CASE STUDIES Utilizing the Produced Water Treatment and Beneficial Use Screening Tool

CASE STUDIES Utilizing the Produced Water Treatment and Beneficial Use Screening Tool 14 June 2011 Prepared for Research Partnership to Secure Ener...
Author: Pamela Tate
3 downloads 1 Views 379KB Size
CASE STUDIES Utilizing the Produced Water Treatment and Beneficial Use Screening Tool

14 June 2011

Prepared for

Research Partnership to Secure Energy for America

RPSEA

Table of Contents

List of Tables ................................................................................................................................. ii  List of Figures................................................................................................................................ ii  Disclaimer .................................................................................................................................... iv  Section 1: 

About the Case Studies ............................................................. 1-1 

Section 2: 

Powder River Basin (Case Study No. 1) .................................... 2-2  2.1  2.2  2.3  2.4 

Section 3: 

Water Quality Module .......................................................................... 2-2  Treatment Selection Module ............................................................... 2-6  Beneficial Use Selection Module ......................................................... 2-9  Beneficial Use Economic Module ...................................................... 2-10 

San Juan Basin (Case Study No. 2)........................................... 3-1  3.1  3.2  3.3  3.4 

Water Quality Module .......................................................................... 3-1  Treatment Selection Module ............................................................... 3-1  Beneficial Use Selection Module ......................................................... 3-6  Beneficial Use Economic Module ........................................................ 3-7 

References ..................................................................................................................................... I 

Case Studies – Utilizing the Produced Water Treatment and Beneficial Use Screening Tool

i

Table of Contents (cont’d)

List of Tables Table 2-1 Water quality data for ECX (Powder River Basin case study). .................................. 2-3  Table 2-2 Summary of BSM results from the screening matrix for the Powder River Basin case study. ................................................................................................................ 2-11  Table 3-1 Summary of BSM results from the screening matrix for the San Juan Basin case study ................................................................................................................... 3-8 

List of Figures Figure 2-1 Well data (from Table 1) input to WQM for the Powder River Basin case study (only the first 15 of 47 constituents are shown). .......................................................... 2-4  Figure 2-2 Comparison and selection of water quality values in the WQM for the Powder River Basin case study (the first 15 of 47 constituents are shown). ............................ 2-5  Figure 2-3 WQM output data for the Powder River Basin case study........................................ 2-6  Figure 2-4 TSM selection criteria scores for the Powder River Basin case study. ..................... 2-7  Figure 2-5 TSM review of water quality compared to representative criteria for selected beneficial uses, for the Powder River Basin case study (the first 15 of 47 constituents are shown). ..................................................................................... 2-8  Figure 2-6 Treatment trains recommended by the TSM for each of five beneficial use categories, for the Powder River Basin case study. ........................................... 2-8  Figure 2-7 User inputs to the BEM to assess project costs for Aquifer Recharge, Storage, and Recovery for the Powder River Basin case study. .............................................. 13  Figure 2-8 User inputs to the BEM to assess project costs for Surface Water Discharge / Instream Flow Augmentation for the Powder River Basin case study. ................ 14  Figure 2-9 User inputs to the BEM to assess project costs for Crop Irrigation for the Powder River Basin case study. ....................................................................................... 15  Figure 2-10 Comparison of three potential benefit uses, or project scenarios, for the Powder River Basin case study. ....................................................................................... 16  Figure 3-1 WQM water quality data for the Fruitland formation for the San Juan Basin case study. .................................................................................................................. 3-2  Figure 3-2 TSM selection criteria scores for the San Juan Basin case study. ........................... 3-3 

Case Studies – Utilizing the Produced Water Treatment and Beneficial Use Screening Tool

ii

Table of Contents (cont’d)

Figure 3-3 TSM review of water quality compared to representative criteria for selected beneficial uses, for the San Juan Basin case study. .......................................... 3-4  Figure 3-4 Treatment trains recommended by the TSM for each of five beneficial use categories for the San Juan Basin case study. .................................................................... 3-5  Figure 3-5 Feed, product, and brine water qualities for the “Crop irrigation, non-potable use” beneficial use category (San Juan Basin case study). ....................................... 3-6  Figure 3-6 User inputs to the BEM to assess the project costs for beneficial use of produced water via Surface Water Discharge for the San Juan Basin case study. ......... 3-10  Figure 3-7 Summary of project cost estimate for Surface Water Discharge/Marketing (San Juan Basin case study). ............................................................................................ 3-11 

Case Studies – Utilizing the Produced Water Treatment and Beneficial Use Screening Tool

iii

Disclaimer The outputs and results obtained from the Produced Water Treatment and Beneficial Use Screening Tool are meant for project screening purposes only as relevant information gathered for the modules are based on limited projects and best engineering judgment. Actual projects will contain details not captured by the Tool or these case studies that may affect the treatment of produced water, regulatory compliance, project feasibility, and overall cost of the project.

Case Studies – Utilizing the Produced Water Treatment and Beneficial Use Screening Tool

iv

Section 1: About the Case Studies Two hypothetical case studies were evaluated using the Produced Water Treatment and Beneficial Use Screening Tool (Screening Tool). The Screening Tool was developed by the Colorado School of Mines, Kennedy/Jenks Consultants, Stratus Consulting, and Argonne National Laboratory to demonstrate how a Screening Tool may be used to evaluate potential beneficial uses of produced water given particular site conditions and user preferences. The case studies take place in the Powder River Basin in Wyoming and the San Juan Basin in New Mexico. Beginning with research team discussions that yielded candidate projects, the case studies were developed using phone interviews with representatives of selected energy companies and data gathering and analysis to describe two hypothetical beneficial reuse scenarios. In addition to evaluating the site background, produced water quantity and quality, as well as any existing beneficial use and treatment technologies, sufficient data were collected or assumed to utilize all aspects of the Screening Tool. The Tool was used to evaluate treatment technology options, costs, potential beneficial uses, and potential environmental and societal benefits associated with the case study projects. This document presents the inputs and results for each of the Screening Tool modules and is intended as a companion to the Screening Tool User’s Manual to provide realistic examples for additional guidance. Further evaluation of the case studies will also be available in a forthcoming publication.

Case Studies – Utilizing the Produced Water Treatment and Beneficial Use Screening Tool

1-1

Section 2: Powder River Basin (Case Study No. 1) Energy Company X (ECX) is a hypothetical energy company that operates multiple well fields for coalbed methane (CBM) extraction in the Powder River Basin in Wyoming. Relying on estimates of the produced water total volume and average quality for a 400-well field under consideration for beneficial use of produced water, ECX used the Screening Tool to evaluate potential beneficial uses, treatment technologies, and project costs.

2.1

Water Quality Module

Based on the location of the well field, ECX input the state (Wyoming), basin (Powder River Basin), and target formation (All formations) for the required Project Information in the Water Quality Module (WQM). “All formations” was selected instead of a particular formation in the drop-down menu (Anderson, Big George, Canyon, Wall, Wyodak, or other) because many of these coal groups are found within the project area and the wells may be screened in more than one of them. A design percentile of 75% was selected in order to be fairly conservative with respect to the anticipated water quality of the produced water, to account for the fact that the water quality may change over time or be more variable than anticipated. Also input were the average and peak daily water flow rates estimated for the well field (45,000 and 67,500 bbl/day, respectively). ECX estimated the peak daily water flow rate as a 50% increase of the average daily flow rate, to account for the fact that additional wells may be operated at certain times (the peak flow rate estimate will determine the required size of the influent storage facility for the treatment plant in the Beneficial Use Economic Module). Instead of using the WQM database to estimate the produced water quality, ECX continued to the optional step “Enter Well Data” to input known 75th percentile data for the well field (Table 2-1). Because the data represented an average of the entire project rather than being in the form of individual wells, only a single well entry was made and the total project flows (45,000 bbl/day average and 67,500 bbl/day peak) were input as the average and peak flows, as shown in Figure 2-1. Water quality information was not available for every constituent. In the next step, “Compare Well Data” was selected from the WQM Main Menu. For those constituents for which no user-input data was available, the WQM values were selected (i.e. from the WQM database), as shown in Figure 2-2, using the drop-down menus in the final column. The combined output data was produced by selecting “WQM Output” (or “Generate Output” from the WQM Main Menu), shown in Figure 2-3. As noted in the User’s Manual, the SAR value in the output data is calculated using the sodium, calcium, and magnesium values. TDS is also calculated by the module using data for other constituents. Because the resulting TDS based on 75th percentile values overestimated the measured TDS (Table 2-1), ECX lowered the alkalinity values (in the Well Data tab) to produce a calculated TDS value similar to the measured (75th percentile) value.

Case Studies – Utilizing the Produced Water Treatment and Beneficial Use Screening Tool

2-2

Table 2-1 Water quality data for ECX (Powder River Basin case study).    Aluminum  Alkalinity (as CaCO3)  Alkalinity‐Bicarbonate  Alkalinity‐Carbonate  Arsenic  Barium  Benzene  Boron  Bromide  Calcium  Chloride  Chromium, total  Conductivity  Copper  Cyanide, free  Ethylbenzene  Fluoride  Iron  Lead  Lithium  Magnesium  Manganese  Nickel  Oil and Grease  o‐Phosphate  pH  Potassium  Radioactivity, Gross Alpha  Radioactivity, Gross Beta  Radium‐226 + Radium‐228  Radon 222  Sodium Adsorption Ratio  Selenium  Silica (SiO2)  Silver  Sodium  Strontium  Sulfate  Temperature  Toluene  Total Dissolved Solids (TDS)  Total Nitrogen (as N) 

 Units  mg/L  mg/L  mg/L  mg/L  mg/L  mg/L  µg/L  mg/L  mg/L  mg/L  mg/L  mg/L  S/cm  mg/L  mg/L  µg/L  mg/L  mg/L  mg/L  mg/L  mg/L  mg/L  mg/L  mg/L  mg/L  pH  mg/L  pCi/L  pCi/L  pCi/L  pCi/L  SAR  mg/L  mg/L  mg/L  mg/L  mg/L  mg/L  ° C  µg/L  mg/L  mg/L 

Minimum  0.07  653  236  NM  0.000  0.1  NM  0.07  NM  5  5  NM  413  NM  NM  NM  0.4  0.0  NM  0.03  0  0.00  0.04  NM  NM  6.9  5  NM  NM  0.0  NM  1.7  NM  4.7  NM  52  0.51  0.0  18  NM  252  0.0 

Average  0.07  960  990  NM  0.000  0.6  NM  0.09  NM  34  19  NM  1493  NM  NM  NM  1.4  0.3  NM  0.08  15  0.02  0.04  NM  NM  7.7  21  NM  NM  0.6  NM  12.9  NM  6.2  NM  314  0.57  1.8  23  NM  912  1.3 

75th Percentile  0.07  916  1352  NM  0.001  0.7  NM  0.10  NM  33  14  NM  1995  NM  NM  NM  1.7  0.4  NM  0.09  15  0.02  0.04  NM  NM  8.0  36  NM  NM  0.6  NM  12.4  NM  5.9  NM  368  0.59  0.0  28  NM  1217  2.2 

Maximum  0.07  1780  3039  NM  0.004  2.2  NM  0.13  NM  154  282  NM  4220  NM  NM  NM  2.1  6.2  NM  0.16  95  0.11  0.04  NM  NM  9.2  42  NM  NM  2.5  NM  47.3  NM  10.0  NM  1100  0.67  112.0  29  NM  2574  4.7 

Case Studies – Utilizing the Produced Water Treatment and Beneficial Use Screening Tool

2-3

   Total Organic Carbon (TOC)  Total Suspended Solids (TSS)  Uranium  Xylenes (total)  Zinc 

 Units  mg/L  mg/L  mg/L  µg/L  mg/L 

Minimum  2.1  1.6  NM  NM  0.0 

Average  3.2  5.6  NM  NM  0.2 

75th Percentile  3.2  9.2  NM  NM  0.2 

Maximum  6.1  13.6  NM  NM  0.4 

NM = not measured Zero values indicate the constituent was not detected above the method detection limit.

WQM Menu Well Number or Identification

Case Study 1

Average Water Flow Peak Flow

bbl/day bbl/day

45000 67,500

Alkalinity (as CaCO 3) Alkalinity‐Bicarbonate Alkalinity‐Carbonate Aluminum Arsenic Barium Benzene Boron Bromide Calcium Chloride Chromium, total Conductivity Copper Cyanide, free

mg/L mg/L mg/L mg/L mg/L mg/L µg/L mg/L mg/L mg/L mg/L mg/L uS/cm mg/L mg/L

800 800 0.071358595 0.000875 0.69775 0.095786357 32.75 14 1995

Figure 2-1 Well data (from Table 1) input to WQM for the Powder River Basin case study (only the first 15 of 47 constituents are shown).

Case Studies – Utilizing the Produced Water Treatment and Beneficial Use Screening Tool

2-4

WQM Output

WQM Menu

Select Wells to Blend Data

Case Study 1

Yes

i

Compare Well Values to the WQM Database

i

Constituent

Unit

WQM Value

User Input Select Value

Alkalinity (as CaCO3)

mg/L

1729.38

800.00

User Input

Alkalinity‐Bicarbonate

mg/L

1479.82

800.00

User Input

Alkalinity‐Carbonate

mg/L

0.00

Aluminum

mg/L

0.05

0.07

User Input

Arsenic

mg/L

0.00

0.00

User Input

Barium

mg/L

0.73

0.70

User Input

Benzene

µg/L

0.00

Boron

mg/L

0.26

Bromide

mg/L

0.22

Calcium

mg/L

36.00

32.75

User Input

Chloride

mg/L

21.89

14.00

User Input

Chromium

mg/L

0.19

Conductivity

uS/cm

2222.50

Copper

mg/L

0.13

WQM Value

Cyanide, free

mg/L

0.00

WQM Value

i

WQM Value

WQM Value 0.10

User Input WQM Value

WQM Value 1995.00

User Input

Figure 2-2 Comparison and selection of water quality values in the WQM for the Powder River Basin case study (the first 15 of 47 constituents are shown).

Case Studies – Utilizing the Produced Water Treatment and Beneficial Use Screening Tool

2-5

WQM Menu

i

Project Information

Next Module

Water Flow Information

State

Wyoming

MGD

bbl/day

AFY

Basin

Powder River

Average Water Flow Rate

1.89E+00

4.50E+04

2.12E+03

Formation

All Formations

Peak Water Flow Rate

2.83E+00

6.75E+04

3.17E+03

Design Percentile

Water Flow Rate Units

75 Final Constituent Values

i

Alkalinity (as CaCO3)

800.00

mg/L

Fluoride

1.74

mg/L

Selenium

0.04

Alkalinity‐Bicarbonate

800.00

mg/L

Iron

0.38

mg/L

Silica (SiO2)

5.89

mg/L

Alkalinity‐Carbonate

0.00

mg/L

Lead

0.00

mg/L

Silver

0.00

mg/L

Aluminum

0.07

mg/L

Lithium

0.09

mg/L

Sodium

314.00

mg/L

Arsenic

0.00

mg/L

Magnesium

14.75

mg/L

Strontium

0.59

mg/L

Barium

0.70

mg/L

Manganese

0.02

mg/L

Sulfate

0.00

mg/L

Benzene

0.00

µg/L

Nickel

0.04

mg/L

Temperature

28.00

Boron

0.10

mg/L

Oil and Grease

0.00

mg/L

Toluene

0.00

µg/L

Bromide

0.22

mg/L

o‐Phosphate

0.00

mg/L

Total Dissolved Solids (TDS)

1227.22

mg/L

Calcium

32.75

mg/L

pH

8.00

pH

Total Nitrogen (as N)

2.15

mg/L

mg/L

° C

Chloride

14.00

mg/L

Potassium

36.00

mg/L

Total Organic Carbon (TOC)

3.16

mg/L

Chromium

0.19

mg/L

Radioactivity, Gross Alpha

0.00

pCi/L

Total Suspended Solids (TSS)

9.15

mg/L

Conductivity

1995.00

uS/cm

Radioactivity, Gross Beta

0.00

pCi/L

Uranium

0.00

mg/L

Copper

0.13

mg/L

Radium‐226 + Radium‐228

0.63

pCi/L

Xylenes (total)

0.00

µg/L

Cyanide, free

0.00

mg/L

Radon 222

0.00

pCi/L

Zinc

0.22

mg/L

Ethylbenzene

0.00

µg/L

Sodium Adsorption Ratio (SAR)

11.40

SAR

i

Restore WQM Outputs

Calculated

Figure 2-3 WQM output data for the Powder River Basin case study.

2.2

Treatment Selection Module

Using the Screening Tool’s Treatment Selection Module (TSM), ECX identified potential technologies to treat the produced water (having influent quality obtained from the WQM) to levels appropriate for different beneficial uses. First, 12 screening criteria were scored (Figure 2-4) to ensure that the treatment technologies recommended by the Screening Tool would be appropriate for ECX’s needs and preferences. The screening criteria “Small footprint”, “Low Energy Demand”, and “Modular” were given relatively low scores, because they were not considered very important (plenty of land area is available, energy is available at a reasonable cost, and no major changes in flow volume are expected). Screening criteria rated fairly highly were those that favored low cost (e.g. “Low chemical demand”, “Low energy demand”, “Low capital cost,”) as well as “High industrial status” to favor a more mature technology. Using the “Additional Information” and “Water Recovery” buttons, ECX input the level of bacteria in the influent water (High, >104 HPC/100 ml) and preferred percent recovery (70%) of any membrane treatment process (i.e. the portion of filtered effluent compared to the concentrate), respectively. ECX was unsure of the bacteria level in the produced water, and as recommended in the User’s Manual, selected “High” to be conservative. The lower the percent recovery, the higher the volume of concentrate that would need to be disposed of (in this case, 30% of the influent volume, or approximately 13,500 bbl/day). ECX predicted that this concentrate flow Case Studies – Utilizing the Produced Water Treatment and Beneficial Use Screening Tool

2-6

would be manageable using deep well injection at the disposal well used onsite for wastewater from the existing ion exchange process. TSM Menu

Instructions: Please score the criteria using a number from 1 to 5 in the boxes below, where 5 indicates that the item is  extremely important and 1 indicates that the item is not very important at all. 

Score Description

Explanation

Example:

3

Limited operator oversight

The  degree of operator oversight required.

i

4

Easy to operate

This includes the use of hazardous chemicals and the level of operator skill required to manage the system

i

3

Flexible

The ability of the technolgy to withstand highly varying water quality

i

1

Small footprint

The size, in land area, that the process takes up

i

4

High industrial status

Market maturity of technology, frequency of use in similar situations,competitiveness of vendors

i

4

Low chemical demand

The volume of chemicals required at the site

i

2

Low Energy Demand

The specific energy required by the technology

i

3

Mobile

The ease with which the technology can be moved from one part of the site to another

i

2

Modular

Ability to implement technology as a unit process and accommodate changing influent volume

i

4

Low capital cost

The cost of installing the technology

i

3

Robust

Ability to withstand varying environmental conditions.

i

The degree of waste management required including the volume of waste and the technical skill to handle it

i

4

Low waste management

Figure 2-4 TSM selection criteria scores for the Powder River Basin case study.

After providing these module inputs, ECX reviewed the influent water quality compared to required water qualities (Figure 2-5) for five different beneficial use categories (using the “View water quality” button). These categories include potential groups of uses that require fairly high quality compared to those that do not. Most of the beneficial use categories had criteria for certain constituents that were exceeded by the existing produced water quality (output from the WQM), indicating that some treatment would be required. Exceedances are highlighted in red (Figure 2-5). For the “Livestock, Impoundments, Dust Control” category, no exceedances were found, indicating treatment may not be required. The water quality criteria used by the TSM are representative of general requirements for beneficial uses, and therefore may differ in some cases from site-specific user requirements. ECX found that some of the TSM criteria (beneficial use limits) differed from site-specific criteria applicable to ECX, i.e. current Wyoming regulations. For stream discharge and water accessible to livestock and/or wildlife, Wyoming regulations specify effluent limitations of 2,000 mg/l chloride, 3,000 mg/l sulfate, and 5,000 mg/l TDS (AQWATEC 2010). Additionally, stream discharge to the Powder River must not exceed a monthly average EC of 2,000 S/cm and a SAR of 5.0 during the irrigation season (Montana DEQ 2003; NRC 2010). However, a review of ECX’s influent produced water quality shows that the water already meets the chloride, sulfate, and TDS criteria. The other two parameters, EC and SAR, are not specified in the TSM beneficial use criteria because they are calculated from the concentrations of other parameters (EC is a measurement of salt content and may be estimated from TDS, and SAR is calculated from the sodium, calcium, and magnesium concentrations). Therefore, for potential beneficial use via stream discharge, ECX must compare the treated water quality predicted by the TSM to their EC and SAR standards as well as any other site-specific standards.

Case Studies – Utilizing the Produced Water Treatment and Beneficial Use Screening Tool

2-7

ECX next selected “Run” from the TSM Main Menu, and the module produced a list of the three best treatment trains recommended for each of the five categories of beneficial use (Figure 2-6). These results (in the “TSM_Output” tab) also provided estimates of the capital costs, power consumption, equipment life, and brine volume produced from each of these treatment trains. Exceeds Beneficial Use Limit

TSM Menu

Component Alkalinity (as CaCO3) Alkalinity‐Bicarbonate Alkalinity‐Carbonate Aluminum Arsenic Barium Benzene Boron Bromide Calcium Chloride Chromium, total Conductivity Copper Cyanide, free

Water quality data

Beneficial use limits Surface Water Discharge, Instream Flow 

800 800 0 0.1 0.001 0.7 0.0 0.10 0.22 33 14 0.19 1995 0.1 0.00

0.09 0.00 1.00 0.00 0.75

250 0.01 0.20 0.01

Units mg/L mg/L mg/L mg/L mg/L mg/L µg/L mg/L mg/L mg/L mg/L mg/L uS/cm mg/L mg/L

W Q

See all  beneficial use  categories and  limits

Figure 2-5 TSM review of water quality compared to representative criteria for selected beneficial uses, for the Powder River Basin case study (the first 15 of 47 constituents are shown).

Next Module

TSM Menu Below are the three best treatment trains for each beneficial use. The trains are selected based on the site selection criteria as well as the  product water quality required for each beneficial use. To continue with the BSM and BEM select only one treatment train per beneficial use  by clicking on the radio button alongside the treatment train. 

+ + +

+ + +

 Treatment Technology Assessment Document *For more information on each treatment please consult the Potable use, aquifer recharge, storage & recovery Chemical disinfection . Media filter . Tight NF . Chemical disinfection . (Brine disposal: deep well injection) Chemical disinfection . Acid Cation IX (H) . Tight NF . Chemical disinfection . (Brine disposal: deep well injection) Chemical disinfection . Greensand filter . Tight NF . Chemical disinfection . (Brine disposal: deep well injection) Livestock, impoundments, dust control No treatment required

+ + +

Crop irrigation, non‐potable use Anion IX .  Wetland . Anion IX Coagulation . Anion IX

+ + +

Environmental Restoration, Wetlands Anion IX .  Coagulation . Media filter Coagulation . MF/UF (ceramic)

Remove Brine Disposal

Detailed Water Quality

+

Detailed Water Quality

Detailed Water Quality

Detailed Water Quality

Detailed Water Quality + + +

Surface Water Discharge, Instream Flow Augmentation, Fisheries Chemical disinfection . Media filter . Tight NF . (Brine disposal: deep well injection) Chemical disinfection . Acid Cation IX (H) . Tight NF . (Brine disposal: deep well injection) Chemical disinfection . Greensand filter . Tight NF . (Brine disposal: deep well injection)

Figure 2-6 Treatment trains recommended by the TSM for each of five beneficial use categories, for the Powder River Basin case study.

Case Studies – Utilizing the Produced Water Treatment and Beneficial Use Screening Tool

2-8

For example, for the beneficial use category “Surface Water Discharge, Instream Flow Augmentation, Fisheries”, the TSM recommended a treatment train involving chemical disinfection, a media filter, tight nanofiltration (NF; with brine disposal via deep well injection) with an estimated capital cost of $20,000,000, with most of that cost ($13,000,000) associated with the brine disposal. The capital cost for deep well injection is not applicable if a well is already available, as is the case for ECX. The results indicate that the estimated brine volume from the tight NF is 13,500 bbl/day (based on the 30% recovery input to the module) and 2,250 bbl/day from the media filter, totaling approximately 15,750 bbl/day. The same treatment train is recommended for the beneficial use category “Potable Use, Aquifer Recharge, Storage, & Recovery”, though the final disinfection step may not be required for surface spreading (aquifer recharge). No treatment was recommended for the category “Livestock, Impoundments, Dust Control” as the produced water quality did not exceed any of the water quality criteria recommended for this category. For each of the beneficial use categories, the TSM recommended treatment trains that resulted in predicted product water qualities that met the applicable water quality criteria assumed. As noted above, ECX would also be required to meet Wyoming EC and SAR criteria for stream discharge to the Powder River. These standards are intended to protect downstream uses of the surface water for irrigation in Montana. The predicted TDS concentration (228 mg/l) for treated water produced using the treatment train recommended for stream discharge is equivalent to an EC of approximately 345 S/cm, which is well below the regulatory limit. However, due to significant anticipated removal of calcium and magnesium compared to lesser removal of sodium, ECX calculated a resulting SAR that exceeds the regulatory limit of 5.0. Therefore, post-treatment water quality adjustment is likely to be required for this use, depending upon regulatory agency review and the discharge permit issued, as well as for crop irrigation. ECX maintained the default selections for the treatment trains (those listed first under each beneficial use category, Figure 2-6), and continued using the “Next Module” button.

2.3

Beneficial Use Selection Module

The Beneficial Use Selection Module (BSM) allowed ECX to screen the five categories of beneficial uses, with a side-by-side comparison of the potential benefits and disadvantages. The BSM requires information on current costs and methods for disposal of produced water and requires weighting of screening criteria related to produced water quantity and timing. After selecting the “Input” button on the main menu of the BSM, ECX input the estimated current cost of produced water disposal, $0.43/bbl. For the current method of disposal, ECX selected “Impoundments” from the drop-down menu. The three BSM screening criteria are “Water Quantity, “Supply Timing and Reliability” and “Duration of Supply”. ECX selected the water quantity range (1 mgd < base flow < 5 mgd) that matched the estimated produced water flow from the well field (45,000 bbl/d, or almost 2 mgd). Because the flow of produced water is expected to be fairly consistent (given that the flows from approximately 400 wells would be combined and equalized in impoundments or equivalent storage) and that the life of the well field was estimated as at least 10-20 years, ECX selected “Consistent base flow for 5 years” for the “Supply Timing and Reliability Range” and “Base flow for at least 5 years” for the “Duration of Supply Range”. In each case, the next-highest selection represented a flow of 30 years, which was longer than anticipated. For all three criteria, ECX input weights of 5 (extremely important), as the Screening Tool recommends scores at a default

Case Studies – Utilizing the Produced Water Treatment and Beneficial Use Screening Tool

2-9

of 5 if the user is uncertain as to their importance. Therefore, the default setting is that all criteria are important, equally, for deriving the most suitable type of beneficial use. The BSM output (screening matrix) provides information on the project feasibility, potential economic value, capital cost for treatment equipment, and power consumption for each of the five beneficial use categories. The feasibility assessment takes into account the three screening criteria weighted by ECX. A summary of the BSM output for ECX produced water is compiled in Table 2-2 in order of decreasing feasibility, using the same color-coding scheme. All projects were characterized as at least moderately feasible. Based on a review of this information, ECX was most interested in three potential beneficial use projects – Aquifer Recharge, Storage, and Recovery (ASR), Surface Water Discharge/Instream Flow Augmentation, and Crop Irrigation – for the following reasons. Though ASR has a relatively high treatment capital cost (Table 2-2), it ranked the highest in terms of project feasibility and highly for potential value, with moderate power consumption. Potable Use and Non-Potable Use screening results were similar to ASR except for lower project feasibility. Surface Water Discharge/Instream Flow Augmentation ranked highest in potential economic value (i.e. to potential downstream users) with moderate feasibility and power consumption, though at a high treatment capital cost. Crop irrigation had a fairly high feasibility with some potential value at a low treatment capital cost, though at a relatively high power consumption. As reported in the TSM Output, the relatively high power consumption (also for constructed wetland and non-potable use) is due to the anion exchange unit process in the recommended treatment train for these beneficial uses. ECX may also consider some of the uses already practiced (livestock water, dust control, and impoundments), though this would depend on the extent to which they competed for produced water volume. The BSM output also provided a summary of various environmental and social benefits (non-economic benefits) for each of the beneficial uses, such as habitat enhancement and water recreation (Surface Water Discharge/Instream Flow Augmentation), plant benefits from raising the groundwater level and new potential potable or irrigation water source (ASR), and offset of potable water use and cost (Crop Irrigation).

2.4

Beneficial Use Economic Module

ECX further evaluated the selected beneficial use projects using the Beneficial Use Economic Module (BEM) to compare estimated, planning level capital and O&M costs. User inputs were required for each project and are shown in Figure 2-7 to 2-10. For all three projects, the input project life was estimated as 15 years, with hilly project land area leased from the BLM, a 5% interest rate for project costs, using $0.08/kWh natural gas (remote) energy, and requiring yearround operation of the treatment plant. Additionally, ECX assumed that storage of approximately 60 days of peak flow above treatment plant design capacity may be required to equalize and store produced water prior to treatment, and selected storage pond for the type of storage. For the assessment of ASR (Figure 2-7), ECX estimated the conveyance distance to be approximately 5 miles from the location of the new treatment plant (located within the well field area) to the project site (percolation ponds outside of the nearest major city and near the well field). Potential new infrastructure related to aquifer recharge includes injection wells or percolation ponds. Given the availability of land compared to the anticipated expense for constructing injection wells, ECX selected percolation ponds from the drop-down menu. ECX estimated the project area to be 71 acres (for percolation ponds, based on area provided in the Cost Template tab). Two full-time staff were estimated to be required for the produced water

Case Studies – Utilizing the Produced Water Treatment and Beneficial Use Screening Tool

2-10

(non-treatment) portion of the project, assuming somewhat fewer than would be required for the treatment plant (three, as provided by the TSM). Given the complexity of the membrane-based treatment technology, ECX assumed a fairly high-tech control system would be employed for the treatment plant and produced water project. Because of the variety of current produced water disposal methods employed by ECX, which already include some beneficial uses, ECX was unable to input an estimate of the current energy required for disposal. Table 2-2 Summary of BSM results from the screening matrix for the Powder River Basin case study. Feasibility is scored from most feasible (5) to least feasible (1). Treatment  Equipment  Capital Cost  ($mil) 

Power  Consumption  (kWh/year) 

Beneficial Use (Category No.) 

Feasibility 

Potential  Value ($/bbl) 

Aquifer Recharge, Storage and  Recovery (Category 5) 

4.7 

$0.21 ‐ 0.61 

$20 

100,000 

Fisheries (Category 4) 

4.3 

$0.01 ‐ 0.08 

$20 

100,000 

Crop Irrigation (Category 2) 

4.3 

$0.02 ‐ 0.19 

$3 

4,832,200 

Livestock Watering (Category 1) 

4.3 

n/a 

$0 



Dust Control (Category 1) 

4.3 

$0.01 ‐ 0.12 

$0 



Constructed Wetlands (Category 3) 

4.0 

n/a 

$1 

4,832,200 

Impoundments (Category 1) 

4.0 

n/a 

$0 



Potable Use (Category 5) 

3.7 

$0.21 ‐ 0.61 

$20 

100,000 

Non‐Potable use (Category 2) 

3.7 

$0.21 ‐ 0.61 

$3 

4,832,200 

Surface Water Discharge/ Instream  Flow Augmentation (Category 4) 

3.0 

$0.23 ‐ 0.94 

$20 

100,000 

Project Feasibility Color Legend Most Feasible  ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐> Least Feasible

Estimated Potential Value Legend Greatest Potential Value  ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐> Lowest Potential Value

Cost and Energy Color Legend Least Cost or Lowest Energy  ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐> Highest Cost or Highest Energy

ECX then selected the “BEM Cost Template” arrow to review the results of the cost estimate for the ASR project. First ECX reviewed the line items to verify the assumptions and costs, and

Case Studies – Utilizing the Produced Water Treatment and Beneficial Use Screening Tool

2-11

modified the cost per linear foot of pipe (to $7 per inch diameter) to more accurately reflect anticipated local conditions. Significantly, ECX eliminated the capital cost for deep well injection (for brine, under “Facility Capital Costs – Treatment Train, by changing quantity to zero1) because an injection well is already available from existing use for ion exchange wastewater disposal. This was the greatest capital cost associated with the treatment train. The resulting annualized capital and annual O&M costs were $0.24 and $0.11 per barrel of produced water, respectively, or $0.35 per barrel total. ECX then selected the “Memorialize This Scenario” button to save the results for later comparison with the next two projects. Next, ECX returned to the BEM input tab to enter the second potential project, Instream Flow Augmentation (see inputs in Figure 2-8). Similar project conditions were input, except that ECX entered a 1-acre project area (for delivery pipeline and discharge facility to the stream, as discussed on the Assumptions tab of the BEM) and a discharge facility as the potential new infrastructure. Also, ECX estimated that fewer full-time staff (one) would be required to operate the produced water portion of the project. The resulting annualized capital and annual O&M costs, after making the same corrections to the pipeline cost and deep well injection, were $0.19 and $0.07 per barrel of produced water, respectively, or $0.26 per barrel total. ECX then selected the “Memorialize This Scenario” button to save the results for comparison with the other two projects. The user inputs for the third potential project, Crop Irrigation, are shown in Figure 2-9. Similar project conditions were again input, except that ECX entered a 0-acre project area (as the land to be irrigated is owned by the potential nearby customers) and a 15-mile estimated conveyance distance to deliver the treated water to local irrigators. Additionally, the potential new infrastructure consisted of retrofits to existing irrigation systems, and a low-tech control system was selected. The resulting annualized capital and annual O&M costs, after making the same correction to pipeline cost, were $0.15 and $0.12 per barrel of produced water, respectively, or $0.27 per barrel total. ECX then selected the “Memorialize This Scenario” button to save the results for comparison with the other two projects. Summary reviews of the three projects were available in the “Compare Scenarios” tab of the BEM and are shown in Figure 2-10. The estimated project capital costs, which included costs for the treatment technology and additional beneficial use project costs, increased from $30 million for Crop Irrigation to $35 million for Instream Flow and $45 million for ASR. On an annualized basis, these capital costs are equivalent to $2.5, $3.1, and $4.0 million per year, respectively. The annual O&M costs are estimated as $2.0, $1.1, and $1.9 million per year, respectively. Together, the total annualized costs are estimated as $4.5 million per year (or $0.27/bbl) for Crop Irrigation, $4.2 million per year ($0.26/bbl) for Instream Flow, and $5.8 million per year ($0.35/bbl) for ASR. The estimated annualized costs for each of the three projects is less than ECX’s current estimated cost of disposal, which is $7.1 million per year ($0.43/bbl). The estimated potential value for each beneficial use project may also be considered and is included in the summary table (Figure 2-10). These are $0.3 - $3.1 million per year for Crop Irrigation, $3.8 - $15.4 million per year for Instream Flow, and $3.4 - $10 million per year for ASR. These values could significantly offset or exceed the beneficial use project costs, if realized by seeking revenue or project cost sharing for the water supply.

1

Cell formula (that is replaced by the zero) in the “Qty” column should be restored prior to running next scenario.

Case Studies – Utilizing the Produced Water Treatment and Beneficial Use Screening Tool

2-12

User Chosen Project Name Case Study No. 1: PRB ‐ Perc Ponds Select Beneficial Use  Aquifer Recharge, Storage and Recovery for Project Cost Estimate:

i

Filter‐NF‐Re‐inject.

Project Location Nearest Major City ENR Index Reference City

Wyoming City A Denver, CO

Estimated Project Life Long‐Term Interest Rate Estimated Project Area  Ownership

15 5% 71 Leased from BLM

years

5 Hilly Remote (natural gas) 0.08

miles 

Estimated Conveyance Distance General Type of Terrain Energy type Energy Unit Cost STORAGE REQUIREMENTS Estimated Storage Volume to hold Type of Storage Potential New Beneficial Use Infrastructure #1 Potential New Beneficial Use Infrastructure #2 Period of Operation of Treatment Plant 

60 Storage Pond Injection Well Percolation Pond 100%

Estimated Number of Full‐Time Treatment Staff  Estimated Number of Full‐Time Other Staff  Control System

3 2 SCADA (high‐tech)

Current Disposal Method Estimated Energy Required for Current Disposal

Impoundments

Summary of Treatment Technology Train  for Selected Beneficial Use

(used for cost escalation in the economic evaluation only)

i acres

i $/kWh Peak Flow  =   Design Flow Into Treatment Plant =   days of peak flow above the treatment design capacity =

Not Needed Needed

of year

2.8 2.1 45.4

mgd mgd MG

i

i

i

to operate treatment plant based on the number and complexity of treatment processes. to operate produced water portion of the project. i

Current Disposal Cost $0.43 KWh energy per barrel (if unknown leave blank)

$/bbl

i

Figure 2-7 User inputs to the BEM to assess project costs for Aquifer Recharge, Storage, and Recovery for the Powder River Basin case study.

Case Studies – Utilizing the Produced Water Treatment and Beneficial Use Screening Tool

2-13

User Chosen Project Name Case Study No. 1: PRB ‐ Instream Flow Select Beneficial Use  Surface Water Discharge/ Instream Flow  for Project Cost Estimate: Augmentation

i

Filter‐NF‐Re‐inject.

Project Location Nearest Major City ENR Index Reference City

Wyoming City A Denver, CO

Estimated Project Life Long‐Term Interest Rate Estimated Project Area  Ownership

15 5% 1 Leased from BLM

years

5 Hilly Remote (natural gas) 0.08

miles 

Estimated Conveyance Distance General Type of Terrain Energy type Energy Unit Cost STORAGE REQUIREMENTS Estimated Storage Volume to hold Type of Storage Potential New Beneficial Use Infrastructure #1 Potential New Beneficial Use Infrastructure #2 Period of Operation of Treatment Plant 

60 Storage Pond

Summary of Treatment Technology Train  for Selected Beneficial Use

(used for cost escalation in the economic evaluation only)

i acres

i $/kWh Peak Flow  =   Design Flow Into Treatment Plant =   days of peak flow above the treatment design capacity =

Discharge Facility to Stream None

Needed Needed

100%

of year

Estimated Number of Full‐Time Treatment Staff  Estimated Number of Full‐Time Other Staff  Control System

3 1 SCADA (high‐tech)

Current Disposal Method Estimated Energy Required for Current Disposal

Impoundments

2.8 2.1 45.4

mgd mgd MG

i

i i

to operate treatment plant based on the number and complexity of treatment processes. to operate produced water portion of the project. i

Current Disposal Cost $0.43 KWh energy per barrel (if unknown leave blank)

$/bbl

i

Figure 2-8 User inputs to the BEM to assess project costs for Surface Water Discharge / Instream Flow Augmentation for the Powder River Basin case study.

Case Studies – Utilizing the Produced Water Treatment and Beneficial Use Screening Tool

2-14

i

User Chosen Project Name Select Beneficial Use  for Project Cost Estimate:

Case Study No. 1: PRB ‐ Crop Irrig

Project Location Nearest Major City ENR Index Reference City

Wyoming City A Denver, CO

Estimated Project Life Long‐Term Interest Rate Estimated Project Area  Ownership

15 5% 0 Leased from BLM

years

15 Hilly Grid transmission lines (Montana) 0.08

miles 

Estimated Conveyance Distance General Type of Terrain Energy type Energy Unit Cost STORAGE REQUIREMENTS Estimated Storage Volume to hold Type of Storage Potential New Beneficial Use Infrastructure #1 Potential New Beneficial Use Infrastructure #2 Period of Operation of Treatment Plant 

Summary of Treatment Technology Train  for Selected Beneficial Use

Crop Irrigation

60 Storage Pond

IX

(used for cost escalation in the economic evaluation only)

i acres

i $/kWh Peak Flow  =   Design Flow Into Treatment Plant =   days of peak flow above the treatment design capacity =

Retrofit Existing Irrigation System None

Needed Needed

100%

of year

Estimated Number of Full‐Time Treatment Staff  Estimated Number of Full‐Time Other Staff  Control System

2 1 Remote (low‐tech)

Current Disposal Method Estimated Energy Required for Current Disposal

Impoundments

2.8 2.1 45.4

mgd mgd MG

i

i i

to operate treatment plant based on the number and complexity of treatment processes. to operate produced water portion of the project. i

Current Disposal Cost $0.43 KWh energy per barrel (if unknown leave blank)

$/bbl

i

Figure 2-9 User inputs to the BEM to assess project costs for Crop Irrigation for the Powder River Basin case study.

Case Studies – Utilizing the Produced Water Treatment and Beneficial Use Screening Tool

2-15

COMPARE BENEFICIAL USES OR VARIATIONS ON A PROJECT Key Input of Interest

‐‐ ‐‐ mgd gpm bbl/day

3 Case Study No. 1: PRB ‐ Crop Irrig City A, Wyoming ‐‐‐ Wyoming, Powder River Data Source = All Formations Crop Irrigation IX 1.9 1300 45000

2 Case Study No. 1: Instream Flow City A, Wyoming ‐‐‐ Wyoming, Powder River Data Source = All Formations Surface Water Discharge/ Instream Flow Augmentation Filter‐NF‐Re‐inject. 1.9 1300 45000

1 Case Study No. 1: Perc Ponds City A, Wyoming ‐‐‐ Wyoming, Powder River Data Source = All Formations Aquifer Recharge, Storage and Recovery Filter‐NF‐Re‐inject. 1.9 1300 45000

Project life Interest Rate Estimated Project Capital Cost Total

years % $ million

15 0.05 29.86 

15 0.05 34.87 

15 0.05 45.07 

Annualized Capital Costs

$mil/year

2.46

3.12

3.98

Annual O&M Costs

$mil/year $mil/year avg $/bbl $mil/year avg $/bbl

2.05 4.51 0.27 7.06 0.43

1.08 4.20 0.26 7.06 0.43

1.85 5.82 0.35 7.06 0.43

$0.3 ‐ $3.1

$3.8 ‐ $15.4

$3.4 ‐ $10

Project Location Water Quality Source Beneficial Use Treatment Train Water Quantity (Design Flow)

Total Annualized Costs Current Cost of Disposal

Units ‐‐ ‐‐

i

Estimated Value of Produced Water for  $mil/year Selected Beneficial Use Estimated Environmental Benefits

$mil/year

n/a

$0.2 ‐ $1.24

n/a

Estimated Social Benefits

$mil/year

$0.07 ‐ $3.59

$0.03 ‐ $3.94

$0.03 ‐ $3.94

Figure 2-10 Comparison of three potential benefit uses, or project scenarios, for the Powder River Basin case study.

Case Studies – Utilizing the Produced Water Treatment and Beneficial Use Screening Tool

2-16

Section 3: San Juan Basin (Case Study No. 2) Y Energy Company (YEC) is a hypothetical energy company that operates multiple well fields for CBM extraction in the San Juan Basin in New Mexico. The San Juan River runs through the area and northwest into Utah, where it joins the Colorado River at Lake Powell. The focus of the present case study is a 550-square mile area in which YEC operates over 1,500 wells, with continual development of new wells via increasing well density and development in new areas. YEC used the Screening Tool to evaluate treatment technologies and project costs associated with potential beneficial uses. Each of the four modules (Water Quality, Treatment Selection, Beneficial Use Selection, and Beneficial Use Economic Modules) was run using YEC inputs.

3.1

Water Quality Module

Based on the location of their operations, YEC input the state (Other), basin (San Juan), and target formation (Fruitland) for the required Project Information in the WQM. A design percentile of 75% was selected in order to be fairly conservative with respect to the anticipated water quality of the produced water, to account for the fact that the water quality may change over time or be more variable than anticipated. Also input were the total average (37,500 bbl/day) and peak (56,250 bbl/day) daily water flow rates estimated for YEC operations. YEC estimated the peak water flow rate as a 50% increase of the average flow rate, to account for the fact that additional wells may be operated at certain times (the peak flow rate estimate will determine the required size of the influent storage facility for the treatment plant in the BEM). Rather than entering site-specific well data, YEC utilized the default water quality data available in the Screening Tool as an estimate. YEC selected “WQM Output” to review the default data, which is based on the user input basin and formation. This water quality data is presented in Figure 3-1. YEC then selected “Next Module” to proceed to the TSM.

3.2

Treatment Selection Module

Using the Screening Tool’s TSM, YEC identified potential technologies to treat the produced water (having influent quality obtained from the WQM) to levels appropriate for different beneficial uses. First, YEC scored 12 screening criteria (Figure 3-2) to ensure that the treatment technologies recommended by the Screening Tool would be appropriate for YEC’s operations. The screening criteria “Flexible”, “Low Energy Demand”, and “Mobile” were given relatively low scores, because they were not considered very important (changes to produced water quality are not anticipated, energy is available at a reasonable cost, and the treatment system is unlikely to need to be moved). “Low capital cost” was rated very highly to minimize cost, as well as “High industrial status” to favor a more mature technology. Other criteria were given moderate to fairly high scores.

Case Studies – Utilizing the Produced Water Treatment and Beneficial Use Screening Tool

3-1

WQM Menu

i

Project Information State

Other

Basin

San Juan

Formation

Fruitland

Design Percentile

Next Module

Water Flow Information Water Flow Rate Units

MGD

bbl/day

AFY

Average Water Flow Rate

1.57E+00

3.75E+04

1.76E+03

Peak Water Flow Rate

2.36E+00

5.63E+04

2.65E+03

75 Final Constituent Values

i

Alkalinity (as CaCO3)

4905.00

mg/L

Fluoride

2.06

mg/L

Selenium

0.05

mg/L

Alkalinity‐Bicarbonate

4959.00

mg/L

Iron

4.42

mg/L

Silica (SiO2)

12.62

mg/L

Alkalinity‐Carbonate

0.00

mg/L

Lead

0.05

mg/L

Silver

0.00

mg/L

Aluminum

0.23

mg/L

Lithium

2.50

mg/L

Sodium

2400.50

mg/L

Arsenic

0.01

mg/L

Magnesium

16.00

mg/L

Strontium

6.50

mg/L mg/L

Barium

12.61

mg/L

Manganese

0.14

mg/L

Sulfate

7.00

Benzene

120.00

µg/L

Nickel

0.05

mg/L

Temperature

35.60

Boron

1.74

mg/L

Oil and Grease

2.00

mg/L

Toluene

2.10

µg/L

Bromide

12.61

mg/L

o‐Phosphate

5.40

mg/L

Total Dissolved Solids (TDS)

8052.95

mg/L

Calcium

40.50

mg/L

pH

8.18

pH

Total Nitrogen (as N)

0.55

mg/L

° C

Chloride

554.00

mg/L

Potassium

16.00

mg/L

Total Organic Carbon (TOC)

3.62

mg/L

Chromium

0.02

mg/L

Radioactivity, Gross Alpha

14.70

pCi/L

Total Suspended Solids (TSS)

51.75

mg/L

Conductivity

7792.50

uS/cm

Radioactivity, Gross Beta

18.58

pCi/L

Uranium

0.13

mg/L

Copper

0.04

mg/L

Radium‐226 + Radium‐228

0.72

pCi/L

Xylenes (total)

230.00

µg/L

Cyanide, free

0.01

mg/L

Radon 222

45.90

pCi/L

Zinc

0.03

mg/L

Ethylbenzene

20.00

µg/L

Sodium Adsorption Ratio (SAR)

80.54

SAR

i

Restore WQM Outputs

Calculated

Figure 3-1 WQM water quality data for the Fruitland formation for the San Juan Basin case study.

Case Studies – Utilizing the Produced Water Treatment and Beneficial Use Screening Tool

3-2

TSM Menu

Instructions: Please score the criteria using a number from 1 to 5 in the boxes below. A five indicates that the item is extremely  important and a one indicates that the item is not very important at all. 

Score Description

Explanation

Example:

3

Limited operator oversight

The degree of operator oversight required.

i

3

Easy to operate

This includes the use of hazardous chemicals and the operator skill required to manage the system

i

2

Flexible

The ability of the technology to withstand highly variable water quality

i

3

Small footprint

The size, in land area, that the process takes up

i

5

High industrial status

Market maturity of technology, frequency of use in similar situations, competitiveness of vendors

i

3

Low chemical demand

The volume of chemicals required at the site

i

2

Low energy demand

The specific energy required by the technology

i

2

Mobile

The ease with which the technology can be moved from one part of the site to another

i

3

Modular

The ability to implement technology as a unit process and accommodate changing influent volume

i

5

Low capital cost

The cost of installing the technology

i

3

Robust

The ability to withstand varying environmental conditions.

i

This includes the volume of waste and the technical skill required to handle it

i

4

Low waste management

Figure 3-2 TSM selection criteria scores for the San Juan Basin case study.

Using the “Additional Information” and “Water Recovery” buttons, YEC input the level of bacteria in the influent water (Low,  Least Feasible

Estimated Potential Value Legend Greatest Potential Value  ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐> Lowest Potential Value

Cost and Energy Color Legend Least Cost or Lowest Energy  ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐> Highest Cost or Highest Energy

The resulting annualized capital cost and annual O&M costs were $0.38 and $0.37 per barrel of produced water, or $0.75 per barrel total. YEC then selected the “Memorialize This Scenario” button to produce a summary table (Figure 3-7) and save the results for comparison with any other projects evaluated. The estimated project capital cost is $65 million, with a total annualized capital and O&M cost of $10 million per year. As noted this represents $0.75 per

Case Studies – Utilizing the Produced Water Treatment and Beneficial Use Screening Tool

3-8

barrel of produced water, which compares to the current disposal cost of $2 per barrel ($27 million per year). The results of the BEM indicate that the potential beneficial use project may be less costly than the current disposal method. Based on the results of the Screening Tool, YEC has an estimate of the treatment technology and associated costs that may be required for stream discharge of produced water from their San Juan Basin well fields. Further, the potential economic value (ranging $3 to $13 million per year, Figure 3-7) could significantly offset or even exceed the beneficial use project costs, if realized by seeking revenue for provision of the high quality produced water to a downstream user. Given the high demand for water and its economic value in the Colorado River Basin, interstate marketing of discharged produced water by YEC to downstream users (e.g. at Lake Powell) may be feasible.

Case Studies – Utilizing the Produced Water Treatment and Beneficial Use Screening Tool

3-9

User Chosen Project Name Case Study No. 2: SJB ‐ Surface Discharge Select Beneficial Use  Surface Water Discharge/ Instream Flow  for Project Cost Estimate: Augmentation

i

Filter‐IX‐GAC‐thermal distillation‐Evap

Project Location Nearest Major City ENR Index Reference City

Other Farmington, NM Denver, CO

Estimated Project Life Long‐Term Interest Rate Estimated Project Area  Ownership

20 5% 1 Leased from BLM

years

10 Flat Grid transmission lines (Montana) 0.08

miles 

Estimated Conveyance Distance General Type of Terrain Energy type Energy Unit Cost STORAGE REQUIREMENTS Estimated Storage Volume to hold Type of Storage Potential New Beneficial Use Infrastructure #1 Potential New Beneficial Use Infrastructure #2 Period of Operation of Treatment Plant 

14 Storage Pond Discharge Facility to Stream None 100%

Summary of Treatment Technology Train  for Selected Beneficial Use

(used for cost escalation in the economic evaluation only)

i acres

i $/kWh Peak Flow  =   Design Flow Into Treatment Plant =   days of peak flow above the treatment design capacity =

Needed Not Needed

of year

2.4 1.7 8.8

mgd mgd MG

i

i

i

Estimated Number of Full‐Time Treatment Staff  Estimated Number of Full‐Time Other Staff  Control System

3 1 Remote (low‐tech)

to operate treatment plant based on the number and complexity of treatment processes. to operate produced water portion of the project. i

Current Disposal Method Estimated Energy Required for Current Disposal

Deep Well Injection

Current Disposal Cost $2.00 KWh energy per barrel (if unknown leave blank)

$/bbl

i

Figure 3-6 User inputs to the BEM to assess the project costs for beneficial use of produced water via Surface Water Discharge for the San Juan Basin case study.

Case Studies – Utilizing the Produced Water Treatment and Beneficial Use Screening Tool

3-10

COMPARE BENEFICIAL USES OR VARIATIONS ON A PROJECT Key Input of Interest

‐‐ ‐‐ mgd gpm bbl/day

1 Case Study No. 2: SJB ‐ Surface Discharge Farmington, NM, Other ‐‐‐ Other, San Juan Data Source = Fruitland Surface Water Discharge/ Instream Flow Augmentation Filter‐IX‐GAC‐thermal distillation‐Evap 1.57498677 1100 37000

Project life Interest Rate Estimated Project Capital Cost Total

years % $ million

20 0.05 65.13 

Annualized Capital Costs

$mil/year

5.07

Annual O&M Costs

$mil/year $mil/year avg $/bbl $mil/year avg $/bbl

5.02 10.09 0.75 27.01 2.00

Project Location Water Quality Source Beneficial Use Treatment Train Water Quantity (Design Flow)

Total Annualized Costs Current Cost of Disposal

Units ‐‐ ‐‐

i

Estimated Value of Produced Water for  $mil/year Selected Beneficial Use

$3.1 ‐ $12.7

Estimated Environmental Benefits

$mil/year

$0.16 ‐ $1.02

Estimated Social Benefits

$mil/year

$0.03 ‐ $3.24

Figure 3-7 Summary of project cost estimate for Surface Water Discharge/Marketing (San Juan Basin case study).

Case Studies – Utilizing the Produced Water Treatment and Beneficial Use Screening Tool

3-11

References

AQWATEC. 2010. Produced Water Treatment and Beneficial Use Information Center: State Regulations. (Colorado School of Mines, Advanced Water Technology Center). Available: http://aqwatec.mines.edu/produced_water/regs/state/index.htm [accessed December 8 2010]. Montana DEQ. 2003. Record of Decision for Montana Statewide Oil and Gas Environmental Impact Statement, Department of Environmental Quality. Billings: Montana Board of Oil & Gas Conservation. Available: http://bogc.dnrc.state.mt.us/pdf/rodaug7_03.pdf [accessed December 14 2010]. NRC. 2010. Management and Effects of Coalbed Methane Produced Water in the Western United States. Washington, D.C.: National Research Council of the National Academies.

Case Studies – Utilizing the Produced Water Treatment and Beneficial Use Screening Tool References - I

Suggest Documents