Cells. Cells part 2. A Prokaryotic Cell. Eukaryotic Cell. Plasma membrane. No internal membranes. Contains internal organelles

www.denniskunkel.com Cells part 2 Today s Topics •  Functions of Major Cellular Organelles Cells –  Information •  Nucleus –  Synthesis & Transpor...
Author: Kelly Day
2 downloads 1 Views 965KB Size
www.denniskunkel.com

Cells part 2 Today s Topics •  Functions of Major Cellular Organelles

Cells

–  Information •  Nucleus

–  Synthesis & Transport •  •  •  • 

Ribosomes Endoplasmic reticulum Golgi Transport vessicles

–  Energy Conversion •  Mitochondria and chloroplasts

–  Recycling •  Lysosomes etc

–  Structure and Movement •  Cytoskeleton •  Motor Proteins

Animal Cell (Eukaryote) 2

Bacterial cell (Prokaryote)

9/14/16 www.denniskunkel.com

Plasma membrane

A Prokaryotic Cell Capsule Cytoplasm Ribosomes Nucleoid Cell membrane

Phospholipid bilayer

Cell membrane

Proteins

Peptidoglycan 200 nm

Cell wall

Outer membrane (absent in some bacteria)

No internal membranes 4

1 cm

100 µm

Frog egg

Human egg Most plant and animal cells

10 µm

1 µm

100 nm

10 nm

Nucleus Most bacteria Mitochondrion

Smallest bacteria Viruses Ribosomes Proteins

Superresolution microscopy

Electron microscopy

1 mm

Light microscopy

Eukaryotic Cell

Lipids 1 nm

Contains internal organelles 5

0.1 nm

Small molecules Atoms

1

Animal Cell

ENDOPLASMIC RETICULUM (ER)

AN ANIMAL CELL

Figure 4.7 Eukaryotic Cells (Part 1)

Rough ER

NUCLEUS Nucleus

Smooth ER

Nucleolus

0.8 µm

0.025 µm

CYTOSKELETON

You should know everything in Fig 4.7

Free ribosomes Peroxisome Centrioles

Ribosomes (bound to RER) Golgi apparatus

1.5 µm

Microfilaments Intermediate filaments

Rough endoplasmic reticulum

Ribosomes

Microtubules

Golgi apparatus

Smooth endoplasmic reticulum

Peroxisome

Cell membrane

Nuclear envelope

Plasma membrane

Centrosome

Nuclear pore Mitochondrion Cytoskeleton Nucleolus Nucleus

Figure 6.9

In animal cells but not plant cells: Lysosomes Centrioles Flagella (in some plant sperm)

Lysosome

Mitochondrion

8

Ribosomes

Nucleus

Cytosol

Nucleus

1 µm

Nucleolus

Free Ribosomes

ER

Chromatin

Make Cytoplasmic Proteins

–  Carry out protein synthesis

Nuclear envelope: Inner membrane Outer membrane

Membrane Bound Ribosomes

Pores

Make Proteins to be Exported

Pore complex Rough ER Surface of nuclear envelope.

1 µm

Ribosome

Large subunit

0.25 µm

Close-up of nuclear envelope

TEM showing ER and ribosomes

Figure 6.10 Nuclear lamina (TEM).

Pore complexes (TEM).

0.5 µm

Figure 6.11

Endomembrane System: NUCLEUS Endoplasmic Rough ER Smooth ER Synthesis and Transport Reticulum ENDOPLASMIC RETICULUM (ER)

RNA & Protein Complex

Cytosol

Rough ER Cisterna

CYTOSKELETON cis region

Microfilaments

10

Diagram of a ribosome

Figure 4.8 The Endomembrane System Nucleus

Plasma membrane

Centrosome

Small subunit

9

Lumen

Golgi

Intermediate filaments Ribosomes Ribosomes

Microtubules

trans region

Golgi apparatus Golgi apparatus

Proteins for use within the cell

Peroxisome Mitochondrion

Lysosome

In animal cells but not plant cells: Lysosomes Centrioles Flagella (in some plant sperm)

11

Cell membrane

Proteins for use outside the cell Outside the cell

2

Mitochondria

Energy Conversion NUCLEUS

Food à ATP Intermembrane space

Outer membrane

Inner membrane

Mitochondria (and chloroplasts)

Matrix Mitochondrial DNA

14

100 µm

13

Chloroplasts capture

ENDOPLASMIC RETICULUM (ER)

Breakdown and Recycling

energy from the sun

Rough ER

Smooth ER

Photosynthesis Stroma Chloroplast DNA

Peroxisome

1 µm

Sunlight à ATP, Sugar

Thylakoid

15

ENDOPLASMIC RETICULUM (ER)

Structure, Support, and Movement Rough ER

Smooth ER

NUCLEUS

Cytoskeleton CYTOSKELETON

Lysosome (animals only) Lysosome 16

Three types of fibers that make up the cytoskeleton Cell shape Chromosome separation Flagellar mvt Kinesin and Dynein

Microfilaments

Cell shape Cell cleavage Muscle contraction

Intermediate filaments Microtubules

Myosin

Cytosol

17

18

3

Movement of Vesicles along Microtubules Vesicle

ATP

Receptor for motor protein

Motor protein (ATP powered)

Microtubule of cytoskeleton

(a) Motor proteins that attach to receptors on organelles can walk the organelles along microtubules or, in some cases, microfilaments. Microtubule

Vesicles

0.25 µm

What evidence do we have that they actually move?

Figure 6.21 A, B

(b) Vesicles containing neurotransmitters migrate to the tips of nerve cell axons via the mechanism in (a). In this SEM of a squid giant axon, two vesicles can be seen moving along a microtubule. (A separate part of the experiment provided the evidence that they were in fact moving.)

19

20

Motor Proteins transport vesicles

Three kinds of Movement •  Filament anchored: motor walks along filament (transport vesicles)

Dynein inbound

•  Motor anchored: filament moves (muscles) •  Both anchored: bending (cilia and flagella)

outbound kinesin

21

22

Ribosomes (small brown dots)

Fig. 6-24

Outer microtubule doublet

0.1 µm

Dynein proteins

Plasma membrane

Plants have 2 other support mechanisms

Rough endoplasmic reticulum

NUCLEUS

Central microtubules

Microtubules

Plasma membrane

Golgi apparatus

•  Cell Wall •  Vacuole or Tonoplast

(b) Cross section of cilium

Basal body

0.5 µm

(a) Longitudinal section of cilium

Smooth endoplasmic reticulum

Central vacuole/Tonoplast

Microfilaments Intermediate filaments

CYTOSKELETON

Microtubules

0.1 µm

Mitochondrion

Cilia and Flagella Triplet

Peroxisome

Have 9+2 arrangement of microtubules

Plasma membrane

and motor proteins.

Cell wall Wall of adjacent cell

(c) Cross section of basal body

23

Figure 6.9

Chloroplast Plasmodesmata 24

4

Extra Cellular Matrix

Central Vacuoles (Tonoplasts) –  Only in plants

glycoproteins

Central vacuole Cytosol

Acts like a balloon in a box to hold plant cells rigid

Tonoplast

Nucleus

Central vacuole

Cell wall Chloroplast Figure 6.15

25

5 µm

26

Figure 4.18 Junctions Link Animal Cells

Tight junctions Intercellular space Desmosomes

Gap junctions

Inside of cell

5

Suggest Documents