Bayesian inference for reliability of systems and networks using the survival signature

. . Bayesian inference for reliability of systems and networks using the survival signature Louis J. M. Aslett1 , Frank Coolen2 and Simon P. Wilson3...
0 downloads 1 Views 1MB Size
.

.

Bayesian inference for reliability of systems and networks using the survival signature Louis J. M. Aslett1 , Frank Coolen2 and Simon P. Wilson3 1 University

of Oxford, 2 Durham University, 3 Trinity College Dublin

Durham Asset Management Seminar 12th March 2014

Problem Setting .

Nonparametric Method ......

Example ....

Parametric Method ....

Problem setting Test data available on a components to be used in a system. Objective: inference on system/network reliability given component test data. 1.00

t1

0.75

{t11 , . . . , t1n1 }

Survival Probability

TT11 T1

Item System T1

0.50

T2 T3 T4

0.25

0.00 0

1

2

Time

3

4

5

1.00

K

t

1.00

Survival Probability

0.75

0.50

0.25

0.00 0

?

1

2

Time

3

4

0.75

K {tK 1 , . . . , tnK }

Survival Probability

TT11 TK

Item System T1

0.50

T2 T3 T4

0.25

0.00 0

1

2

Time

T2

T2

T3

T1

T1

Item System

T3

T1 T2 T3 T4

T4

T4

5

T2

T3

T1

3

4

5

Example .

Problem Setting .

Nonparametric Method ......

Example ....

Parametric Method ....

A nonparametric model of components At a fixed time t, probability component of type k functions is Bernoulli(pkt ) for some unknown pkt . =⇒ number functioning at time t in iid batch of nk is Binomial(nk , pkt ).

Example .

Problem Setting .

Nonparametric Method ......

Example ....

Parametric Method ....

Example .

A nonparametric model of components At a fixed time t, probability component of type k functions is Bernoulli(pkt ) for some unknown pkt . =⇒ number functioning at time t in iid batch of nk is Binomial(nk , pkt ). Let Skt ∈ {0, 1, . . . , nk } be number of working components in test batch of nk components of type k. Then, Skt ∼ Binomial(nk , pkt ) ∀ t > 0

Problem Setting .

Nonparametric Method ......

Example ....

Parametric Method ....

Example .

A nonparametric model of components At a fixed time t, probability component of type k functions is Bernoulli(pkt ) for some unknown pkt . =⇒ number functioning at time t in iid batch of nk is Binomial(nk , pkt ). Let Skt ∈ {0, 1, . . . , nk } be number of working components in test batch of nk components of type k. Then, Skt ∼ Binomial(nk , pkt ) ∀ t > 0 Given test data tk = {tk1 , . . . , tknk }, for each t we can form corresponding observation from Binomial model skt ≜

nk ∑ i=1

I(tki > t)

Problem Setting .

Nonparametric Method ......

Example ....

Parametric Method ....

Example .

Bayesian inference for nonparametric model Taking prior pkt ∼ Beta(αtk , βtk ), exploit conjugacy result pkt | skt ∼ Beta(αtk + skt , βtk + nk − skt ) Then, posterior predicitive for number of components surviving in a new batch of mk components is Ckt | skt ∼ Beta-binomial(mk , αtk + skt , βtk + nk − skt )

Problem Setting .

Nonparametric Method ......

Example ....

Parametric Method ....

Example .

Bayesian inference for nonparametric model Taking prior pkt ∼ Beta(αtk , βtk ), exploit conjugacy result pkt | skt ∼ Beta(αtk + skt , βtk + nk − skt ) Then, posterior predicitive for number of components surviving in a new batch of mk components is Ckt | skt ∼ Beta-binomial(mk , αtk + skt , βtk + nk − skt )

Summary: for any fixed t, skt provides a minimal sufficient statistic for computing posterior predictive distribution of the number of components surviving to t in a new batch, without any parametric model for component lifetime being assumed.

Problem Setting .

Nonparametric Method ......

Example ....

Parametric Method ....

Propagating uncertainty to the system Now take collection of component types k ∈ {1, . . . , K}, each with test data t = {t1 , . . . , tk }, and corresponding collection of minimal sufficient statistics for a fixed t, {s1t , . . . sK t }.

Example .

Problem Setting .

Nonparametric Method ......

Example ....

Parametric Method ....

Example .

Propagating uncertainty to the system Now take collection of component types k ∈ {1, . . . , K}, each with test data t = {t1 , . . . , tk }, and corresponding collection of minimal sufficient statistics for a fixed t, {s1t , . . . sK t }. Survival probability for a new system S∗ comprising these component types follows naturally via posterior predictive and surival signature: P(TS∗ > t | s1t , . . . sK t ) ∫ ∫ 1 1 K K 1 K = · · · P(TS∗ > t | p1t , . . . pK t )P(pt | st ) . . . P(pt | st ) dpt . . . dpt

Problem Setting .

Nonparametric Method ......

Example ....

Parametric Method ....

Example .

Propagating uncertainty to the system Now take collection of component types k ∈ {1, . . . , K}, each with test data t = {t1 , . . . , tk }, and corresponding collection of minimal sufficient statistics for a fixed t, {s1t , . . . sK t }. Survival probability for a new system S∗ comprising these component types follows naturally via posterior predictive and surival signature: P(TS∗ > t | s1t , . . . sK t ) ∫ ∫ 1 1 K K 1 K = · · · P(TS∗ > t | p1t , . . . pK t )P(pt | st ) . . . P(pt | st ) dpt . . . dpt  (K ) ∫ ∫ ∑ mK m1 ∑ ∩ = ···  ··· Φ(l1 , . . . , lK )P {Ckt = lk | pkt }  l1 =0

lK =0

×

k=1 K 1 K P(p1t | s1t ) . . . P(pK t | st ) dpt . . . dpt

Problem Setting .

Nonparametric Method ......

Example ....

Parametric Method ....

Example .

P(TS∗ > t | s1t , . . . sK t ) ∫



∫ =

1 1 K K 1 K P(TS∗ > t | p1t , . . . pK t )P(pt | st ) . . . P(pt | st ) dpt . . . dpt

···

=

∫ ···

 

m1 ∑

l1 =0

···

mK ∑

( Φ(l1 , . . . , lK )P

=

m1 ∑ l1 =0

···

mK ∑ lK =0

) {Ckt = lk | pkt } 

k=1

lK =0

×

K ∩

K 1 K P(p1t | s1t ) . . . P(pK t | st ) dpt . . . dpt

Φ(l1 , . . . , lK )

K ∫ ∏

P(Ckt = lk | pkt )P(pkt | skt ) dpkt

k=1

Final integral is simply the posterior predictive (Beta-binomial).

Problem Setting .

Nonparametric Method ......

Example ....

Parametric Method ....

Example .

System survival probability

P(TS∗ > t | s1t , . . . sK t ) m m 1 K ∑ ∑ = ··· Φ(l1 , . . . , lK ) l1 =0

lK =0

×

) K ( ∏ mk B(lk + αk + sk , mk − lk + β k + nk − sk ) t

k=1

lk

B(αtk

t

+

t

skt , βtk

+ nk −

t

skt )

Incredibly easy to implement this algorithmically since survival signature has factorised the survival function by component type!

Problem Setting .

Nonparametric Method ......

Example ....

Parametric Method ....

Why not structure function?

ϕ(x) =

s ∏ j=1

 1 −



 (1 − xi )

i∈Cj

where {C1 , . . . , Cs } is the collection of minimal cut sets of the system. Recall don’t need x ∈ {0, 1} — we can plug in probabilities. So why not?

Example .

Problem Setting .

Nonparametric Method ......

Example ....

Parametric Method ....

Why not structure function?

ϕ(x) =

s ∏ j=1

 1 −



 (1 − xi )

i∈Cj

where {C1 , . . . , Cs } is the collection of minimal cut sets of the system. Recall don’t need x ∈ {0, 1} — we can plug in probabilities. So why not? P(TS∗ > t | s1t , . . . sK t ) ∫ ∫ K 1 K = · · · ϕ(pxt 1 , . . . , pxt n )P(p1t | s1t ) . . . P(pK t | st ) dpt . . . dpt where pxt i is the element of {p1t , . . . , pK t } corresponding to component i. Have fun with that integral for large K . . . !

Example .

Problem Setting .

Nonparametric Method ......

Example ....

Parametric Method ....

Example .

Example system layout, K = 4, n = 11 Example system: 2 1

4

T1

5 7 9

T2

3

T2 T3

6

T2

T1

T3 8

T4 10

T3

T2 ∼ Wei(λ2 = 1.8, γ1 = 2.2) T3 ∼ Log-N(µ = 0.4, τ = 1.234)

T4 11

T1 ∼ Exp(λ1 = 0.55)

T1

T4 ∼ Gam(λ3 = 0.9, γ2 = 3.2)

Simulated test data with nk = 100 ∀ k

Problem Setting .

Nonparametric Method ......

Example ....

Parametric Method ....

Posterior predictive survival curves

Survival Probability

1.00

0.75

Item System T1

0.50

T2 T3 T4

0.25

0.00 0

1

2

Time

3

4

5

Example .

Problem Setting .

Nonparametric Method ......

Example ....

Parametric Method ....

Optimal redundancy? 1.00

Redundancy Comp 1

Survival Probability

Comp 10 Comp 11

0.75

Comp 2 Comp 3 Comp 4

0.50

Comp 5 Comp 6 Comp 7

0.25

Comp 8 Comp 9 None

0.00 0

1

2

Time

3

4

5

Example .

Problem Setting .

Nonparametric Method ......

Example ....

Parametric Method ....

Optimal redundancy? 12 11 10 9

Order

8

Redundancy

7

Comp 7

6

Comp 8 None

5 4 3 2 1 0

1

2

Time

3

4

5

Example .

Problem Setting .

Nonparametric Method ......

Example ....

Parametric Method ....

Example .

Parametric models of components The survival signature achieves the same factorisation of system lifetime when using parametric models for the components. Model the lifetime of component k directly via likelihood function fk Tk ∼ fk (t; ψk ) As before, given test data tk = {tk1 , . . . , tknk } for component k, posterior density is: fΨk | Tk (ψk | tk ) ∝ fΨk (ψk )

nk ∏ i=1

fk (tki ; ψk )

Problem Setting .

Nonparametric Method ......

Example ....

Parametric Method ....

Example .

P(TS∗ > t | t1 , . . . tK ) ∫ ∫ = · · · P(TS∗ > t | ψ1 , . . . ψK )fΨ1 | T1 (dψ1 | t1 ) . . . fΨK | TK (dψK | tK )

Problem Setting .

Nonparametric Method ......

Example ....

Parametric Method ....

Example .

P(TS∗ > t | t1 , . . . tK ) ∫ ∫ = · · · P(TS∗ > t | ψ1 , . . . ψK )fΨ1 | T1 (dψ1 | t1 ) . . . fΨK | TK (dψK | tK )  (K ) ∫ ∫ ∑ mK m1 ∑ ∩ = ···  ··· Φ(l1 , . . . , lK )P {Ckt = lk | ψk }  l1 =0

lK =0

k=1

× fΨ1 | T1 (dψ1 | t ) . . . fΨK | TK (dψK | tK ) 1

Problem Setting .

Nonparametric Method ......

Example ....

Parametric Method ....

Example .

P(TS∗ > t | t1 , . . . tK ) ∫ ∫ = · · · P(TS∗ > t | ψ1 , . . . ψK )fΨ1 | T1 (dψ1 | t1 ) . . . fΨK | TK (dψK | tK )  (K ) ∫ ∫ ∑ mK m1 ∑ ∩ = ···  ··· Φ(l1 , . . . , lK )P {Ckt = lk | ψk }  l1 =0

lK =0

k=1

× fΨ1 | T1 (dψ1 | t ) . . . fΨK | TK (dψK | tK ) 1

∫ =

∫ ···

 

m1 ∑

l1 =0

···

mK ∑

Φ(l1 , . . . , lK )

lK =0

) K ( ∏ mk × [Fk (t; ψk )]mk −lk [1 − Fk (t; ψk )]lk lk k=1

× fΨ1 | T1 (dψ1 | t1 ) . . . fΨK | TK (dψK | tK )

]

Problem Setting .

Nonparametric Method ......

Example ....

Parametric Method ....

Example .

P(TS∗ > t | t1 , . . . tK )  ∫ ∫ ∑ mK m1 ∑ = ···  ··· Φ(l1 , . . . , lK ) l1 =0

lK =0

) K ( ∏ mk × [Fk (t; ψk )]mk −lk [1 − Fk (t; ψk )]lk lk

]

k=1

× fΨ1 | T1 (dψ1 | t1 ) . . . fΨK | TK (dψK | tK ) =

m1 ∑

···

l1 =0

mK ∑

Φ(l1 , . . . , lK )

lK =0

×

)∫ K ( ∏ mk k=1

lk

[Fk (t; ψk )]mk −lk [1 − Fk (t; ψk )]lk fΨk | Tk (dψk | tk )

Final term posterior predictive of lk components of type k surviving to t.

Problem Setting .

Nonparametric Method ......

Example ....

Parametric Method ....

Computing the integral for arbitrary models Three possibilities. The posterior, fΨk | Tk (dψk | tk ), is: 1. in closed form and integral tractable; 2. known distribution, but the integral is intractable; 3. not in closed form. Also, note the integral is just: ] [ EΨk | Tk [Fk (t; ψk )]mk −lk [1 − Fk (t; ψk )]lk

Example .

Problem Setting .

Nonparametric Method ......

Example ....

Parametric Method ....

Example .

Computing the integral for arbitrary models Three possibilities. The posterior, fΨk | Tk (dψk | tk ), is: 1. in closed form and integral tractable; 2. known distribution, but the integral is intractable; 3. not in closed form. Also, note the integral is just: ] [ EΨk | Tk [Fk (t; ψk )]mk −lk [1 − Fk (t; ψk )]lk (1)

(N)

Thus, for samples ψk , . . . , ψk back to evaluating:

∼ Ψk | Tk we can always fall

1∑ (i) (i) [Fk (t; ψk )]mk −lk [1 − Fk (t; ψk )]lk N i=1 [ ] N→∞ −−−−→ EΨk | Tk [Fk (t; ψk )]mk −lk [1 − Fk (t; ψk )]lk N

Problem Setting .

Nonparametric Method ......

Example ....

Parametric Method ....

Example .

Posterior predictive survival curves for both methods

Survival Probability

1.00

0.75 Item Ground Truth 0.50

Non-parametric Parametric

0.25

0.00 0

1

2

Time

3

4

5

Suggest Documents