Basic Concept of Differential and Integral Calculus CPT Section D Quantitative Aptitude Chapter 9
Dr. Atul Kumar Srivastava
2
Learning Objectives Understand the use of this Branch of mathematics in various branches of science and Humanities
Understand the basics of differentiation and integration
Know how to compute derivative of a function by the first principal, derivative of a function by the use of various formulae and higher order differentiation
Make familiar with various techniques of integration
Understand the concept of definite integrals of functions and its properties.
Differential calculusOutlines
3
What is Differential Calculus – An Introduction Derivative or Deferential Coefficient (First Principal Definition) Basic Formulas Laws for Differentiation (Algebra of Derivative of Functions) Derivative of A Function of Function (Chain Rule) .Derivative of Implicit Function .Derivative of Function In Parametric Form
What is differential calculus – an 4 introduction One of the most fundamental operations in calculus is that of differentiation. In the study of mathematics, there are many problems containing two quantities such that the value of one quantity depends upon the other. A variation in the value of any ones produces a variation in the value of the other. For example the area of a square depends upon it's side. The area of circle and volume of sphere depend upon their radius etc.
Differential calculus is the Branch of Mathematics which studies changes
To express the rate of change of any function we introduce concept of derivative. The concept involves a very small change in the dependent variable with reference to a very small change in the independent variable
5
Continued
y=f(x) • •
x  Independent variable y  Dependent Variable
Thus differentiation is a process of finding the derivative of a continuous function. It is defined as the limiting value of the ratio of the change in the function corresponding to small change in the independent variable as the later tends to zero.
Derivative or differential coefficient (First principal definition) Derivative of
6
is defined as (1)
is a function
where
is small increment in x corresponding increment in y or f(x) (1) Is denoted as known as differential coefficient of
definition.
The derivative of f(x) is also w.r.t. x
The above process of differentiation is called the first principal
7
Examples of differentiation from first principal: Example :1 We have
8
Example2 f(x)=a where a is fixed real number
9
Example3
Basic Formulas
10
Following are some of the standard derivative:
Laws for differentiation
11
(Algebra of derivative of functions)
Let f(x) and g(x) be two functions such that their derivatives are defined in a common domain. Then 1.Sum Rule
2.Difference Rule
3.Product Rule
12
Continued
4.(Quotient Rule)
5.
6.
13
EXAMPLES
Example1
Find
14
Example2
15
Example3
16
Derivative of implicit function Until now we have been differentiating various function given in the form y=f(x) But it is not necessary that functions are always expressed in this form. For example consider one of the following relationship between x and y
NEXT SLIDE….
17
Continued…. In the first case we can solve y and rewrite the relationship as In second case it does not seem easy to solve for Y. When it is easy to express the relation as y=f(x) we say that y is given as an explicit function of x, otherwise it is an implicit function of x
Now we will attempt to find
for implicit function
Examples Example 1
Find
18
for
NEXT SLIDE….
Continued
19
Example2
20 …..(1)
Differentiating on both sides
NEXT SLIDE….
Continued
21
Derivative of functions in parametric forms If relation between two variables is expressed via third variable. The third variable is called parameter. More precisely a relation expressed between two variables x and y in the form x=f(t),y=g(t) is said to be parametric form with t is a parameter.
In order to find derivative of function in such form, we have by chain rule.
22
23
Continued
24
Example 1 Find Given That
So
Example2
25
Logarithmic differentiation
.
26
and
We differentiate such functions by taking logarithm on both sides. This process in called logarithmic differentiate.
Examples Example
1
Differentiate
Taking logarithms on both sides
Differentiate both sides w.r.t x
27
Example2
28
Differentiate
29
Higher Order differentiation
If is differentiable, we may differentiate it w.r.t. x. The LHS becomes which is called the second order derivative of or and is denoted by . It is also denoted by . If we remark that higher order derivatives may be defined similarly.
30

EXAMPLES
Example1 Given that =

Here =

31
Example2
Differentiate again
Find
Gradient or slope of the curve
Let y=f(x)be a curve. The derivative of f(x) at a point x represents the slope of the tangent to the curve y=f(x)at the point x. Sometime the derivative is called gradient of the curve.
32
33
Example1
Find the gradient of the curve
Given
The gradient of the curve at point X=0 is 12
Example2 to the curve
Find the slope of the tangent
34
35
Miscellaneous Examples Example:1
Differentiate
36
Example2
Differentiate
Let
37
Example3
Find derivative of
38
Example4: Find dy /dx differentiate implicitly w.r.t. x ., we get
39
Example5 If
40
Example6
Differentiate
Example 7
41
42
Example 8
43
Continued
By cross multiplication
Integral Calculus What Is Integration (Definition) • Basic Formulas
Method Of Substitution (Change Of Variable) Integration By Parts Method Of Partial Fraction Definite Integration Important Properties Miscellaneous Examples
44
45
What is Integration (definition) Integration is inverse process of differentiation. Integral calculus deals with integration and its application. It was invented in attempt to solve the problems of finding areas under curves and volumes of solids of revolution.
Also we can define integration as the inverse process of differentiation .
Constant of integration
46
and c is an arbitrary constant we also have
Evidently the integral of
is obtained by giving different
values to C . Here 'C' is called constant of integration
The process of finding the integral is called integration. The function which is integrated is called the integrand.
Basic Formulas
47
Two Simple Theorem 1.
48
.
2.
Since integration and differentiation are inverse process we have Example1
49
Example2
Example3
50 Evaluate
Example4
or
Example5
Examples Example6 Evaluate
Example7 Evaluate
51
52
Example8 By simple division
Integration By Substitution The given integral can be transformed into another form by changing the independent variable x to t by substituting Consider
Usually we make a substitution for a function whose derivation also occur in the integrand.
53
Examples
Example1
adx = dt
54
55
Example 2 .
or
Evaluate
56
Example3: Evaluate
or
dt
Important standard formulas 1.
2.
3.
4.
57
58
Continued 5.
6.
7.
8.
.
59
Example
Integration by Parts It is useful method to find integration of product of function. Integration of product of two function
60
61
Examples Example:1
62
Example2
Evaluate
63
Example3
64
Example 4
(Solve first integral only)
65
Methods of Partial Fractions
66
Type1
Example1
Find the partial fraction of
we put x=2
we put x=3 and get
67
Type2
Comparing coefficients of
and constant term on both sides
Solving we get
Therefore
68
Example
Definite Integration
69
Consider indefinite integral Now consider Here a = b =
lower limit of integration upper limit of integration
is called definite integral of f(x) from a to b
Properties
70
71
Example1:
72
Example2
or
Miscellaneous examples find
let
73
74
Example2 Let
75
Example3 integration by parts
consider
76
Example 4. solve
where
77
Example:5 by simple division
78
Example6 First simplify integrand
Example 7.
79
80
Example 8.
81
Example 9.
82
Example 10. I
II
dx
Example11. Find the equation of the curve where slope at (x,y) is 9x which passes through origin Given
since it passes through the origin (o,o) Then or
83
84
Example 12.
Let
Example 13.
85
86
SUMMARY OF THE CHAPTER Differential calculus
Continued…….
87
88
Integral Calculus
89
Continued……
=
= =
90
Continued =
91
Continued
,
(a < b < c)
92
Continued =0
93
MCQ’s
Question Time
Question:1
HINTLogarithmic Differentiation
94
95
Question.2
96
Question.3
HINT Logarithmic differentiation then Apply product rule
97
Question.4
98
Question.5
HINT (Apply Quotient rule)
99
Question6
HINT  (Apply chain rule)
100
Question.7
HINT  (Apply product rule and chain rule)
Question 8
HINT (Quotient rule)
101
102
Question.9
HINT (Take log both sides then apply quotient rule)
103
Question.10
HINT (Differentiation of implicit function)
104
Question.11
HINT (Logarithmic differentiation)
105
Question:12
HINT
(Implicit function)
106
Question.13
(d)
HINT
(Logarithmic differentiation)
107
Question.14
HINT
(Quotient rule)
Question.15 The value of p and q are.
HINT
108
109
Question.16
HINT
110
Question.17
HINT Integrate By Parts
111
Question.18
112
Question.19
HINT Integration by substitution let
113
Question.20
HINT [Integration by substitution, let t
114
Question.21
HINT [Integration by substitution let
115
Question.22
HINT
116
Question.23
HINT
117
Question.24
HINT (Integration by substitution let 7x + 5 = t)
118
Question.25
HINT Divide Numerator by Denominator then Integrate
119
Question.26
HINT
120
Question.27
HINT
121
Question.28
HINT
122
Question.29
HINT
123
Question.30
HINT
124
Practice makes a man perfect and that’s what mathematics demands. .
So, students ‘all the best’ for your upcoming examinations . keep practicing.