Chapter 2 - Properties of Light

Chapter 2 - Properties of Light Gabriel Popescu University of Illinois at Urbana‐Champaign y p g Beckman Institute Quantitative Light Imaging Laborat...
2 downloads 2 Views 278KB Size
Chapter 2 - Properties of Light

Gabriel Popescu University of Illinois at Urbana‐Champaign y p g Beckman Institute Quantitative Light Imaging Laboratory Quantitative Light Imaging Laboratory http://light.ece.uiuc.edu Principles of Optical Imaging

Electrical and Computer Engineering, UIUC

ECE 460 – Optical Imaging

2.1 Properties of EM Fields 2.1 Properties of EM Fields  Amplitude A and phase φ p p φ are random functions in both time and space:

     i (r , t ) E (r , t )  eA(r , t )).e

Chapter 2: Properties of Light

(1)

2

ECE 460 – Optical Imaging

2.1 Properties of EM Fields 2.1 Properties of EM Fields a)) Polarization:  Gives the direction of field oscillation  Generally, light is a transverse wave (unlike sound =  longitudinal)  E Propagation (k

 wave vector) 2 | k | 

 Anisotropic  materials: different optical properties along  different axis  useful Chapter 2: Properties of Light

3

ECE 460 – Optical Imaging

2.1 Properties of EM Fields 2.1 Properties of EM Fields a)) Polarization: x , y  There is always a basis              for decomposing the field  into 2 polarizations (eigen modes); equivalently (right, left)  circular polarization is also a basis. i l l i ti i l b i  Dichroism: different absorption for different pol  one  way to create polarizers: y p

 

ԕ

 Malus Law:  Chapter 2: Properties of Light

 E1

P

E2  E1 * cos 

P

 E2

ԕ

 E

(2) demo available

4

ECE 460 – Optical Imaging

2.1 Properties of EM Fields 2.1 Properties of EM Fields a)) Polarization:

I  E ; I 2  I1 *cos 2  2

I Malus Law Malus Law

  Birefringence – Different refr. index for different pol.

Chapter 2: Properties of Light

demo available

5

ECE 460 – Optical Imaging

2.1 Properties of EM Fields 2.1 Properties of EM Fields a)) Polarization:  Natural Light  unpolarized  superposition Ex= Ey with  no phase relationship between the two  Circularly polarized  Ex= Ey, φx – φy = π/2 !  Matrix formalism of polarization transformation  (Jones 2x2, complex & Muller – (Jones – 2x2 complex & Muller 4x4, real) 4x4 real) We’llll do this later. We do this later

E  I  Stokes Vect. Vect Dim 4 2

Chapter 2: Properties of Light

 Ex '   Ex   J   Ey '   Ey  J ij   6

ECE 460 – Optical Imaging

2.1 Properties of EM Fields 2.1 Properties of EM Fields  V b)) Amplitude: p  A(r , t )     m A(t)

•Thermal source

k

t

A(x)

  k

A(t)

•Stabilized laser

t

A(x)

•Arbitrary field Chapter 2: Properties of Light

x

•Plane Wave

x

demo available

7

ECE 460 – Optical Imaging

2.1 Properties of EM Fields 2.1 Properties of EM Fields k0 c)) Phase:     [Φ] [ ] = rad Φ(t)

Φ(t)

o

•Thermal source

t

Φ(z)

•Laser at freq o Φ =ωt Φ(z)

t

 •Random field Chapter 2: Properties of Light

z

•Plane Wave Φ =kz

z

8

ECE 460 – Optical Imaging

2.1 Properties of EM Fields 2.1 Properties of EM Fields c)) Phase:     [Φ] [ ] = rad  For quasi-monochromatic fields, plane wave

    t  k  r



2 2 2  k     wave number c c Tc  1   cT ; T  ;   2 N N

Chapter 2: Properties of Light

(3)

9

ECE 460 – Optical Imaging

2.2 The frequency domain representation 2.2 The frequency domain representation 

Random variable E(t) has a frequency‐domain counterpart: () q y p

E ( )  A( )e 

i (  )

(4)

Similarly E(x) has a frequency‐domain pair:

E ( )  A( )e

i (  )

(5)

 ( )  k  z  n( )  k0  z k0 Chapter 2: Properties of Light

k0 

2

 10

ECE 460 – Optical Imaging

2.2 The frequency domain representation 2.2 The frequency domain representation a) Spectral amplitude: 2  Optical Spectrum: Optical Spectrum: S ( )  A( )  Angular Spectrum: S ( )  A( ) 2 S(ω)

S(ξ)

ω0



k0

ω

ξ

0

ξ

1   m  Spatial Frequency (connects to angular   

spectrum) t )

 Tipically:  t   Will follow similar equations x‐  x ‐  The information contained is the same (t,    ) and (x,   )   Chapter 2: Properties of Light

11

ECE 460 – Optical Imaging

2.2 The frequency domain representation 2.2 The frequency domain representation b)) Spectral phase: p p  Phase delay of each spectral component Optical Frequency Φ(ω)



  chirp

Spatial Frequency

2

Φ(ξ) ~ξ

ω0 •Dispersive material (linear chirp)

ω

ξ •Defocused point source (1st order aberration)

  Full similarity between (t,    ) and (x,   ) 

Chapter 2: Properties of Light

2

A point is mapped to a blur

d 2   d 12

ECE 460 – Optical Imaging

2.3 Measurable Quantities 2.3 Measurable Quantities  The information about the system under investigation may  y g y be contained in polarization and:  A(t), φ(t) ((t,, )    A(   ), φ(    ) 8 quantities  A(x), φ(x) A(x) φ(x) (x, )  A(   ), φ(  )    Experimentally, we have access only to: 2 I  A(t )  time average  Chapter 2: Properties of Light

demo available

13

ECE 460 – Optical Imaging

2.3 Measurable Quantities 2.3 Measurable Quantities  Experimentally, we have access only to: p y, y 2 I  A(t )  time average

(6)

 i.e the phtodetectors ( photodiode, CCD, retina, etc) produce  photoelectrons:

h  Ee  W 

Photon incident Electron El t energy kinetic energy

Chapter 2: Properties of Light

(Einstein)

(7)

Work

demo available

14

ECE 460 – Optical Imaging

2.3 Measurable Quantities 2.3 Measurable Quantities  All detectors sensitive to power/energy p / gy  However, all 8 quantities can be accessed via various tricks  Eg1: Want I(   )   measure I(    ) and use a device with   ( )   use interferometry  I(   )   E1 E2 cos(1  2 )  Eg2: Want      

Chapter 2: Properties of Light

15

ECE 460 – Optical Imaging

2.4 Uncertainty Principle 2.4 Uncertainty Principle  Space ‐ p momentum or energy‐time cannot be measured  gy simmultaneously with infinite accuracy x  p  constant   h  Plank' s constant E t  constant  For photons:  For photons:

E  

p  k ; p 

Chapter 2: Properties of Light

h



k

16

ECE 460 – Optical Imaging

2.4 Uncertainty Principle 2.4 Uncertainty Principle a)) t –

t  constant 

t  2

 Implications:   1‐ short pulses require broad spectrum 2 high spectral resolution requires long time of 2‐high spectral resolution requires long time of  measurement

Chapter 2: Properties of Light

17

ECE 460 – Optical Imaging

2.4 Uncertainty Principle 2.4 Uncertainty Principle b)) x –

ks

ki 

ԕ

x q  

;

2sin( / 2)



x



xmin 

Chapter 2: Properties of Light

p  h(ks  ki )  hq

q

  2



q  2k sin( ) 2

1 ;



 x

- meaning of resolution

18

ECE 460 – Optical Imaging

2.4 Uncertainty Principle 2.4 Uncertainty Principle

k

diffraction

 Smaller aperture  Higher angles k



 If aperture  If aperture