Bioinorganic CW EPR Spectra

V Mn Fe Co Ni C Cu Mo W N O S Bioinorganic CW EPR Spectra Stefan Stoll University of Washington, Seattle 4th Penn State Bioinorganic Workshop...
Author: Victoria Hudson
74 downloads 0 Views 3MB Size
V

Mn Fe

Co

Ni

C

Cu

Mo W

N

O S

Bioinorganic CW EPR Spectra Stefan Stoll University of Washington, Seattle 4th Penn State Bioinorganic Workshop June 5, 2016

Goals 1. Improve understanding of CW EPR a. derivative vs absorption b. β€œpowder” spectra 2. Learn what you can learn from CW EPR

Contents 1. Overview 2. Basics and examples a. Ni, Cu, Co b. Fe, Mn c. mixed-metal d. organic radicals 3. Summary

Disclaimer: This is not a comprehensive survey of CW EPR spectra

EPR survival kit Textbooks

Simulation software

EasySpin

Bioinorganic EPR Periodic Table organic radicals

H Li

Be

transition metal complexes & clusters

Na Mg K

Ca

Sc

Ti

V

Rb

Sr

Y

Zr Nb Mo Tc

N

O

F

Ne

Al

Si

P

S

Cl

Ar

Cu

Zn Ga Ge As

Se

Br

Kr

Ru

Rh

Pd

Ag

Cd

In

Sn Sb

Te

I

Xe

Re Os

Ir

Pt Au Hg

Tl

Pb

Po

Fr

Rf Db Sg Bh Hs Mt Ds Rg Cn

La Ce

C

Ni

Hf

Lr

W

B

Co

Cs Ba Lu Ra

Ta

Cr Mn Fe

He

Fl

Bi

At Rn

Lv

Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb

Ac Th Pa

U

Np Pu Am Cm Bk

Cf

Es Fm Md No abundant in living organisms EPR-active transition metal complexes EPR-active radicals

Most common metals and oxidation states half filled

less than half filled 3d1

3d2

3d3

1/2

1

3/2

V(IV)

3d4

3d5

2 0

5/2 1/2

V(I) V(II) V(III) Cr(IV)

more than half filled 3d6

3d7

3d8

3d9

3d10

1

1/2

0

Cu(I)

2 0

3/2 1/2

Cr(I)

Mn(I)

Fe(I)

Co(I)

Ni(I)

Cr(II)

Mn(II)

Fe(II)

Co(II)

Ni(II)

Cu(II)

Cr(III)

Mn(III)

Fe(III)

Co(III)

Ni(III)

Cu(III)

Mn(IV)

Fe(IV)

Co(IV)

Ni(IV) half-integer spin (easy to observe) integer spin (difficult or silent)

Typical sample: Frozen aqueous solution of a protein B0

Frozen solution = random uniform distribution of static orientations of protein molecules (like a dilute powder)

static magn. field B1 mw magn. field

Lab-fixed frame - z(lab): static field B0 - x(lab): oscillating microwave field B1

proteins

Random relative orientation

Protein-fixed frame - aligned with local symmetry z y

z(lab)

x y(lab) x(lab)

Ni Cu Co Fe Mn

Nickel(I) Ni(I) Ni(II)

*

3d9 S = 1/2 3d8 S = 1 high-spin S = 0 low-spin (nonmagnetic)

61Ni

(I = 3/2) 1%

z y CW EPR

𝑩𝑩0

x z y

abs

g = 2.56, 2.10, 2.01; mwFreq = 9.5 GHz

y z

C

Ni Cu Co Fe Mn

Nickel(I)

*

Acetyl-coenzyme A synthase (ACS)

C

Ared*

Nip(I) Nid(II) Biochem. 2010 49 7516

Ni-substituted azurin (NiAz)

dπ‘₯π‘₯ 2βˆ’π‘¦π‘¦2 trigonal planar

𝑔𝑔βˆ₯ = 2.56

𝑔𝑔βŠ₯ = 2.10

Ni(I) Inorg. Chem. 2015 54 7959

Ni Cu Co Fe Mn

Nickel(I)

*

Methyl-coenzyme M reductase (MCR) F430 = Ni hydrocorphinate cofactor

C

g = 2.25, 2.08, 2.06

Science 2016 352 953

Ni superoxide dismutase (NiSOD)

gx = 2.30

quantitation: 50% Ni(I) 50% ox.

gy = 2.23 5-coord. d𝑧𝑧 2

gz = 2.01 14N

Ni(I)

hf splitting! Biochemistry 2015 54 1016

Ni Cu Co Fe Mn

Copper(II)

*

Cu(II) 3d9 S = 1/2 Cu(I) 3d10 S = 0 (EPR silent)

CW EPR

Azz

63Cu

(I = 3/2, 4 spin states) 69% 65Cu (I = 3/2, 4 spin states) 31% z = parallel = βˆ₯

Azz

Azz

abs

C

x,y = perpendicular = βŠ₯

sum

π‘šπ‘šπΌπΌ π‘šπ‘šπΌπΌ π‘šπ‘šπΌπΌ π‘šπ‘šπΌπΌ g = 2.06 2.06 2.25; A = 50 50 400 MHz; mwFreq = 9.5 GHz

= βˆ’3/2 = βˆ’1/2 = +1/2 = +3/2

25% 25% 25% 25%

Copper(II) Cu(II) proteins

Ni Cu Co Fe Mn * Peisach/Blumberg plot gz and Az are anticorrelated

transferrin

plastocyanin

azurin

stellacyanin

Arch. Biochem. Biophys. 1974 165 691 J. Magn. Reson. 2013 236 7

JACS 1984 106 5324

𝑑𝑑π‘₯π‘₯ 2βˆ’π‘¦π‘¦2 vs. 𝑑𝑑𝑧𝑧 2 character delocalization onto ligands coordination geometry

C

Ni Cu Co Fe Mn

Copper: clusters Cu(II)-Cu(II): Cu(II) acetate antiferromagnetic coupling nonmagnetic (S = 0)

* Tyrosinase: CuICuII cluster

C

𝑑𝑑π‘₯π‘₯ 2 βˆ’π‘¦π‘¦2

no EPR spectrum Inorg. Chem. 2011 50 6229

𝑑𝑑𝑧𝑧 2 admix. trig. bipy. Chem. Rev. 2014 114 4366

Nitrous oxide reductase: CuZ = Cu4S β€œ1-hole”: 3CuICuII S = 1/2 β€œ2-hole”: 2CuI2CuII S = 0

1-hole deloc., 𝑑𝑑π‘₯π‘₯ 2βˆ’π‘¦π‘¦2 2.152

2nd deriv Chem. Sci. 2015 6 5670 Biochemistry 2000 39 12753

2.042

Ni Cu Co Fe Mn

Cobalt(II) Co(II)

3d7 S = 3/2 (high spin) S = 1/2 (low spin)

59Co

(I = 7/2, 8 spin states) 100%

Co(II) porphyrin: dioxygen binding

hfc resolved

without O2 Angew. Chem. 2008 47 2600

hfc discernible

O2 bound

g value changed β†’ change of coordination geometry/environment

* C

Ni Cu Co Fe Mn

Iron: mono-nuclear complexes Fe(III) Fe(II)

3d5 (S = 1/2, low-spin) (S = 5/2, high-spin) 3d6 (S = 2 high-spin)

*

57Fe

2.2% I = 1/2 (2 spin states)

Cytochrome P450cam: Fe(III) 8

+cam

1.98 high-spin

4

2.26 2.45

1.91

low-spin 1.8

-cam

2.41 2.24

high-spin Fe(III) g-values are β€œeffective” for lowest 2 states of 6. (take into account zero-field splittings)

low-spin 1.96 Biochem. 1976 15 5399 Biochem. 1980 19 3590

C

Ni Cu Co Fe Mn

Iron-sulfur centers 1Fe

Fe2+ Fe3+

S=2 S = 5/2

2Fe2S

Fe2+Fe3+ 2Fe3+

S = 1/2 S=0

3Fe4S

2Fe2.5+Fe3+ 3Fe3+

S=2 S = 1/2

4Fe4S

others

2Fe2+2Fe2.5+ 4Fe2.5+ 2Fe2.5+2Fe3+

S = 1/2 S=0 S = 1/2

C

4Fe4S Radical SAM enzymes

JACS 2010 132 2037

-SAM

+SAM

4Fe4S + Fe-heme (siroheme) 4Fe4S + 2Fe (hydrogenase) 8Fe7S P-cluster (nitrogenase)

Chem. Rev. 2014 114 4366

*

2Fe2S Ferredoxins et al.

JACS 2002 124 3143

Ni Cu Co Fe Mn

Manganese(II) Mn(II) 3d5 S = 5/2 (high-spin, 6 spin states)

CW EPR π‘šπ‘šπΌπΌ = βˆ’5/2 βˆ’3/2 βˆ’1/2 +1/2 +3/2 +5/2

abs

*

55Mn

100% (I = 5/2, 6 spin states)

C

β€’ isotropic g and A insensitive β€’ zero-field splitting sensitive to coordination environment central transition βˆ’1/2 ↔ +1/2 +1/2 ↔ +3/2 βˆ’1/2 ↔ βˆ’3/2 +3/2 ↔ +5/2 βˆ’3/2 ↔ βˆ’5/2 βˆ’1/2 ↔ +1/2

g = 2, A = -240 MHz, D = 200 MHz, Dstrain = 150 MHz; mwFreq = 9.5 GHz

allowed Ξ”π‘šπ‘šπΌπΌ = 0

forbidden Ξ”π‘šπ‘šπΌπΌ = Β±1

Review on Mn(II) EPR: Appl. Magn. Reson. 2010 37 229

Ni Cu Co Fe Mn

Manganese(II)

*

Comparison of coordination geometries GHz

C concanavalin-A (octahedral) bacterial RC (low-symm 6-coord.) MnSOD (trigonal bipyram. 5-coord.) BBA 2010 1804 308

Oxalate decarboxylase

J.Phys.Chem.B 2007 111 5043

Manganese(III) Oxalate decarboxylase

Mn(III)

parallel-mode EPR 𝐡𝐡1 βŠ₯ 𝐡𝐡0

3d4

(S = 2, high-spin)

Ni Cu Co Fe Mn *

Mn(III) myoglobin

C

𝐡𝐡1 βŠ₯ 𝐡𝐡0

𝐡𝐡1 βŠ₯ 𝐡𝐡0

Biochem. 2016 55 429

Mn superoxide dismutase

JIBC 2008 102 781

3𝑑𝑑𝑧𝑧 2 empty mixture

3𝑑𝑑π‘₯π‘₯ 2βˆ’π‘¦π‘¦2 empty

JACS 2011 133 20878

Ni Cu Co Fe Mn

Manganese: Mn2 clusters Mn2(II,II) Mn2(II,III) Mn2(III,III) Mn2(III,IV)

S=0 S = 1/2 S=0 S = 1/2

*

Mn catalase (II,III)

C (III,IV)

anti-ferromagnetic coupling

(III,IV)

6x6 = 36 hf lines

Inorg. Chem. 1994 33 382 JPCB 2003 107 1242

Manganese: Mn4 cluster

Ni Cu Co Fe Mn * C

Photosystem II

β€œmultiline signal”

Ni Cu Co Fe Mn

Substrate, cofactor and protein radicals Protein radicals tyrosyl, typtophanyl, cysteinyl, glycyl Cofactor radicals semiquinones, flavins, 5’-dA, … Substrate radicals many!

* S = 1/2 many hfc

Photosystem II x

Electron Paramagn. Reson. 2004 19 174

Review high-field EPR bioorganic radicals: Electron Paramagn. Reson. 2011 22 107

high-field EPR resolves g-tensor

y

z

C

Ni Cu Co Fe Mn

Mixed-element clusters Mn-Fe: Ribonucleotide reductase (Ic)

* Fe-radical: Cytochrome P450 cmpd I 2.00 effective g values

Stot = 1/2 Mn(III) S = 2 Fe(III) S = 5/2

Stot = 1/2 Fe(IV)=O S = 1 radical S = 1/2

1.72 1.61

CPO Stot = 1/2 Mn(II) S = 5/2 Fe(II) S = 2

2.00 1.96 1.86

CYP119-I Mn Science 2007 316 1188 J.Biol.Chem. 2009 284 4555 Biochem. 2013 52 6424

Fe

Science 2010 330 933

C

Ni Cu Co Fe Mn

Mixed-element clusters

* C

CO dehydrogenase (CODH): Mo-Cu CO-reduced wt

95,97Mo

Ag(I)

(I = 5/2) 25%

Mo(VI) 3d0 S = 0 Mo(V) 3d1 S = 1/2

g = 2.0043, 1.9595, 1.9540 A = 82.0, 78.9, 81.9 MHz

JACS 2011 133 12934

107,109Ag

I = 1/2

Mixed-element clusters Cu-Fe: Cytochrome c oxidase Cu-Cu

Ni Cu Co Fe Mn Cytochrome bo3 Fe(III, S=5/2)-Cu(II, S=1/2)

perp. mode paral. mode

heme-copper Cu-Fe 4.5 Γ… Biochem 2002 41 2288

* C

Summary Paramagnetic species in bioinorganic systems V

Mn Fe

Co

Ni

Cu

C

Mo W

N

O S

and many combinations thereof!

CW EPR workflow CW EPR spectra

EPR parameters (S, g, D/E, metal & ligand A)

Key CW EPR concepts for novices β€’ derivative vs. absorption β€’ powder spectra / orientation selection

Structure

10 Things you can learn from CW EPR spectra 1. spin concentration (Β΅M) 2. identity of paramagnetic center (Cu, FeS, radical) 3. oxidation states (I, II, III, IV) 4. spin states (high-spin, low-spin) 5. nature of half-occupied orbitals (𝑑𝑑𝑧𝑧 2 etc) 6. coordination geometry (octahedral,…) 7. ligand binding 8. nature of ligands 9. spin delocalization onto ligands 10. cluster valence (de)localization