Bridge in a Backpack. Bridges

“Bridge‐in‐a‐Backpack” Inflatable Composite Concrete Inflatable Composite‐Concrete Bridges Dr. H. J. Dagher, P.E. Director, AEWC Advanced Structures ...
Author: Caren Bradley
2 downloads 0 Views 3MB Size
“Bridge‐in‐a‐Backpack” Inflatable Composite Concrete Inflatable Composite‐Concrete Bridges

Dr. H. J. Dagher, P.E. Director, AEWC Advanced Structures and Composites Center University of Maine

Outline • UMaine Composites Center • Governor’s Composites Initiative • Bridge‐in‐a‐Backpack – Why and how – 8 Years of R&D 8 Years of R&D – 2 demonstration projects

• Benefits and next steps f d • Video

UMaine Advanced Structures & Composites Center Composites  Industry

Construction  Industry

• 70 70,000 ft 000 ft2 ISO 17025 Accredited Lab ISO 17025 Accredited Lab • 140 personnel • Analysis & Design + Prototyping+ Testing +  A l i & i i i Code Reports

UMaine Composites Center Composites Center • • • •

200+ Clients Globally Prototyping/testing up to 230 ft spans Nanocomposites Global Impact – 3 ACMA ACE awards in last 2 years d l – 2009 Champion for Economic Development Award – Over 400 publications in last 10 years

Maine’ss Composites Initiative Maine Composites Initiative

• Governor John Baldacci Up to 10% composites for bridges • Up to 10%  composites for bridges

Composite Bridge Drains Composite Bridge Drains

Maine DOT Collaboration • Hillman Composite Beam Hillman Composite Beam – Static and fatigue testing – 500 ft bridge under  00 f b id d contract

• Composite Culvert  Lining – Composite liner repairs  degraded metal culverts degraded metal culverts

Penobscot Narrows Bridge CFRP Strands

• Maine DOT, FHWA, Figg Engineering Group, UMaine • Steel strands replaced with carbon composite strands • Long term performance monitoring

“Bridge Bridge in a Backpack in a Backpack” • Developed by UMaine over an 8 year period • Advanced Infrastructure Technologies, LLC Ad dI f T h l i LLC

Arch Placement Decking Installation Completed Bridge

On‐Site Production:  Reduce shipping and handling logistics d h d h dl l

A hF Arch Formwork k

• Geometries completely customizable for site requirements • Spans made up to 90’, tube thickness up to ½”

A Faster, More Efficient Cast‐in‐Place Concrete Bridge l d • Inflatable FRP tubes, made on site , • Tube weighs 200 lb for 70’ span versus 50,000 lbs for  Prestressed concrete girder • Hand labor or light equipment H dl b li h i

Arch Installation at UMaine

6 Arches Installed by 3 Laborers  in 10 Minutes

Three Functions of FRP Tube f : 1. Stay‐in‐place form for concrete 

Filling Arches Using a Small Concrete Pump

Concrete Filling of Stay‐In‐Place FRP Arch Forms

Eliminates need for temporary formwork

Three Functions of FRP Tube: Three Functions of FRP Tube: 2. Structural reinforcement for concrete  Confined

Unconfined

Three Components of FRP  Reinforcement

Stress‐Strain Relationship for  Concrete

Eliminates rebars Eliminates rebars

Three Functions of FRP Tube: Three Functions of FRP Tube: 3. Protection for concrete

Spalling of concrete  further exposes  reinforcement e o ce e t

Steel rusts,  expands

Concrete Corrosion Cycle

Protects against corrosion, prolongs life, reduces  Protects against corrosion prolongs life reduces maintenance 

8 Years of Design & Testing at UMaine 8 Years of Design & Testing at UMaine Hydraulic  Actuator Arch  Specimen

DIC Targets

Concrete End  Support Block

Static & fatigue testing  of over 40 specimens f 40 i

Simple Support

Experimental and Predicted Response Arch Deflected Shape, Experimental and Predicted (Deflections Magnified 15X) 30 P 10

DIC Targets

Loca ation (in)

-10 10

-30

-50

-70 P di t d Predicted Experimental

-90

-110 -140

-120

-100

-80

-60

-40

-20

0 Location (in)

20

40

60

80

100

120

140

Experimental and Predicted Response p p

Initial Secondary

Load (kip ( p)

COV

specimens p

Experimental

72.0

2.55%

3

Predicted

69.0

‐‐‐‐‐‐‐‐

‐‐‐‐‐‐‐‐

Experimental

57.6

7.75%

3

Predicted

57.0

‐‐‐‐‐‐‐‐

‐‐‐‐‐‐‐‐

Load-Deflection Response of Concrete-Filled FRP Tubular Arch 80

Initial hinge at crown

70

Applied Load (kip)

60

50

40

30

20

10

0 0

1

2

3

4

5

6

7

Vertical Deflection at Crown (in) Initial Static Test to Failure

Post-Failure Behavior

8

9

10

Subsequent  q hinges at  shouldersl

Difference 4.14% 1.10%

Neal Bridge Replacement – Fall 2008

• • • •

First Bridge‐in‐a‐Backpack, 34’ span, 44’ wide 23 arches installed in one day Arches filled with concrete (1 hour) FRP decking

Neal Bridge Replacement – Fall 2008 Neal Bridge Replacement  Fall 2008

FRP Headwall FRP Headwall 

Backfill Pave Rail Backfill, Pave, Rail

Sensors monitor performance during backfill and service  Low maintenance, joint‐free, buried structure

Neal Bridge Field Load Testing Neal Bridge Field Load Testing • Performed April 2009 • 2 fully loaded tandem  axle dump trucks (66 kip  total weight) total weight) • Loading configurations in  parallel and series,  quasi static and dynamic quasi‐static and dynamic • Instrumentation: – Arches – strain and  deflection – Soil – vertical and radial  soil pressure

Soil Pressure Gages

Strain & Deflection Gages

Neal Bridge Field Load Testing Neal Bridge Field Load Testing Arch 10 3.0000E-05 12:57

13:12

13:26

13:40

13:55

14:09

14:24

14:38

Dynamic  test 14:52

2.0000E-05

1.0000E-05

0.0000E+00 Strain 10-A-1 Strain 10-A-3

Strain

-1.0000E-05

Strain 10-B-1 Strain 10-B-2

-2.0000E-05

Strain 10-B-3 Strain 10-C-1

Unloaded  bridge

-3.0000E-05

-4.0000E-05

Unloaded  Unloaded bridge

-5.0000E-05

Unloaded  bridge

-6.0000E-05 Time

• Field measurements indicate structure significantly  exceeds AASHTO requirements • Analytical live load rating of 1.96 X AASHTO HL‐93

McGee Bridge Replacement g p • Composite low bid against Steel, Concrete, and Wood • August 2009: installation in North Anson, ME August 2009: installation in North Anson ME Bid # Bridge Type

% Over Low  Bid

1

Bridge in a Bridge‐in‐a‐ Backpack

‐‐‐

2

Steel on concrete

6.8%

3

St l Steel on concrete t

18 4% 18.4%

4

Steel on concrete

23.4%

5

Concrete

23.5%

6

Timber on concrete

30.0%

McGee Bridge Replacement: 12 Days g p y CONSTRUCTION SEQUENCE 1. 1 2. 3. 4. 5. 6. 7. 8 8. 9.

Demo. existing steel bridge D i ti t l b id Drill bedrock, form footings ( ) Arch installation (3 hrs) Pour concrete footings Install composite decking Fill arches with concrete (1 hr) Install composite headwalls Backfill bridge Backfill bridge Grading, guardrails, cleanup

Where we’re Where we re going… going

2010‐2011 Governor’s Composite  Bridge Construction d • 5 5 more Maine bridges in 2 years more Maine bridges in 2 years • Spans from 24’ – 72’ • Currently in design phase Currently in design phase

1 3 4 6 5

2

1

2

3

4

5

6

Continuing R&D Plan Continuing R&D Plan Expand Geometric Capabilities

• Spans up to 90 ft • Diameters up to 26” • Rigid frame and girder designs Expand Manufacturing Capabilities d f i bili i

• Onsite manufacturing  • Versatile resin package  Versatile resin package • Large scale production

Bridge‐in‐a‐Backpack Capabilities: Interstate Overpass Interstate Overpass

Bridge‐in‐a‐Backpack Capabilities: Stream Crossings/Railway Crossings Stream Crossings/Railway Crossings

Summary and next steps Summary and next steps Composites can compete on first‐cost basis! 50% d i i 50% reduction in carbon footprint b f i Public interest finding from FHWA for Maine TIG Application TIG Application 20% of US bridges candidates 15 projects in multiple states International 15 projects in multiple states, International  projects • Expand geometries and spans (800 ft bridge) p g p ( g ) • Recent value bidding by contractors • Beyond bridges

• • • • • •

Th k Thank you! ! Contact: Dr. Dagher, P.E., Director g , , Advanced Structures and Composites Center University of Maine University of Maine (207) 581‐2138 [email protected] @

Suggest Documents