Being a mathematician: the importance of proficiencies

Being  a  mathematician:     the  importance  of  proficiencies.   ACARA  (Australian  Curriculum  and  Assessment  Reporting  Authority)  sets  out, ...
Author: Gary Bryan
3 downloads 1 Views 156KB Size
Being  a  mathematician:     the  importance  of  proficiencies.   ACARA  (Australian  Curriculum  and  Assessment  Reporting  Authority)  sets  out,  as  one  of  three   overarching  aims  for  the  mathematics  curriculum  that  it  should  aim  to  ensure  that  students:     are  confident,  creative  users  and  communicators  of  mathematics,  able  to  investigate,   represent  and  interpret  situations  in  their  personal  and  work  lives  and  as  active  citizens     While  there  are  still  questions  about  the  final  form  of  the  curriculum,  the  aims  are  very  much   in  line  with  what  is  being  advocated  globally  for  mathematics  education,  and  a  sound  basis  for   thinking  about  developing  the  curriculum.  The  scoping  document  goes  on  to  note  that:     The  curriculum  is  written  with  the  expectation  that  schools  will  ensure  that  all  students   benefit  from  access  to  the  power  of  mathematical  reasoning  and  be  able  to  apply  their   mathematical  understanding  creatively  and  efficiently.  The  mathematics  curriculum   provides  students  with  carefully  paced,  in-­‐depth  study  of  critical  skills  and  concepts.  It   encourages  teachers  to  facilitate  students  to  become  self-­‐motivated,  confident  learners   through  inquiry  and  active  participation  in  challenging  and  engaging  experience.     Key  emphases  here,  particularly  as  they  relate  to  the  proficiencies  are  ‘creatively’,  and  ‘active   participation  in  challenging  and  engaging  experience.  The  research  into  flow  -­‐  the  state  of   engagement  that  represents  optimal  engagement  -­‐  shows  that  such  a  state  is  reached  when   there  is  an  optimal  balance  of  challenge  with  the  skills  necessary  to  meet  the  challenge.  This  is   a  point  I  will  be  returning  to  later  in  considering  the  interplay  between  fluency  and  other   proficiencies.   To  bring  about  this  vision,  the  curriculum  has  two  dimensions  -­‐  the  content  strand  and   the  proficiencies.  The  content  strand  contains  few  surprises  -­‐  list  the  content  strands.  One   challenge  to  schools  and  teachers  with  respect  to  the  content  is  ‘filling  in  the  blanks’  -­‐  then   content  strands  specify  a  number  of  end  of  year  targets,  but  the  fact  that  something  is  not   mentioned  in  a  particular  year  should  not  suggest  that  content  strand  is  not  addressed  in   other  years.  For  example  -­‐  flesh  out  the  stuff  on  multiplication  here.     Perhaps  more  challenging  to  some  mathematics  teaching  is  the  inclusion  and   importance  of  four  proficiencies  that  cut  across  the  content  strands.     Fluency   Understanding   Problem  solving   Reasoning     The  proficiency  strands  describe  the  actions  in  which  students  can  engage  when  learning   and  using  the  content.     Two  important  things  to  note  here.  The  proficiencies  are  seen  as  being  just  as  important  when   learning  content  as  when  using  it.  In  other  words,  this  challenges  the  popularly  held  view   (myth)  that  you  learn  about  addition,  equivalent  fractions,  algebraic  manipulations  or   whatever  first  and  then  apply  it  to  solve  problems,  or  reason  about  it.  This  is  such  a  strongly   held  view,  at  it’s  most  voluble  in  the  ‘back  to  basics’  cries  that  it  is  worth  looking  at  some  of  

the  evidence  against  it,  as  I  do  below.  Without  challenging  this  view  the  proficiencies  are   likely  to  be  ‘put  off’  to  some  later  (and  again  often  mythical)  time  when  learners  are  thought   to  be  ‘ready’  to  engage  with  them.   The  other  thing  to  note  is  the  call  to  think  about  proficiencies  as  ‘actions’.  This  also   poses  challenges.  The  everyday  use  of  ‘proficient’  carries  some  connotations  of  a  level  of   expertise.  We  would  not  describe  someone  stumbling  through  a  rendition  of  ‘chopsticks’  as  a   proficient  piano  player.  But  like  learning  to  play  the  piano,  becoming  proficient  means   engaging  in  certain  actions  even  when  one  is  not  yet  proficient  in  them.  Becoming  fluent  is   your  scales  means  stumbling  through;  playing  a  sonata  may  initially  mean  picking  out  the   notes  without  a  sense  of  rhythm.  At  the  risk  of  stretching  the  analogy,  being  fluent  in  your   scales  helps  the  playing  of  the  sonata,  but  there  is  more  to  the  playing  than  simply  being  able   to  ‘do’  scales  (and  working  on  the  sonata  feeds  back  into  developing  the  scales)  -­‐  there  is  no   waiting  to  learn  the  ‘basics’  of  the  scales  before  being  allowed  (and  encouraged)  to  play  a   tune.  Becoming  a  proficient  piano  player  means  working  with  all  of  the  proficiencies  -­‐  scales,   reading  music,  playing  sonatas  -­‐  from  the  beginning.  Becoming  a  proficient  mathematician   means  working  with  all  of  the  proficiencies  -­‐  fluency,  problem  solving,  reasoning  and   understanding  -­‐  from  the  beginning.  And  by  mathematician  here  I  mean  anyone  using   mathematics  in  his  or  her  life.  Everyone  is  a  mathematician.   I  do  have  some  difficulty  with  understanding  as  a  ‘action’  -­‐  I  can  develop   understanding,  I  can  draw  on  understanding,  I  can  demonstrate  understanding,  but  I’m  not   clear  how  I  ‘do’  understanding.  I  prefer  to  think  of  understanding  as  being  largely  the  result  of   doing  the  other  proficiencies  -­‐  engaging  in  problem  solving,  reasoning  about  the  ‘why’  of   mathematics  and  being  fluent  in  the  ‘how’  of  mathematics  are  the  building  blocks  of   understanding.  But  I  do  agree  with  the  overall  sentiment  of  proficiencies  being  actions,  not   states.  Taking  such  a  stance  means  moving  from  seeing  school  mathematics  as  a  body  of   knowledge  for  learners  to  acquire  to  seeing  it  as  an  activity  to  engage  in.  Or,  in  the  words  of   Brent  Davis,  moving  from  seeing  mathematics  as  preformed  to  mathematics  as  performed.  

The  actions  of  proficiency   Fluency   Fluency  includes,  but  is  not  just  about,  recall  of  ‘facts’,  which  would  include  fluency  in  number   bonds  (addition  and  subtraction  within  numbers  to  20  and  multiplication  up  to  10  x  10  and   associated  division  facts).  Being  fluent  in  number  bonds  includes  some  memorizing  of  ‘facts’,   but  it  is  not  just  about  memory  and  drill  and  practice:  understanding  and  reasoning  play  a  big   part  in  becoming  fluent.     And  it  is  not  simply  a  case  of  being  fluent  for  the  sake  of  it.  There  is  evidence  that   success  in  being  fluent  in  basic  number  calculations  ((addition  and  subtraction  within   numbers  to  20)  is  strongly  correlated  with  later  mathematical  success.  However,  that  should   not  be  taken  as  an  indication  that  ‘drilling’  children  in  basic  number  calculations  is  the  key  to   promoting  later  success.       Myth:  Children  need  to  be  fluent  in  the  ‘basics’  before  they  can  reason  mathematically.   Evidence:  There  is  a  relationship  between  becoming  fluent  and  reasoning,  each  supporting   and  being  supported  by  the  other.   The  exact  nature  of  the  relationship  between  becoming  fluent  and  the  other  proficiencies  is   not  entirely  clear,  for  example,  it  may  be  that  being  interested  in  solving  mathematical   problems  encourages  learners  to  become  fluent  in  basic  calculation,  but  it  is  clear  that  fluency,   reasoning,  problem  solving  and  understanding  are  intertwined  and  not  related  sequentially.    

Take,  for  example,  learning  'basic'  number  facts  (addition  and  subtraction  with  answers  up  to   20).  The  research  evidence  shows  that  children  use  three  approaches  to  answering   calculations  like  5  +  6  or  13  −  7.     Retrieval  -­‐  simply  knowing  the  answer.  Children  can  recall  that  5  +  6  =  11  (3  seconds     being  the  benchmark  time  for  retrieval)     Counting  -­‐  either  counting  all  (putting  out  five  objects,  another  six  and  counting  the     total)  or  counting  on  from  one  of  the  numbers  (and  coming  to  appreciate  the  counting     on  from  the  larger  number  is  more  efficient)  or  counting  back  in  the  case  of     subtraction.       Decomposition  -­‐  splitting  one  or  both  of  the  numbers  to  make  use  of  number  facts     that  they  can  retrieve.  So  thinking  of  5  +  6  as  5  +  5  +  1  or  double  six  minus  1.  Or  using     14  −  7  =  7  (from  rapid  retrieval  of  doubles)  to  deduce  that  13  −  7  must  be  6.     These  are  not  entirely  distinct  strategies:  decomposition  can  only  be  used  with  the  use  of   retrieval.  The  evidence  is  that  there  is  no  clear  hierarchy  to  these  strategies:  children  will   make  use  of  all  three,  even  until  quite  late  in  primary  school.  Drilling  children  to  try  and   improve  retrieval  doesn’t  make  them  any  more  likely  to  use  that  method  and  often  they  will   be  more  accurate  using  a  counting  method.  Contrary  to  what  might  seem  like  ‘progress’  trying   to  move  children  on  to  use  only  retrieval  does  not  appear  to  be  that  successful.  Children  who   use  a  mix  of  the  methods  seem  to  be  most  successful.  This  illustrates  one  key  aspect  of  the   proficiencies  that  is  different  from  the  ‘division’  of  the  content:  the  proficiencies  feed  into  and   off  each  other,  and  cannot  be  ‘taught’  separately.       Other  aspects  of  fluency  would  include  recall  of  definitions,  but  fluency  goes  beyond  simply   ‘knowing'  number  facts  or  definitions.  Being  mathematically  fluent  also  involves  choosing   methods  and  procedures  and  working  flexibly.  For  example,  a  student  might  mentally   calculate  3004  −  2997  by  counting  on  from  2997  to  3004,  or  decomposing  3004  into  3000  and   4,  and  using  the  retrieval  of  7  =  3  =  10  to  figure  out  that  2997  +  3  =  3000,  so  the  total   difference  must  be  3  +  4  =  7.  But  applying  the  same  approach  to  2005  −  8  (counting  on  from  8   to  2005  or  adding  1992  to  8  and  then  another  5)  would  not  be  as  fluent.  Working  flexibly   would  mean  counting  back  in  this  cases,  or  knowing  that  a  sensible  approach  is  to  decompose   8  into  5  +  3,  take  5  from  2005  and  then  subtract  3.  Note  again,  that  this  is  not  distinct  from   reasoning  about  the  relationship  between  the  numbers  and  understanding  subtraction  both   as  ‘taking  away’  and  ‘finding  the  difference’.  

Reasoning     What  are  some  of  the  actions  associated  with  reasoning?  These  might  include:   Explaining  thinking   Deducing  and  justifying  strategies   Adapting  the  known  to  the  unknown   Transferring  learning   Reasoning  or  calculating   Which  is  larger?   ½  or  3/7   4/9  or  3/7     This  is  a  simple  example  of  how  choice  of  examples  might  call  into  play  either  a  ‘reasoning’  or   ‘calculational’  approach  to  number  situations.  In  the  first  comparison  you  might  choose  to   compare  the  fractions  by  putting  them  each  over  a  common  denominator  of  14.  But  you  can   also  reason  through  to  an  answer,  along  the  lines  of  ‘well,  half  of  7  is  31/2  so  3/7  must  be   smaller  than  ½  (if  there  are  seven  bars  of  chocolate  and  I’m  given  three  of  them,  then  I’ve  got  

less  than  ½).  Note  that  this  reasoning  can  be  followed  through  without  any  knowledge  of   equivalent  fractions.  On  the  other  hand  4/9  compared  to  3/7  is  less  easily  reasoned  through   in  this  way  and  a  calculation  of  equivalent  fractions  might  be  more  efficient.       An  implication  for  teaching  here  is  that  numbers  need  to  be  carefully  chosen   depending  on  whether  or  not  we  want  children  to  adopt  a  calculational  or  reasoning   approach.     For  example,  ‘near  doubles’  is  an  effective  calculational  strategy  for  adding  pairs  of   near  numbers:  35  +  36  is  71  because  it  must  be  one  more  than  double  35  (another  variation   on  decomposition  and  the  associative  rule:  35  +  36  =  35  +  (35  +  1)  =  (35  +  35)  +  1   Trying  to  teach  ‘near  doubles’  with  small  numbers  is  probably  not  the  most  effective   approach.  Going  from  3  +  3  to  3  +  4  on  the  argument  that  the  second  can  be  derived  by  adding   1  to  3  +  3  is  not  likely  to  make  much  impact  on  children  who  are  already  confident  with  the   answer  to  3  +  4.  On  the  other  hand,  starting  with     50  +  50  =  100  and  going  on  to   50  +  51  or   49  +  50     May  lead  more  students  to  reason  rather  than  calculate.  We  could  take  this  further  and  work   with  an  initial  calculation  that  isn’t  easily  found,  but  use  it  to  deduce  other  answers.   78  +  78  =  156   78  +  79  =     77  +  78  =  

Numbers  as  relations     Ivor  collects  pencils.  Ivor  had  7  pencils.  His  dad  gave  him  4  more.  Ivor  gave  6  of  his  pencils   to  his  sister.  How  many  pencils  did  Ivor  end  up  with?    

Ivor  collects  pencils.  Ivor’s  mum  gave  him  7  pencils.  His  dad  gave  him  4  more.  Ivor  gave  6  of   his  pencils  to  his  sister.  Did  Ivor  end  up  with  more  or  fewer  stickers  than  he  started  with?   How  many?  

  Both  of  these  ‘problems’  (yes,  problems  is  in  scare  quotes  because  they  are  the  type  you  only   meet  in  school  maths,  but  bear  with  me)  can  be  answered  by  calculating  7  +  4  −  6  (and  yes,   there  are  other  ways).   Yet  children  find  the  second  problem  much  harder  than  the  first.  In  fact,  since  we  are   not  told  how  many  pencils  Ivor  started  off  with,  some  children  will  say  that  the  second   problem  cannot  be  answered.  Why  do  they  find  it  more  difficult?   The  difficulty  is  in  the  nature  of  the  answers.  In  the  first  problem,  five  represents  a   quantity  -­‐  the  number  of  pencils  Ivor  ends  up  with.  But  the  answer  five  to  the  second  problem   represents  a  relationship  -­‐  how  many  more  pencils  Ivor  had  than  when  he  started.     We  often  switch  between  using  numbers  as  quantities  and  numbers  as  relations   without  paying  attention  to  the  distinction.  But  awareness  of  the  distinction  is  important  in   supporting  children’s  developing  number  sense.     Take  a  simple  calculation  like   7  −  3  =  4   If  we  read  the    ‘−’  as  ‘take  away’  then  the  answer  four  is  a  quantity  -­‐  it  is  the  quantity   remaining  when  three  things  (stickers,  marbles,  zingbats)  are  removed  from  seven.  When  we   ‘take  away’  we  can  hold  up  the  particular  quantity  that  is  left  behind.   Reading  ‘−’  as  ‘difference  between’,  the  four  then  represents  a  relationship  -­‐  how  many   more  there  are  in  a  collection  of  seven  objects  then  there  are  in  a  collection  of  three.    Unlike   ‘taking  away’,  when  comparing  two  collections  there  is  no  particular  quantity  of  four  from  the  

larger  collection  that  specifically  makes  up  the  difference.  Four  expresses  an  abstract   relationship  between  seven  and  three.     I  often  invite  teachers  to  show  what  picture  they  might  draw  to  help  a  child   understand  7  −  3.  Almost  invariably  people  draw  seven  objects  and  strike  out  or  somehow   bracket  off  three  of  them.  It  is  very  rare  for  someone  to  draw  a  set  of  seven  and  another  set  of   three  and  point  up  the  difference.  Even  adults  seem  to  prefer  the  concrete,  the  quantity,  over   the  abstract,  the  relationship.   To  fully  develop  children’s  number  sense  we  need  to  make  sure  that  they  get  a  rich  diet   of  operating  with  numbers  as  relationships  as  well  as  quantities.       Myth:  Children’s  thinking  has  to  have  reached  a  certain  ‘stage’  before  they  can  reason   mathematically.   Evidence:  Children  have  the  quality  of  thinking  available  to  them  that  adults  have  for   reasoning.  It  is  lack  of  experience  that  accounts  for  children’s  thinking  being  less   accomplished,  not  an  inability  to  reason.     Although  Paiget’s  theory  of  ‘stages  of  thinking’  is  no  longer  talked  about  that  much,  it  does  still   seem  to  be  held  that  children  cannot  reason  in  the  same  way  that  adults  can.  Long  term   Piagetian  researchers  now  think  that  he  got  this  part  of  his  theory  wrong  and  that  the   structures  for  thinking  that  we  use  throughout  our  lives  are  very  much  in  place  from  an  early   age.  Experience  is  what  is  needed,  not  waiting  for  children  to  ‘develop’  into  a  particular  form   of  thinking.     The  evidence  that  the  structure  of  students’  thinking  is  essentially  the  same  as  that  of  adults   has  implications  for  thinking  about  progression  in  mathematics.  We  need  to  be  asking  where   the  informal  origins  of  later  mathematics  might  lie  in  the  primary  curriculum  and  make  these   more  explicit.     The  links  between  algebra  and  number  are  particularly  strong  here.  For  example,  one   fundamental  ‘rule’  of  algebra  is  the  associative  law:   a  +  (  b  +  c  )  =  (a  +  b  )  +  c   While  not  suggesting  that  this  is  introduced  to  seven-­‐year-­‐olds,  this  is  precisely  the   thinking  that  they  are  informally  drawing  upon  when  using  decomposition  to  add  five  and  six   by  using  their  retrieval  of  five  plus  five:   5  +  6  =  5  +  (5  +  1)  =  (5  +  5)  +  1   Missing  box  calculations  can  provide  a  way  of  making  this  reasoning  explicit  to  young  children   without  needing  to  go  into  algebra.   8  +  7  =  8  +  5  +  [  ]   First  presented  with  a  number  sentence  like  this  some  children  will  calculate  to  find  the   answer.  They  will  add  eight  and  seven  to  get  15,  add  eight  and  five  to  13  and  then  work  out   that  they  need  to  add  two  onto  the  13  to  make  it  up  to  15.  But  once  they  get  talking  about   their  methods,  some  children  will  begin  to  understand  that  thinking  of  the  seven  as  five  plus   two  means  that  the  extra  ‘bit’  that  needs  to  be  added  to  the  right-­‐hand  side  must  be  two.   Working  with  missing  number  calculations  with  numbers  that  are  too  big  to  calculate  can   extend  such  reasoning.   378  +  245  =  378  +  241  +  [  ]   436  +  157  =  432  +  155  +  [  ]   436  +  198  =  436  +  200  -­‐  [  ]   As  this  last  example  shows,  such  reasoning  is  not  only  powerful  for  its  own  sake,  but  it  can   help  children  develop  effective  mental  calculation  strategies.    

Problem  solving  

Actions  here  include   Making  choices   Modelling  situations  mathematically     Communicating  solutions     Myth:  Children  are  only  interested  in  mathematics  that  is  directly  applicable  to  their  everyday   lives.   Evidence:  Many  children  do  find  mathematics  a  fascinating  object  of  study,  finding  satisfaction   in  number  patterns  for  their  own  sake,  gaining  pleasure  through  tussling  with  a  problem  and   then  having  a  moment  of  insight,  seeking  solutions  that  are  pleasing  in  their  simplicity.       There  is  some  confusion  in  the  use  of  ‘everyday’  concepts  and  how  they  can  contribute  to  the   curriculum.  For  example  a  problem  like:   Four  hungry  girls  share  three  pizzas  equally.  Eight  hungry  boys  share  six  pizzas  equally.  Do   the  girls  get  to  more  than  the  boys,  less  or  the  same?   Traditionally  a  problem  like  this  might  be  given  to  students  to  answer  after  they  have  done   some  work  on  fractions  and  division  with  the  expectation  that  they  quickly  recognise  that   each  girl  gets  3/4  of  a  pizza,  each  boy  gets  6/8  of  a  pizza,  which  is  equivalent  to  3/4  and  so   they  each  get  the  same.  Next  question.   The  main  thing  here  is  that  the  ‘story’  of  pizzas  and  hungry  children  doesn’t  serve   much  purpose:  students  quickly  learn  that  the  ‘point’  of  such  problems  is  strip  out  the   mathematics  and  work  some  procedure.  It  could  just  as  easily  be  about  builders  sharing   bricks  and  most  learners  would  not  stop  to  think  about  the  near  impossibility  of  four  builders   sharing  six  bricks.   A  problem  like  this  can  also  be  used  differently:  To  introduce  students  to  thinking   about  fractions  and  equivalences.  The  context  of  hungry  children  and  pizzas  then  is  starting   point  and  a  carefully  chosen  one.  Not  because  children  are  intrinsically  motivated  by  food  and   the  context  might  make  ‘unpalatable’  fractions  digestible.  No,  the  context  is  chosen  because   children  do  know  about  fair  shares  and  slicing  up  pizzas  -­‐  they  can  solve  the  problem  without   any  formal  knowledge  of  fractions  (and  if  you  don’t  believe  that,  then,  as  Terezhina  Nunes   once  said,  show  me  four  children  who,  given  three  bars  of  chocolate  to  share  out  fairly,  hand   the  bars  back  saying  ‘it  can’t  be  done’).     Children  have  ‘action  schemas’  for  solving  such  problems,  they  can  find  ways  to  record   this  with  pictures,  diagrams  and,  perhaps,  symbols,  and  teaching  can  then  draw  on  these   informal  solutions  to  draw  out  the  formal  mathematics  of  fractions.  From  being  one  of  20   ‘problems’  on  a  worksheet  to  complete  in  a  lesson,  such  a  problem  can  become  a  ‘rich  task’   taking  up  a  whole  lesson  if  children  work  on  it  in  pairs  and  then  carefully  selected  solutions   are  shared  with  the  class.     The  ‘richness’  of  tasks  is  less  in  the  tasks  themselves  then  when  and  how  they  are   worked  on.  We  don’t  need  loads  more  problems  for  students  to  work  there  -­‐  there  are  more   than  enough  out  there.  But  we  do  need  to  think  about  when  they  might  be  best  used  and  how   to  work  with  them  and  children  so  that  they  are  treated  as  rich  problems  rather  than   exercises  to  be  quickly  worked  through  and  marked  right  or  wrong.   Children,  from  birth,  are  proficient  problem  solvers.  By  two  or  three  they  have  solved   what  are  probably  life’s  two  biggest  problems  -­‐  how  to  walk  and  talk.    The  fact  that  they  do   not  solve  problems  using  the  mathematics  that  we  might  want  them  to  eventually  use  must   not  blind  us  to  the  fact  that  that  they  can  solve  problems.  Young  children  can  share  out  12  pies   fairly  between  3  bears  or  figure  out  how  many  dogs  live  in  a  street  of  4  hours  if  there  are  3   dogs  in  each  house,  and  they  can  do  this  long  before  they’ve  heard  about  division  or   multiplication.  New  mathematics  can  arise  through  problem  solving  just  as  much  as  problems  

solving  can  draw  on  existing  mathematics.  We  just  need  to  be  clear  which  we  are  focusing  on.   And  the  problem  itself  cannot  do  that.  

Understanding   Actions  here  include   Asking  ‘Why’  as  well  as  ‘how’   Working  with  and  moving  between  different  representations   Connecting  ideas  

Into  practice  

So  what  are  the  practical  considerations  when  teaching  for  these  proficiencies?  I  suggest   attending  to  a  model  of  three  aspects  that  I  call  the  ‘teaching  tripod’:     •  Tasks     •  Tools     •  Talk.     When  it  comes  to  legs,  tripods  are  particularly  stable  –  two  legged  tables  won’t  stand  up  on   their  own  and  four  legged  tables  can  easily  develop  a  ‘wobble’  on  an  uneven  surface.  Tripods   stand  steady.  By  attending  to  each  of  the  elements  in  the  teaching  tripod  lessons  can  be   structured  to  be  sufficiently  open  to  allow  children  to  bring  their  mathematical  proficiencies   into  play,  but  also  sufficiently  structured  to  allow  some  degree  of  control  over  the  direction  of   the  mathematics.  6    

Task  and  activity     I  want  to  distinguish  between  tasks  –  what  teachers  set  for  children  to  do  –  and  the   subsequent  mathematical  activity  that  children,  collectively,  engage  in  to  carry  out  the  task.  If   students  are  going  to  develop  mathematical  understanding,  and  reasoning  there  needs  to  be  a   certain  ‘gap’  between  the  task  that  a  teacher  sets  and  the  students’  subsequent  mathematical   activity.  Teaching  which  strives  to  narrow  the  gap  between  task  and  activity,  for  example   through  careful  instructions  that  learners  have  to  follow,  may  lead  to  short-­‐term  success  but   not  long-­‐term  learning.  Problem  solving  opens  up  this  gap  (if  we  set  aside  expectations  that   there  is  a  ‘right’  way  to  solve  a  problem),  which  is  why  I  am  arguing  for  it  to  provide  a  starting   point  from  which  to  build  mathematical  understanding  rather  than  the  endpoint  of   mathematical  application.     Working  with  problems  as  vehicles  for  learning  requires  a  style  of  teaching  that  begins   with  engaging  the  students  with  the  problem.  We  need  to  be  providers  of  mathematical  tasks   that  are  likely  to  lead  to  rich  mathematical  activity.  Some  writers  prefer  to  talk  about  ‘rich   mathematical  tasks’.  I  am  not  convinced  by  calling  a  task  rich  There  is  a  danger  that  talk  of   rich  tasks  is  interpreted  as  tasks  having  to  be  elaborate  or  complicated:  richness  arises  by   encouraging  learners  to  take  a  creative  stance  to  solving  the  problems.  If  children  are  to  learn   from  their  problem-­‐solving  experiences  then  the  problems  have  to  be  chosen  in  the   expectation  that  children  will  need  to  sustain  activity  on  them  for  some  time.  We  need  to   question  the  popularly  held  view  that  ‘speed’  is  a  key  marker  of  mathematical  ability.  While   fluency  may  require  a  certain  amount  of  rapidity  (rapid  recall  rather  than  instant)  learners   have  to  be  able  to  tolerate  a  certain  amount  of  ambiguity  when  thinking  about  and  solving   problems,  which  is  different  from  the  sort  of  precision  that  is  needed  in  finding  exact  answers   to  calculation.     The  students’  solutions  to  problems  are  not  the  end  of  the  story,  but  only  the  beginning   of  the  development  of  the  formal  mathematics.  An  important,  if  not  the  important,  part  of  the   lesson  is  the  drawing  together  of  strands  of  mathematics  from  the  various  solutions  the   learners  offer.  A  crucial  role  of  the  teacher  is  to  decide  which  of  the  students’  solutions  will   provide  the  opportunity  for  rich  dialogue  with  the  class  about  the  mathematics.    It  is  not  just  a  

question  of  asking  the  volunteers  at  the  end  of  the  lesson.  Nor  is  it  simply  a  matter  of  choosing   the  student  with  the  most  sophisticated  solution  –  it  may  well  be  that  such  a  solution  may  be   too  far  removed  from  what  the  other  students’  solutions  have  done  to  be  up  to  making  sense   of  it,  and  is  just  their  thinking  about  their  own  solutions  in  the  light  of  the  dialogue.     Opening  up  the  gap  between  task  and  activity     I  have  found  Marion  Walters  and  Stephen  Brown’s  work  to  be  invaluable  in  developing  rich   mathematical  activities  (Brown  and  Walter  1990).  The  basic  tenet  of  their  work  is  to  list  the   elements  of  a  problem  (including  rather  obvious  ones)  and  from  this  list  of  ‘what  is’  ask  ‘what   if  not’:  how  changing  some  of  the  givens  might  lead  to  further  mathematical  activity.  For   example,  a  simple  question  is  25  +  25  =  50     What  is  

What  if  not  

25  and  25    

Other  doubles,  for  example,  36  and  36     Other  multiples  of  5,  for  example  25  and  45    

Two  numbers  added    

What  sets  of  three  numbers  add  to  50?     Sets  of  four  numbers    

Adding  to  50    

What  other  pairs  of  numbers  add  to  50?     What  pairs  of  numbers  have  a  difference  of  50?     What  pairs  of  numbers  have  a  product  of  50?     What  pairs  of  numbers  divide  to  give  50?    

Both  less  than  50    

Can  you  have  a  pair  of  numbers  that  add  to  50  where   one  of  the  numbers  is  bigger  than  50?    

Whole  numbers    

What  if  we  include  fractions?    

  Not  all  of  the  resulting  questions  are  equally  curious,  but  some  may  be  worth  pursuing.   Playing  around  with  doubling  multiples  of  three  can  lead  to  insights  into  the  relationship   between  multiples  of  three  and  multiples  of  six  for  example.    

Models,  tools  and  artifacts    

While  there  is  general  agreement  about  the  importance  of  ‘models  and  images’  in  helping   children  learn  mathematics,  there  is  less  clarity  about  why  they  are  important  and  how  to   work  with  them.  It  is  not  the  models  or  images  themselves  that  are  important,  but  the  way   that  these  support  children’s  mathematical  activity.  Models  and  images  have  to  be  worked   with,  not  simply  presented  to  the  children.  My  preference  is  to  talk  about  tools,  as  tools  are   only  useful  when  someone  is  using  them.  Images  are  often  interpreted  as  being  self-­‐evident.   Models  are  a  step  on  the  road  to  tool  use.  We  are  better  off  introducing  children  to  a   small  number  of  models  and  working  intensively  with  these  over  time.  My  advice  about   models  is  that  simpler  is  better.  Were  I  teaching  again  I  would  equip  my  class  with  base-­‐ten   blocks,  interlocking  cubes,  a  wide  variety  of  2D  and  3D  shapes  and  lots  of  plain  paper  and   colored  pencils  or  pens.  And  that’s  about  it.     From  models  to  tools     Tools  are  but  ‘artifacts’  to  the  novice;  they  start  their  psychological  life  as  simply  a  physical   presence  but  with  no  personal  meaning.  To  a  young  child  an  analogue  clock  may  make  a  good   wheel,  plate,  or  drum,  but  it  is  not  a  ‘clock’  to  the  child  in  the  sense  of  something  that  we  mark   time  with.  The  child  is  aware  of  the  physical  presence  of  artifacts,  but  not  aware  of  their  

meaning  in  activity.  Artifacts  become  tools  when  they  come  to  serve  the  purpose  and  meaning   with  which  experienced  users  imbue  them.  As  teachers  we  introduce  artifacts  –  and  I  am   including  marks  on  paper  or  the  board  here  –  that  have  meaning  for  us  as  teachers  but  have  to   come  to  be  filled  with  meaning  by  the  child.  Such  meaning  cannot  simply  be  explained;  it   comes  about  through  joint  activity.     The  work  of  the  Dutch  Realist  Mathematics  Education  at  the  Freudenthal  Institute   provides  a  framework  for  thinking  about  how  we  can  help,  and  monitor,  children  moving   from  artifacts  to  tools.  They  distinguish  between:     •  models  of     •  models  for     •  tools  for    Artifacts  start  life  in  the  classroom  as  ‘models  of’,  in  the  sense  that  the  teacher  uses  these  with   meaning  and  through  joint  activity,  the  children  begin  to  also  ‘read’  meaning  into  the  artifacts.   To  take  a  simple  example,  children  will  have  informal  strategies  for  solving  addition  problems   in  context.  Adding  four  and  three  they  may  hold  out  four  fingers  and  then  another  three  and   count  the  total.  The  teacher  could  provide  a  model  of  this  by  drawing  a  number  line,  counting   along  to  four  on  the  line  and  then  counting  on  three  more  ‘steps’  to  land  on  seven.  This  ‘model   of’  the  addition  is  not  a  transparent  mirroring  of  what  the  children  did:  they  were  counting   objects,  the  teacher  is  counting  jumps.     Through  the  joint  activity  of  the  children  solving  the  calculations  in  their  own  way  and   the  teacher  sharing  her  model  of  this,  then,  over  time,  the  children  begin  to  appropriate  the   teacher’s  model  and  begin  to  use  it  for  themselves:  the  number  line  has  been  transformed   from  a  model  of  what  the  children  to  a  model  for  them  to  use  themselves.  The  Dutch  research   shows  that  over  more  time  the  children  come  to  be  able  to  work  with  the  number  line  as  a   model  for  addition,  but  without  needing  to  make  actual  marks  on  paper:  it  becomes  a  tool  for   thinking  with.  There  is  a  subtle  distinction  here  between  watching  a  lesson  where  a  teacher   models  an  addition  on  a  number  line:  it  can  look  as  though  the  teacher  is  merely  recording   what  the  children  are  doing  –  she  isn’t  –  or  using  the  number  to  ‘explain’  addition  –  it  can’t.   The  movement  from  a  ‘model  of’  to  ‘model  for’  to  ‘tool  for  thinking’  takes  time  and  children   will  not  all  move  through  these  stages  at  the  same  rate.      

Talk       Tasks  and  tools  will  not  bring  about  mathematical  understanding  or  reasoning  without  lots  of   talk.    Talk  that  supports  mathematical  activity  is  distinguished  by  •  emphasizing  listening  as   well  as  speaking  •  recognizing  the  difference  between  discussion  and  dialogue  •  focusing  on   mathematical  reasoning  as  much  as  answers.     Discussion  or  dialogue     At  the  heart  of  learning  to  listen  is  the  distinction  between  being  involved  in  a  discussion  or  in   a  dialogue.  Robin  Alexander  espouses  the  importance  of  ‘dialogic  teaching’  in  which  the   classroom  participants  (including  the  teacher)  are  engaged  in  productive  talk  about  what  is   being  learned.  Dialogue  comes  from  the  Greek  dialogos.  ‘Logos’  –’the  word’,  and  ‘dia’  –   ‘through’;  hence  meaning  is  created  through  the  word  –  not  in  the  words.  Knowing  comes   about  through  the  building  and  bartering,  the  back  and  forth  exchanges  of  a  dialogue,  as   opposed  to  knowledge  being  packaged  up  in  words  and  passed  across.  And  a  dialogue  can   involve  many  more  than  two  people  as  often  supposed.  David  Bohm,  the  physicist  turned   philosopher,  contrasts  the  origins  of  dialogue  with  those  of  discussion.  Discussion  shares  a   common  etymological  root  with  percussion  and  concussion  (that  must  be  why  so  many   discussions  leave  me  with  a  headache).  Discussion,  Bohm  suggests,  is  about  breaking  things   up,  with  ‘point  scoring’  often  involved.  In  discussion  the  participants  usually  have  a  pre-­‐ determined  position  that  they  hold  to.  Discussion  is  about  trying  to  establish  this  position  (or   shift  another’s).  Discussion  is  largely  a  win–lose  game  play.  Dialogue  has  a  different  play  to  it.  

It’s  not  about  trying  to  win  –  it’s  an  exchange  of  views,  an  attempt  to  understand  the  other   better,  rather  than  to  try  and  impose  one’s  view  upon  the  other.     Dialogue,  rather  than  discussion,  in  mathematics  lessons  can  be  a  challenge  –  after  all   there  are  still  right  answers  in  mathematics.  Answers  depend  on  questions  and  it’s  generally   taken  that  preparation  of  ‘good’  questions  is  an  essential  part  of  effective  mathematics   teaching.  Contrary  to  what  we  might  expect,  teacher  questions  close  down  options  while   statements  can  lead  to  more  dialogue,  deeper  involvement,  broader  participation  and  richer   arguments.  Getting  children  to  talk  about  whether  they  consider  a  statement  such  as  All   squares  are  rectangles  is  always,  sometimes  or  never  true,  can  produce  a  richer  dialogue  than   posing  the  question.  Is  a  square  a  rectangle?