Bipolar Junction Transistor (BJT)

4.2.3. Bipolar Junction Transistor (BJT) Base • Interdigitated base and emitter contacts Emitter • Vertical current flow n p n n • minority c...
Author: Cameron Long
13 downloads 0 Views 236KB Size
4.2.3. Bipolar Junction Transistor (BJT)

Base

• Interdigitated base and emitter contacts

Emitter

• Vertical current flow

n

p

n

n

• minority carrier device • on-state: base-emitter and collector-base junctions are both forward-biased

nn

• on-state: substantial minority charge in p and n- regions, conductivity modulation

Collector Fundamentals of Power Electronics

• npn device is shown

56

Chapter 4: Switch realization

BJT switching times vs(t)

Vs2

–Vs1

VCC

vBE(t) 0.7V

RL iC(t) iB(t)

vs(t)

+ –

RB + vBE(t) –

–Vs1

+

iB(t) IB1

vCE(t) 0



–IB2 vCE(t) VCC IConRon iC(t)

ICon

0 (1) (2) (3)

Fundamentals of Power Electronics

57

(4)

(5)

(6)

(7)

(8)

(9)

t

Chapter 4: Switch realization

Ideal base current waveform

iB(t)

IB1 IBon

0 t –IB2

Fundamentals of Power Electronics

58

Chapter 4: Switch realization

Current crowding due to excessive IB2 Base

Emitter

–IB2

p

– –

n –

+

+

– –

n-



p

can lead to formation of hot spots and device failure

n

Collector

Fundamentals of Power Electronics

59

Chapter 4: Switch realization

BJT characteristics IC

n

egio r e v

acti

10A

tion

a satur i s a u

q

CE

V CE = 5V

saturation region

slope =β

5A

V CE = 200V V = 20V

VCE = 0.5V

• Off state: IB = 0 • On state: IB > IC /β • Current gain β decreases rapidly at high current. Device should not be operated at instantaneous currents exceeding the rated value

VCE = 0.2V

cutoff 0A 0V

5V

10V

15V

IB

Fundamentals of Power Electronics

60

Chapter 4: Switch realization

Darlington-connected BJT

• Increased current gain, for high-voltage applications

Q1 Q2

D1

Fundamentals of Power Electronics

• In a monolithic Darlington device, transistors Q1 and Q2 are integrated on the same silicon wafer • Diode D1 speeds up the turn-off process, by allowing the base driver to actively remove the stored charge of both Q1 and Q2 during the turn-off transition

62

Chapter 4: Switch realization

Conclusions: BJT

G

G

G

BJT has been replaced by MOSFET in low-voltage (