Edited by Ralf Riedel and I-Wei Chen

Ceramics Science and Technology Volume 2: Properties

This page intentionally left blank

Edited by Ralf Riedel and I-Wei Chen Ceramics Science and Technology

Related Titles Ghosh, S. K. (ed.)

Li, K.

Self-healing Materials

Ceramic Membranes for Separation and Reaction

Fundamentals, Design Strategies, and Applications 2009

2007 ISBN: 978-0-470-01440-0

ISBN: 978-3-527-31829-2

Boch, P., Niepce, J.-C. (eds.) Krenkel, W. (ed.)

Ceramic Matrix Composites Fiber Reinforced Ceramics and their Applications

Ceramic Materials Processes, Properties, and Applications 2007 ISBN: 978-1-905209-23-1

2008 ISBN: 978-3-527-31361-7

Ghosh, S. K. (ed.)

Heimann, R. B.

Functional Coatings

Plasma Spray Coating

by Polymer Microencapsulation

Principles and Applications

2006 ISBN: 978-3-527-31296-2

2008 ISBN: 978-3-527-32050-9

Scheffler, M., Colombo, P. (eds.)

Riedel, R., Chen, I-W. (eds.)

Cellular Ceramics

Ceramics Science and Technology

Structure, Manufacturing, Properties and Applications

Volume 1: Structures 2008 ISBN: 978-3-527-31155-2

Öchsner, A., Murch, G. E., de Lemos, M. J. S. (eds.)

Cellular and Porous Materials Thermal Properties Simulation and Prediction 2008 ISBN: 978-3-527-31938-1

2005 ISBN: 978-3-527-31320-4

Raabe, D., Roters, F., Barlat, F., Chen, L.-Q. (eds.)

Continuum Scale Simulation of Engineering Materials Fundamentals - Microstructures Process Applications 2004 ISBN: 978-3-527-30760-9

Edited by Ralf Riedel and I-Wei Chen

Ceramics Science and Technology Volume 2: Properties

The Editors Prof. Dr. Ralf Riedel TU Darmstadt Institut für Materialwissenschaft Petersenstr. 23 64287 Darmstadt Germany

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate. Library of Congress Card No.: applied for

Prof. Dr. I-Wei Chen University of Pennsylvania School of Engineering 3231 Walnut Street Philadelphia, PA 19104-6272 USA

British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de. # 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law. Composition Thomson Digital, Noida, India Printing and Bookbinding betz-druck GmbH, Darmstadt Cover Design Schulz Grafik-Design, Fußgönheim Printed in the Federal Republic of Germany Printed on acid-free paper ISBN: 978-3-527-31156-9

V

Contents Preface XXI List of Contributors

XXIII 1

I

Ceramic Material Classes

1

Ceramic Oxides 3 Du4san Galusek and Katarína Ghillányová Introduction 3 Aluminum Oxide 4 Crystal Structure 4 Natural Sources and Preparation of Powders 5 High-Temperature/Flame/Laser Synthesis 6 Chemical Methods 6 Mechanically Assisted Synthesis 6 Solid-State Sintered Alumina 7 Submicrometer and Transparent Alumina 7 Liquid-Phase Sintered (LPS) Aluminas 8 Properties of Polycrystalline Alumina 11 Magnesium Oxide 13 Crystal Structure and Properties of Single-Crystal MgO 14 Natural Sources and Production 14 Polycrystalline Magnesia 15 Zinc Oxide 15 Crystal Structure and Properties of Single-Crystal ZnO 16 Natural Sources and Production 16 Properties 16 Applications 17 ZnO-Based Varistors 17 Other Applications of ZnO Ceramics 19 Titanium Dioxide 20 Crystal Structure and Properties of Single-Crystal TiO2 20

1.1 1.2 1.2.1 1.2.2 1.2.2.1 1.2.2.2 1.2.2.3 1.2.3 1.2.3.1 1.2.4 1.2.5 1.3 1.3.1 1.3.2 1.3.3 1.4 1.4.1 1.4.2 1.4.3 1.4.4 1.4.4.1 1.4.4.2 1.5 1.5.1

Ceramics Science and Technology Volume 2: Properties. Edited by Ralf Riedel and I-Wei Chen Copyright  2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-31156-9

VI

Contents

1.5.2 1.5.2.1 1.5.2.2 1.5.2.3 1.5.3 1.5.4 1.5.5 1.6 1.6.1 1.6.2 1.6.2.1 1.6.3 1.6.3.1 1.6.3.2 1.6.3.3 1.6.3.4 1.6.4 1.6.5 1.6.6 1.6.6.1 1.6.6.2 1.6.6.3 1.6.6.4 1.7 1.7.1 1.7.2 1.7.3 1.7.4 1.7.4.1 1.7.4.2 1.7.4.3 1.8 1.8.1 1.8.2 1.8.3 1.8.4

Natural Sources and Production 22 Synthesis of Anatase 22 Synthesis of Rutile 23 Synthesis of Brookite 23 Properties of TiO2 Polymorphs 24 Polycrystalline Titania 24 Applications of TiO2 25 Zirconium Oxide 27 Crystal Structure and Properties of Single Crystals 28 Natural Sources and Production 29 Phase Transformation of Zirconia 31 Partially Stabilized Zirconia 32 Mg-PSZ 32 Ca-PSZ 34 Y-PSZ 34 Ceria and Other Rare Earth-Stabilized Zirconias 34 Tetragonal Zirconia Polycrystals (TZP) 35 Zirconia-Toughened Alumina (ZTA) 37 Applications of Zirconia 38 Thermal Barrier Coatings 38 Solid Electrolytes 39 Fuel Cells 41 Bioceramics 42 Cerium Oxide 43 Crystal Structure and Properties of Single-Crystal CeO2 43 Natural Sources and Production 44 Properties 45 Applications 46 Abrasives 46 Solid Electrolytes 46 Catalysts 47 Yttrium Oxide 48 Crystal Structure and Properties of Single Crystal Yttrium Oxide Natural Sources and Preparation 48 Properties 49 Applications 50 References 51

2

Nitrides 59 4 Pavol Sajgalík, Zoltán Len4cé4s, and Miroslav Hnatko Silicon Nitride 59 Introduction 59 Amorphous Silicon Nitride 60 Silicon Nitride Single Crystals: Structure 60 a- and b- Si3N4 60

2.1 2.1.1 2.1.2 2.1.3 2.1.3.1

48

Contents

2.1.3.2 2.1.4 2.1.4.1 2.1.4.2 2.1.4.3 2.1.5 2.1.6 2.1.6.1 2.1.7 2.1.8 2.1.9 2.1.9.1 2.1.9.2 2.2 2.2.1 2.2.1.1 2.2.1.2 2.2.1.3 2.2.2 2.2.3 2.2.3.1 2.2.3.2 2.3 2.3.1 2.3.2 2.3.3 2.4 2.4.1 2.4.2 2.4.3 2.5 2.6 2.7 2.7.1 2.7.1.1 2.7.1.2 2.7.1.3 2.7.1.4 2.8

g-Si3N4 61 Silicon Nitride Single Crystals: Mechanical Properties 63 a-Si3N4 63 b-Si3N4 63 g-Si3N4 64 Silicon Nitride-Based Materials 64 Oxynitride Glasses 65 Properties of Oxynitride Glasses 66 Polycrystalline Si3N4 66 Lu-Doped Si3N4 Ceramics 67 SiAlON Ceramics 68 a- and b-SiAlONs 68 Si2N2O and O0 -SiAlON 70 Boron Nitride 71 Crystallographic Structures 71 Hexagonal Boron Nitride 71 Cubic Boron Nitride 72 Wurtzitic Boron Nitride 72 Synthesis of BN 72 Properties of BN 73 h-BN 73 c-BN and w-BN 73 Aluminum Nitride 74 Structure 74 Synthesis 74 Properties 75 Titanium Nitride 75 Structure 75 Synthesis 75 Properties 76 Tantalum Nitride 77 Chromium Nitride 77 Ternary Nitrides 78 Ternary Silicon Nitrides 78 MgSiN2 78 Other Alkaline Earth Silicon Nitrides 79 LaSi3N5 79 LiSi2N3 80 Light-Emitting Nitride and Oxynitride Phosphors 80 References 81

3

Gallium Nitride and Oxonitrides 91 Isabel Kinski and Paul F. McMillan Introduction 91 Gallium Nitrides 94

3.1 3.2

VII

VIII

Contents

3.2.1 3.2.2 3.2.2.1 3.2.2.2 3.2.2.3 3.2.3 3.3 3.3.1 3.3.2 3.4 3.4.1 3.4.2 3.4.3 3.4.4 3.4.4.1 3.4.4.2 3.4.5 3.5

4 4.1 4.2 4.2.1 4.2.1.1 4.2.1.2 4.2.2 4.2.2.1 4.2.2.2 4.3 4.3.1 4.3.1.1 4.3.1.2 4.3.1.3 4.3.1.4 4.3.1.5 4.3.1.6 4.3.1.7 4.3.2 4.3.2.1 4.3.2.2 4.3.2.3 4.4

Phase Description 94 Synthesis Routes to GaN 99 Synthesis of Bulk Gallium Nitride 99 Synthesis of Thin Film GaN and Epitaxial Growth Techniques 100 Synthesis of GaN via Chemical Precursor Routes 101 Properties of (Ga,Al,In)N Solid Solutions 101 Gallium Oxides 102 Phase Description and Properties 102 Synthesis and Growth Techniques 106 Gallium Oxonitrides 107 Nomenclature Issues of Ga–O–N Materials 108 Theoretical Predictions for Ga Oxonitride Compounds 108 Literature Overview on Gallium Oxide Nitride Phases 110 Synthesis and Growth Techniques 114 Precursor Approach for Gallium Oxide Nitride Phases 115 Crystalline Phases of Gallium Oxide Nitride Synthesized under High-Pressure/High-Temperature Conditions 118 Potential Applications 122 Outlook 124 References 124 Silicon Carbide- and Boron Carbide-Based Hard Materials 131 Clemens Schmalzried and Karl A. Schwetz Introduction 131 Structure and Chemistry 131 Silicon Carbide 131 Phase Relations in the System Silicon–Carbon 132 Structural Aspects 132 Boron Carbide 134 Phase Relations in the System Boron–Carbon 135 Structural Aspects 135 Production of Particles and Fibers 137 Silicon Carbide 137 Technical-Scale Production of a-Silicon Carbide 137 b-Silicon Carbide Powder 138 Silicon Carbide Whiskers 142 Silicon Carbide Platelets 145 Continuous Silicon Carbide Fibers 146 Silicon Carbide Nanofibers 148 Silicon Carbide Nanotubes (SiCNTs) 149 Boron Carbide 149 Technical-Scale Production 149 Submicron B4C Powders 150 Boron Carbide-Based Nanostructured Particles 151 Dense Ceramic Shapes 152

Contents

4.4.1 4.4.1.1 4.4.1.2 4.4.1.3 4.4.1.4 4.4.1.5 4.4.1.6 4.4.1.7 4.4.1.8 4.4.1.9 4.4.1.10 4.4.2 4.4.2.1 4.4.2.2 4.4.2.3 4.4.2.4 4.4.2.5 4.5 4.5.1 4.5.1.1 4.5.1.2 4.5.1.3 4.5.2 4.5.2.1 4.5.2.2 4.6 4.6.1 4.6.2

5 5.1 5.2 5.3 5.3.1 5.3.2 5.3.3 5.4 5.4.1 5.4.2 5.4.3 5.4.4 5.4.5

Dense Silicon Carbide Shapes 152 Ceramically Bonded Silicon Carbide 152 Recrystallized Silicon Carbide 152 Reaction-Bonded Silicon Carbide 154 Sintered Silicon Carbide 154 Hot-Pressed Silicon Carbide 158 Chemical Vapor- and Physical Vapor-Deposited Silicon Carbide 159 Silicon Carbide Wafers 160 Silicon Carbide Nanoceramics 161 Silicon Carbide-Based Composites 162 Metal Matrix Composites (MMCs) 172 Dense Boron Carbide Shapes 174 Sintered Boron Carbide 175 Hot-Pressed and Hot Isostatic-Pressed Boron Carbide 178 Spark-Plasma-Sintered Boron Carbide 179 Boron Carbide-Based Composites 179 B4C-Based MMCs 182 Properties of Silicon Carbide- and Boron Carbide-Based Materials 183 Silicon Carbide 183 Physical Properties 183 Chemical Properties 186 Tribological Properties 187 Boron Carbide 194 Physical Properties 194 Chemical Properties 200 Application of Carbides 202 Silicon Carbide 202 Boron Carbide 207 References 210 Complex Oxynitrides 229 Derek P. Thompson Introduction 229 Principles of Silicon-Based Oxynitride Structures Complex Si–Al–O–N Phases 231 Sialon X-Phase 231 The Sialon Polytypoid Phases 232 The Y-Si–O–N Oxynitrides 233 M–Si–Al–O–N Oxynitrides 238 a-SiAlON 238 JEM Phase 239 S-Phase 240 Lanthanum ‘‘New’’ Phase 242 M2(Si,Al)5(O,N)8 Oxynitrides 242

230

IX

X

Contents

5.4.6 5.4.7 5.4.8 5.4.9 5.4.10 5.5 5.6 5.6.1 5.6.2 5.6.3 5.6.4 5.6.5 5.7

M(Si,Al)3(O,N)5 Phases 243 M3(Si,Al)6(O,N)11 Phases 244 Wurtzite Oxynitrides 245 MSi2O2N2 Oxynitrides 245 More Complex Oxynitrides 246 Oxynitride Glasses 246 Oxynitride Glass Ceramics 248 B-Phase 249 Iw Phase 250 U-Phase 250 W-Phase 251 Nitrogen Pyroxenes 251 Conclusions 253 References 254

6

Perovskites 257 Vladimir Fedorov Introduction 257 Crystal Structure 259 Ideal Perovskite Structure 259 Structural Distortions and Phase Transitions 260 Other Perovskite-Related Structures 264 Polytypes Consisting of Close-Packed Ordered AO3 Layers 264 Perovskite Intergrowth Structures 266 Perovskite-Related Copper Oxide Structures 267 Cation Ordering 269 Nonstoichiometry 270 A-Site Vacancies 270 B-Site Vacancies 271 Anion-Deficient Perovskites and Vacancy-Ordered Structures 272 Anion-Excess Nonstoichiometry 274 Physical Properties 274 Electronic Properties 274 The Colossal Magnetoresistance (CMR) Phenomenon 277 Ferroelectricity and Related Phenomena 279 Relaxor Ferroelectrics (Relaxors) 280 Morphotropic Phase Boundary (MPB) Compositions 282 Optical Properties 282 Ion Conductivity 283 Oxide-Ion Conductivity 283 Proton Conductivity 285 Cation Transport 287 Computer Modeling of Ionic Transport in ABO3 288 Applications 289

6.1 6.2 6.2.1 6.2.2 6.2.3 6.2.3.1 6.2.3.2 6.2.4 6.2.5 6.2.6 6.2.6.1 6.2.6.2 6.2.6.3 6.2.6.4 6.3 6.3.1 6.3.1.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6 6.3.6.1 6.3.6.2 6.3.7 6.3.8 6.3.9

Contents

6.4 6.4.1 6.5

Chemical and Catalytic Properties Synthesis 292 Summary 292 References 293

7

The Mnþ1AXn Phases and their Properties 299 Michel W. Barsoum Introduction 299 Bonding and Structure 300 Elastic Properties 303 Electronic Transport 307 Thermal Properties 313 Thermal Conductivities 313 Thermal Expansion 316 Thermal Stability 318 Chemical Reactivity and Oxidation Resistance 318 Mechanical Properties 320 Introduction 320 Dislocations and their Arrangements 320 Plastic Anisotropy, Internal Stresses, and Deformation Mechanisms 321 Incipient Kink Band Microscale Model 325 Compression Behavior of Quasi-Single Crystals and Polycrystals Hardness and Damage Tolerance 329 Thermal Shock Resistance 333 R-Curve Behavior and Fatigue 334 High-Temperature Properties 336 Compressive Properties 336 Tensile Properties 338 Creep 338 Solid-Solution Hardening and Softening 341 Tribological Properties and Machinability 342 Concluding Remarks 342 References 343

7.1 7.2 7.3 7.4 7.5 7.5.1 7.5.2 7.5.3 7.5.4 7.6 7.6.1 7.6.2 7.6.3 7.6.4 7.6.5 7.6.6 7.6.7 7.6.8 7.6.9 7.6.9.1 7.6.9.2 7.6.9.3 7.6.9.4 7.7 7.8

289

349

II

Structures and Properties

8

Structure–Property Relations 351 Tatsuki Ohji Introduction 351 Self-Reinforced Silicon Nitrides 352 Fibrous Grain-Aligned Silicon Nitrides (Large Grains) 355 Fibrous Grain-Aligned Silicon Nitrides (Small Grains) 361 Grain Boundary Phase Control 365 Fracture Resistance 365

8.1 8.2 8.3 8.4 8.5 8.5.1

329

XI

XII

Contents

8.5.2 8.6 8.6.1 8.6.2 8.6.3

Heat Resistance 368 Fibrous Grain-Aligned Porous Silicon Nitrides 370 Porous Silicon Nitride Through Tape-Casting 371 Porous Silicon Nitride Through Sinter-Forging 374 Comparison of Properties of Porous and Dense Silicon Nitrides References 376

9

Dislocations in Ceramics 379 Terence E. Mitchell Introduction 379 The Critical Resolved Shear Stress 380 Experimental Observations 380 Kink Mechanism for Deformation 382 Modification of the Model for Kink Pair Nucleation on Point Defects, and Partial Dislocations 384 Comparison between Theory and Experiment 386 Sapphire and Stoichiometric Spinel 386 Nonstoichiometric Spinel 388 Crystallography of Slip 388 Crystal Structures 388 Slip Systems 390 Dislocation Dissociations 391 Dislocations in Particular Oxides 392 Magnesium Oxide and other Oxides with the Rock-Salt Structure 393 Magnesium Oxide 393 Transition Metal Oxides and the Effect of Stoichiometry 393 Beryllium Oxide and Oxides with the Wurtzite Structure 396 Beryllium Oxide 396 Dislocation Dissociation in BeO and Other Crystals with the Wurtzite Structure 397 Zinc Oxide 398 Zirconium Oxide and Other Oxides with the Fluorite Structure 398 Zirconia 398 Uranium Oxide 400 Dislocation–Dissociation in Oxides with the Fluorite Structure 401 Titanium Oxide and Oxides with the Rutile Structure 402 Silicon Oxide (Quartz) 402 Hydrolytic Weakening in Quartz 403 Dislocation–Dissociation in Quartz 404 Aluminum Oxide (Sapphire) 405 Dislocation–Dissociation in Sapphire 406 Basal Slip in Sapphire 406

9.1 9.2 9.2.1 9.2.2 9.2.3 9.2.4 9.2.4.1 9.2.4.2 9.3 9.3.1 9.3.2 9.3.3 9.4 9.4.1 9.4.1.1 9.4.1.2 9.4.2 9.4.2.1 9.4.2.2 9.4.2.3 9.4.3 9.4.3.1 9.4.3.2 9.4.3.3 9.4.4 9.4.5 9.4.5.1 9.4.5.2 9.4.6 9.4.6.1 9.4.6.2

375

Contents

9.4.6.3 9.4.6.4 9.4.6.5 9.4.6.6 9.4.7 9.4.7.1 9.4.7.2 9.4.8 9.4.8.1 9.4.8.2 9.4.9 9.4.9.1 9.4.10 9.4.10.1 9.4.10.2 9.4.11 9.4.11.1 9.4.11.2 9.4.12 9.5 9.5.1 9.5.2 9.5.3 9.5.3.1 9.5.3.2 9.6 9.6.1 9.6.2 9.7

10

10.1 10.2 10.2.1 10.2.2 10.2.3 10.2.4 10.2.5 10.2.6 10.3 10.3.1

Prism-Plane Slip in Sapphire 406 Dipoles and Climb Dissociation in Sapphire 407 Stacking Fault Energy of Sapphire 408 Deformation Twinning in Sapphire 408 SrTiO3 and Oxides with the Perovskite Structure 410 Inverse Brittle-to-Ductile Transition (BDT) in SrTiO3 410 Dislocation–Dissociation and SFE in Strontium Titanate 411 MgO–Al2O3 and other Spinels 413 Slip Planes in Spinels 414 Dislocation–Dissociations and the SFE in Magnesium Aluminate Spinel 415 Mg2SiO4 (Forsterite) 417 Water-Weakening and Dislocation–Dissociation in Olivine 418 Other Oxides 419 Oxides with the Cubic Rare-Earth Sesquioxide Structure 420 YAG and other Oxides with the Garnet Structure 420 SiC, Si3N4, and other Non-Oxide Ceramics 421 Silicon Carbide 421 Silicon Nitride 422 Climb versus Glide Dissociation 422 Work Hardening 423 Work Hardening in MgO 423 Work Hardening and Work Softening in Spinel 424 Work Hardening in Sapphire 426 Basal Plane Slip 426 Prism Plane Slip 427 Solution Hardening 428 Isovalent Cations 428 Aliovalent Cations 429 Closing Remarks 430 References 431 Defect Structure, Nonstoichiometry, and Nonstoichiometry Relaxation of Complex Oxides 437 Han-Ill Yoo Introduction 437 Defect Structure 438 Pure Case 439 Acceptor-Doped Case 443 Donor-Doped Case 445 Two-Dimensional Representations of Defect Concentrations A Further Complication: Hole Trapping 452 Defect Structure and Reality 453 Oxygen Nonstoichiometry 456 Nonstoichiometry in General 457

445

XIII

XIV

Contents

10.3.2 10.4 10.4.1 10.4.1.1 10.4.1.2 10.4.2 10.4.2.1 10.4.2.2 10.4.3

Experimental Reality 460 Nonstoichiometry Re-Equilibration 462 Undoped or Acceptor-Doped BaTiO3 464 Relaxation Behavior and Chemical Diffusion Defect-Chemical Interpretation 466 Donor-Doped BaTiO3 468 Relaxation Behavior and Chemical Diffusion Defect-Chemical Interpretation 469 Defect Diffusivities 475 References 477

11

Interfaces and Microstructures in Materials Wook Jo and Nong-Moon Hwang Introduction 479 Interfaces in Materials 480 Surface Fundamentals 480 Surface Energy 480 Wulff Plot 486 Roughening Transition 495 Kinetics of Surface Migration 499 Solid/Liquid Interfaces 502 Solid/Solid Interfaces 506 Fundamentals 506 Structure and Energy 508 Practical Implications 513 Summary and Outlook 523 References 523

11.1 11.2 11.2.1 11.2.1.1 11.2.1.2 11.2.1.3 11.2.1.4 11.2.2 11.2.3 11.2.3.1 11.2.3.2 11.3 11.4

464

468

479

529

III

Mechanical Properties

12

Fracture of Ceramics 531 Robert Danzer, Tanja Lube, Peter Supancic, and Rajiv Damani Introduction 531 Appearance of Failure and Typical Failure Modes 532 Thermal Shock Failure 534 Contact Failure 536 A Short Overview of Damage Mechanisms 538 Sudden, Catastrophic Failure 539 Sub-Critical Crack Growth 539 Fatigue 540 Creep 540 Corrosion 540 Brittle Fracture 541 Some Basics in Fracture Mechanics 542 Tensile Strength of Ceramic Components, and Critical Crack Size

12.1 12.2 12.2.1 12.2.2 12.3 12.3.1 12.3.2 12.3.3 12.3.4 12.3.5 12.4 12.4.1 12.4.2

544

Contents

12.5 12.5.1 12.5.1.1 12.5.1.2 12.5.1.3 12.5.2 12.5.3

12.5.4 12.5.5 12.6 12.6.1 12.6.1.1 12.6.1.2 12.6.1.3 12.6.2 12.6.3 12.7

13 13.1 13.1.1 13.1.2 13.2 13.3 13.3.1 13.3.1.1 13.3.1.2 13.3.1.3 13.3.2 13.3.3 13.3.4 13.4 13.4.1 13.4.2 13.4.3

Probabilistic Aspects of Brittle Fracture 545 Fracture Statistics and Weibull Statistics 545 Weibull Distribution for Arbitrarily Oriented Cracks in a Homogeneous Uniaxial Stress Field 547 Weibull Distribution for Arbitrarily Oriented Cracks in an Inhomogeneous Uniaxial Stress Field 548 Weibull Distribution in a Multi-Axial Stress Field 549 Application of the Weibull Distribution: Design Stress and Influence of Specimen Size 550 Experimental and Sampling Uncertainties, the Inherent Scatter of Strength Data, and Can a Weibull Distribution be Distinguished from a Gaussian Distribution? 553 Influence of Microstructure: Flaw Populations on Fracture Statistics 555 Limits for the Application of Weibull Statistics in Brittle Materials 558 Delayed Fracture 558 Lifetime and Influence of SCCG on Strength 559 Delayed Fracture under Constant Load 561 Delayed Fracture under Increasing Load: Constant Stress Rate Tests 564 Delayed Fracture under General Loading Conditions 565 Influence of Fatigue Crack Growth on Strength 566 Proof Testing 566 Concluding Remarks 567 References 569 Creep Mechanisms in Commercial Grades of Silicon Nitride Franti4sek Lofaj and Sheldon M. Wiederhorn Introduction 577 Motivation 577 Creep of Silicon Nitride 578 Material Characterization 580 Discussion of Experimental Data 581 Creep Behavior 582 NT 154 582 SN 88 583 SN 281 585 TEM Characterization of Cavitation 587 Density Change and Volume Fraction Cavities 588 Size Distribution of Cavities Formed 590 Models of Creep in Silicon Nitride 592 Cavitation Creep Model in NT 154 and SN 88 593 Noncavitation Creep 595 Role of Lutetium in the Viscosity of Glass 596

577

XV

XVI

Contents

13.5

Conclusions 596 References 598

14

Fracture Resistance of Ceramics 601 Mark Hoffman Introduction 601 Theory of Fracture 601 Stress Concentration Factors 608 Crack Closure Concept and Superposition 609 Toughened Ceramics 612 Bridged Interface Methods for Increasing Fracture Resistance 613 Grain Bridging 613 Crack Growth Resistance Toughening 614 Crack Bridging By a Second Phase 615 Phase Transformation or Dilatant Zone Toughening 617 Ferroelastic Toughening 619 Toughening by Crack Tip Process Zone Effects 620 Influence of Crack Growth Resistance Curve Upon Failure by Fracture 621 Determination of Fracture Resistance 622 Indentation Fracture Toughness 622 Single-Edge Notched Beam 623 Surface Crack in Flexure 625 Determination of Intrinsic Toughness 625 Fatigue 626 Cyclic Fatigue Crack Propagation 626 Contact Fatigue 627 Concluding Remarks 629 References 629

14.1 14.2 14.2.1 14.2.2 14.3 14.3.1 14.3.1.1 14.3.1.2 14.3.1.3 14.3.1.4 14.3.1.5 14.3.2 14.4 14.5 14.5.1 14.5.2 14.5.3 14.5.4 14.6 14.6.1 14.6.2 14.7

15

15.1 15.2 15.3 15.4 15.4.1 15.4.2 15.4.3 15.4.4 15.5 15.6

Superplasticity in Ceramics: Accommodation-Controlling Mechanisms Revisited 633 Arturo Domínguez-Rodríguez and Diego Gómez-García Introduction 633 Macroscopic and Microscopic Features of Superplasticity Nature of the Grain Boundaries 640 Accommodation Processes in Superplasticity 643 GBS Accommodated by Diffusional Flow 643 GBS Accommodated by Dislocation Motion 648 Solution–Precipitation Model for Creep 649 Shear-Thickening Creep 655 Applications of Superplasticity 656 Future Prospective in the Field 659 References 660

634

Contents

665

IV

Thermal, Electrical, and Magnetic Properties

16

Thermal Conductivity 667 Kiyoshi Hirao and You Zhou Introduction 667 Thermal Conductivity of Dielectric Ceramics 668 Thermal Conductivity of Nonmetallic Crystals 668 High Thermal Conductivity in Adamantine Compounds 669 Estimate of Thermal Conductivity of b-Si3N4 671 High-Thermal Conductivity Nonoxide Ceramics 672 Thermal Conductivity of Composite Microstructures 672 Liquid-Phase Sintering of Nonoxide Ceramics 672 Effect of Secondary Phase on Thermal Conductivity of AlN Ceramic 674 Effect of Secondary Phase on Thermal Conductivity of Si3N4 Ceramic 676 Effect of Secondary Phase on Thermal Conductivity of SiC Ceramic 678 Improvement of Thermal Conductivity via Purification of Grains During Sintering 679 Aluminum Nitride Ceramics 679 Lattice Defects in b-Si3N4 Grains 680 Improvements in Thermal Conductivity for Silicon Nitride Ceramics 682 Lattice Defects in SiC Grains and Improvement of Thermal Conductivity 687 Mechanical Properties of High-Thermal Conductivity Si3N4 Ceramics 688 Harmonic Improvement of Thermal Conductivity and Mechanical Properties 688 Anisotropic Thermal Conductivity in Textured Si3N4 692 Concluding Remarks 693 References 694

16.1 16.2 16.2.1 16.2.2 16.2.3 16.3 16.3.1 16.3.1.1 16.3.1.2 16.3.1.3 16.3.1.4 16.3.2 16.3.2.1 16.3.2.2 16.3.2.3 16.3.2.4 16.4 16.4.1 16.4.2 16.5

17 17.1 17.2 17.3 17.4 17.5 17.5.1 17.5.2 17.5.3

Electrical Conduction in Nanostructured Ceramics 697 Harry L. Tuller, Scott J. Litzelman, and George C. Whitfield Introduction 697 Space Charge Layers in Semiconducting Ceramic Materials 699 Effect of Space Charge Profiles on the Observed Conductivity 707 Influence of Nanostructure on Charge Carrier Distributions 708 Case Studies 710 Case Study: Nanostructured Sensor Films 710 Case Study: Interfaces in Ionic and Mixed Conducting Materials 714 Case study: Lithium-Ion Battery Materials 718

XVII

XVIII

Contents

17.5.4 17.6

Case Study: Dye-Sensitized Solar Cells Conclusions and Observations 722 References 724

18

Ferroelectric Properties 729 Doru C. Lupascu and Maxim I. Morozov Introduction 729 Intrinsic Properties: The Anisotropy of Properties 731 Extrinsic Properties: Hard and Soft Ferroelectrics 739 Textured Ferroelectric Materials 751 OCAP 751 TGG 752 HTGG 753 RTGG 753 Ferroelectricity and Magnetism 755 Fatigue in Ferroelectric Materials 764 Macrocracking 765 Microcracking 766 Breakdown 767 Frequency Effect 768 Defect Agglomeration 769 Electrode Effects 772 Domain Nucleation or Wall Motion Inhibition 772 Clamping in Thin Films 773 Domain Splitting and Crystal Orientation Dependence 773 Combined Loading 774 Antiferroelectrics 775 Fatigue-Free Systems 776 References 777

18.1 18.2 18.3 18.4 18.4.1 18.4.2 18.4.3 18.4.4 18.5 18.6 18.6.1 18.6.2 18.6.3 18.6.4 18.6.5 18.6.6 18.6.7 18.6.8 18.6.9 18.6.10 18.6.11 18.6.12

19

19.1 19.2 19.3 19.3.1 19.3.2 19.4 19.5 19.6 19.6.1 19.6.1.1 19.6.1.2 19.6.1.3

719

Magnetic Properties of Transition-Metal Oxides: From Bulk to Nano 791 Polona Umek, Andrej Zorko, and Denis Ar4con Introduction 791 Properties of Transition Metal 3d Orbitals 792 Iron Oxides 793 Iron Oxide Structures 793 Magnetic Properties of Iron Oxides 794 Ferrites 797 Chromium Dioxide 800 Manganese Oxide Phases 802 Manganese Oxide Structures 804 One-Dimensional Structures 804 Layered Structures 807 Three-Dimensional Structures 807

Contents

19.6.2 19.6.2.1 19.6.2.2 19.6.2.3 19.6.2.4 19.6.3 19.6.3.1 19.6.3.2 19.6.3.3 19.6.3.4 19.6.3.5 19.6.4 19.6.4.1 19.6.4.2 19.7

Magnetic Properties of Selected Manganese Oxide Phases: The Manifestation of Magnetic Frustration 807 Helical Order in Pyrolusite (b-MnO2) 808 Magnetic Properties of the Mixed-Valence Hollandite (a-MnO2) 810 Magneto-Elastic Coupling in the Layered a-NaMnO2 Compounds 811 Frustrated Magnetism of the ‘‘Defect’’ Spinel l-MnO2 813 Synthesis of MnO2 Nanostructures 815 Synthesis of a-MnO2 Nanostructures 815 Synthesis of b-MnO2 Nanostructures 818 Synthesis of g-MnO2 Nanostructures 819 Synthesis of l-MnO2 Nanodiscs 820 Synthesis of MnO2 Nanostructures in other Crystallographic Phases 821 Magnetic Properties of Manganese Dioxide Nanoparticles 821 b-MnO2 (Pyrolusite) 821 a-MnO2 (Hollandite) 824 Concluding Remarks 828 References 828 Index

835

XIX

This page intentionally left blank

XXI

Preface Besides metals and polymers, advanced ceramics represent one of the most promising classes of materials for the key technologies of the twenty-first century. Recent developments in the field of ceramics have included a selection of synthesis, processing and sintering techniques applied to the production of novel structural and functional ceramics and ceramic composites. Significant progress has been made during the past two decades with respect to the production of novel multifunctional ceramics with a tailor-made microscale and/or nanoscale structures, reflecting the increasing technological importance of advanced ceramic materials. The four-volume series of Ceramics Science and Technology covers various aspects of modern trends in advanced ceramics, and reflects the status quo of the latest achievements in ceramics science and developments. The contributions highlight the increasing technological significance of advanced ceramic materials, and present concepts for their production and application. Volume 1 covers the structural properties of ceramics by considering a broad spectrum of length scale, starting from the atomic level by discussing amorphous and crystalline solid-state structural features, and continuing with the microstructural level by commenting on microstructural design, mesoscopic and nanostructures, glass ceramics, cellular structures, thin films and multiphase (composite) structures. Volume 2 focuses first, on the distinct ceramic materials classes, namely oxides, carbides and nitrides, and second on the physical and mechanical properties of advanced ceramics. The series is continued with Volume 3, which will contain chapters related to the advanced synthesis and processing techniques used to produce engineering ceramics. The series will be completed by Volume 4, which will be devoted to the application of engineering and functional ceramics. Quo vadis ceramics? The four-volume series also intends to provide comprehensive information relevant to the future direction of advanced or engineering ceramics. The present series evidences the technologically important trends related to the further development of this fascinating class of materials. The latest examples of technological achievements that already have achieved commercial status include piezoelectric ceramics based on PZT (Pb(Zr,Ti)O3) and used, for example, in common-rail diesel engines, in Si3N4-based ball bearings, as glow plugs for diesel engines, as carbon fiber-reinforced silicon carbide (C/SiC) brake components in

Ceramics Science and Technology Volume 2: Properties. Edited by Ralf Riedel and I-Wei Chen Copyright  2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-31156-9

XXII

Preface

vehicles, as luminescent ceramics based on sialon derivatives for LED applications, and as GaN-based ceramics for optoelectronics, among many others. Furthermore, a variety of application fields is beginning to emerge in which novel ceramics are required, and these are expected to be established and commercialized in the near future. This technology-driven process requires a long-term alignment and a strong basis in continued fundamental research in ceramics science and technology. The intention is that this four-volume series will contribute to such development by providing the latest knowledge in ceramics science suitable not only for those students specializing in ceramics but also for university and industrial research groups. We wish to thank all contributing authors for their great enthusiasm in compiling excellent manuscripts in their respective areas of expertise. We also acknowledge the support of Karen Böhling, who proofread each manuscript with due accuracy and patience. Last, but not least, we thank the Wiley-VCH editors, Bernadette Gmeiner and Martin Preuß, for their continuous encouragement to work on the book project. Darmstadt and Philadelphia February 2010

Ralf Riedel I.-Wei Chen

XXIII

List of Contributors Denis Ar4con Institute Joz4 ef Stefan Jamova 39 1000 Ljubljana Slovenia and University of Ljubljana Faculty of Mathematics and Physics Jadranska 19 1000 Ljubljana Slovenia Michel W. Barsoum Drexel University Department of Materials Science and Engineering Philadelphia, PA 19104 USA Rajiv Damani Sulzer Markets and Technology Ltd Sulzer Innotec 1551 Sulzer-Allee 25, P.O. Box 65 8404 Winterthur Switzerland

Robert Danzer Montanuniversität Leoben Institut für Struktur- und Funktionskeramik Franz-Josef-Straße 18 8700 Leoben Austria Arturo Domínguez-Rodríguez Universidad de Sevilla Departamento de Física de la Materia Condensada Avda. Reina Mercedes s/n 41012 Seville Spain Vladimir Fedorov Russian Academy of Sciences Nikolaev Institute of Inorganic Chemistry, Siberian Branch 3, Akad. Lavrentiev prospect Novosibirsk 630090 Russia Du4san Galusek VILA – Joint Glass Centre of the Institute of Inorganic Chemistry Slovak Academy of Sciences Alexander Dub4cek University of Tren4cín and RONA, a.s. 911 50 Tren4cín Slovak Republic

Ceramics Science and Technology Volume 2: Properties. Edited by Ralf Riedel and I-Wei Chen Copyright  2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-31156-9

XXIV

List of Contributors

Katarína Ghillányová Slovak Academy of Sciences Institute of Inorganic Chemistry Dúbravská cesta 9 845 36 Bratislava Slovak Republic Diego Gómez-García Universidad de Sevilla Departamento de Física de la Materia Condensada Avda. Reina Mercedes s/n 41012 Seville Spain Kiyoshi Hirao National Institute of Advanced Industrial Science and Technology (AIST) 2266-98 Shimo-Shidami, Moriyama-ku Nagoya 463-8560 Japan Miroslav Hnatko Slovak Academy of Sciences Institute of Inorganic Chemistry Dúbravska cesta 9 84536 Bratislava 45 Slovakia Mark Hoffman The University of New South Wales School of Materials Science and Engineering Sydney, New South Wales 2052 Australia Nong-Moon Hwang Seoul National University School of Materials Science & Engineering Kwanak-gu Seoul 151-744 Korea

Wook Jo Nichtmetallisch-Anorganische Werkstoffe Material- und Geowissenschaften Petersenstr. 23 64287 Darmstadt Germany Isabel Kinski Fraunhofer Institut Keramische Technologien und Systeme Winterbergstraße 28 01277 Dresden Germany Zoltán Len4cé4s Slovak Academy of Sciences Institute of Inorganic Chemistry Dúbravska cesta 9 84536 Bratislava 45 Slovakia Scott J. Litzelman Massachusetts Institute of Technology Department of Materials Science and Engineering Cambridge, MA 02139 USA Franti4sek Lofaj Slovak Academy of Sciences Institute of Materials Research Watsonova 47 040 01 Ko4sice Slovakia Tanja Lube Montanuniversität Leoben Institut für Struktur- und Funktionskeramik Franz-Josef-Straße 18 8700 Leoben Austria

List of Contributors

Doru C. Lupascu Universität Duisburg-Essen Institut für Matrialwissenschaft Universitätsstr. 15 45141 Essen Germany

4 Pavol Sajgalík Slovak Academy of Sciences Institute of Inorganic Chemistry Dúbravska cesta 9 84536 Bratislava 45 Slovakia

Paul F. McMillan University College London Christopher Ingold Laboratories Department of Chemistry and Materials Chemistry Centre 20 Gordon Street London WC1H 0AJ UK

Clemens Schmalzried ESK Ceramics GmbH & Co. KG Max-Schaidhauf-Str. 25 87437 Kempten Germany

Terence E. Mitchell Los Alamos National Laboratory Structure–Property Relations Group MST-8 Los Alamos, NM 87545 USA Maxim I. Morozov Karlsruhe Institute of Technology (KIT) Institut für Keramik im Maschinenbau Haid-und-Neu-Str. 7 76131 Karlsruhe Germany Tatsuki Ohji National Institute of Advanced Industrial Science and Technology (AIST) Advanced Manufacturing Research Institute Anagahora 2266-98, Shimo-shidami Moriyama-ku Nagoya 463-8560 Japan

Karl A. Schwetz retired ESK Bergstr. 4 87477 Sulzberg Germany Peter Supancic Montanuniversität Leoben Institut für Struktur- und Funktionskeramik Franz-Josef-Straße 18 8700 Leoben Austria Derek P. Thompson University of Newcastle upon Tyne School of Chemical Engineering and Advanced Materials Advanced Materials Group Newcastle upon Tyne NE1 7RU UK Harry L. Tuller Massachusetts Institute of Technology Department of Materials Science and Engineering Cambridge, MA 02139 USA

XXV

XXVI

List of Contributors

Polona Umek Institute Joz4 ef Stefan Jamova 39 1000 Ljubljana Slovenia George C. Whitfield Massachusetts Institute of Technology Department of Materials Science and Engineering Cambridge, MA 02139 USA Sheldon M. Wiederhorn National Institute of Standards and Technology MSEL Bldg. 223 Gaithersburg, MD 20899-8500 USA Han-Ill Yoo Seoul National University Department of Materials Science and Engineering Seoul 151-744 Korea

You Zhou National Institute of Advanced Industrial Science and Technology (AIST) 2266-98 Shimo-Shidami, Moriyama-ku Nagoya 463-8560 Japan Andrej Zorko Institute Joz4 ef Stefan Jamova 39 1000 Ljubljana Slovenia

I Ceramic Material Classes

Ceramics Science and Technology Volume 2: Properties. Edited by Ralf Riedel and I-Wei Chen Copyright  2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-31156-9

This page intentionally left blank