chromatography (GC)) for the determination of drugs for therapeutic drug monitoring in biological samples and as organic pollutants in environment. Unification of the equipment

65 used necessitates preparation of a very accurate and detailed description of conditions for carrying out the analysis. Other meaningful methods are ultraviolet-visible (UV-vis) & infrared (IR) spectrophotometry, atomic absorptive spectrometry (AAS), nuclear magnetic resonance (NMR), mass spectrometry (MS) or spectrofluorimetry, capillary electrophoresis (CE),

capillary

zone

electrophoresis

(CZE),

micellar

electrokinetic

capillary

chromatography (MEKC)) and voltamperometric methods. Any determination of organic pollutants in environment requires either a direct analysis using these analytical instruments or a prior preconcentration step followed by analysis. Various methods are available for the estimation of the pharmaceuticals using chromatographic methods like thin layer chromatography [1-10], high performance liquid chromatography with different detectors and derivatization [11-40], gas chromatography with different detectors and derivatization [41-78], capillary electrophoresis [79-94], ion chromatography [95-104], ultra-violet spectrophotometry [105-114], flow injection analysis [115-119], voltammetry and polarography [120, 121] and fluorimetric methods [122-124]. The detection methods combined with above separation methods including ultra-violet, mass spectra, fluorescent light, refractive index (RI) and electrochemical detection are also described. The most widely used approaches in quality control of pharmaceuticals and pharmacokinetic studies of drugs are HPLC and GC separations, which have become a powerful and important technology in various other fields as well. These methods are efficient and versatile, currently available and increasingly used analytical techniques for qualitative and quantitative analysis of endogenous and exogenous substances in biological samples. In case of drug formulations, since the purified molecule is routinely used in drugs assays and it is critical that preparations being tested be devoid of antimicrobial

66 components introduced during purification. In this regard, HPLC techniques can provide a valuable tool for generating highly pure preparations for characterizing the antimicrobial activities. Also HPLC with its ability to analyze both volatile and non-volatile compounds, to determine ultra trace to preparative to process scale separations, may be employed in clinical laboratories. Sample preparation is necessary to isolate the desired components from complex matrices, because most analytical instruments cannot handle the matrix directly. Recent trends in sample preparation include various forms of solid-phase extraction (SPE) [125138] , solid-phase microextraction (SPME) [139-142], stir-bar sorptive extraction (SBSE) [143-148], membrane extraction [149-154], liquid-phase microextraction (LPME) [155159], supercritical fluid extraction (SFE) [160-163], pressurized liquid extraction (PLE) [164-168], matrix solid-phase dispersion (MSPD) [169-172], dispersive solid-phase extraction (DSPE) [173-176], ultrasonic assisted extraction (USAE) [177-179], microwave-assisted solvent extraction (MASE) [180-185], etc. Some of these methods often employ large volumes of hazardous organic solvents; others are time-consuming and/or expensive. Most of these methods require collection of the samples and their transportation to the laboratory for further processing. Incorrect sample handling during collection, transportation, and preservation may result in significant variability in the results. Solid-phase extraction (SPE) is today the most commonly used sample preparation method. SPE is used to extract, concentrate and clean-up compounds of interest from a sample matrix using a solid support. Here, the analytes are adsorbed on the packing bed and this is followed by the elution or thermal desorption for recovery. Compared to SPE or

67 liquid-liquid extraction (LLE), microextraction in packed syringe (MEPS) reduces the sample preparation time and organic solvent consumption. MEPS is a new technique for miniaturised solid-phase extraction that can be connected online to GC or LC without any modifications [118-122]. MEPS can be fully automated; the sample processing, extraction and injection steps are performed online using the same syringe. Compared to solid-phase micro extraction, MEPS reduces both sample preparation time (Approx. 1 min) and sample volume (10-1000 µL) and a much higher recovery (>50%) can be obtained.

2.2. Application of pre-concentration techniques with HPLC/GC-MS to antidepressants Antidepressant drugs are widely used for the treatment of depression and these drugs are frequently encountered in emergency toxicology screening, drug-abuse testing and forensic medical examinations [186]. Various methods for determination of antidepressant drugs have been reported including HPLC, GC, GC-MS and HPLC-MS. LLE, SPE, column switching approach and, more recently, SPME and SBSE have been adopted for that purpose. Two noradrenergic and specific serotonergic antidepressants mirtazapine and mianserine has been determined and separated simultaneously by using simple TLC-densitometry method and validated for their determination in commercially available tablets [187]. A sensitive HPLC method has been described for the simultaneous determination of eleven cyclic antidepressants in human biological samples [188]. An isocratic reversed-phase HPLC method with UV detection has been devised and optimized to quantify antidepressants in human serum [189]. In another approach, a restricted access material alkyl-diol-silica (RAM-ADS) has been used to prepare a highly biocompatible

68 SPME capillary for the automated and direct in-tube extraction of several benzodiazepines from human serum [190]. A novel RAM-SBSE bar has been developed for the direct extraction and desorption of caffeine and three of its metabolites in biological samples [191]. LC methods with online sample clean-up and column switching are advantageous, since they allow automated analysis after preparation of serum or plasma [192-195]. A selective and reproducible in-tube SPME-LC-UV method has been reported for simultaneous determination of few antidepressants in human plasma [196]. A few antidepressants and metabolites have been analyzed and separated by an isocratic HPLC method with column switching and ultraviolet detection in human serum [197]. Borondoped diamond (BDD) electrodes for the electrochemical detection of six tricyclic antidepressant drugs have been examined [198]. A sensitive method using sample preparation technique MEPS with LC-UV has been reported for the determination of new generation antidepressants in human plasma samples [199]. Some tricyclic antidepressants and neuroleptics in their quaternary mixtures have been simultaneously determined by a reversed-phase HPLC method with UV detection at 252 nm [200]. Santos neto et al. studied the application of a system that joins the known advantages of capillary LC with those of column-switching using restricted access material to the analysis of fluoxetine in plasma samples [201]. SPME coupled with HPLC-DAD has been described for the analysis of heterocyclic aromatic amines [202]. A new and simple analytical methodology for the simultaneous determination of twenty antidepressant drugs in human plasma sample has been reported. The method was based on the LC-MS with sonic spray ionization (SSI) technique [203]. Other recent approach based on in-tube SPME-LC-MS has been developed for the analysis of ten antidepressants in urine and

69 plasma [204]. A SPME combined with LC-ESI-MS/MS to determine trace levels amphetamine (AM) and methamphetamine (MA) in serum has been investigated [206]. Fourteen antidepressants and their metabolites has been separated and analyzed by fully automated on-line SPE-LC-MS/MS method for the direct analysis in plasma [207]. A LCMS/MS method for the simultaneous determination of seventeen antipsychotic drugs in human postmortem brain tissue has been developed. Sample preparation was performed using hybrid SPE-precipitation technology for the removal of endogenous protein and phospholipid interferences [208]. Tricyclic antidepressant drugs have been analyzed by a fully-automated turbulent-flow LC-MS/MS method in serum [209]. A simple capillary gas chromatography (CGC) procedure for the analysis of three active ingredients (fluoxetine, fluvoxamine and clomipramine) in their respective pharmaceutical formulations has been reported [210]. A few methods based on SBSE in combination with thermal desorption online coupled to CGC-/MS to the analysis of pharmaceutical drug compounds and metabolites and organic solutes in urine and blood are reported [212, 213].

2.3. Application of pre-concentration techniques with HPLC/GC-MS to antiepileptics Several methods have been reported for the determination of one or more antiepileptic drugs in biological fluids for therapeutic drug monitoring (TDM) or for toxicology purposes. There are various HPLC methods for the simultaneous determination. A newly developed HPTLC method for quantitative determination of LTG, ZNS and LVT in human plasma, in comparison to HPLC and LC-MS/MS methods, has been reported [214]. PRM and its three major metabolites have been analyzed in rat urine by HPLC using

70 SPE [215]. A method based on SBSE-HPLC-UV for therapeutic drug monitoring of CBZ, CBZE, PTN and PHB in plasma samples and compared with a LLE-HPLC-UV method [216]. Contin et al. proposed a very simple and fast method for the simultaneous determination of the new generation antiepileptic drugs LTG, OXC and main active metabolite monohydroxycarbamazepine and FLM in plasma of patients with epilepsy using HPLC with spectrophotometric detection [217]. Oxcarbazepine and its main metabolites have been simultaneously determined by a method based on HPLC with UV detection in combination with SPE for sample pretreatment in human plasma [218]. A simple and fast method for the determination of the new generation antiepileptic drug LEV in plasma of patients with epilepsy using HPLC with UV detection has been developed and validated [219]. The newer antiepileptic drugs RFN, ZNS, LTG, OXC and FBM in plasma of patients with epilepsy using HPLC-UV has been reported [220]. The separation and simultaneous estimation of the antiepileptic drugs LTG, PHB, CBZ and PTN has been proposed by reversed-phase HPLC in human serum using a simple singlestep extraction procedure [221]. CBZ has been analyzed and estimated by an HPLC-UV method in both solution form and rabbit plasma [222]. An interesting study has been carried out by Thomas et al. to determine the potential impurities of eslicarbazepine acetate. The impurities were identified by HPLC coupled with ESI and IT/MS/MS [223]. A simple method for the simultaneous determination of seven antiepileptic drugs in serum by HPLC-DAD has been developed [224]. After SPE, separation is achieved on a C 18 analytical column using isocratic elution with a mixture of acetonitrile, methanol and phosphate buffer at 45◦C. In another analytical method, the simultaneous determination of seven non-steroidal anti-inflammatory drugs and the anticonvulsant carbamazepine has been examined in river and wastewater. The method involved pre-concentration and cleanup by SPME followed by analysis with HPLC-DAD [225].

71 A rapid and reliable HPLC-DAD has reported for the simultaneous determination of the oxcarbazepine and its metabolites in plasma and saliva from psychiatric and neurological patients [226]. In another approach, HPLC-PDA has been developed for the simultaneous determination of six antiepileptic drugs and two metabolites in human plasma [227]. A simple and reliable method has been developed for the simultaneous determination of seven non steroidal anti-inflammatory drugs and the anticonvulsant CBZ. The method involved preconcentration and clean-up by SPME followed by HPLC-DAD analysis [228]. In another recent application, a simple and sensitive high-performance liquid chromatographic method for determination of gabapentin in human serum using LLE and 9-fluorenylmethyl chloroformate (FMOC-Cl) as pre-column labeling agent has been developed [229]. A HPLC-FD method for the simultaneous determination of the three antiepileptic drugs in human plasma has been presented [230]. A HPLC-ELSD (evaporative light scattering detector) method has been studied for simultaneous separation and quantitation of four commonly used AEDs [231]. A specific and sensitive LC-MS method for the simultaneous determination of CBZ and eight metabolites in human plasma is also reported [232]. A restricted access media-molecularly imprinted polymer (RAM-MIP) for cyclobarbital has been developed for selective extraction of antiepileptics in river water samples. The RAM-MIP for cyclobarbital showed molecular recognition abilities for PHB, AMB and PTN as well as cyclobarbital. The analysis was performed by column-switching HPLC-MS/MS [233]. OXC and its pharmacologically active dihydro metabolite have been determined by a HPLC-MS method. The method was successfully applied to several authentic plasma samples from patients treated or intoxicated with OXC [234]. The CBZ and its five main metabolites have been analyzed in aqueous samples using SPE followed

72 by LC-ES-MS/MS analysis [235]. In another different approach, a simple HPLC-MS has been developed for the determination of PTN in human plasma. The sample preparation involves a simple procedure based on liquid-liquid extraction [236]. A simple and accurate method based on a LC-ESI-MS/MS for the simultaneous determination of PCM, NAP, IBP, ETD, DCL, LTG, CBZ, PTN, PHB, CYB, AMB and CAF has been developed in human live and post-mortem whole blood [237]. A sensitive LC-MS/MS method has been developed for the simultaneous quantification of ten antiepileptic drugs in human plasma as a tool for drug monitoring [238]. OXC, 10-hydroxycarbazepine (MHD) and trans-diol-carbazepine (DHD), in human serum, have been analyzed by using LC-MS/MS. Serum drugs were extracted by C8 solidphase cartridges [239]. Valproic acid has been examined by using sensitive and high throughput LC-MS/MS detection with SPE as clean up procedure in human plasma [240]. AM, CAF, PTN, RNT, and THP has been determined simultaneously by an LC-MS/MS assay in small volume human plasma specimens for pharmacokinetic evaluations in neonates [241]. In a recent GC-MS method, the detection of pharmaceutical residues in various waters applying SPE has been developed [242]. A method for a range of acidic pharmaceuticals, CBZ, and endocrine disrupting compounds has been reported in soils with final analysis by GC-MS [243]. Another method based upon GC/MS separation has been reported for the simultaneous determination of thirteen pharmaceuticals and five wastewater-derived contaminants by SPE and derivatization with N,O-(bistrimethylsilyl)trifluoroacetamide (BSTFA). The method was applied to the analysis of raw and treated sewage samples obtained from a wastewater treatment plant [244]. ETSX, LTG, CBZ and CBZE have been determined after solute extraction followed by analysis using CE [245].

73

2.4. Application of pre-concentration techniques with HPLC/GC-MS to fluoroquinolones (FQs) Several efforts have been made during the last few years to develop analytical methods suitable for monitoring of fluoroquinolone residues in foodstuffs [249]. Appropriate methods for the determination of these antibiotics in milk [252, 253], eggs [255, 256], poultry [257, 259-263] and fish [269, 270] have been recently reported. Turiel et al. analyzed several quinolones in soil samples [246]. The method was based on the extraction of these analytes by an USAE in small columns and their subsequent quantification by HPLC using UV detection. A HPLC method with UV detection for seven quinolones in plasma and amniotic fluid has been presented [247]. Another method has been developed based on HPLC-UV for the determination of four quinolones in urine, ground water, chicken muscle, hospital wastewater and pharmaceutical samples using C18 and reverse phase amide columns [248]. The separation and analysis of several quinolones and fluoroquinolones has been proposed in baby-food samples. The method involves isolation of these analytes by USAE procedure followed by a SPE sample clean-up step and final determination of the analytes by HPLC using UV detection [249]. A different approach based on UA-DLLME coupled with LC-UV for the determination of four fluoroquinolones in pharmaceutical wastewater has been developed [250]. An interesting study has been carried out for the simultaneous analysis of the fluoroquinolones in bovine serum. In this method, HPIAC column containing covalently bound anti-sarafloxacin antibodies was used to capture the fluoroquinolones while allowing the remainder of the serum components to elute to waste [251]. A HPLC method with DAD for the determination of seven tetracyclines in milk has been developed [252]. Ten quinolones has

74 been examined with HPLC followed by a simple SPE cleanup procedure in cow’s milk [253]. A HPLC-FD after MI-SPE sample pretreatment has been reported for simultaneous analysis of few fluoroquinolones in environmental water samples [254]. In another method, the simultaneous determination of seven quinolones in egg samples of laying hens by HPLC-FD has been carried out [255]. A method based on PLE and HPLC-FD has been developed for the simultaneous determination of three fluoroquinolones in table eggs [256]. Norfloxacin and ofloxacin from chicken breast muscles has been examined using HPLC-FD with SFE as a sample preparation [257]. The traces of the most common veterinary fluoroquinolones marbofloxacin and enrofloxacin used as antibacterial agents have been determined in cattle and swine farms in natural waters. Quantitative analysis was done by HPLC-FD with SPE [258]. A sample cleanup procedure combining molecular imprinting and matrix solid-phase dispersion (MI-MSPD) for the simultaneous isolation of ofloxacin, pefloxacin, norflorxacin, ciprofloxacin, and enrofloxacin in chicken eggs and swine tissues followed by HPLC-FD has been reported [259]. Enrofloxacin and its active metabolite ciprofloxacin have been identified simultaneously by a HPLC method in chicken muscle [260]. A cloud point extraction process to extract two fluoroquinolone antimicrobial agents, ofloxacin and gatifloxacin, from aqueous media has been described [261]. LC-UV, LC-MS and LC-MS/MS have been used for the simultaneous quantification of quinolones antibiotics in turkey and chicken muscles [262, 263]. Simultaneous determination of the structurally different antibiotics from environmental and biological monitoring using HPLC-UV, single mass and tandem mass spectrometry has been performed and compared [264]. Three widely used fluoroquinolones have been determined by HPLC coupled to pneumatically assisted ESI-MS in human urine. The determination of FQs in honey sample

75 based on the combination of SRSE with HPLC-ESI-MS has been proposed [266]. A LCMS/MS has been utilized for the quantification of the quinolone residues in poultry muscle and eggs [267]. More recently, a new method in which MIP material was packed as sorbent in a device for MEPS combined with LC-MS/MS for the analysis of selected FQs drugs in municipal wastewater samples has also been developed [268]. Two CE-MS methods for the simultaneous determination of twelve antibacterial residues in fish and livestock, and five quinolone residues in chicken and fish have been reported [269, 270].

2.5. Application of pre-concentration techniques with HPLC/GC-MS to N-acyl homoserine lactones (AHLs) A method for the determination of N-acyl homoserine lactones in the form of their hydrolysis products has been presented. Real samples were analyzed by CZE-MS after alkaline lactonolysis and extraction by mixed-mode anion-exchange SPE [271]. AHLs in lung tissues of mice infected with Pseudomonas aeruginosa has been detected [272]. AHLs produced by sequential Pseudomonas aeruginosa isolated from chronically infected patients with cystic fibrosis have been measured by thin-layer chromatography [273]. In another method, AHL production in Gram-negative psychrotrophic bacteria has been detected in raw milk [274]. A total of 84.9% of the bacteria were identified as AHL producers eliciting a diversity of responses in the AHL-monitor systems. These results demonstrate that AHL-production is common among psychrotrophic bacteria isolated from milk and indicate that quorum sensing may play an important role in the spoilage of this product. The isolation of AHL-degrading Shewanella sp. strain MIB015 from the intestinal microflora of Plecoglossus altivelis (the ayu fish).17) MIB015 interrupted quorum-sensing and exoprotase production in Aeromonas sp. by degrading AHL has been reported [275]. A

76 method based on SPE followed by UPLC for the determination of five derivatives of AHLs has been proposed. In order to demonstrate the applicability of the method, supernatants with the known AHL producer Burkholderia cepacia LA3 grown in different media were investigated [276]. Another method based on fast and MS compatible UPLCDAD for the rapid quantitative determination of AHLs and their corresponding hydrolysis products has been optimized and was successfully applied to a bacterial culture supernatant real sample containing AHLs [277]. The direct evidence for the presence of AHLs in CF sputum were established. AHLs were detected in sputum from patients colonised by P. aeruginosa or B. cepacia but not Staphylococcus aureus. Furthermore, using HPLC-MS and thin layer chromatography, the presence of N-hexanoylhomoserine lactone and N-(3-oxododecanoyl) homoserine lactone respectively in sputum samples from patients colonised by P. aeruginosa was confirmed [278]. A method using reversed-phase HPLC coupled with positive-ion ESI and ion trap mass spectrometry for the identification and quantification of AHLs in crude cellfree supernatants of bacterial cultures has been described. The selectivity was based on the MS-MS fragment ions of the molecular [M+H]+ ions and on their relative intensities and was successfully applied to Vibrio vulnificus, a marine bacterium [279]. The production of AHLs by bacteria associated with marine sponges has been identified [280]. A method involving direct separation by GC with EI-MS to determine some AHLs has been employed and simultaneous separation and characterization of AHLs were possible without prior derivatization. The method was applied for the analysis of AHLs in Burkholderia cepacia (strains JA-7 and LA-10) extracts [281]. The occurrence of AHLs in extracts of some Gram-negative bacteria by GC-MS has been determined. Crude cell-free

77 supernatants of bacterial cultures of Aeromonas hydrophila, Aeromonas salmonicida, Pseudomonas aeruginosa, Pseudomonas fluorescens, Yersinia enterocolitica and Serratia liquefaciens were screened for AHL production in selected ion monitoring mode using the prominent fragment at m/z 143 [282]. The extracts of mucopurulent respiratory secretions from thirteen cystic fibrosis patients infected with P. aeruginosa and/or strains of the B. cepacia complex has been studied using reverse-phase HPLC and analyzed for the presence of AHLs using a traI-lux CDABE-based reporter that responds to AHLs with acyl chains ranging between 4 and 12 carbons [283]. Using this assay system, a broad range of AHLs were detected and identified despite being present at low concentrations in limited sample volumes. N-(3-oxo-dodecanoyl)-L-homoserine lactone, N-(3-oxo-decanoyl)-Lhomoserine lactone and N-octanoyl-L-homoserine lactone (OHL) were the AHLs most frequently identified. OHL and N-decanoyl-L-homoserine lactone were detected in nanomolar concentrations compared to picomolar amounts of the 3-oxo-derivatives of the AHLs identified [283]. A comparison tabulation of data on HPLC and GC-MS methods has been given in Table 2.1.

78

Table 2.1 Survey of HPLC and GC-MS methods for quantitative determination of antiepileptics, antidepressants and quinolones and their applications Analytes AMITRI, AMOXI, CLOMI, DESI, IMI, MAPRO, MAIN, NRT, etc.

Matrix analyzed Biological Samples

Sample Preparation Analytical Technique Method Used LLE HPLC-UV ((column 1 C8 RP columns: a) TSK gel Super octyl (100 mm×4.6 mm i.d., particle size 2 µm), b) Hypersil MOS-C8cle (100 mm ×4.6 mm i.d., particle size 5 µm), Yokogawasize SPE HPLC-UV 3-ml 3M-Empore Nucleosil 100-Protect 1 disk cartridges (250 mm×4.6 mm i.d., particle size 5 µm), Macherey and Nagel

LOD (S/N=3) --

--

--

22-29 ng/mL

AMITRI, NRT, IMI, CLOMI, NORCLM, TRIMI, MAPRO, DESI, DOXE, NORDX, etc. Benzodiazepi ne

Human serum

Human Serum

SPME (RAM-ADS)

Caffeine and

Rat Plasma

SBSE

HPLC-UV LiChrospher 100 RP-18 (15.0 cm×4.0 mm i.d., particle size 5 µm), Merck HPLC-UV

25 ng/mL

LOQ (S/N=10) 0.5 µg/mL

Recover y (%) 94-103

Reference

75-99

[189]

74-98 ng/mL

>90

[190]

--

>50

[191]

[188]

79

metabolites

(RAM-ADS),

ARP

Human Serum

QUE, CLZ, PRZ, OLZ and metabolites

Human Blood

FLUVO and Plasma its metabolites

MIRTA, CIT, PARO, DULO, FLUVO and SRT

Human Plasma

CLOMI,

Serum

RAM Column Switching (10 mm× 4 mm i.d., particle size 20 µm) Column Switching Silica C8 material, particle size 20 µm

LLE and Column Switching Hydrophilic meta acrylate polymer column, (35 mm×4.6 mm i.d.), particle size 10 µm In tube SPME Fused-silica capillary (80 cm×250 µm i.d.) coated with the OV-1701 phase Column Switching

ODS Hypersil (60 mm ×4.6 mm, particle size 5 µm), Thermo HypersilKeystone HPLC-UV LiChrospher CN column (250 mm × 4.6 mm i.d. particle size 5 µm), MZAnalysentechnik HPLC-UV (ODS Hypersil C18 material (250 mm×4.6 mm i.d., particle size 5 µm), MZAnalysentechnik HPLC-UV C18 STR ODS-II column (150 mm×4.6 mm i.d., particle size 5 µm), Shinwa Chemical Industry HPLC-UV LiChrospher 60 RPselect B (C18) column (250 mm×4 mm, particle size 5 µm), Merck HPLC-UV

--

99

[207]

82

NRT, IMI, DESI, FLU, PARO, FLUVO, SRT, etc. SLP, TRP, ASLP, PLP, RSP, QUE, CLZ, ARP, THIO, etc.

SPE MCX cartridge (cation-exchange mode)

Gemini C18 guard column (4 mm×2.0 mm, particle size 5 µm), Phenomenex

Human brain tissue

SPE 1 mL Hybrid SPEPPT, Supelco (Sigma-Aldrich)

AMITRI, DESI, IMI, NRT

Serum

SPE Cyclone-P online SPE column (0.5×50 mm)

FLU, FLUVO, CLOMI

Pharmaceutical formulations

Homogenizations and Centrifugation

SSRI’s Antidepressan t MTD, EUG, DDA, DZP, TMZ, BZP, NDZP, etc.

Urine

LLE

LC-MS/MS ZORBAX Eclipse Plus C8 Narrow Bore (150 mm×2.1 mm, particle size 5 µm), and the guard column, Agilent LC-MS/MS Hypersil Gold C18 (50 mm×3 mm, particle size of 5 μm), Thermo Fisher Scientific CGC-F.I.D. HP-5 (5% phenyl methylsilicone, 15 m×0.25 mm i.d., 0.25 µm film thickness), HewlettPackard GC-MS

Urine

SBSE Twister Gerstel, coated with 25 μL PDMS

CGC-MS 1 µg/L HP-5MS column (30 m×0.25 mm i.d., 0.25 μm df), Agilent Technologies

--

2-80 ng/g

[208]

85

[249]

82.7110.9

[250]

0.14-0.81 µg/L

--

91

CIP, ENRO, SARA, DIFLO

Bovine Serum

MNC, OTC, MTC, DMC, CTC, DC

Milk

ENO, OFLO, NOR, DANO, CIP, ENRO, NAL, FLU

Milk

ENRO, CIP, NOR, LOME, DANO, SARA, FLQ, OXO, AMX, etc.

Aqueous Samples

mm, particle size 5 μm), Agilent Company HPIAC PEEK cartridges Inertsil phenyl column (2.1 × 30 mm) with (150 mm×4.6 mm, POROSE media particle size 5 μm), containing protein Alltech G (PE Biosystems) SPE (Abselut HPLC-DAD Nexus), Varian, Inertsil ODS-3 analytical (Discovery, column, (250 mm×4 Supelco), and mm2, particle size 5 μm) (Lichrolut), Merck. SPE HPLC-PDA Perfect Sil LiChrolut RP-18 Target ODS-3 analytical (200 mg, 3 mL) column (250 mm×4 mm2, cartridges, Merck particle size 5 μm), MZAnalysentechnik MI-SPE HPLC-FD Aqua C18 The template column (polar enrofloxacin endcapped; 250 mm×4.6 (183.4 mg, 0.5 mm i.d., particle size 5 mmol), functional μm) protected by an monomer 1 (187.1 RP18 guard column (4.0 mg, 0.5 mmol), mm×3.0 mm i.d., particle methacrylamide size 5 μm), Phenomenex (85 mg, 1 mmol), EDMA (3.8 mL, 20 mmol) and the

0.18-0.47 ng/mL

1 ng/mL

95-100.8 [251]

3-6 ng/mL

10-20 ng/mL

93.8103.7

[252]

1.5-6.8 ng/µL

--

75-92

[253]

0.01-0.30 µg/L

--

[254]

92

ENRO,DIFL O, DANO, CIP, FLQ, OXO, SARA ENRO, CIPRO

NOR, OFLO

Eggs

Eggs

Chicken muscles

free radical initiator ABDV (42.4 mg, 1% (w/w) total monomers) dissolved in ACN (5.6 mL) Protein Precipitation

PLE

SFE 10 ml stainless SFE vessel (150 mm×10mm o.d.)

HPLC-FD Waters Symmetry C18 column, (150 mm×3.0 mm), Waters HPLC-FD AQUA C18 column, (polar endcapped, 250 mm×4.6 mm, particle size 5 µm) protected by a RP18 guard column (4.0 mm×3.0 mm, particle size 5 µm), Phenomenex LC-MS Synergi MAX-RP column, (150 mm×2 mm i.d., particle size 4 µm), Phenomenex HPLC-F Novapak C18 stainless column (300 mm × 3.9 mm i.d., particle size 4

4-12 ng/g

17-20 ng/g

--

99.2100.6

[255]

30-41 ng/g

67-90

[256]

2.5 ng/mL

70-87

[257]

93

µm), Waters MARB, ENRO

Surface water

OFLO, PEFLO, NOR, CIP, ENRO

Chicken eggs and Swine tissue

ENRO, CIP

Chicken muscles

OFLO,GATI

CIP, DANO, ENRO, DIFLO, FLQ

SPE (Envi-18 and SDBXC, Strata-XC, MM1, WAX-HLB) cartriges MI-MSPD MAA, TRIM, and AIBN sorbent

MI-SPE EDMA and AIBN as polymerization mixture CPE

Turkey muscles SPE ENV+ Isolute cartridges

HPLC-FD Hypersil C18 column, (250 mm×4.6 mm, particle size 5 µm), Varian HPLC-FD ODS C18 stationary phase VP-ODS, (150 mm × 4.6-mm i.d., particle size 5 µm), Shimadzu HPLC-FD ODS C18 stationary phase VP-ODS, (150 mm × 4.6 mm i.d., particle size 5 µm), Shimadzu FD F-4500 recording spectrofluorometer with a xenon lamp, Hitachi Ltd. LC-UV Zorbax Eclipse XDB-C8 column (150 mm×4.6 mm i.d., particle size 5 µm), Agilent Technologies and using a pre-column Kromasil C8 (20 mm×4.5 mm), Aplicaciones Analíticas. LC-MS

0.7-2.2 ng/L

2-6 ng/L

90-116

[258]

0.05-0.09 ng/g

--

85.7104.6

[259]

0.07-0.09 ng/g

--

77.894.6

[260]

0.04-0.06 ng/mL

--

96.599.39

[261]

70-87

[262]

4-10 µg/kg

13-33 µg/kg

0.4-2

2-6 µg/kg 72-85

94

LC-MS/MS

NOR, CIP, Chicken SARA, muscles DIFLO, ENRO, DANO, OXO, FLM

LLE/SPE ENV+ cartridges (200 mg, 3 mL)

CIP, OFLO, CEFA, CEFT, CEFU, CHLOR

SPE Bakerbond C18 cartridges, (1000 mg, 6 mL), Baker

Urine and wipe samples

NOR, CIP, Human Urine OFLO, ENRO

PEFLO, DANO, CIP,

Honey

SPE 3M-Empore MPC Extraction cartridges, Supelco SRSE Monolithic

LC-UV LC-MS Zorbax Eclipse XDB-C8 (150 mm×4.6 mm i.d., particle size 5 µm), Agilent Technologies HPLC-UV Nucleosil 100-5 C18 HD (250 mm×3 mm i.d.), Macherey-Nagel HPLC-MS Nucleodur 100-5 C18 EC (125 mm×3 mm i.d.), Macherey-Nagel HPLC-MS/MS Nucleodur 100-5 C18 EC column (125 mm×2 mm i.d.), Macherey-Nagel HPLC-ESI-MS Kromasil C8 column, (250 mm×4.6 mm i.d.), Teknokroma HPLC-ESI-MS Agilent Eclipse-XDB-C18

µg/kg 0.05-0.1 µg/kg

0.2-0.5 µg/kg

73-85

5-20 µg/kg 0.15-0.50 µg/kg

15-60 µg/kg 0.50-1.50 µg/kg

70-85

30-75 µg/L

--

[263]

70-85

>70

[264]

0.4-70 µg /L

0.05-0.3 µg/L

13-21 µg/L

44-58 µg/L

46-62

[265]

0.06-0.14 ng/g

0.21-0.48 ng/g

70.3122.6

[266]

95

DIFLO

ENRO, DIFLO, DANO, FLU, OXO CIP, NOR, OFLO, FLQ

Poultry muscles and eggs

Sulfonamides and quinolones

Fish and Livestock

DANO, FLQ, OFLO, ENRO, PPMA

Chicken muscles and Fish

Wastewater

polymer AMPS, OCMA, EDMA, DMF, PEG and AIBN. Homogenization and centrifugation

MI-MEPS Polymerization solution, CIP, MAA, EGDMA, AIBN and MeOH, (100 µL gas-tight syringe with 4mg polymer) SPE ODS (MFE-Pak C18) particle diameter in the range of 45-55 µm and pore diameter 60 Å), Análisis Vínicos SPE ODS (MFE-Pak C18) particle diameter in the range of 45-55 µm

column (150 mm×4.6 mm i.d., particle size 5 µm) LC-MS/MS Waters Symmetry C18 column (150 mm× 3.0 mm), Waters LC-MS/MS Hypersil Gold PFP column (30 mm×2.1 mm, particle size 5 µm), Thermo Scientific

1-10 µg/Kg

2-20 µg/Kg

--

[267]

0.5-8.1 ng/L

--

87-115

[268]

CE-MS Fused silica capillary, 75 cm total length, 50 cm thermostated, 25 cm at room temperature, 75 mm i.d., and 375 mm o.d., Supelco

1-10 µg/kg

78-97

[269]

CE-MS Fused silica capillary, 75 cm total length, 50 cm thermostated, 25 cm at room temperature, 75

20 ng/g

62-99

[270]

15-30 µg/kg

--

96

and pore diameter 60 Å), Análisis Vínicos

mm i.d., and 375 mm o.d., Supelco

SPE Oasis MAX cartridges, Waters

CZE-MS Fused-silica capillaries (50 cm length, 75 mm i.d., 360 mm o.d.), Polymicro Technologies TLC C18 RP TLC plates, aluminium sheets RP- 18 F254g (20 cm×20 cm), Merck Chrom line TLC C18 reversed-phase TLC plates, Merck TLC

AHLs

Culture supernatant of B. cepacia

AHLs

Mice lung tissue

--

AHLs

P. aeruginosa

--

AHLs

Milk

AHLs

Shewanella sp.

AHLs (C4C14)

Barley sees

Agitation --

SPE (Bond Elut LRC C18-OH, Mega Bond Elut C18, Bond Elut PPL, Bond Elut PRS and Bond Elut SCX),

HPLC Crestpak C18T-5 C18 reverse phase column, Jasco UPLC (100 mm×2.1 mm i.d., particle size 1.7 µm), filled with BEH C18 packing material,

0.01 µg/mL

0.05 µg/mL

95-105

[271]

--

--

--

[272]

--

--

--

[273]

--

--

--

[274]

--

--

--

[275]

0.4-10 µM

3.2-6.6 µM

94-97

[276]

97

AHLs

B. cepacia

AHLs

Sputum

Varian (Bakerbond C18, Octadecyl polar plus, Bakerbond phenyl, Bakerbond Silica Gel, Bakerbond Florisil, Bakerbond Diol, Bakerbond WP CBX, Bakerbond Cation Exchange), Baker (Strata-X Cation Exchange), Phenomenex (Oasis MAX), Waters (Chromabond HRP), Macherey and (Adsorbex NH2), Merck --

Dilution and centrifugation

UPLC-MS Acquity 0.11-1.64 BEH C18 column, (100 mg/L mm×2.1 mm, particle size 1.7 µm), Waters Corporation TLC/LC-MS -Kromasil KR100-5C8 column (250 mm×8 mm),

1.03-4.90 mg/L

--

--

[277]

--

[278]

98

Hichrom AHLs

E. coli

Centrifugation

AHLs

Marine sponges

--

AHLs

B. cepacia

--

AHLs

Y. enterocolitia

Centrifugation

AHLs

Respiratory secretion

Centrifugation

HPLC-MS/MS C18 RP column Hypersil ODS, (250 mm×4.6 mm, particle size 5 µm) --

0.28-93 pM

--

63-116

[279]

--

--

--

[280]

GC-MS HP-5 MS capillary column, (30 m×250 mm i.d., 0.25 µm film thickness) coated with 5% Ph Me siloxane GC-MS HP-5 MS capillary column, (30 m×250 mm i.d., 0.25 µm film thickness) coated with 5% Ph Me siloxane.

--

--

--

[281]

3.2-6.2 µM

--

--

[282]

0.02 µM250 nM

--

--

[283]

--

99

2.6. Conclusions Sample preparation is a process required for the transformation of a sample to make it amenable for chemical analysis or to improve the analysis. This is necessary when a given sample cannot be directly analyzed or when direct analysis generates poor results. Typical problems with analyses are interferences and low sensitivity. Sample preparation is usually needed to eliminate interferences and to increase sensitivity. SPE has evolved rapidly as a major sample pretreatment technique with a wide application area. There is a continuously growing interest in this technique from various fields. Application of a SPE technique makes sample preparation very simple, rapid and accurate. SPE is chiefly used to prepare liquid samples and extracts of semi-volatile or nonvolatile analytes but may also be used for solids pre-extracted into solvents. SPE has been widely adopted for preparing samples in the analysis of pharmaceuticals and drugs of abuse in biological matrices. The choice of sorbent is the key factor in SPE because this can control parameters such as selectivity, affinity and capacity. This choice depends strongly on the analytes and their physic-chemical properties, which should define the interactions with the chosen sorbent. However, results also depend on the kind of sample matrix and interactions with both the sorbent and the analyte. SPE sorbents range from chemically bonded silica of the C8 and C18 organic groups, grafitized carbon, ion-exchange materials up to polymeric materials, mixed-mode sorbents, immuno sorbents, molecularly imprinted polymers as well as restricted access materials and recently developed monolith sorbents. MIPs are capable of molecular recognition and are stable enough for long-term storage, easy to prepare and inexpensive. Thus, they may be considered to be a new artificial affinity media. Different modes of MIP based SPE have been demonstrated

100 including various modes of off-line and on-line SPE for pre-concentration or pre-treatment of analytes and for conventional SPE where the MIP is packed into columns or cartridges. MEPS relates the versatility of the new tool to provide an avenue for improved sample preparation to aid the speed, sensitivity and selectivity options provided by HPLC and GC. Although, MEPS is in its infancy; potential exists for this technique to be applied on a larger scale since it provides an opportunity for easy, efficient and cleaner sample preparation. It could fit in well with the available tools in both the qualitative and quantitative aspects of separation science. The technique may lead to newer innovations since it provides flexibility in different parameters including type of adsorbent materials, loading environment, sample load size, etc. It is anticipated that the participation of researchers should further aid in refining and defining the optimal use of MEPS with LC or GC strategy including the control of the matrix effects.

101

References 1.

D.H. Shewiyo, E. Kaale, P.G. RishA B. Dejaegher, J. Smeyers-Verbeke, Y. Vander Heyden, J. Chromatogr. A 1216 (2009) 7102-7107.

2.

L. Antonilli, V. Brusadin, F. Filipponi, R. Guglielmi, P. Nencini, J. Pharm. Biomed. Anal. 56 (2011) 763-770.

3.

P. K. Zarzycki, M. B. ZarzyckA V. L. Clifton, J. Adamski, B. K. Głód , J. Chromatogr. A 1218 (2011) 5694-5704.

4.

G. Zydek, E. BrzezińskA J. Chromatogr. B 879 (2011) 1764-1772.

5.

I. Meisen, M. Mormann, J. Müthing, BioChim. Biophys. Acta 1811 (2011) 875896.

6.

S.

Vijaykadga,

S.

Cholpol,

S.

Sitthimongkol,

A.

Pawaphutanan,

A.

Pinyoratanachot, C. Rojanawatsirivet, R. Kovithvattanapong, K. Thimasarn, J. Trop. Med. Public Health 37 (2006) 5-10. 7.

H. Kaur, M.D. Green, D.M. Hostetler, F.M. Fernández, P.N. Newton, Therapy 7 (2010) 49-57.

8.

P.G. Risha, Z. Msuya, M. Clark, K. Johnson, M. Ndomondo-Sigonda, T. Layloff, Health Policy 87 (2008) 217-222.

9.

A. Venkatachalam, V. S. Chatterjee, Anal. Chim. Acta 598 (2007) 312-317

10.

S. K. Motwani, R. K. Khar, F. J. Ahmad, S. ChoprA K. Kohli, S. Talegaonkar, Z. Iqbal, Anal. Chim. Acta 576 (2006) 253-260.

11.

G. Khoschsorur, Clin Chem 51 (2005) 1721-1724.

12.

S. Baldelli, S. Zenoni, S. Merlini, N. Perico, D. Cattaneo, Clin. Chim. Acta 364 (2006) 354-358.

102 13.

F. T. Musuamba, V. Di Fazio, R. Vanbinst, P. Wallemacq. Ther Drug Monit 31 (2009) 110-115.

14.

P. J. Taylor, Ther. Drug Monit. 26 (2004) 215-219.

15.

N. Ansermot, M. Fathi, J. L. Veuthey, J. Desmeules, S. Rudaz, D. Hochstrasser, Clin. Biochem 41 (2008) 728-735.

16.

P. Kaiser, T. Akerboom, W. G. Wood, H. Reinauer, Clin Lab.52 (2006) 37-42.

17.

P. Salm, P. J. Taylor, F. Rooney, Ther. Drug Monit. 30 (2008) 292-300.

18.

C. Seger, K. Tentschert, W. Stoggl, A. Griesmacher, S. L. Ramsay, Nat. Protoc. 4 (2009) 526-34.

19.

A. Meinitzer, G. Gartner, S. Pilz, M. Stettin, Ther. Drug Monit. 32 (2010) 61-66.

20.

M. J. Bogusz, E. A. Enazi, H. Hassan, J. Abdel-Jawaad, J.A. Ruwaily, M. A. Tufail, J. Chromatogr. B 850 (2007) 471-480.

21.

P. Salm, C. Warnholtz, J. Boyd, L. Arabshahi, P. Marbach, P.J. Taylor, Clin. Biochem. 39 (2006) 732-738.

22.

M. Shipkova, E. Schutz,V.W. Armstrong, P.D. Niedmann, M. Oellerich, E. Wieland, Clin. Chem. 46 (2000) 365-372.

23.

P. J. Taylor, Ther. Drug Monit. 29 (2007) 131-132.

24.

P. J. Taylor, S. R. Brown, D. P. Cooper, P. Salm, M. R. Morris, P. I. Pillans, S. V. Lynch, Clin. Chem. 51 (2005) 1890-1893.

25.

P. J. Taylor, M. E. Franklin, K. S. Graham, P. I. Pillans, 2007. J. Chromatogr. B 848 (2007) 208-214.

26.

I. T. Wang, Y. T. Feng, C. Y. Chen, J. Chromatogr. B 878 (2010) 3095-3105.

27.

I. Laverdière, P. Caron, F. Couture, É. Lévesque, C. Guillemette, J. Chromatogr. B 885-886 (2012) 131-137.

103 28.

A. K. Singh, A. Chaurasiya, G. K. Jain, A. Awasthi, D. Asati, G. Mishra, R. K. Khar, R. Mukherjee, Talanta 78 (2009) 1310-1314.

29.

X. Huang, Y. Zhao, L. He, Z. Liang, L. Guo, Z. Zeng, Z. Chen, M. Zhang, B. Fang, J. Integr. Agri. 11 (2012) 465-473.

30.

A. S. Yazdi, Z. Eshaghi, J. Chromatogr. A 1094 (2005) 1-8.

31.

H. Liu, F. Feng, M. MA S. Cui, D. Xie, S. Xu, J. Chromatogr. B 858 ( 2007) 4248.

32.

J. Sachse, J. Köller, S. Härtter, C. Hiemke, J. Chromatogr. B 830 (2006) 342-348.

33.

J. Hou, F. Qu, C. Wu, Q. Ren, J. Zhang, J. Pharm. Biomed. Anal. 66 (2012) 232239.

34.

A. Kaufmann, P. Butcher, K. Maden, M. Widmer, Anal. Chim. Acta 586 (2007) 13-21.

35.

S. Notari, A. Bocedi, G. Ippolito, P. Narciso, L. P. Pucillo, G. Tossini, R. P. Donnorso, F. Gasparrini, P. Ascenzi, J. Chromatogr. B 831 (2006) 258-266.

36.

G. Trachta, B. Schwarze, B. Sägmüller, G. Brehm, S. Schneider, J. Mol. Str. 693 (2004) 175-185.

37.

S. O. Choi, N. L. Rezk, A. D. M. Kashuba J. Pharm. Biomed. Anal. 43 (2007) 1562-1567.

38.

T. Hu, T. Peng, X. Li, D. Chen, H. Dai, X. Deng, Z. Yue, G. Wang, J. Shen, X. A S. Ding, Y. Zhou, A. Zhu, H. Jiang, J. Chromatogr. A 1219 (2012) 104-113.

39.

R. W. Bolderman, J. J. R. Hermans, J. G. Maessen, J. Chromatogr. B 877 (2009) 1727-1731.

40.

L. Toribio, M. J. del Nozal, J. L. Bernal, C. Alonso, J. J. Jiménez, J. Chromatogr. A 1091 (2005) 118-123.

104 41.

A. J. Kueh, P. J. Marriott, P. M. Wynne, J. H. Vine, J. Chromatogr. A 1000 (2003) 109-124.

42.

W. F. Smyth, J. Chromatogr. B 824 (2005) 1-20.

43.

K. Langel, T. Gunnar, K. Ariniemi, O. Rajamäki, P. Lillsunde, J. Chromatogr. B 879 (2011) 859-870.

44.

S. M. Song, P. Marriott, A. Kotsos, O. H. Drummer, P. Wynne, Forensic Sci. Int. 143 (2004) 87-101.

45.

B. Guthery, T. Bassindale, A. Bassindale, C. T. Pillinger, G. H. Morgan, J. Chromatogr. A 1217 (2010) 4402-4410.

46.

R. F. Staack, H. H. Maurer, J. Chromatogr. B 804 (2004) 337-343.

47.

J. J. B. Nevado, M. J. V. Llerena, A. M. C. Salcedo, E. A. Nuevo, J. Pharm. Biomed. Anal. 38 (2005) 52-59.

48.

S. Paterson, R. Cordero, S. Burlinson, J. Chromatogr. B 813 (2004) 323-330.

49.

J. Meng, X. Zhang, H. Wu, J. Bu, C. Shi, C. Deng, Y. Mao, Anal. Chim. Acta 710 (2012) 125-130.

50.

C. Cheng, S. Liu, B. J. Mueller, Z. Yan, J. Chromatogr. A 1217 (2010) 64136421.

51.

T. Einsle, H. Paschke, K. Bruns, S. Schrader, P. Popp, M. Moeder, J. Chromatogr. A 1124 (2006) 196-204.

52.

G. Dowling, E. Malone, J. Pharm. Biomed. Anal. 56 (2011) 359-365.

53.

I. González-Mariño, J. B. Quintana, I. Rodríguez, R. Cela, J. Chromatogr. A 1217 (2010) 1748-1760.

105 54.

M. Moller, K. Aleksa, P. Walasek, T. Karaskov, G. Koren, Forensic Sci. Int. 196 (2010) 64-69.

55.

E. Lyris, G. Tsiakatouras, Y. Angelis, M. Koupparis, M. Spyridaki, C. Georgakopoulos, J. Chromatogr. B 827 (2005) 199-204.

56.

A. H. Ewald, F. T. Peters, M. Weise, H. H. Maurer, J. Chromatogr. B 824 (2005) 123-131.

57.

X. Joya, M. Pujadas, M. Falcón, E. Civit, O. Garcia-Algar, O. Vall, S. Pichini, A. Luna, R. Torre, Forensic Sci. Int. 196 (2010) 38-42.

58.

K. L. Lynch, A. R. Breaud, H. Vandenberghe, A. H. B. Wu, W. Clarke, Clin. Chim. Acta 411 (2010) 1474-1481.

59.

M. Pujadas, S. Pichini, E. Civit, E. SantamariñA K. Perez, R. Torre, J. Pharm. Biomed. Anal. 44 (2007) 594-601.

60.

I. Brondz, A. B. Fialkov, A. Amirav, J. Chromatogr. A 1216 (2009) 824-829.

61.

P. Adamowicz, M. Kała, Forensic Sci. Int. 198 (2010) 39-45.

62.

S. Strano-Rossi, C. Colamonici, F. Botrè, Anal. Chim. Acta 606 (2008) 217-222A. Helenkár, Á. Sebők, Gy. Záray, I. Molnár-Perl, A. Vasanits-Zsigra Talanta 82 (2010) 600-607.

63.

J. Dobor, M. Varga J. Yao, H. Chen, G. Palkó, G. Záray, Microchem. J. 94 (2010) 36-41.

64.

S. S. Verenitch, C. J. Lowe, A. Mazumder, J. Chromatogr. A 1116 (2006) 193203.

65.

K. Lachenmeier, F. Musshoff, B. Madea, Forensic Sci. Int. 159 (2006) 189-199.

66.

T. Gunnar, C. Engblom, K. Ariniemi, J. Chromatogr. A 1166 (2007) 171-180.

106 67.

K. Kuwayama, K. Tsujikawa, H. Miyaguchi, T. Kanamori, Y. Iwata, H. Inoue, S. Saitoh, T. Kishi, Forensic Sci. Int. 160 (2006) 44-52.

68.

S. S. H. Davarani, A. M. Najarian, S. Nojavan, M. A. Tabatabaei, Anal. Chim. Acta, 725 (2012) 51-56.

69.

E. S. Emídio, V. M. Prata, H. S. Dórea, Anal. Chim. Acta 670 (2010) 63-71.

70.

Y. Sitaramaraju, A. Hul, K. Wolfs, A. V. Schepdael, J. Hoogmartens, E. Adam, J. Pharm. Biomed. Anal. 47 (2008) 834-840.

71.

K. Kudo, T. Ishida, K. Hara, S. Kashimura, A. Tsuji, N. Ikeda, J. Chromatogr. B 855 (2007) 115-120.

72.

A. Canini, D. Alesiani, G. D’Arcangelo, P. Tagliatesta, J. Food Comp. Anal. 20 (2007) 584-590.

73.

Z. Eshaghi, Anal. Chim. Acta 641 (2009) 83-88.

74.

R. Gottardo, F. Bortolotti, G. De Paoli, J. P. Pascali, I. Mikšík, F. Tagliaro, J. Chromatogr. A 1159 (2007) 185-189.

75.

S. Zühlke, U. Dünnbier, T. Heberer, J. Chromatogr. A 1050 (2004) 201-209.

76.

S. Gentili, M. Cornetta, T. Macchia, J. Chromatogr. B 801 (2004) 289-296.

77.

T. Gunnar, S. Mykkänen, K. Ariniemi, P. Lillsunde, J. Chromatogr. B 806 (2004) 205-219.

78.

R. Gottardo, A. Fanigliulo, D. Sorio, E. Liotta, F. Bortolotti, F. Tagliaro, Forensic Sci. Int. 216 (2012) 101-107.

79.

C. Cruces-Blanco, A. M. García-Campaña, Trends Anal. Chem. (2012) 85-95.

80.

R. Gottardo, F. Bortolotti, G. D. Paoli, J. P. Pascali, I. Mikšík, F. Tagliaro, J. Chromatogr. A 1159 (2007) 185-189.

107 81.

Z. Zhang, X. Zhang, S. Zhang, Anal. Biochem. 387 (2009) 171-177.

82.

Y. M. Liu, J. T. Cao, H. Wang, Chin. Chem. Lett. 19( 2008) 962-964.

83.

X. Liu, S. Li, J. Zhang, X. Chen, J. Chromatogr. B 877 (2009) 3144-3150.

84.

A. Macià, F. Borrull, M. Calull, C. Aguilar, Trends Anal. Chem. 26 (2007) 133153.

85.

T. Pérez-Ruiz, C. Martínez-Lozano, V. Tomás, R. Galera, J. Pharm. Biomed. Anal. 38 (2005) 87-93.

86.

K. Németh, G. Tárkányi, E. VargA T. Imre, R. Mizsei, R. Iványi, J. Visy, J. Szemán, L. Jicsinszky, L. Szente, M. Simonyi, J. Pharm. Biomed. Anal. 54 (2011) 475-481.

87.

A. Alnajjar, A. M. Idris, M. Multzenberg, B. McCord, J. Chromatogr. B 856 (2007) 62-67.

88.

D. Schaller, E. F. Hilder, P. R. Haddad, Anal. Chim. Acta 556 (2006) 104-111.

89.

É. Szökő, T. Tábi, J. Pharm. Biomed. Anal. 53 (2010) 1180-1192.

90.

W. F. Smyth, V. Rodriguez, J. Chromatogr. A 1159 (2007) 159-174.

91.

A. Musenga, E. Kenndler, E. Morganti, F. Rasi, M. A. Raggi, Anal. Chim. Acta 626 (2008) 89-96.

92.

A.Yardımcı, N. Özaltın, Anal. Chim. Acta 549 (2005) 88-95.

93.

W. Gao, J. Kang, J. Chromatogr. A 1108 (2006) 145-148.

94.

N. Jakobsson, M. Degerman, E. Stenborg, B. Nilsson, J. Chromatogr. A 1138 (2007) 109-119.

95.

X. Chen, L. Hu, X. Su, L. Kong, M. Ye, H. Zou, J. Pharm. Biomed. Anal. 40, (2006) 559-570.

96.

K. J. Fountain, A. Kloss, I. Garibyan, B. Blitshteyn, A. Brezzani, S. KyostioMoore, A. Zuk, R. Sacchiero, A. S. Cohen, J. Chromatogr. B 846 (2007) 245-251.

108 97.

M. N. Kumar, K. S. R. P. Kumar, V. J. Kumar, S. J. Prasanna, H. K. Sharma, V. K. Reddy, J. Pharm. Biomed. Anal. 54 (2011) 596-601.

98.

D. N. Mallett, S. Dayal, G. J. Dear, A. J. Pateman, J. Pharm. Biomed. Anal. 41, (2006) 510-516.

99.

L. Boudesocque, P. Lameiras, N. Amarouche, M. Giraud, F. Quattrini, J. Mc Garrity, J. Nuzillard, J. Renault, J. Chromatogr. A 1236 (2012) 115-122.

100.

Z. Zhong, G. Li, B. Zhu, Z. Luo, L. Huang, X. Wu, Food Chem. 131 (2012) 10441050.

101.

S. Mazumder, P. Lerouge, C. Loutelier-Bourhis, A. Driouich, B. Ray, Carbohydr. Polymers, 59 (2005) 231-238.

102.

M. Iammarino, A. Di Taranto, M. Muscarella, D. Nardiello, C. Palermo, D. Centonze, Anal. Chim. Acta 672 (2010) 61-65.

103.

Y. Sun, P. Gu, J. Environ. Sci. 19 (2007) 885-891.

104.

L. Campanella, A.L. Magrı̀ , A. Sorbo, M. Tomassetti, J. Pharm. Biomed. Anal. 29 (2002) 1135-1148.

105.

M. Meloun, S. Bordovská, A. Vrána, Anal. Chim. Acta 584 (2007) 419-432.

106.

E. A. Gadkariem, K. E. E. Ibrahim, N. A. A. Kamil, M. E. M. Haga, H. A. ElObeid, Saudi Pharm. J.17 (2009) 289-293.

107.

M. Meloun, S. Bordovská, L. Galla, J. Pharm. Biomed. Anal. 45 (2007) 552-564.

108.

H. E. Abdellatef, M. M. El-Henawee, H. M. El-Sayed, M. M. Ayad, Spectro Chim. Acta Part A 65 (2006) 997-999.

109.

H. E. Abdellatef, M. M. El-Henawee, H. M. El-Sayed, M. M. Ayad, Spectro Chim. Acta Part A 65 (2006) 1087-1092.

109 110.

H. A. Omara, A. S. Amin, Arabian Journal of Chemistry, 4 (2011) 287-292.

111.

J. Sachse, J. Köller, S. Härtter, C. Hiemke, J. Chromatogr. B 830 (2006) 342-348.

112.

H. A. Omara, A. S. Amin, Journal of Saudi Chemical Society, 16 (2012) 75-81.

113.

M. M. Ayad, H. E. Abdellatef, M. M. El-Henawee, H. M. El-Sayed, Spectro Chim. Acta Part A, 66 (2007) 106-110.

114.

X. Liu, S. Li, J. Zhang, X. Chen, J. Chromatogr. B 877 (2009) 3144-3150.

115.

K. Mičová, D. Friedecký, E. Faber, A. Polýnková, T. Adam, Clin. Chim. Acta 411 (2010) 1957-1962.

116.

W. M. Mullett, J. Biochem. Bioph. Methods, 70 (2007) 263-273.

117.

G. Lattanzio, A. M. García-Campaña, J. J. Soto-Chinchilla, L. Gámiz-Gracia, S. Girotti, J. Pharm. Biome. Anal. 46 (2008) 381-385.

118.

Y. M. Issa, A. F. Khorshid, Journal of Advanced Research, 2 (2011) 25-34.

119.

A. Hilali, J. C. Jiménez, M. Callejón, M. A. Bello, A. Guiraúm, J. Pharm. Biomed. Anal. 38 (2005) 768-775.

120.

S. R. Hernández, G. G. Ribero, H. C. Goicoechea, Talanta 61 (2003) 743-753.

121.

P. C. A. G. Pinto, M. Lúcia M.F.S. Saraiva, J. L.M. Santos, J. L.F.C. Lima, Talanta 68 (2006) 857-862.

122.

N. A. Mohamed, H. M. Abdel-Wadood, S. Ahmed, Talanta 85 (2011) 2121-2127.

123.

W. K. Adeniyi, A. R. Wright, Spectro Chim. Acta Part A 74 (2009) 1001-1004.

124.

A. M. Jacobsen, B. H. Sørensen, F. Ingerslev, S. H. Hansen, J. Chromatogr., A 1038 (2004) 157-170.

125.

S. C. Kim, K. Carlson, Anal. Bioanal. Chem. 387 (2007) 1301-1315.

126.

V. K. Balakrishnan, K. A. Terry, J. Toito, J. Chromatogr., A 1131 (2006) 1-10.

110 127.

S. Abuin, R. Codony, R. Compano, M. Granados, M. D. Prat, J. Chromatogr. A 1114 (2006) 73-81.

128.

M. Granados, M. Encabo, R. Compano, M.D. Prat, Chromatographia 61 (2005) 471-477.

129.

S. Castiglioni, R. Bagnati, D. Calamari, R. Fanelli, E. Zuccato, J. Chromatogr. A 1092 (2005) 206-215.

130.

T. A. M. Msagati, M. M. Nindi, Talanta 69 (2006) 243-250.

131.

W. C. Lin, H. C. Chen, W. H. Ding, J. Chromatogr. A 1065 (2005) 279-285.

132.

J. B. Quintana, R. Rodil, T. Reemtsma, J. Chromatogr. A 1061 (2004) 19-26.

133.

U. Koesukwiwat, S. Jayanta, N. Leepipatpiboon, J. Chromatogr. A 1140 (2007) 147-156.

134.

P.A. Blackwell, H. H. Lutzhøft, H. Ma, B. H. Sørensen, A. B. A. Boxall, P. Kay, Talanta 64 (2004) 1058-1064.

135.

N. Zheng, Q. Fu, Y. Z. Li, W. B. Chang, Z. M. Wang, T. J. Li, Microchem. J. 69 (2001) 153.

136.

S. G. Hu, L. Li, X. W. He, Anal. Chim. Acta 537 (2005) 215-222.

137.

E. Caro, R. M. Marce, P. A. G. Cormack, D. C. Sherrington, F. Borrull, Anal. Chim. Acta 552 (2005) 81-86.

138.

F. M. Musteata, J. Pawliszyn, Trends Anal. Chem. 26 (2007) 36-45.

139.

L. J. Krutz, S. A. Senseman, A. S. Sciumbato, J. Chromatogr., A 999 (2003) 103121.

140.

G. Ouyang, J. Pawliszyn, Anal. Bioanal. Chem. 386 (2006) 1059-1073.

141.

H. Kataoka, Trends Anal. Chem. 22 (2003) 232-244.

111 142.

F. David, B. Tienpont, P. Sandra, LCGC Eur. 16 (2003) 410-417.

143.

B. Tienpont, F. David, T. Benijts, P. Sandra, J. Pharm. Biomed. Anal. 32 (2003) 569-579.

144.

M. S. Balbão, C. Bertucci, M. M. Bergamaschi, R. H. C. Queiroz, W. R. Malfará, S. A. C. Dreossi, L. P. Mello, M. E. C. Queiroz, J. Pharm. Biomed. Anal. 51, (2010) 1078-1083.

145.

L. P. Melo, A. M. Nogueira, F. M. Lanças, M. E. C. Queiroz, Anal. Chim. Acta 633 (2009) 57-64.

146.

A. R. Chaves, S. M. Silva, R. H. C. Queiroz, F. M. Lanças, M. E. C. Queiroz, J. Chromatogr. B 850 (2007) 295-302.

147.

M. G. Kassem, Arabian Journal of Chemistry, 4 (2011) 25-35.

148.

M. R. Payán, M. Á. B. López, R. F. Torres, M. V. Navarro, M. C. Mochón, Talanta 85 (2011) 394-399.

149.

S. Seidi, Y. Yamini, A. Heydari, M. Moradi, A. Esrafili, M. Rezazadeh, Anal. Chim. Acta 701 (2011) 181-188.

150.

Y. Wu, W. Li, H. Gao, Q. Li, Y. Li, K. Wang, I. Mahmood, H. Liu, Journal of Membrane Science, 347 (2010) 17-25.

151.

R. M. Smith, J. Chromatogr., A 1000 (2003) 3-27.

152.

K. Ridgway, S. P. D. Lalljie, R. M. Smith, J. Chromatogr. A 1153 (2007) 36-53.

153.

J.A. Jonsson, L. Mathiasson, Trends Anal. Chem. 18 (1999) 318-325.

154.

M. Cruz-Vera, R. Lucena, S. Cárdenas, M. Valcárcel, J. Chromatogr. A 1202 (2008) 1-7.

155.

Q. Xiao, B. Hu, J. Chromatogr. B 878 (2010) 1599-1604.

112 156.

A. Saleh, E. Larsson, Y. Yamini, J. Å. Jönsson, J. Chromatogr. A 1218 (2011) 1331-1339.

157.

J.B. Quintana, R. Rodil, T. Reemtsma, J. Chromatogr. A 1061 (2004) 19-26.

158.

K.E. Rasmussen, S. Pedersen-Bjergaard, Trends Anal. Chem. 23 (2004) 1-10.

159.

A. M. A. El-Aty, J. H. Choi, M. W. Ko, S. Khay, A. Goudah, H. C. Shin, J. S. Kim, B. J. Chang, C. H. Lee, J. H. Shim, Anal. Chim. Acta 631 (2009) 108-115.

160.

J. H. Choi, M.I.R. Mamun, A.M. A. El-Aty, K. T. Kim, H. B. Koh, H. C. Shin, J. S. Kim, K. B. Lee, J. H. Shim, Talanta 78 (2009) 348-357.

161.

R. J. Maxwell, A. R. Lightfield, J. Chromatogr., B 715 (1998) 431-435.

162.

B. R. Simmons, J. T. Stewart, J. Chromatogr., B 688 (1997) 291-302.

163.

C. Blasco, A. D. Corcia, Y. Picó, Food Chemistry, 116 (2009) 1005-1012.

164.

V. Jiménez, R. Companyó, J. Guiteras, Talanta 85 (2011) 596-606.

165.

H. Wu, M. Chen, Y. Fan, F. Elsebaei, Y. Zhu, Talanta 88 (2012) 222-229.

166.

A. Gentili, Trend. Anal. Chem. 26 (2007) 595-608.

167.

S. A. Barker, J. Chromatogr. A 885 (2000) 115-127.

168.

M. Míguez-Framil, A. Moreda-Piñeiro, P. Bermejo-Barrera, I. Álvarez-Freire, M. J. Tabernero, A. M. Bermejo, J. Chromatogr. A 1217 (2010) 6342-6349.

169.

K. Aguilar-Arteaga, J. A. Rodriguez, J. M. Miranda, J. Medina, E. Barrado, Talanta 80 (2010) 1152-1157.

170.

L. Sanchez-Prado, J. P. Lamas, G. Alvarez-Rivera, M. Lores, C. Garcia-Jares, M. Llompart, J. Chromatogr. A 1218 (2011) 5055-5062.

171.

K. Kishida, Food Control 18 (2007) 301-305.

172.

W. H. Tsai, T. C. Huang, J. J. Huang, Y. H. Hsue, H. Y. Chuang, J. Chromatogr. A 1216 (2009) 2263-2269.

113 173.

W. H. Tsai, H. Y. Chuang, H. H. Chen, J. J. Huang, H. C. Chen, S. H. Cheng, T. C. Huang, Anal. Chim. Acta 656 (2009) 56-62.

174.

F. Plössl, M. GierA, F. Bracher, J. Chromatogr. A 1135 (2006) 19-26.

175.

A. Posyniak, J. Zmudzki, K. Mitrowska, J. Chromatogr. A 1087 (2005) 259-264

176.

J. Zhou, X. Xue, Y. Li, J. Zhang, F. Chen, L. Wu, L. Chen, J. Zhao, Food Chemistry, 115 (2009) 1074-1080.

177.

X. Pan, Z. Qiang, W. Ben, M. Chen, J. Environ. Sci. 23 (2011) 1729-1737.

178.

P. A. Blackwell, H. C. H. Lutzhøft, H. Ma, B. H. Sørensen, A. B. A. Boxall, P. Kay, Talanta 64 (2004) 1058-1064.

179.

J. Dobor, M. Varga, J. Yao, H. Chen, G. Palkó, G. Záray, Microchemical Journal, 94 (2010) 36-41.

180.

X. Zhu, Q. Su, J. Cai, J. Yang, Anal. Chim. Acta 579 (2006) 88-94.

181.

V. Mandal, Y. Mohan, S. Hemalatha, J. Pharm. Biomed. Anal. 46 (2008) 322-327

182.

A. Azzouz, E. Ballesteros, Sci Total Environ. 419 (2012) 208-215.

183.

V. Mandal, Y. Mohan, S. Hemalatha, Phcog Rev. 1 (2007) 7-18.

184.

M. H. Akhtar, L. G. Croteau, Analyst 121 (1996) 803-806.

185.

A. H. Dawson, Cyclic antidepressant drugs, in: R.C. Dart (Ed.), Medical Toxicology, third ed., Lippincott Williams & Wilkins, Philadelphia, 2004, 834-843.

186.

T. Gondova, I. Petrikova, J. AOAC Int. 93 (2010) 778-782.

187.

E. Tanaka, M. Terada, T. Nakamura, S. Misawa, C. Wakasugi, J. Chromatogr. B 692 (1997) 405-412.

188.

C. Frahnert, M. L. Rao, K. Grasmader, J. Chromatogr. B 794 (2003) 35-47.

114 189.

W. M. Mullett, K. Levsen, D. Lubda, J. Pawliszyn, J. Chromatogr. A 963 (2002) 325-334.

190.

J. Philippe Lambert, W. M. Mullett, E. Kwong, D. Lubda, J. Chromatogr. A 1075 (2005) 43-49.

191.

K. M. Kirschbaum, M. J. Muller, G. Zernig, A. Saria, A. Mobascher, J. Malevani, C. Hiemke, Clin Chem 51 (2005) 1718-1721.

192.

J. Sachse, J. Köller, S. Härrter, C. Hiemke, J. Chromatogr. B Analyt Technol Biomed Life Sci 830 (2006) 342-348.

193.

C. Waldschmitt, F. Vogel, M. Maurer, C. Hiemke, Ther. Drug Monit. 29 (2007) 767-772.

194.

N. Yasui-Furukori, Y. Inoue, S. Kaneko, K. Otani, J. Pharm. Biomed. Anal. 37 (2005)121-125.

195.

B. J. G. Silva, F. M. Lancas, M. E. C. Queiroz, J. Chromatogr. B 862 (2008) 181188.

196.

C. Waldschmitt, B. Pfuhlmann, C. Hiemke, Chromatographia, 69 (2009) 821-827.

197.

T. A. Ivandini, B. V. Sarada, C. Terashima, T. N. Rao, D. A. Tryk, H. Ishiguro, Y. Kubota , A. Fujishima, J. Electroanal. Chem. 521 (2002) 117-126.

198.

A. R. Chaves, F. Z. Leandro, J. A. Carris, M. Eugênia, C. Queiroz, J. Chromatogr. B 878 (2010) 2123-2129.

199.

J. Karpinska, B. Starczewska, J. Pharm. Biomed. Anal. 29 (2002) 519-525.

200.

A. J. Santos-Neto, C. J. Rodrigues, C. Fernandes, G. M. Titato, C. Alves, F. M. Lancas, J. Chromatogr. A 1105 (2006) 71-76.

201.

L. Cardenes, J. H. Ayala, A. M. Afonso, V. Gonzalez, J. Chromatogr. A 1030 (2004) 87.

202.

T. Shinozuka, M. Terada, E. Tanaka, Forensic Sci. Int. 162 (2006) 108-112.

115 203.

M. M. Zheng, S. T. Wang, W. K. Hu, Y. Q. Feng, J. Chromatogr. A, 1217 (2010) 7493-7501.

204.

U. Gutteck, K.M. Rentsch, Clin. Chem. Lab.Med. 41 (2003) 1571-1579.

205.

C. C. Chou, M. R. Lee, Anal. Chim. Acta 538 (2005) 49-56.

206.

A. D. Castro, M. d. Mar, R. Fernandez, M. Laloup, N. Samyn, G. D. Boeck, M. Wood, V. Maes, M. Lopez-Rivadulla, J. Chromatogr. A 1160 (2007) 3-12.

207.

M. C. Sampedro, N. Unceta, A. Gomez-Caballero, L. F. Callado, B. Morentin,

208.

M. A. Goicolea, J. J. Meana, R. J. Barrio, Forensic Sci. Int. 219 (2012) 172-178.

209.

A. R. Breaud, R. Harlan, J. M. D. Bussolo, G. A. McMillin, W. Clarke, Clin. Chim. Acta 411 (2010) 825-832.

210.

J. J. Nevado, M. J. Llerena, A. M. Salcedo, E. A. Nuevo, J. Pharm. Biomed. Anal. 38 (2005) 52-59.

211.

H. H. Maurer, J. Bickeboeller-Friedrich, J. Ana l. Toxicol. 24 (2000) 340-347.

212.

B. Tienpont, F. David, T. Benijts, P. Sandra, J. Pharm. Biomed. Anal. 32 (2003) 569-579.

213.

B. Tienpont, F. David, K. Desmet, P. Sandra, Anal. Bioanal. Chem. 373 (2002) 46-55.

214.

L. Antonilli, V. Brusadin, F. Filipponi, R. Guglielmi, P. Nencini, J. Pharm. Biomed. Anal. 56 (2011) 763-770.

215.

V. Ferranti, C. Chabenat, S. Menager, O. Lafont, J. Chromatogr. B, 718 (1998) 199-204.

216.

R. H. C. Queiroz, C. Bertucci, W. R. Malfara, S. A. C. Dreossi, A. R. Chaves, D. A. R. Vale´rio, M. E. C. Queiroz, J. Pharm. Biomed. Anal. 48 (2008) 428-434.

217.

M. Contin, M. Balboni, E. Callegati, C. Candela, F. Albani, R. Riva, A. Baruzzi, J. Chromatogr. B 828 (2005) 113-117.

116 218.

R. Mandrioli, N. Ghedini, F. Albani, E. Kenndler, M.A. Raggi, J. Chromatogr. B, 783 (2003) 253-263.

219.

M. Contin, S. Mohamed, F. Albani, R. Riva, A. Baruzzi, J. Chromatogr. B 873 (2008) 129-132.

220.

M. Contin, S. Mohamed, C. Candela, F. Albani, R. Riva, A. Baruzzi, J. Chromatogr. B 878 (2010) 461-465.

221.

K. M. Patil, S. L. Bodhankar, J. Pharm. Biomed. Anal. 39 (2005) 181-186.

222.

H. A. Mowafy, F. K. Alanazi, G. M. E. Maghraby, Saudi Pharm. J. 20 (2012) 2934.

223.

S. Thomas, A. Bharti, P. K. Maddhesia, S. Shandilya, A. Agarwal, Dharamvir, S. Biswas, V. Bhansal, A. K. Gupta, P. K. Tewari, C. S. Mathela, J. Pharm. Biomed. Anal. 61 (2012) 165-175.

224.

T. A. C. Vermeij, P. M. Edelbroek, J. Chromatogr. B 857 (2007) 40-46.

225.

M. D. Gil García, F. Canada Canada, M. J. Culzonia, L. Vera-Candioti, G. G. Siano, H. C. Goicoechea, M. Martínez Galera, J. Chromatogr. A 1216 (2009) 5489-5496.

226.

M. A. Saracino, K. Tallarico, M. A. Raggi, Anal. Chim. Acta 661 (2010) 222-228.

227.

F. Bugamelli, C. Sabbioni, R. Mandrioli, E. Kenndler, F. Albani, M. A. Raggi, Anal. Chim. Acta 472 (2002) 1-10.

228.

L. Vera-Candioti, M.D. Gil García, M. Martínez Galera, H. C. Goicoechea, J. Chromatogr. A 1211 (2008) 22-32.

229.

G. Bahrami, A. Kiani, J. Chromatogr. B 835 (2006) 123-126.

230.

L. Mercolini, R. Mandrioli, M. Amore, M. A. Raggi, J. Pharm. Biomed. Anal. 53 (2010) 62-67.

231.

M. K. M. Babu, J. Pharm. Biomed. Anal. 34 (2004) 315-324.

117 232.

H. Breton, M. Cociglio, F. Bressolle, H. Peyriere, J. P. Blayac, D. Hillaire-Buys, J. Chromatogr. B 828 (2005) 80-90.

233.

K. Hoshina, S. Horiyama, H. Matsunaga, J. Haginaka, J. Chromatogr. A 1216 (2009) 4957-4962.

234.

H. H. Maurer, C. Kratzsch, A. A. Weber, F. T. Peters, T. Kraemer, J. Mass Spectrom. 37 (2002) 687-692.

235.

X. S. Miao, C. D. Metcalfe, Anal. Chem. 75 (2003) 3731-3738.

236.

S. M. N. Roy, S. M. Yetal, V. V. Vaidya, S. S. Joshi, E-Journal of Chemistry, 5 (2008) 169-176.

237.

L. K. Sørensen. Forensic Sci. Int. 206 (2011) 119-126.

238.

K. B. Kim, K. A. Seo, S. E. Kim, S. K. Bae, D. H. Kim, J. G. Shin, J. Pharm. Biomed. Anal. 56 (2011) 771-777.

239.

G. Paglia, O. D’Apolito, D. Garofalo, C. Scarano, G. Corso, J. Chromatogr. B 860 (2007) 153-159.

240.

D. S. Jain, G. Subbaiah, M. Sanyal, P. Shrivastav, Talanta 72 (2007) 80-88.

241.

Y. Zhang, N. Mehrotra, N. R. Budha, M. L. Christensen, B. Meibohm, Clin Chim. Acta 398 (2008) 105-112.

242.

K. Reddersen, T. Heberer, J. Sep. Sci. 26 (2003) 1443-1450.

243.

J. C. Durán-Alvarez, E. Becerril-Bravo, V. S. Castro, B. Jiménez, R. Gibson, Talanta 78 (2009) 1159-1166.

244.

K. J. Bisceglia, J. T. Yu, M. Coelhan, E. J. Bouwer, A. L. Roberts, J. Chromatogr. A 1217 (2010) 558-564.

245.

W. Thormann, R. Theurillat, M. Wind, R. Kuldvee, J. Chromatogr. A 924 (2001) 429-437.

246.

E. Turiel, A. Martín-Esteban, J. L. Tadeo, Anal. Chim. Acta 562 (2006) 30-35.

118 247.

E. Nemutlu, S. Kír, O. O. Zyuncu, M. S. Beksac, Chromatographia, 66 (2007) 1524.

248.

A. Kumar, A. K. Malik, D. K. Tewary, B. Singh, J. Sep. Sci. 2008, 31, 294-300.

249.

M. Díaz-Alvarez, E. Turiel, A. Martín-Esteban, Anal Bioanal Chem 393 (2009) 899-905.

250.

H. Yan, H. Wang, X. Qin, B. Liu, J. Du, J. Pharm. Biomed. Anal. 54 (2011) 5357.

251.

C. K. Holtzapple, S. A. Buckley, L. H. Stanker, J. Chromatogr. B 754 (2001) 1-9.

252.

V. F. Samanidou, K. I. Nikolaidou, L. N. Papadoyannis, J Sep Sci 30 (2007) 24302439.

253.

E. A. Christodoulou, V. F. Samanidou, J Sep Sci 30 (2007) 2421-2429.

254.

E. Benito-Pena, J. L. Urracaa, B. Sellergren, M. C. Moreno-Bondi, J. Chromatogr. A 1208 (2008) 62-70.

255.

M. K. Hossouan, O. Ballesteros, J. Taoufiki, J. Chromatogr. B 852 (2007) 625.

256.

S. Herranz, M. C. Moreno-Bondi, M .D. Marazuela, J. Chromatogr. A 1140 (2007) 63-70.

257.

J. Y. Shen, M. R. Kim, C. J. Lee, I. S. Kim, K. B. Lee, J. H. Shim, Anal. Chim. Acta 513 (2004) 451-455.

258.

M. Sturini, A. Speltini, L. Pretali, E. Fasani, A. Profumo, J. Sep. Sci. 32 (2009) 3020–3028.

259.

H. Yan, F. Qiao, K. H. Row, Anal. Chem. 79 (2007) 8242-8248.

260.

H. Yan, K. H. Row, Bull. Korean Chem. Soc. 29 (2008) 1173-1178.

261.

H. Wu, G. Zhao, L. Du, Spectrochim. Acta Part A 75 (2010) 1624-1628.

262.

M. Clemente, M. P. Hermo, D. Barron, J. Barbosa, J. Chromatogr. A 1135 (2006) 170-178.

119 263.

S. Bailac, D. Barron, J. Barbosa, Anal. Chim. Acta 580 (2006)163-169.

264.

J .Tuerk, M. Reinders, D. Dreyer, T. K. Kiffmeyer, K. G. Schmidt, H. M. Kuss, J. Chromatogr. B 831 (2006) 72-80.

265.

O. Ballesteros, I. Toro, V. Sanz-Nebot, A. Navalón, J. L. Vílchez, J. Barbosa, J. Chromatogr. B 798 (2003) 137-144.

266.

Y. B. Luo, Q. Ma, Y. Q. Feng, J. Chromatogr. A 1217 (2010) 3583-3589.

267.

M. G. Pikkemaat, P. P. Mulder, J. W. Elferink, A. de Cocq, M. W. Nielen, H. J. Egmond, Food Addit. Contam. 24 (2007) 842-850.

268.

A. Prieto, S. Schrader, C. Bauer, M. Möder, Anal. Chim. Acta 685 (2011) 146152.

269.

A. Juan-García, G. Font, Y. Picó, Electrophoresis 28 (2007) 4180-4194.

270.

A. Juan-García, G. Font, Y. Picó, Electrophoresis 27 (2006) 2240-2249.

271.

M. Frommberger, N. Hertkorn, M. Englmann, S. Jakoby, A. Hartmann, A. Kettrup, P. Schmitt-Kopplin, Electrophoresis 26 (2005) 1523-1532.

272.

H. Wu, Z. Song, M. Hentzer, J. B. Andersen, A. Heydorn, K. Mathee, C. Moser, L. Eberl, S. Molin, N. Høiby, M. Givskov, Microbiology (2000), 146, 2481-2493.

273.

O. Geisenberger, M. Givskov, K. Riedel, N. Høiby, B. Tümmler, L. Eberl, FEMS Microbiol. Lett. 184 (2000) 273-278.

274.

U. M. Pinto, E. S. Viana, M. L. Martins, M. C. D. Vanetti, Food Control, 18 (2007)1322-1327.

275.

T. Morohoshi, S. Nakazawa, A. Ebata, N. Kato, T. Ikeda, Biosci. Biotechnol. Biochem. 72 (2008) 1887-1893.

120 276.

X. Li, A. Fekete, M. Englmann, C. Gotz, M. Rothballer, M. Frommberger, K. Buddrus, J. Fekete, C. Cai, P. Schroder, A. Hartmann, G. Chen, P. SchmittKopplin, J. Chromatogr. A 1134 (2006) 186-193.

277.

M. Englmann, A. Fekete, C. Kuttler, M. Frommberger, X. Li, I. Gebefügi, J. Fekete, P. Schmitt-Kopplin, J. Chromatogr. A 1160 (2007) 184-193.

278.

A. Middleton, H. C. Rodgers, M. Cámara, A. J. Knox, P. Williams, A. Hardman, FEMS Microbiol. Lett. 207 (2002) 1-7.

279.

A. Morin, B. Grasland, K. Vallée-Réhel, C. Dufau, D. Haras, J. Chromatogr. A 1002 (2003) 79-92.

280.

M. W. Taylor, P. J. Schupp, H. J. Baillie, T. S. Charlton, R. de Nys, S. Kjelleberg, P. D. Steinberg, Appl. Environ. Microbiol. 70 (2004) 4387-4389.

281.

T. R. I. Cataldi, G. Bianco, M. Frommberger, Ph. Schmitt-Kopplin, Rapid Commun. Mass Spectrom. 18 (2004) 1341-1344.

282.

T. R. I. Cataldi, G. Bianco, L. Palazzo, V. Quaranta, Anal. Biochem. 361 (2007) 226-235.

283.

A. E. Chambers, M. B. Visser, U. Schwab, P. A. Sokol, FEMS Microbiol. Lett. 244 (2005) 297-304.