Bedre termisk komfort med beton. Thermal advantages of concrete a European study. Jesper Sand Damtoft Aalborg Portland Group

Bedre termisk komfort med beton Thermal advantages of concrete – a European study 26 Jesper Sand Damtoft Aalborg Portland Group Klik for at redige...
Author: Godfrey Hancock
1 downloads 0 Views 288KB Size
Bedre termisk komfort med beton

Thermal advantages of concrete – a European study

26

Jesper Sand Damtoft Aalborg Portland Group

Klik for at redigere teksttypografierne i masteren

Need for cooling 25

Comfort zone

Indoor temperature

24 23 22

High thermal mass

21

Low thermal mass

20 19 Need for heating 18 0

Research and Development Centre

1

6

12

Time of day

Source: CEMBUREAU 2006 Research and Development Centre

18

24

2

1

Energy advantage of concrete

Sample residential building Predicted net energy use for heating

Region

Klik for at redigere teksttypografierne i masteren

Results:

kWh/m2,year

• “Light” buildings consume 2-9% more energy than “heavy” buildings • In office buildings the difference is 7-15% • Difference in cooling energy even higher: up to 20% for dwellings and 25% for offices

Mean monthly temperature Oct-Apr

Solid

Lightweight

Diff.

%



Polar circle

128,7

133,4

4,7

3,7%

-7,9

Northern Europe

66,7

70,7

4

6,0%

1,1

Northern Europe coastal

53,1

57,4

4,3

8,1%

3,4

UK

37,6

43,1

5,5

14,6%

5,9

Benelux

42,2

48,8

6,6

15,6%

5,6

Central Europe

49,2

53,3

4,1

8,3%

3,8

Alpine

60,6

65,9

5,3

8,7%

1,4

Mediterranean

8,0

12,2

4,2

52,5%

12,1

Klik for at redigere teksttypografierne i masteren

Literature study, calculations on theoretical and reel buildings, using 5 different calculating tools in several European climates

Consolis tool Source: CEMBUREAU 2006 Research and Development Centre

3

Research and Development Centre

4

2

Effect of window orientation, theoretical dwelling building

Theoretical office buildings 80

Difference Light/Solid

Cooling

70

Heating 60

51,5

56,5

9,7

Stockholm

VIP+

E/W

64,5 11,3*

66,9 13,2*

3,7 16,5*

Stockholm

VIP+

S

54,5 12,4*

60,1 15,0*

5,3 20,3*

Würzburg

TCasa

E/W

60,3

61,7

2,4

Würzburg

TCasa

S

54,1

56,0

3,5

Denmark

Be06

E/W

47,3 3,4*

48,0 4,3*

1,2

40 30 20 10 0 Madrid light

S

Madrid solid

Consolis

Würzburg light

Stockholm

50

Würzburg solid

6,0

Brussels light

70,7

Brussels solid

66,7

Cambridge light

%

E/W

Klik for at redigere teksttypografierne i masteren

Light

Consolis

Klik for at redigere teksttypografierne i masteren

Solid Stockholm

Cambridge solid

Energy use for heating/cooling kWh/m2,year

Stockholm light

Orientation of windows

Stockholm solid

Programme

kWh/m2

Climate

VIP tool Research and Development Centre

5

Research and Development Centre

6

3

Effect of concrete on cooling energy

Theoretical office buildings 12

Energy use for heating/cooling kWh/m2,year Solid

Light

%

Stockholm

VIP+

E/W

50,0 13,1*

54,1 15,9*

7,3 20,7*

Stockholm

VIP+

S

37,4 14,5*

41,9 18,3*

12,0 26,3*

38,0 3,4*

43,6 4,3*

14,6

Denmark

Be06

E/W

10

Difference Light/Solid

Cooling energy. kWh/m2,year

Orientation of windows

8 62%

Klik for at redigere teksttypografierne i masteren

Programme

Klik for at redigere teksttypografierne i masteren

Climate

Increased night ventilation Constant ventilation

6 44% 4

2

0 London solid

Research and Development Centre

7

London light

Research and Development Centre

8

4

Energy prices

Utilising the energy advantage

2 1,9

Gas 1,8

Klik for at redigere teksttypografierne i masteren

Consumer price index

Relative price

1,7 1,6 1,5 1,4 1,3 1,2 1,1 1 1999

2000

2001

2002

2003

2004

2005

Research and Development Centre

2006

9

Source: CEMBUREAU 2006 Research and Development Centre

Klik for at redigere teksttypografierne i masteren

• Exposed concrete parts, e.g. coffered floor slabs, and night ventilation, e.g. under-floor ventilation, to provide free passive cooling during daytime. • Use of free cooling in an air conditioning system by the use of hollow core concrete slabs through which air is distributed. • Use of precast concrete elements as outer walls to provide very low transmission losses and excellent air-tightness. • Use of water-cooled slabs containing pipework linked to the heating and cooling system.

Electricity

10

5

Realised and potential energy savings

Possible energy savings • Reduce energy consumption and CO2 emission related to cooling by 75-80% • Reduce heat consumption and related CO2 emission by 35-50% • Reduce the energy for ventilation and related CO2 emission by 35-50% • Use of renewable supply sources, i.e. seawater, ground water, air and solar energy

14000

12000

Life cycle energy use [kWh/m2]

Klik for at redigere teksttypografierne i masteren

Klik for at redigere teksttypografierne i masteren

10000

Normal 15% Energy saving

8000 30% Energy saving 6000

4000

2000 Production 0 1,00

11,00

Operation 21,00

31,00

41,00

50 51,00

Demolition 61,00

71,00

81,00

91,00

100 101,00

Life span [years]

Source: Cowi 2006

Research and Development Centre

11

Research and Development Centre

12

6

Realised and potential energy savings 100

80 70

Klik for at redigere teksttypografierne i masteren

Klik for at redigere teksttypografierne i masteren

Relative energy use (%)

90

Demolition Operation, 50 years Total production Building frame

60 50 40 30 20 10 0 Light building

Concrete building

Potential savings

Research and Development Centre

13

Research and Development Centre

14

7

Suggest Documents