Ball and Roller Bearings

For New Technology Network R corporation Ball and Roller Bearings CAT. NO. [email protected]/E Technical Data A- 5 Deep Groove Ball Bearings B- 5 Mi...
Author: Harvey Spencer
2 downloads 2 Views 4MB Size
For New Technology Network

R

corporation

Ball and Roller Bearings

CAT. NO.

[email protected]/E

Technical Data

A-

5

Deep Groove Ball Bearings

B-

5

Miniature and Extra Small Bearings

B- 29

Angular Contact Ball Bearings

B- 41

Self-Aligning Ball Bearings

B- 77

Cylindrical Roller Bearings

B- 89

Tapered Roller Bearings

B-131

Spherical Roller Bearings

B-229

Thrust Bearings

B-265

Locknuts, Lockwashers & Lockplates

C-

1

Catalog List & Appendix Table

D-

1

Warranty NTN warrants, to the original purchaser only, that the delivered product which is the subject of this sale (a) will conform to drawings and specifications mutually established in writing as applicable to the contract, and (b) be free from defects in material or fabrication. The duration of this warranty is one year from date of delivery. If the buyer discovers within this period a failure of the product to conform to drawings or specifications, or a defect in material or fabrication, it must promptly notify NTN in writing. In no event shall such notification be received by NTN later than 13 months from the date of delivery. Within a reasonable time after such notification, NTN will, at its option, (a) correct any failure of the product to conform to drawings, specifications or any defect in material or workmanship, with either replacement or repair of the product, or (b) refund, in part or in whole, the purchase price. Such replacement and repair, excluding charges for labor, is at NTN's expense. All warranty service will be performed at service centers designated by NTN. These remedies are the purchaser's exclusive remedies for breach of warranty. NTN does not warrant (a) any product, components or parts not manufactured by NTN, (b) defects caused by failure to provide a suitable installation environment for the product, (c) damage caused by use of the product for purposes other than those for which it was designed, (d) damage caused by disasters such as fire, flood, wind, and lightning, (e) damage caused by unauthorized attachments or modification, (f) damage during shipment, or (g) any other abuse or misuse by the purchaser. THE FOREGOING WARRANTIES ARE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. In no case shall NTN be liable for any special, incidental, or consequential damages based upon breach of warranty, breach of contract, negligence, strict tort, or any other legal theory,and in no case shall total liability of NTN exceed the purchase price of the part upon which such liability is based. Such damages include, but are not limited to, loss of profits, loss of savings or revenue, loss of use of the product or any associated equipment, cost of capital, cost of any substitute equipment, facilities or services, downtime, the claims of third parties including customers, and injury to property. Some states do not allow limits on warranties, or on remedies for breach in certain transactions. In such states, the limits in this paragraph and in paragraph (2) shall apply to the extent allowable under case law and statutes in such states. Any action for breach of warranty or any other legal theory must be commenced within 15 months following delivery of the goods. Unless modified in a writing signed by both parties, this agreement is understood to be the complete and exclusive agreement between the parties, superceding all prior agreements, oral or written, and all other communications between the parties relating to the subject matter of this agreement. No employee of NTN or any other party is authorized to make any warranty in addition to those made in this agreement. This agreement allocates the risks of product failure between NTN and the purchaser. This allocation is recognized by both parties and is reflected in the price of the goods. The purchaser acknowledges that it has read this agreement, understands it, and is bound by its terms.

© NTN Corporation. 2001 Although care has been taken to assure the accuracy of the data compiled in this catalog, NTN does not assume any liability to any company or person for errors or omissions.

NTN Ball and Roller Bearings

TECHNICAL DATA CONTENTS

1. Classification and Characteristics of Rolling Bearings ……………………A-5

4.6 Bearing rated life and load calculation examples ………………A-26

1.1 Rolling bearing construction ………………A-5 1.2 Classification of rolling bearings …………A-5

5. Boundary Dimensions and Bearing Number Codes ……………A-28

1.3 Characteristics of rolling bearings ………A-9

5.1 Boundary dimensions ……………………A-28 5.2 Bearing numbers …………………………A-29

2. Bearing Selection ……………………A-10 2.1 Bearing selection flow chart ……………A-10 2.2 Type and character is tics ………………A-12

6. Bearing Tolerances …………………A-33

2.3 Selection of bearing arrangement ………A-13

6.1 Dimensional accuracy and running accuracy …………………………A-33 6.2 Chamfer measurements and tolerance or allowable values of tapered hole ……A-44

3. Load Rating and Life ………………A-15

6.3 Bearing tolerance measurement methods ……………………………………A-46

3.1 Bearing life…………………………………A-15 3.2 Basic rated life and basic dynamic load rating …………………………………A-15 3.3 Machine applications and requisite life …A-16 3.4 Adjusted life rating factor …………………A-16

7. Bearing Fits ……………………………A-47

3.5 Basic static load rating……………………A-17

7.1 Interference ………………………………A-47

3.6 Allowable static equivalent load …………A-18

7.2 The necessity of a proper fit ……………A-47 7.3 Fit selection ………………………………A-47

4. Bearing Load Calculation …………A-19 4.2 Bearing load distribution …………………A-21

8. Bearing Internal Clearance and Preload ……………………………A-56

4.3 Mean load …………………………………A-22

8.1 Bearing internal clearance ………………A-56

4.4 Equivalent load ……………………………A-23

8.2 Internal clearance selection ……………A-56

4.5 Allowable axial load for cylindrical roller bearings ……………………………A-25

8.3 Preload ……………………………………A-64

4.1 Loads acting on shafts……………………A-19

A-2

9. Allowable Speed ………………………A-68

14. Shaft and Housing Design………A-83 14.1 Fixing of bearings ………………………A-83 14.2 Bearing fitting dimensions………………A-84

10. Friction and Temperature Rise……………………A-69

14.3 Shaft and housing accuracy ……………A-85 14.4 Allowable bearing misalignment ………A-85

10.1 Friction ……………………………………A-69 10.2 Temperature rise…………………………A-69

15. Bearing Handling ……………………A-86 15.1 Bearing storage …………………………A-86

11. Lubrication ……………………………A-70

15.2 Installation ………………………………A-86

11.1 Lubrication of rolling bearings …………A-70

15.3 Internal clearance adjustment …………A-88

11.2 Lubrication methods and characteristics ……………………………A-70

15.4 Post installation running test……………A-90 15.5 Bearing disassembly ……………………A-90

11.3 Grease lubrication ………………………A-70 11.4 Solid grease (For bearings with solid grease) ………A-74 11.5 Oil lubrication ……………………………A-74

16. Bearing Damage and Corrective Measures ………………A-93

12. External bearing sealing devices ………………………A-78

17. Technical data ………………………A-95 17.1 Deep groove ball bearing radial internal clearances and axial internal clearances ……………………………………………A-95

13. Bearing Materials ……………………A-81

17.2 Angular contact ball bearing axial load and axial displacement ………………………A-95

13.1 Raceway and rolling element materials ………………A-81

17.3 Tapered roller bearing axial load and axial displacement ………………………A-97

13.2 Cage materials……………………………A-82

17.4 Fitting surface pressure…………………A-98 17.5 Necessary press fit and pullout force …A-99

A-3

●Classification and Characteristics of Rolling Bearings

1.1 Rolling bearing construction Most rolling bearings consist of rings with raceway (an inner ring and an outer ring), rolling elements (either balls or rollers) and a rolling element retainer. The retainer separates the rolling elements at regular intervals holds them in place within the inner and outer raceways, and allows them to rotate freely. See Figs. 1.1 - 1.8.

Outerring Inner ring

Cage Ball

Outer ring Inner ring

Ball Cage

Rolling elements come in two general shapes: ball or rollers. Rollers come in four basic styles: cylindrical, needle, tapered, and spherical. Balls geometrically contact the raceway surfaces of the inner and outer rings at "points", while the contact surface of rollers is a "line" contact. Theoretically, rolling bearings are so constructed as to allow the rolling elements to rotate orbitally while also rotating on their own axes at the same time.

Deep groove ball bearing Fig 1.1

While the rolling elements and the bearing rings take any load applied to the bearings (at the contact point between the rolling elements and raceway surfaces), the retainer takes no direct load. It only serves to hold the rolling units at equal distances from each other and prevent them from falling out.

1.2 Classification of rolling bearings Rolling bearings fall into two main classifications: ball bearings and roller bearings. Ball bearings are classified according to their bearing ring configurations: deep groove, angular contact and thrust types. Roller bearings on the other hand are classified according to the shape of the rollers: cylindrical, needle, taper and spherical. Rolling bearings can be further classified according to the direction in which the load is applied; radial bearings carry radial loads and thrust bearings carry axial loads. Other classification methods include: 1) number of rolling rows (single, multiple, or 4-row), 2) separable and non-separable, in which either the inner ring or the outer ring can be detached, 3) thrust bearings which can carry axial loads in only one direction, and double direction thrust bearings which can carry loads in both directions. There are also bearings designed for special applications, such as: railway car journal roller bearings (RCT bearings), ball screw support bearings, turntable bearings, as well as rectilinear motion bearings (linear ball bearings, linear roller bearings and linear flat roller bearings).

A-5

Angular contact ball bearing Fig. 1.2

●Classification and Characteristics of Rolling Bearings

Single row deep groove ball bearings Single row angular contact ball bearings

Radial ball bearings

Duplex angular contact ball bearings Double row angular contact ball bearings Four-point contact ball bearings

Ball bearings

Self-aligning ball bearings Insert ball bearings

Single direction thrust ball bearings with flat back face High-speed duplex angular contact ball bearings (for axial loads)

Thrust ball bearings

Double direction angular contact thrust ball bearings

Rolling bearings Single row cylindrical roller bearings Double row cylindrical roller bearings Needle roller bearings

Radial roller bearings Single row tapered roller bearings Double row tapered roller bearings Spherical roller bearings

Roller bearings Cylindrical roller thrust bearings Needle roller thrust bearings

Thrust roller bearings

Tapered roller thrust bearings Spherical roller thrust bearings

A-6

●Classification and Characteristics of Rolling Bearings

Ultra thin wall type ball bearings Turntable bearings Ball screw support bearings Railway car journal roller bearings (RCT bearings) Ultra-clean vacuum bearings SL-type cylindrical roller bearings

Special application bearings

Rubber molded bearings Crossed roller thrust bearings Clearance adjusting needle roller bearings Complex bearings Connecting rod cage-equipped needle rollers Yoke type track rollers Stud type track rollers

Special application bearings are not listed in this catalog.

Linear motion bearings

Linear motion bearings are not listed in this catalog

Fig. 1.9 Classification of rolling bearings

A-7

●Classification and Characteristics of Rolling Bearings

Width Contact angle

Inner ring

Ball

Inner ring raceway Outer ring raceway

Pitch circle diameter

Outer ring

Rivet

Bearing bore diameter

Cage

Inner ring side face Shield

Bearing outside diameter

Snap ring Outer ring, front face

Outer ring, back face

Inner ring, back face

Inner ring, front face

Effective load center

Bearing chamfer

Deep groove ball bearing

Angular contact ball bearing

Contact angle Bearing width Inner ring with rib

Standout

Outer ring with 2 ribs

Cone front face rib

Tapered roller

Roller inscribed circle diameter

L-shaped loose rib

Cone back face rib

Effective load center

Cylindrical roller

Cup small inside diameter (SID)

Cone, back face Cone, front face Cup, back face

Cup, front face

Cylindrical roller bearing

Tapered roller bearing

Lock washer Bearing bore diameter Locknut Tapered bore of inner ring

Shaft washer

Sleeve Bearing height

Ball

Bearing outside diameter

Inner ring Spherical roller

Housing washer

Outer ring

Spherical roller bearing

Single-direction thrust ball bearing

Fig. 1.10 Diagram of representative bearing parts

A-8

●Classification and Characteristics of Rolling Bearings

which require high speed, high precision, low torque and low vibration. Conversely, roller bearings have a larger load carrying capacity which makes them more suitable for applications requiring long life and endurance for heavy loads and shock loads.

1.3 Characteristics of rolling bearings 1.3.1 Characteristics of rolling bearings Rolling bearings come in many shapes and varieties, each with its own distinctive features. However, when compared with sliding bearings, rolling bearings all have the following advantages:

1.3.3 Radial and thrust bearings Almost all types of rolling bearings can carry both radial and axial loads at the same time. Generally, bearings with a contact angle of less than 45°have a much greater radial load capacity and are classed as radial bearings; whereas bearings which have a contact angle over 45°have a greater axial load capacity and are classed as thrust bearings. There are also bearings classed as complex bearings which combine the loading characteristics of both radial and thrust bearings.

(1) The starting friction coefficient is lower and there is little difference between this and the dynamic friction coefficient is produced. (2) They are internationally standardized, interchangeable and readily obtainable. (3) They are easy to lubricate and consume less lubricant. (4) As a general rule, one bearing can carry both radial and axial loads at the same time. (5) May be used in either high or low temperature applications. (6) Bearing rigidity can be improved by preloading.

1.3.4 Standard bearings and special bearings Bearings which are internationally standardized as to shape and size are much more economical to use, as they are interchangeable and available on a worldwide basis.

Construction, classes, and special features of rolling bearings are fully described in the boundary dimensions and bearing numbering system section.

However, depending on the type of machine they are to be used in, and the expected application and function, a non-standard or specially designed bearing may be best to use. Bearings that are adapted to specific applications, and "unit bearings" which are integrated (built-in) into a machine's components, and other specially designed bearings are also available.

1.3.2 Ball bearings and roller bearings Generally speaking, when comparing ball and roller bearings of the same dimensions, ball bearings exhibit a lower frictional resistance and lower face run-out in rotation than roller bearings. This makes them more suitable for use in applications

A-9

Bearing Selection 2. Bearing Selection Rolling element bearings are available in a variety of types, configurations, and sizes. When selecting the correct bearing for your application, it is important to consider several factors, such as the calculation of various angles and clearances, which will ensure proper

fit. A comparison of the performance characteristics for each bearing type is shown in Table 2.1. As a general guideline, the basic procedure for selecting the most appropriate bearing is shown in the following flow chart.

2.1 Bearing selection flow chart

Procedure

Confirm operating conditions and operating environment

●Function and construction of components to house bearings

Confirmation items

●Bearing mounting location ●Bearing load (direction and magnitude) ●Rotational speed ●Vibration and shock load ●Bearing temperature (ambient and friction-generated) ●Operating environment (potential for corrosion, degree of contamination, extent of lubrication)

Select bearing type and configuration

●Dimensional limitations (refer to page insert …A-28) ●Bearing load (magnitude, direction, vibration; presence of shock load) (refer to page insert …A-19) ●Rotational speed (refer to page insert …A-68) ●Bearing tolerances (refer to page insert …A-33) ●Rigidity (refer to page insert …A-64) ●Allowable misalignment of inner/outer rings (refer to page insert …A-85) ●Friction torque (refer to page insert …A-69) ●Bearing arrangement (fixed side, floating side) (refer to page insert …A-13) ●Installation and disassembly requirements (refer to page insert …A-86) ●Bearing availability and cost

Selection of bearing type and configuration

(1) Dimensional limitations The allowable space for bearings is typically limited. In most cases, shaft diameter (or the bearing bore diameter) has been determined according to the machine’s other design specifications. Therefore, a bearing’s type and dimensions are determined according to standard bearing bore diameters. For this reason all dimension tables are organized according to standard bore diameters. There is a wide range of standardized bearing types and dimensions: the right one for a particular application can usually be found in these tables. (2) Bearing load The characteristics, magnitude, and direction of loads acting upon a bearing are extremely variable. In general, the basic rated loads shown in bearing dimension tables indicate their load capacity. However, in determining the appropriate bearing type, consideration must also be given to whether the acting load is a radial load only or an axial load only, or combined radial and axial load, etc. When ball and roller bearings within the same dimension series are considered, the roller bearings have a larger load capacity and are also capable of withstanding greater vibration and shock loads.

A-10

Select bearing dimensions

●Design life of components to house bearings (refer to page insert …A-17) ●Dynamic/static equivalent load conditions (refer to page insert …A-23) ●Safety factor (refer to page insert …A-17) ●Allowable speed (refer to page insert …A-68) ●Allowable axial load (refer to page insert …A-17, 25) ●Allowable space (refer to page insert …A-28)

Select bearing tolerances

●Shaft runout tolerances (refer to page insert …A-33) ●Rotational speed (refer to page insert …A-68) ●Torque fluctuation

(3) Rotational speed The allowable speed of a bearing will differ depending upon bearing type, size, tolerances, cage type, load, lubricating conditions, and cooling conditions. The allowable speeds listed in the bearing tables for grease and oil lubrication are for standard NTN bearings. In general, deep groove ball bearings, angular contact ball bearings, and cylindrical roller bearings are most suitable for high speed applications. (4) Bearing tolerances The dimensional accuracy and operating tolerances of bearings are regulated by ISO and JIS standards. For equipment requiring high tolerance shaft runout or high speed operation, etc., bearings with Class 5 tolerance or higher are recommended. Deep groove ball bearings, angular contact ball bearings, and cylindrical roller bearings are recommended for high rotational tolerances. (5) Rigidity Elastic deformation occurs along the contact surfaces of a bearing’s rolling elements and raceway surfaces when under load. With certain types of equipment it is necessary to reduce this deformation as much as

Bearing Selection

possible. Roller bearings exhibit less elastic deformation than ball bearings, and therefore are recommended for such equipment. Furthermore, in some cases, bearings are given an initial load (preloaded) to increase their shafting rigidity. This procedure is commonly applied to deep groove ball bearings, angular contact ball bearings, and tapered roller bearings. (6) Misalignment of inner and outer rings Shaft flexure, variations in shaft or housing accuracy, and fitting errors, etc. result in a certain degree of misalignment between the bearing’s inner and outer rings. In cases where the degree of misalignment is likely to be relatively large, self-aligning ball bearings, spherical roller bearings, or bearing units with selfaligning properties are the most appropriate choices. (Refer to Fig. 2.1)

Fig. 2.1

A-11

Bearing Selection 2.2 Type and character is tics Table 2.1 shows types and characteristics of rolling bearings. Table 2.1 Types and characteristics of rolling bearings Bearing types

Angular Double row Duplex DoubleSelfCylindrical SingleDouble row contact angular flange angular aligning roller flange cylindrical ball contact cylindrical contact ball bearings cylindrical roller bearings ball bearings ball bearings bearings roller bearings roller bearings bearings

Deep groove ball bearings

Characteristics Load Carrying Capacity Radial load Axial load

High speed

1

High rotating accuracy Low noise/vibration Low friction torque

1

☆☆☆☆ ☆☆☆☆ ☆☆

☆☆☆

☆☆☆

☆☆☆

☆☆

☆☆☆

☆☆☆

☆☆



☆☆☆











☆☆

☆☆

☆☆

☆☆☆



☆☆

☆☆

☆☆

☆☆

☆☆☆

☆ ○



☆☆☆

1

☆☆☆

☆☆☆☆ ☆☆☆

1

☆☆☆☆ ☆☆☆

☆☆

1

☆☆

High rigidity

1

Allowable misalignment 1 ☆ for inner/outer rings

For fixed bearings

2

For floating bearings



◎ 3







☆☆



Vibration/shock resistance

☆☆☆☆ ☆☆☆

☆☆



DB and DF ◎ For arrangement ◎



DB ○ For arrangement ○

4





Non-separable or separable Tapered bore bearings





5

For duplex arrangement

Remarks B-5

Reference page

B-41

B-72

B-41











B-77

NU, N type

NJ, NF type

NUP, NP, NH type

B-89

B-89

B-89

B-89

Bearing types

Tapered Multi-row, Spherical Thrust Double row Spherical angular 4-row roller roller ball roller contact bearings tapered bearings bearings thrust ball thrust roller bearings bearings bearings. Reference

page Characteristics Load Carrying Capacity Radial load Axial load

☆☆☆

☆☆

☆☆☆



☆☆



☆☆☆



☆☆☆





1

A-66

High speed

A-31

High rotating accuracy



Low noise/vibration

A-67

Low friction torque

1

1

1

1

☆☆

☆☆☆☆ ☆☆☆

☆☆

☆☆☆

A-54

High rigidity

☆☆

☆☆☆

☆☆☆



☆☆☆

A-18

Vibration/shock resistance

☆☆☆



☆☆☆

A-79

Allowable misalignment 1 for inner/outer rings





A-13

For fixed bearings

A-13

For floating bearings



Non-separable or separable

☆ ○

























B-131

― B-131

B-229

B-265

B-265

B-265

2 3 4

A-79

For duplex arrangement

1

Tapered bore bearings Remarks Reference page

A-12

5

1 ☆ The number of stars in dicate the degree to which that bearing type displays that particular characteristic. ★ Not applicable to that bearing type. 2 ◎ Indicates dual direction. ○ Indicates single direction axial movement only. 3 ◎ Indicates movement at raceway. ○ Indicates movement at mated surface of inner or outer ring. 4 ○ Indicates both inner ring and outer ring are detachable. 5 ○ Indicates inner ring with tapered bore is possible.

Bearing Selection outer rings are most desirable. Cylindrical roller bearings are generally separable and allow for axial displacement along their raceway surfaces; deep groove ball bearings are non-separable, but can be mounted to allow for displacement along their fitting surfaces. In applications with short distances between bearings, shaft expansion and contraction due to temperature fluctuations is slight, therefore the same type of bearing may be used for both the fixed-side and floating-side bearing. In such cases it is common to use a set of matching bearings, such as angular contact ball bearings, to guide and support the shaft in one axial direction only. Table 2.2 (1) shows representative bearing arrangements where the bearing type differs on the fixed side and floating side. Table 2.2 (2) shows some common bearing arrangements where no distinction is made between the fixed side and floating side. Vertical shaft bearing arrangements are shown in Table 2.2 (3).

2.3 Selection of bearing arrangement Shaft assemblies generally require two bearings to support and locate the shaft radially and axially, relative to the stationary housing. These two bearings are called the “fixed-side” and “floating-side” bearings. The fixed-side bearing “fixes” or controls movement of the shaft axially in relation to the housing. The floating-side bearing moves or “floats” axially in relation to the housing and is therefore able to relieve stress caused by the expansion and contraction of the shaft due to temperature fluctuations, and allow for misalignment caused by fitting errors. Fixed-side bearings have the capacity to receive both axial and radial loads, and therefore a bearing which controls axial movement in both directions should be selected. Floating-side bearings receive only radial loads, and therefore bearings which are mounted to permit free axial movement, or bearings with separable inner and Table 2.2 (1) Bearing arrangement (Fixed and Floating)

Arrangement Fixed

Comment

Application

Floating 1. General arrangement for small machinery. 2. For radial loads, but will also accept axial loads. 3. Preloading by springs or shims on outer ring face.

Small pumps, small electric motors, auto-mobile transmissions, etc.

1. Suitable for high speed. Widely used. 2. Even with expansion and contraction of shaft, non-fixing side moves smoothly.

Medium-sized electric motors, ventilators, etc.

1. Radial loading plus dual direction axial loading possible. 2. In place of duplex angular contact ball bearings, double-row angular contact ball bearings are also used.

Wormgear speed reducers, etc.

1. Heavy loading capable. 2. Shafting rigidity increased by preloading the two back-to-back fixed bearings. 3. Requires high precision shafts and housings, and minimal fitting

Machine tool spindles, etc.

1. Allows for shaft deflection and fitting errors. 2. By using an adaptor on long shafts without screws or shoulders, bearing mounting and dismounting can be facilitated. 3. Not suitable for axial load applications.

Counter shafts for general industrial equipment, etc.

1. Widely used in general industrial machinery with heavy and shock  load demands. 2. Allows for shaft deflection and fitting errors. 3. Accepts radial loads as well as dual direction axial loads.

Reduction gears for general industrial equipment, etc.

1. Widely used in general industrial machinery with heavy and shock loading. 2. Radial and dual directional axial loading.

Industrial machinery reduction gears. etc.

1. Capable of handling large radial and axial loads at high rotational speeds. 2. Maintains clearance between the bearing’s outer diameter and housing inner diameter to prevent deep groove ball bearings from receiving radial loads.

Diesel locomotives, etc.

A-13

Bearing Selection

Table 2.2 (2) Bearing arrangement (Placed oppositely)

Arrangement

Back to back

Comment

Application

General arrangement for use in small machines.

Small electric motors, small reduction gears, etc.

1. This type of back-to-back arrangement well suited for moment loads. 2. Preloading increases shaft rigidity. 3. High speed reliable.

Spindles of machine tools, etc.

1. Accepts heavy loading. 2. Suitable if inner and outer ring shrink-fit is required. 3. Care must be taken that axial clearance does not become too small during operation.

Construction equipment, mining equipment sheaves, agitators, etc.

1. Withstands heavy and shock loads. Wide range application. 2. Shafting rigidity increased by preloading. 3. Back-to-back arrangement for moment loads, and face-to-face arrangement to alleviate fitting errors. 4. With face-to-face arrangement, inner ring shrink-fit is facilitated.

Reduction gears, automotive axles, etc.

Face to face Table 2.2 (3) Bearing arrangement (Vertical shaft)

Arrangement

Comment

Application

When fixing bearing is a duplex angular contact ball bearing, non-fixing bearing is a cylindrical roller bearing.

Machine tool spindles, vertical mounted electric motors, etc.

1. Most suitable arrangement for very heavy axial loads. Crane center shafts, 2. Depending on the relative alignment of the spherical surface of the etc. rollers in the upper and lower bearings, shaft deflection and fitting  errors can be absorbed. 3. Lower self-aligning spherical roller thrust bearing pre-load is possible.

A-14

●Load Rating and Life 3. Load Rating and Life 3.1 Bearing life Even in bearings operating under normal conditions, the surfaces of the raceway and rolling elements are constantly being subjected to repeated compressive stresses which causes flaking of these surfaces to occur. This flaking is due to material fatigue and will eventually cause the bearings to fail. The effective life of a bearing is usually defined in terms of the total number of revolutions a bearing can undergo before flaking of either the raceway surface or the rolling element surfaces occurs.

L10 =(

C

p

)…………(3.1)

P

where, p= 3......................For ball bearings p= 10/3.................For roller bearings L10 : Basic rating life 106 revolutions C : Basic dynamic rating load, N (Cr: radial bearings, Ca: thrust bearings) P : Equivalent dynamic load, N (Pr: radial bearings, Pa: thrust bearings)

Other causes of bearing failure are often attributed to problems such as seizing, abrasions, cracking, chipping, gnawing, rust, etc. However, these so called "causes" of bearing failure are usually themselves caused by improper installation, insufficient or improper lubrication, faulty sealing or inaccurate bearing selection. Since the above mentioned "causes" of bearing failure can be avoided by taking the proper precautions, and are not simply caused by material fatigue, they are considered separately from the flaking aspect.

The basic rating life can also be expressed in terms of hours of operation (revolution), and is calculated as shown in formula (3.2). p

L10h = 500 f h …………(3.2) fh

= fn

fn

= (

C

…………(3.3)

P

33.3 n

1/p

) ………(3.4)

3.2 Basic rating life and basic dynamic load rating where, L10h : Basic rating life, h fh : Life factor fn : Speed factor n : Rotational speed, r/ min

A group of seemingly identical bearings when subjected to identical load and operating conditions will exhibit a wide diversity in their durability. This "life" disparity can be accounted for by the difference in the fatigue of the bearing material itself. This disparity is considered statistically when calculating bearing life, and the basic rating life is defined as follows.

Ball bearings

The basic rating life is based on a 90% statistical model which is expressed as the total number of revolutions 90% of the bearings in an identical group of bearings subjected to identical operating conditions will attain or surpass before flaking due to material fatigue occurs. For bearings operating at fixed constant speeds, the basic rating life (90% reliability) is expressed in the total number of hours of operation.

n r/min

fn

60,000

0.082

Roller bearings

L10h n 80,000 60,000

fh

n r/min

fn

5.4

80,000

5

60,000

4.5

40,000

20,000

30,000

6,000 4,000

The basic dynamic load rating is an expression of the load capacity of a bearing based on a constant load which the bearing can sustain for one million revolutions (the basic life rating). For radial bearings this rating applies to pure radial loads, and for thrust bearings it refers to pure axial loads. The basic dynamic load ratings given in the bearing tables of this catalog are for bearings constructed of NTN standard bearing materials, using standard manufacturing techniques. Please consult NTN Engineering for basic load ratings of bearings constructed of special materials or using special manufacturing techniques.

3,000

1,500

8,000

0.18

0.24

2,000

10,000

15,000

0.20

3

10,000 8,000

0.18

0.20

6,000

20,000

0.24

3,000

0.26 0.28

2,000

6,000

10,000

800

0.30

6,000

1,500

4,000 0.35

600 0.4

3,000

2,000 0.5

1.8

600

0.7 0.8

300

1.4

200

1.3

150

1.2

100

1,000 900 800 700 600 500

1.0 400 1.1

20

1.2

15

1.3

1.49

2,000

1.5

1,500

300

1.0

1.4 1.3

0.7

40 30

20

0.80

15

0.74

700

500

1.0 400

1.2

1.44

1.0 0.95 0.90

300

1.3 1.4

10

1.1

600

1.1

0.85

1.2

800

0.9

0.95

1,000 900

60

0.75

200

0.6

0.85 0.80

200

Fig. 3.1 Bearing life rating scale

A-15

1.7 1.6

0.5

0.8

0.90

1.4

10

1.8

3,000

80 1.1

0.9 40

The relationship between the basic rating life, the basic dynamic load rating and the bearing load is given in formula (3.1).

1.9

1.5

0.6

80

30

2 4,000

0.4

1.6

1,500

200

60

1.9

800

400

300

100

1,000

0.35

1.7

400

150

2

2.5

8,000

0.30

1,000

3

15,000

0.22

4,000

2.5

0.26 0.28

30,000 0.16

3.5

20,000 0.16

0.22

3.5

20,000 15,000

0.14

8,000

40,000 0.14

4

15,000

10,000

4

0.12

30,000

40,000 0.12

4.6 4.5

60,000

40,000

0.10

fh

0.106

0.09

30,000

L10h n

0.76

●Load Rating and Life

Formula (3.2) can also be expressed as shown in formula (3.5). L10h =

10

where, Φ j : Frequency of individual load conditions L j : Life under individual conditions

6

C p ( )…(3.5) 60 n P

3.3 Machine applications and requisite life When selecting a bearing, it is essential that the requisite life of the bearing be established in relation to the operating conditions. The requisite life of the bearing is usually determined by the type of machine in which the bearing will be used, and duration of service and operational reliability requirements. A general guide to these requisite life criteria is shown in Table 3.1. When determining bearing size, the fatigue life of the bearing is an important factor; however, besides bearing life, the strength and rigidity of the shaft and housing must also be taken into consideration.

The relation ship between Rotational speed n and speed factor fn as well as the relation between the basic rating life L10h and the life factor fn is shown in Fig. 3.1. When several bearings are incorporated in machines or equipment as complete units, all the bearings in the unit are considered as a whole when computing bearing life (see formula 3.6). The total bearing life of the unit is a life rating based on the viable lifetime of the unit before even one of the bearings fails due to rolling contact fatigue. 1 L= ………(3.6) 1 1 1 1/e ( e + e+ … e) L2 Ln L1

3.4 Adjusted life rating factor The basic bearing life rating (90% reliability factor) can be calculated through the formulas mentioned earlier in Section 5.2. However, in some applications a bearing life factor of over 90% reliability may be required. To meet these requirements, bearing life can be lengthened by the use of specially improved bearing materials or special construction techniques. Moreover, according to elastohydrodynamic lubrication theory, it is clear that the bearing operating conditions (lubrication, temperature, speed, etc.) all exert an effect on bearing life. All these adjustment factors are taken into consideration when calculating bearing life, and using the life adjustment factor as prescribed in ISO 281, the adjusted bearing life can be determined.

where, e = 10/9....................For ball bearings e = 9/8......................For roller bearings L : Total basic rating life of entire unit, h L1 , L2 …Ln : Basic rating life of individual bearings, 1, 2, …n, h When the load conditions vary at regular intervals, the life can be given by formula (3.7). -1

Lm =(ΣΦ j /Lj ) …………………(3.7)

p

Lna = a1・a2・a3・ (C/P) …(3.8)

Table 3.1 Machine application and requisite life Service classification

Life factor and machine application L10h

∼4

4∼12

Machines used for short periods or used only occasionally

¡Electric hand tools ¡Household appliances

Short period or intermittent use, but with high reliability requirements

¡Medical appliances ¡Construction ¡Measuring instruments  equipment ¡Elevators ¡Cranes

Machines not in constant use, but used for long periods

¡Automobiles ¡Two-wheeled vehicles

12∼30

30∼60

×103 h 60∼

¡Farm machinery ¡Office equipment ¡Home air-

Machines in constant use over 8 hours a day

 conditioning motor

¡Crane (sheaves)

¡Small motors ¡Buses/trucks ¡Drivers ¡Woodworking  machines

¡Machine spindles ¡Industrial motors ¡Crushers ¡Vibrating screens

¡Main gear drives ¡Rubber/plastic ¡Calender rolls ¡Printing machines

¡Rolling mills ¡Escalators ¡Conveyors ¡Centrifuges

¡Railway vehicle  axles Air conditioners ¡Large motors ¡Compressor pumps

¡Locomotive axles ¡Traction motors ¡Mine hoists ¡Pressed flywheels

¡Papermaking  machines ¡Propulsion  equipment for  marine vessels ¡Water supply

 equipment ¡Mine drain  pumps/ventilators ¡Power generating  equipment

24 hour continuous operation, non-interruptable

A-16

●Load Rating and Life

where, Lna : Adjusted life rating in millions of revolutions (106)(adjusted for reliability, material and operating conditions) a1 : Reliability adjustment factor a2 : Material adjustment factor a3 : Operating condition adjustment factor

insufficient oil film formation can be caused, for example, by the lubricating oil viscosity being too low for the operating temperature (below 13 mm2/s for ball bearings; below 20 mm2/s for roller bearings); or by exceptionally low rotational speed (nr/min x d p mm less than 10,000). For bearings used under special operating conditions, please consult NTN Engineering.

3.4.1 Life adjustment factor for reliability a1 The values for the reliability adjustment factor a1 (for a reliability factor higher than 90%) can be found in Table 3.2.

As the operating temperature of the bearing increases, the hardness of the bearing material decreases. Thus, the bearing life correspondingly decreases. The operating temperature adjustment values are shown in Fig. 3.2.

Reliability %

Ln

Reliability factor a1

90

L10

1.00

95

L5

0.62

96

L4

0.53

97

L3

0.44

98

L2

0.33

99

L1

0.21

Life adjustment value a3

Table 3.2 Reliability adjustment factor values a1 1.0 0.8 0.6 0.4 0.2 100 150 200 250 300 Operating temperature ˚C

3.4.2 Life adjustment factor for material a2 The life of a bearing is affected by the material type and quality as well as the manufacturing process. In this regard, the life is adjusted by the use of an a2 factor.

Fig. 3.2 Life adjustment value for operating temperature

3.5 Basic static load rating

The basic dynamic load ratings listed in the catalog are based on NTN's standard material and process, therefore, the adjustment factor a2 =1. When special materials or processes are used the adjustment factor can be larger than 1.

When stationary rolling bearings are subjected to static loads, they suffer from partial permanent deformation of the contact surfaces at the contact point between the rolling elements and the raceway. The amount of deformity increases as the load increases, and if this increase in load exceeds certain limits, the subsequent smooth operation of the bearings is impaired.

NTN bearings can generally be used up to 120˚C. If bearings are operated at a higher temperature, the bearing must be specially heat treated (stabilized) so that inadmissible dimensional change does not occur due to changes in the micro-structure. This special heat treatment might cause the reduction of bearing life because of a hardness change.

It has been found through experience that a permanent deformity of 0.0001 times the diameter of the rolling element, occurring at the most heavily stressed contact point between the raceway and the rolling elements, can be tolerated without any impairment in running efficiency.

3.4.3 Life adjustment factor a3 for operating conditions The operating conditions life adjustment factor a3 is used to adjust for such conditions as lubrication, operating temperature, and other operation factors which have an effect on bearing life.

The basic rating static load refers to a fixed static load limit at which a specified amount of permanent deformation occurs. It applies to pure radial loads for radial bearings and to pure axial loads for thrust bearings. The maximum applied load values for contact stress occurring at the rolling element and raceway contact points are given below.

Generally speaking, when lubricating conditions are satisfactory, the a3 factor has a value of one; and when lubricating conditions are exceptionally favorable, and all other operating conditions are normal, a3 can have a value greater than one.

For ball bearings (except self-aligning ball bearings) For self-aligning ball bearings For roller bearings

However, when lubricating conditions are particularly unfavorable and the oil film formation on the contact surfaces of the raceway and rolling elements is insufficient, the value of a3 becomes less than one. This A-17

4,200 Mpa 4,600 Mpa 4,000 Mpa

●Load Rating and Life

Table 3.4 Minimum safety factor values S0

3.6 Allowable static equivalent load

Ball bearings

Roller bearings

High rotational accuracy demand

2

3

Normal rotating accuracy demand (Universal application)

1

1.5

0.5

1

Operating conditions

Generally the static equivalent load which can be permitted (See Section 4.4.2 page A-23) is limited by the basic static rating load as stated in Section 5.5. However, depending on requirements regarding friction and smooth operation, these limits may be greater or lesser than the basic static rating load.

Slight rotational accuracy deterioration permitted (Low speed, heavy loading, etc.)

In the following formula (3.9) and Table 3.4 the safety factor S0 can be determined considering the maximum static equivalent load.

Note 1: For spherical thrust roller bearings, min. S0 value=4. 2: For shell needle roller bearings, min. S0 value=3. 3: When vibration and/or shock loads are present, a load factor based on the shock load needs to be included in the P0 max value.

So =Co/Po…(3.9) where, So : Safety factor Co : Basic static rating load, N (radial bearings: Cor, thrust bearings: Coa) Po max : Maximum static equivalent load, N (radial: Por max, thrust: Coa max)

A-18

●Bearing Load Calculation 4. Bearing Load Calculation To compute bearing loads, the forces which act on the shaft being supported by the bearing must be determined. These forces include the inherent dead weight of the rotating body (the weight of the shafts and components themselves), loads generated by the working forces of the machine, and loads arising from transmitted power.

6

Kt =

19.1×10 ・H Dp・n

……(4.2)

{kgf}

Ks = Kt・tanα(Spur gear)………(4.2a) tanα = Kt・ cosβ(Helical gear)……(4.2b) Kr = √Kt +Ks ………………………(4.3) 2

2

Ka = Kt・tanβ(Helical gear) ……(4.4) where, Kt :Tangential gear load (tangential force), N Ks :Radial gear load (separating force), N Kr :Right angle shaft load (resultant force of tangential force and separating force), N Ka:Parallel load on shaft, N H :Transmission force , kW n :Rotational speed, r/min Dp:Gear pitch circle diameter, mm α:Gear pressure angle β:Gear helix angle

4.1 Load acting on shafts 4.1.1 Load factor There are many instances where the actual operational shaft load is much greater than the theoretically calculated load, due to machine vibration and/or shock. This actual shaft load can be found by using formula (4.1). K = fw・Kc ……………………………(4.1) where, K :Actual shaft load N{kgf} fw :Load factor (Table 4.1) Kc:Theoretically calculated value N{kgf} 4.1.2 Gear load The loads operating on gears can be divided into three main types according to the direction in which the load is applied; i.e. tangential (Kt), radial (Ks), and axial (Ka). The magnitude and direction of these loads differ according to the types of gears involved. The load calculation methods given herein are for two general-use gear and shaft arrangements: parallel shaft gears, and cross shaft gears. For load calculation methods regarding other types of gear and shaft arrangements, please consult NTN Engineering.

Ks

Kt Fig. 4.1 Spur gear loads

(1)Loads acting on parallel shaft gears The forces acting on spur and helical parallel shaft gears are depicted in Figs. 4.1, 4.2, and 4.3. The load magnitude can be found by using or formulas (4.2), through (4.4).

Ks

Ka

Kt Fig. 4.2

Table 4.1 Load factor fw fw



6

1.95×10 ・H = Dp・n

It is possible to calculate theoretical values for these loads; however, there are many instances where the load acting on the bearing is usually determined by the nature of the load acting on the main power transmission shaft.

Amount of shock

N

Helical gear loads

Application Kt

Electric machines, machine tools, 1.0∼1.2 measuring instruments.

Light shock

Railway vehicles, automobiles, rolling mills, metal working machines, paper making machines, rubber mixing 1.2∼1.5 machines, printing machines, aircraft, textile machines, electrical units, office machines.

Heavy shock

Crushers, agricultural equipment, 1.5∼3.0 construction equipment, cranes.

Kr

Ks

Dp

Very little or no shock

Fig. 4.3

A-19

Radial resultant forces

●Bearing Load Calculation

Because the actual gear load also contains vibrations and shock loads as well, the theoretical load obtained by the above formula should also be adjusted by the gear factor fz as shown in Table 4.2.

where, Ksp,Ksg :Pinion and gear separating force, N Kap,Kag:Pinion and gear axial load, N

Table 4.2 Gear factor fz Gear type

fz

Precision ground gears (Pitch and tooth profile errors of less than 0.02 mm)

1.05∼1.1

Ordinary machined gears (Pitch and tooth profile errors of less than 0.1 mm)

1.1∼1.3

For spiral bevel gears, the direction of the load varies depending on the direction of the helix angle, the direction of rotation, and which side is the driving side or the driven side. The directions for the separating force (Ks) and axial load (Ka) shown in Fig. 4.5 are positive directions. The direction of rotation and the helix angle direction are defined as viewed from the large end of the gear. The gear rotation direction in Fig. 4.5 is assumed to be clockwise (right).

(2)Loads acting on cross shafts Gear loads acting on straight tooth bevel gears and spiral bevel gears on cross shafts are shown in Figs. 4.4 and 4.5. The calculation methods for these gear loads are shown in Table 4.3. Herein, to calculate gear loads for straight bevel gears, the helix angle β= 0.

K tp

Ka p Ks p

Ka g Ks g

The symbols and units used in Table 4.3 are as follows: Kt :Tangential gear load (tangential force), N Ks :Radial gear load (separating force), N Ka :Parallel shaft load (axial load), N H :Transmission force, kW n :Rotational speed, r/min Dpm :Mean pitch circle diameter, mm α :Gear pressure angle β :Helix angle δ :Pitch cone angle

Kt g

Fig. 4.4 Loads on bevel gears Kt

Ka Ks δ β

In general, the relationship between the gear load and the pinion gear load, due to the right angle intersection of the two shafts, is as follows: Ksp=Kag…………………(4.5) Kap=Ksg…………………(4.6)

D pm 2

Fig. 4.5 Bevel gear diagram

Table 4.3 Loads acting on bevel gears Pinion

Rotation direction Helix direction

Unit N Clockwise

Counter clockwise

Clockwise

Counter clockwise

Right

Left

Left

Right

6

Kt=

Tangential load Kt

6

19.1×10 ・H Dpm・n

1.95×10 ・H

,

Dpm・n

Driving side

Ks=Kt

tanα cosδ + tanβsinδ cosβ

Ks=Kt

tanα cosδ - tanβsinδ cosβ

Driven side

Ks=Kt

tanα cosδ - tanβsinδ cosβ

Ks=Kt

tanα cosδ + tanβsinδ cosβ

Driving side

Ka=Kt

tanα sinδ - tanβcosδ cosβ

Ka=Kt

tanα sinδ + tanβcosδ cosβ

Driven side

Ka=Kt

tanα sinδ + tanβcosδ cosβ

Ka=Kt

tanα sinδ - tanβcosδ cosβ

Separating force Ks

Axial load Ka

A-20

●Bearing Load Calculation

4.1.2 Chain / belt shaft load The tangential loads on sprockets or pulleys when power (load) is transmitted by means of chains or belts can be calculated by formula (4.7).

4.2 Bearing load distribution For shafting, the static tension is considered to be supported by the bearings, and any loads acting on the shafts are distributed to the bearings.

6

19.1 ×10 ・H Dp・n

Kt=

N



For example, in the gear shaft assembly depicted in Fig. 4.7, the applied bearing loads can be found by using formulas (4.10) and (4.11).

……………(4.7)

6

1.95×10 ・H {kgf} Dp・n



FrA=

where, Kt :Sprocket/pulley tangential load, N

a+b d F1+ b c+d

FrB=−

H :Transmitted force, kW

F2 ……………(4.10)

a c F1+ F2 ……………(4.11) b c+d

where, FrA:Radial load on bearing A, N FrB:Radial load on bearing B, N F1, F2:Radial load on shaft, N

Dp:Sprocket/pulley pitch diameter,mm For belt drives, an initial tension is applied to give sufficient constant operating tension on the belt and pulley. Taking this tension into account, the radial loads acting on the pulley are expressed by formula (4.8). For chain drives, the same formula can also be used if vibrations and shock loads are taken into consideration. Kr=f b・Kt…(4.8) where, Kr:Sprocket or pulley radial load, N

a

f b:Chain or belt factor (Table 4.3)

Table. 4.4 chain or belt factor f b Chain or belt type

b

Bearing A

Bearing B

FrA

FrB

fb

Chain (single)

1.2∼1.5

V-belt

1.5∼2.0

Timing belt

1.1∼1.3

Flat belt (w / tension pulley)

2.5∼3.0

Flat belt

3.0∼4.0

F!

Fig. 4.7 Gear shaft

se side F1 Loo

Dp

Kr F2 Tens ion

[email protected] c

side

Fig. 4.6 Chain / belt loads

A-21

d

●Bearing Load Calculation

(3) Linear fluctuating load The mean load, Fm, can be approximated by formula (4.14).

4.3 Mean load The load on bearings used in machines under normal circumstances will, in many cases, fluctuate according to a fixed time period or planned operation schedule. The load on bearings operating under such conditions can be converted to a mean load (Fm), this is a load which gives bearings the same life they would have under constant operating conditions.

Fm=

Fmin+2Fmax …(4.14) 3

F

(1) Fluctuating stepped load The mean bearing load, Fm, for stepped loads is calculated from formula (4.12). F1 , F2 ....... Fn are the loads acting on the bearing; n1, n2.......nn and t1, t2....... tn are the bearing speeds and operating times respectively.

Fmax Fm

Fmin

p

Σ (Fi ni ti) 1/p …………………(4.12) Σ (ni ti)〕

Fm= 〔

t

where:

Fig. 4.10 Linear fluctuating load

For ball bearings For roller bearings

p=3 p=10/3

(4) Sinusoidal fluctuating load The mean load, Fm, can be approximated by formulas (4.15) and (4.16).

F F1 F2

case (a) case (b)

Fm

Fn n 1 t1

n2t2

Fm=0.75 Fmax ………(4.15) Fm=0.65 Fmax ………(4.16)

F

n n tn Fmax

Fig. 4.8 Stepped load

Fm

(2) Consecutive series load Where it is possible to express the function F(t) in terms of load cycle to and time t, the mean load is found by using formula (4.13). Fm= 〔

to 1 p (t)d t ∫ F to o

t

(a) F

1/p

〕………………(4.13)

Fmax

where: p=3 p=10/3

For ball bearings For roller bearings

Fm

(b) F Fig. 4.11 Sinusoidal variable load

F(t) Fm

0

to

2to

t

Fig. 4.9 Time function series load

A-22

t

●Bearing Load Calculation

where,

4.4 Equivalent load

Por:Static equivalent radial load, N Fr :Actual radial load, N Fa :Actual axial load, N Xo :Static radial load factor Yo :Static axial load factor The values for Xo and Yo are given in the respective bearing tables.

4.4.1 Dynamic equivalent load When both dynamic radial loads and dynamic axial loads act on a bearing at the same time, the hypothetical load acting on the center of the bearing which gives the bearings the same life as if they had only a radial load or only an axial load is called the dynamic equivalent load.

(2) Static equivalent axial load For spherical thrust roller bearings the static equivalent axial load is expressed by formula (4.21). Poa=Fa+2.7Fr…(4.21) where, Poa:Static equivalent axial load, N Fa :Actual axial load, N Fr :Actual radial load, N Provided that Fr / Fa ≦ 0.55 only.

For radial bearings, this load is expressed as pure radial load and is called the dynamic equivalent radial load. For thrust bearings, it is expressed as pure axial load, and is called the dynamic equivalent axial load. (1) Dynamic equivalent radial load The dynamic equivalent radial load is expressed by formula (4.17). where, Pr:Dynamic equivalent radial load, N Fr:Actual radial load, N Fa:Actual axial load, N X :Radial load factor Y :Axial load factor The values for X and Y are listed in the bearing tables. (2) Dynamic equivalent axial load As a rule, standard thrust bearings with a contact angle of 90˚ cannot carry radial loads. However, self-aligning thrust roller bearings can accept some radial load. The dynamic equivalent axial load for these bearings is given in formula (4.18). Pa=Fa+1.2Fr………………(4.18) where, Pa:Dynamic equivalent axial load, N Fa:Actual axial load, N Fr :Actual radial load, N Provided that Fr / Fa ≦ 0.55 only. 4.4.2 Static equivalent load The static equivalent load is a hypothetical load which would cause the same total permanent deformation at the most heavily stressed contact point between the rolling elements and the raceway as under actual load conditions; that is when both static radial loads and static axial loads are simultaneously applied to the bearing. For radial bearings this hypothetical load refers to pure radial loads, and for thrust bearings it refers to pure centric axial loads. These loads are designated static equivalent radial loads and static equivalent axial loads respectively. (1) Static equivalent radial load For radial bearings the static equivalent radial load can be found by using formula (4.19) or (4.20). The greater of the two resultant values is always taken for Por. Por=Xo Fr+Yo Fa… (4.19) Por=Fr …………… (4.20)

A-23

●Bearing Load Calculation

4.4.3 Load calculation for angular ball bearings and tapered roller bearings For angular ball bearings and tapered roller bearings the pressure cone apex (load center) is located as shown in Fig. 4.12, and their values are listed in the bearing tables.

α

α

Fa Load center

When radial loads act on these types of bearings the component force is induced in the axial direction. For this reason, these bearings are used in pairs (either DB or DF arrangements). For load calculation this component force must be taken into consideration and is expressed by formula (4.22).

Fa

Fr

Load center

Fr

a

0.5Fr Fa = Y …………………(4.22) The equivalent radial loads for these bearing pairs are given in Table 4.5.

a Fig. 4.12 Pressure cone apex

Table 4.5 Bearing arrangement and dynamic equivalent load Bearing arrangement DB arrangement

Brg1

Load condition

Brg2

0.5Fr1 0.5Fr2 ≦ + Fa Y1 Y2

Fa

F r1

DF arrangement

F r2

Brg2

Brg1 Fa

Fr2

DB arrangement

0.5Fr1 0.5Fr2 > + Fa Y1 Y2

Brg1

Fr1

Brg2 Fa

Fr1

DF arrangement

Fr2

Brg2

Brg1 0.5Fr2 0.5Fr1 > + Fa Y1 Y2

Fa

Fr2

0.5Fr2 0.5Fr1 ≦ + Fa Y2 Y1

Fr1

Axial load

Equivalent radial load

Fa1= 0.5Fr2 + Fa Y2

Pr1=XFr1+Y1 0.5Fr2 + Fa Y2

Fa2= 0.5Fr2 Y2

Pr2=Fr2

Fa1= 0.5Fr1 Y1

Pr1=Fr1

Fa2= 0.5Fr1 − Fa Y1

Pr2=XFr2+Y2 0.5Fr1 − Fa Y1

Fa1= 0.5Fr1 Y1

Pr1=Fr1

Fa2= 0.5Fr1 + Fa Y1

Pr2=XFr2+Y2 0.5Fr1 + Fa Y1

Fa1= 0.5Fr2 − Fa Y2

Pr1=XFr1+Y1 0.5Fr2 − Fa Y2

Fa2= 0.5Fr2 Y2

Pr2=Fr2

Note 1: The above are valid when the bearing internal clearance and preload are zero. 2: Radial forces in the opposite direction to the arrow in the above illustration are also regarded as positive.

A-24

●Bearing Load Calculation

●Bearing Load Calculation

4.6 Bearing rated life and load calculation examples

――――――――――――――――――――――――――――――――――――

(Example 3) Determine the optimum model number for a cylindrical roller bearing operating at 450 r/min, with a radial load Fr of 200 kN, and which must have a life of over 20,000 hours.

In the examples given in this section, for the purpose of calculation, all hypothetical load factors as well as all calculated load factors may be presumed to be included in the resultant load values.

――――――――――――――――――――――――――――――――――――

From Fig. 3.1 the life factor fh = 3.02 (L10h at 20,000), and the speed factor fn = 0.46 (n = 450 r/min). To find the required basic dynamic load rating, Cr, formula (3.3) is used.

――――――――――――――――――――――――――――――――――――

(Example 1) What is the rating life in hours of operation (L10h) for deep groove ball bearing 6208 operating at 650 r/min, with a radial load Fr of 3.2 kN ?

fh 3.02 Pr = ×200 0.46 fn =1 313kN{134,000kgf}

Cr=

――――――――――――――――――――――――――――――――――――

From formula (4.17) the dynamic equivalent radial load: Pr=Fr=3.2kN{326kgf} The basic dynamic rated load for bearing 6208 (from bearing table) is 29.1 kN, and the speed factor (fn) for ball bearings at 650 r/min (n) from Fig. 4.1 is 0.37. The life factor, fh, from formula (3.3) is: f h=fn

From the bearing table, the smallest bearing that fulfills all the requirements is NU2336 (Cr = 1380 kN). ――――――――――――――――――――――――――――――――――――

(Example 4) What are the rated lives of the two tapered roller bearings supporting the shaft shown in Fig. 4.14 Bearing @ is an 4T-32206 with a Cr = 54.5 kN, and bearing ! is an 4T-32205 with a Cr = 42.0 kN. The spur gear shaft has a pitch circle diameter Dp of 150 mm, and a pressure angle α of 20˚. The gear transmitted force HP = 150 kW at 2,000 r/min (speed factor n).

29.1 Cr =0.37× =3.36 3.2 Pr

Therefore, with fh = 3.36 from Fig. 3.1 the rated life, L10h, is approximately 19,000 hours. ――――――――――――――――――――――――――――――――――――

(Example 2) What is the life rating L10h for the same bearing and conditions as in Example 1, but with an additional axial load Fa of 1.8 kN ?

――――――――――――――――――――――――――――――――――――

――――――――――――――――――――――――――――――――――――

To find the dynamic equivalent radial load value for Pr, the radial load factor X and axial load factor Y are used. The basic static load rating, Cor, for bearing 6208 is 17.8 kN.

Bearings1 (4T-32206) 150

Bearings2 (4T-32205)

1.8 Fa = =0.10 17.8 Cor

Therefore, from the bearing tables e= 0.29. For the operating radial load and axial load:

70

1.8 Fa = =0.56>e=0.29 3.2 Fr

Fig. 4.14 Spur gear diagram

From the bearing tables X = 0.56 and Y = 1.48, and from formula (4.17) the equivalent radial load, Pr, is:

The gear load from formulas (4.1), (4.2a) and (4.3) is: 6

19.1×10 ・H 19,100×150 = Dp・n 150×2,000 =9.55kN{974kgf}

Kt =

Pr=XFr+YFa=0.56×3.2+1.48×1.8 =4.46

100 170

kN{455kgf}

Ks =Kt・tanα=9.55×tan20˚

From Fig. 3.1 and formula (3.3) the life factor, fh, is:

=3.48kN{355kgf}

29.1 Cr f h=fn = 0.37× = 2.41 4.46 Pr

Kr =√Kt2 +Ks2 =√9.552 +3.482 =10.16kN{1,040kgf}

The radial loads for bearings ! and @ are:

Therefore, with life factor fh = 2.41, from Fig. 5.1 the rated life, L10h, is approximately 7,000 hours.

Fr1 =

A-26

100 100 Kr = ×10.16=5.98kN{610kgf} 170 170

●Bearing Load Calculation

The equivalent radial load, Pr, for each operating condition is found by using formula (4.17) and shown in Table 4.8. Because all the values for Fri and Fai from the bearing tables are greater than Fa / Fr > e= 0.18, X = 0.67 e Y2 = 5.50.

70 70 Kr= ×10.16=4.18kN{426kgf} 170 170

Fr2 =

0.5Fr1 0.5Fr2 =1.87> =1.31 Y1 Y2

Pri = XFri +Y2 Fai = 0.67Fri + 5.50Fai

The equivalent radial load is:

Table 4.8

Pr1 =Fr1 =5.98kN{610kgf} Pr2 =XFr2 +Y2

0.5Fr1 Y1

=0.4×4.18+1.67×1.87 =4.66kN{475kgf}

From formula (3.3) and Fig. 3.1 the life factor, fh, for each bearing is:

Fm = 〔

(Example 6) Find the Basic rated life and limit of allowable axial load when operated following. Provided that intermittent axial load and oil lubricant. Fr=10kN{1,020kgf}

n =2,000 r/min ――――――――――――――――――――――――――――――――――――

The equivalent radial load is: Pr=Fr=10kN{1,020kgf} The speed factor of cylindrical roller bearing, fn , at n= 2,000 r/min

The combined bearing life, Lh, from formula (3.6) is: 1

fn = 〔

1/e



33.3 2,000

3/10

〕 =0.293

The life factor, f h, from formula (3.4) 1



・ni・φi)3/10 〕 =48.1kN{4,906kgf} i φi ) Σ (n・

――――――――――――――――――――――――――――――――――――

Lh1 =13,200×a2 =13,200×1.4 =18,480 ore Lh2 =12,700×a2 =12,700×1.4 =17,780 ore



17.7{ 1805 } 30.0{ 3060 } 46.4{ 4733 } 55.3{ 5641 } 75.1{ 7660 }

10/3

Cr2 =0.293×42.0/4.66=2.64 Pr2

1 1 e+ e Lh1 Lh2

1 2 3 4 5

Σ (Pri

Therefore: a2 = 1.4(4T-tapered roller bearings shown in B-136)

Lh=

Equivalent radial load. Pri kN{ kgf }

From formula (4.12) the mean load, Fm, is:

Cr1 f h1= fn =0.293×54.5/5.98=2.67 Pr1 f h2= fn

Condition No. i

1 1 〔 18,4809/8 + 17,7809/8

124 =3.63 10 There fore the basic rated life, L10h ,from formula (3.3) f h=0.293×

8/9



=9,780 hour

L10h =500×3.63 ≒24,000 And next, allowable axial load of cylindrical roller bearing is shown in a heading 4.5.

――――――――――――――――――――――――――――――――――――

(Example 5) Find the mean load for spherical roller bearing 23932 (La = 320 kN) when operated under the fluctuating conditions shown in Table 4.7.

The value of coefficient, k, show in table 4.6. k = 0.065 (60+130) /2=95mm,n=2,000 r/min dp= Take into consideration that intermittent axial load.

――――――――――――――――――――――――――――――――――――

4

Condition Operating time No. φi i %

Radial load Fri kN{ kgf }

Axial load Fai kN{ kgf }

Revolution ni rpm

1

5

10{ 1020 }

2{ 204 }

1200

2

10

12{ 1220 }

4{ 408 }

1000

3

60

20{ 2040 }

6{ 612 }

800

4

15

25{ 2550 }

7{ 714 }

600

5

10

30{ 3060 }

10{ 1020 }

400

4

dp・n×10 =19×10 The allowable face pressure of the collar, Pt , from Fig.4.13.

Table 4.7

Pt =40MPa There fore the allowable axial load, Pz, following 2

Pz =0.065×60 ×40=936N{95.5kgf} and meet a demand Fa max<0.4×10,000=4,000N from table 4.6.

A-27

●Boundary Dimensions and Bearing Number Codes

5.1 Boundary dimensions A rolling bearing's major dimensions, known as "boundary dimensions," are shown in Figs. 5.1 - 5.3. To facilitate international bearing interchangeability and economical bearing production, bearing boundary dimensions have been standardized by the International Standards Organization (ISO). In Japan, rolling bearing boundary dimensions are regulated by Japanese Industrial Standards (JIS B 1512). Those boundary dimensions which have been standardized include: bearing bore diameter, outside diameter, width/height, and chamfer dimensions - all important dimensions when considering the compatibility

A-28

●Boundary Dimensions and Bearing Number Codes

standardized, and have been listed here for purposes of future standardization, there are many standard bearing dimensions which are not presently manufactured.

related specifications. Bearing numbers are comprised of a "basic number" followed by "supplementary codes." The makeup and order of bearing numbers is shown in Table 5.2.

Boundary dimensions for radial bearings (excluding tapered roller bearings) are shown in the attached tables.

The basic number indicates general information about a bearing, such as its fundamental type, boundary dimensions, series number, bore diameter code and contact angle. The supplementary codes derive from prefixes and suffixes which indicate a bearing's tolerances, internal clearances, and related specifications.

5.2 Bearing numbers Rolling bearing part numbers indicate bearing type, dimensions, tolerances, internal construction, and other

(Bearing number examples)

6205ZZC3/2A

23034BD1 Lubrication hole/lubrication groove Shell Alvania 2 grease Radial internal clearance C3 shielded (both) Nominal bore diameter 25mm Diameter series 2 Deep groove ball bearing

(when outer diameter is less than 320mm) Type B Nominal bore diameter 170mm Dimension series 0 Width series 3 Spherical roller bearing

240/750BK30

7012CDB/GMP4

Bore diameter: tapered inner ring bore, standard taper ratio 1:30

Tolerances JIS Class 4 Medium preload Back-to-back duplex arrangement Contact angle 15° Nominal bore diameter 60mm Dimension series 0 Angular contact ball bearing

NU320G1C3

Type B Nominal bore diameter 750mm Dimension series 0 Width series 4 Spherical roller bearing

51120L1P5 Radial internal clearance C3 High strength machined brass rivetless cage with square holes Dimension series 3 Cylindrical roller bearing NU type

Tolerances JIS Class 5 High strength, machined brass cage Nominal bore diameter 100mm Diameter series 1 Height series 1 Thrust ball bearing

4T−30208 Nominal bore diameter 40mm Diameter series 2 Width series 0 Tapered roller bearing Spec. 4T (top tapered)

A-29

●Boundary Dimensions and Bearing Number Codes

Table 5.2 Bearing number composition and arrangement Basic number Supplementary prefix code Special application/material/ heat treatment code 4T: ET: E:

4T tapered roller bearings ET tapered roller bearings carburized alloy steel bearings

F:

stainless steel bearings

H:

high speed steel bearings

M:

plated bearings

5S:

ceramic rolling element bearings

HL:

HL (high lubrication) roller bearings

TS2: dimension stabilized bearing for high temperature use (to 160°C) TS3:

TS4:

dimension stabilized bearing for high temperature use (to 200°C) dimension stabilized bearing for high temperature use (to 250°C)

Basic numbers Bearing series code

Dimension series code 1

Width/height series

Diameter series

Deep groove ball bearings (type code 6) 68 69 60 62 63

(1) (1) (1) (0) (0)

8 9 0 2 3

Angular contact ball bearings (type code 7) 78 79 70 72 73

(1) (1) (1) (0) (0)

8 9 0 2 3

Self-aligning ball bearings (type code 1,2) 12 13 22 23

(0) (0) (2) (2)

2 3 2 3

Cylindrical roller bearings (type code NU, N, NF, NNU, NN, etc.) NU10 NU2 NU22 NU3 NU23 NU4 NNU49 NN30

1 (0) 2 (0) 2 (0) 4 3

0 2 2 3 3 4 9 0

Tapered roller bearings (type code 3) 329X 320X 302 322 303 303D 313X 323

2 2 0 2 0 0 1 2

9 0 2 2 3 3 3 3

Bore diameter number bore Code diameter mm

/0.6 /1.5 /2.5

0.6 1.5 2.5

1

1





9

9

00 01 02 03

10 12 15 17

/22 /28 /32

22 28 32

04 05 06

20 25 30





88 92 96

440 460 480

/500 /530 /560

500 530 560

/2,360 /2,500

2,360 2,500

Contact angle code 1

Code

Contact angle

Angular contact ball bearings (A) Standard contact angle 30˚ B Standard contact angle 40˚ Standard contact angle 15˚ C Tapered roller bearings (B) Contact angle over 10˚ to/including 17˚ C Contact angle over 17˚ D to/including 24˚ Contact angle over 24˚ to/including 32˚



Spherical roller bearings (type code 2) 239 230 240 231 241 222 232 213 223

3 3 4 3 4 2 3 1 2

9 0 0 1 1 2 2 3 3

Single direction thrust ball bearings (type code 5) 511 512 513 514

1 1 1 1

1 2 3 4

Cylindrical roller thrust bearings (type code 8) 811 812 893

1 1 9

1 2 3

Self-aligning thrust roller bearings (type code 2) 292 9 2 293 9 3 294 9 4

1 Codes in ( ) are not shown in nominal numbers. Note: Please consult NTN Engineering concerning bearing series codes, and supplementary prefix/suffix codes not listed in the above table.

A-30

●Boundary Dimensions and Bearing Number Codes

Supplementary suffix codes Internal modifications code U: Internationally interchangeable tapered roller bearings R: Noninternationally interchangeable tapered roller bearings ST: Low torque tapered roller bearings HT: High axial load use cylindrical roller bearings

1

Cage code

Seal / Shield code

Raceway configuration code

Duplex Internal clearance arrangement code /preload code

L1: High strength, machined brass cage

LLB: Synthetic rubber seal (noncontact type)

K: Tapered inner ring bore, standard taper ratio 1:12

DB: Back-to-back arrangement

F1: Machined carbon steel cage G1: High strength machined brass rivet-less cage with square holes, G2: Pin type cage J: Pressed steel cage T2: Plastic mold cage

LLU: Synthetic rubber K30: seal Tapered inner (contact type) ring bore, standard taper LLH: ratio 1:30 Synthetic rubber seal N: (low-torque type) Snap ring groove ZZ: Steel shield NR: Snap ring groove with snap ring D: Lubrication hole/lubrication groove

DF: Face-to-face arrangement DT: Tandem arrangement D2: Two matched, paired bearings

C2: Internal clearance less than normal (CN): Normal clearance C3: Internal clearance greater than normal

C4: Internal G: Flush ground clearance greater than C3 +α: C5: Spacer Internal (α= spacer’s clearance standard width greater than C4 dimensions)

P6: JIS Class 6 P5: JIS Class 5 P4: JIS Class 4 P2: JIS Class 2

/8A: Shell Alvania EP2 grease

3: Inch series tapered roller bearing (ABMA) Class 3

/LP03: Solid grease (for use with solid grease bearings)

/GL: Light preload

00: Inch series tapered roller bearing (ABMA) Class 00

GH: Heavy preload

/3A: Shell Alvania 3 grease

/5K: MULTEMP SRL

0: Inch series tapered roller bearing (ABMA) Class 0

GM: Medium preload

/2A: Shell Alvania 2 grease

2: Inch series tapered roller bearing (ABMA) Class 2

CM: Radial internal clearance for electric motor use

GN: Normal preload

A-31

Tolerance code Lubrication code

/LX11: Barierta JFE552

A-30

●Bearing Tolerances 6. Bearing Tolerances Running accuracy Running accuracy constitutes the acceptable values for inner and outer ring radial runout and axial runout, inner ring side runout, and outer ring outer diameter runout. Allowable rolling bearing tolerances have been established according to precision classes. JIS Class 0 corresponds to normal precision class bearings, and precision becomes progressively higher as the class number becomes smaller; i.e., Class 6 is less precise than Class 5, which is less precise than Class 4, and so on. Table 6.1 indicates which standards and precision classes are applicable to the major bearing types. Table 6.2 shows a relative comparison between JIS B 1514 precision class standards and other standards. For greater detail on allowable error limitations and values, refer to Tables 6.3 - 6.9. Allowable values for chamfer dimensions are shown in Table 6.10, and allowable error limitations and values for radial bearing inner ring tapered bores are shown in Table 6.11.

6.1 Dimensional accuracy and running accuracy Bearing “tolerances” or dimensional accuracy and running accuracy, are regulated by ISO and JIS B 1514 standards (rolling bearing tolerances). For dimensional accuracy, these standards prescribe the tolerances necessary when installing bearings on shafts or in housings. Running accuracy is defined as the allowable limits for bearing runout during operation. Dimensional accuracy Dimensional accuracy constitutes the acceptable values for bore diameter, outer diameter, assembled bearing width, and bore diameter uniformity as seen in chamfer dimensions, allowable inner ring tapered bore deviation and shape error. Also included are, average bore diameter variation average, outer diameter variation, average outer diameter unevenness, as well as raceway width and height variation (for thrust bearings).

Table 6.1 Bearing types and applicable tolerance Applicable standard

Bearing type

Tolerance table

Appliclble tolerance

Deep groove ball bearing

class 0

class 6

class 5

class 4

class 2

Angular contact ball bearings

class 0

class 6

class 5

class 4

class 2





Self-aligning ball bearings

class 0





class 0

class 6

class 5

class 4 class 2

Needle roller bearings

class 0

class 6

class 5

class 4



Spherical roller bearings

class 0









ISO492

Cylindrical roller bearigns

Tapered roller bearings

Table 6.3

metric

ISO492

class 0,6X

class 6

class 5

class 5



Table 6.4

Inch

AFBMA Std.19

class 4

class 2

class 3

class 0

class 00

Table 6.5

J series

ANSI/AFBMA Std.19.1 class K

class N

class C

class B

class A

Table 6.6

class 0

class 6

class 5

class 4



Table 6.7

class 0









Table 6.8



class 5

class 4



Table 6.9

Thrust ball bearings

ISO199

Spherical roller thrust bearings Double direction angular contact thrust ball bearings

NTN standard



Table 6.2 Comparison of tolerance classifications of national standards Standard Japanese industrial standard (JIS)

International Organization for Standardization (ISO)

Tolerance Class class 0,6X

class 6

class 5

class 4

class 2

All type

ISO 492

Normal class Class 6X

Class 6

Class 5

Class 4

Class 2

Radial bearings

ISO 199

Normal class

Class 6

Class 5

Class 4



ISO 578

Class 4



Class 3

Class 0 Class 00 Tapered roller bearings (Inch series)





Class 5A Class 4A

P0

P6

JIS B 1514

ISO 1224 Deutsches Institut fur Normung(ISO)

American National Standards Institute (ANSI) Anti-Friction Bearing Manufacturers (AFBMA)

Bearing Types

DIN 620 1

P5

P4

Thrust ball bearings



Precision instrument bearings

P2

All type

ABEC-3 ABEC-5 ABEC-7 ABEC-9 RBEC-3 RBEC-5

Radial bearings (Except tapered roller bearings)

Class K

Class N Class C Class B

Tapered roller bearings (Metric series)

Class 4

Class 2

ANSI/ABMA Std.20

ABEC-1 RBEC-1

ANSI/ABMA Std.19.1 ANSI/ABMA Std.19

Class 3

Class 0 Class 00 Tapered roller bearings (Inch series)

1 "ABEC" is applied for ball bearings and "RBEC" for roller bearings. Notes 1: JIS B 1514, ISO 492 and 199, and DIN 620 have the same specification level. 2: The tolerance and allowance of JIS B 1514 are a little different from those of AFBMA standards.

A-33

Class A

●Bearing Tolerances

Table 6.3 Tolerance for radial bearings (Except tapered roller bearings) Table 6.3 (1) Inner rings  Nominal   bore  diameter

Single radial plane bore diameter variation

Single plane mean bore diameter deviation

             

           ∆dmp

Vdp

   d  

diameter series 9

mm class 0

over

incl.

high

class 6

low high

class 5

low high

class 4

low high

1

class 2

1

maxdiameter series 0.1

maxdiameter series 2.3.4

class class class class class class class class class class class class class class class 0 6 5 4 2 0 6 5 4 2 0 6 5 4 2

max

max

low high

low

0.6 4) 2.5 2.5 10 10 18

0 0 0

-8 -8 -8

0 0 0

-7 -7 -7

0 0 0

-5 -5 -5

0 0 0

-4 -4 -4

0 0 0

-2.5 -2.5 -2.5

10 10 10

9 9 9

5 5 5

4 2.5 4 2.5 4 2.5

18 30 50

30 50 80

0 0 0

-10 -12 -15

0 0 0

-8 -10 -12

0 0 0

-6 -8 -9

0 0 0

-5 -6 -7

0 0 0

-2.5 -2.5 -4

13 10 15 13 19 15

6 8 9

5 2.5 6 2.5 7 4

80 120 150

120 150 180

0 0 0

-20 -25 -25

0 0 0

-15 -18 -18

0 0 0

-10 -13 -13

0 0 0

-8 -10 -10

0 0 0

-5 -7 -7

180 250 315

250 315 400

0 0 0

-30 -35 -40

0 0 0

-22 -25 -30

0 0 0

-15 -18 -23

0 ー ー

-12 ー ー

0 ー ー

400 500 630

500 630 800

0 0 0

-45 -50 -75

0 0 ー

-35 -40 ー

ー ー ー

ー ー ー

ー ー ー

ー ー ー

800 1,000 1,250 1,600

1,000 1,250 1,600 2,000

0 0 0 0

-100 -125 -160 -200

ー ー ー ー

ー ー ー ー

ー ー ー ー

ー ー ー ー

ー ー ー ー

ー ー ー ー

max

7 7 7

4 4 4

3 3 3

2.5 2.5 2.5

6 6 6

5 5 5

4 4 4

3 3 3

2.5 2.5 2.5

10 8 12 10 19 15

5 6 7

4 5 5

2.5 8 2.5 9 4 11

6 8 9

5 6 7

4 5 5

2.5 2.5 4

25 19 10 8 5 31 23 13 10 7 31 23 13 10 7

25 19 8 31 23 10 31 23 10

6 8 8

5 7 7

15 11 8 19 14 10 19 14 10

6 8 8

5 7 7

-8 ー ー

38 28 15 12 8 44 31 18 ー ー 50 38 23 ー ー

38 28 12 9 8 44 31 14 ー ー 50 38 18 ー ー

23 17 12 9 8 26 19 14 ー ー 30 23 18 ー ー

ー ー ー

ー ー ー

56 44 ー ー ー 63 50 ー ー ー 94 ー ー ー ー

56 44 ー ー ー 63 50 ー ー ー 94 ー ー ー ー

34 26 ー ー ー 38 30 ー ー ー 55 ー ー ー ー

ー ー ー ー

ー ー ー ー

125 155 200 250

ー ー ー ー

ー ー ー ー

ー ー ー ー

ー ー ー ー

8 8 8

125 155 200 250

ー ー ー ー

ー ー ー ー

ー ー ー ー

ー 75 ー ー 94 ー ー 120 ー ー 150 ー

ー ー ー ー

ー ー ー ー

ー ー ー ー

1 The dimensional difference ∆ds of bore diameter to applied for class 4 and 2 is the same as the tolerance of dimentional difference ∆dmp of average bore diameter. However, the dimensional difference is applied to diameter series 0, 1, 2, 3 and 4 against Class 4, and to all the diameter series against Class 2.

Table 6.3 (2) Outer rings  Nominal  outside  diameter





Single plane mean outside diameter deviation

         

∆Dmp

mm class 0

over

class 6

incl.

high

6 18 30

0 0 0

-8 -8 -9

0 0 0

-7 -7 -8

30 50 80

50 80 120

0 0 0

-11 -13 -15

0 0 0

120 150 180

150 180 250

0 0 0

-18 -25 -30

250 315 400

315 400 500

0 0 0

500 630 800

630 800 1,000

1,000 1,250 1,600 2,000

1,250 1,600 2,000 2,500

2.5 6 18

VDp

            open type

   D  

Single radial plane outside diameter variation

             

8

low high

class 5

low high

class 4

5

class 2

5

diameter series 9

maxdiameter series 0.1

maxdiameter series 2.3.4

class class class class class class class class class class class class class class class 0 6 5 4 2 0 6 5 4 2 0 6 5 4 2

low high

low high

low

max

0 0 0

-5 -5 -6

0 0 0

-4 -4 -5

0 0 0

-2.5 -2.5 -4

10 9 10 9 12 10

-9 -11 -13

0 0 0

-7 -9 -10

0 0 0

-6 -7 -8

0 0 0

-4 -4 -5

14 11 7 16 14 9 19 16 10

0 0 0

-15 -18 -20

0 0 0

-11 -13 -15

0 0 0

-9 -10 -11

0 0 0

-5 -7 -8

-35 -40 -45

0 0 0

-25 -28 -33

0 0 0

-18 -20 -23

0 0 ー

-13 -15 ー

0 0 ー

-8 -10 ー

0 0 0

-50 -75 -100

0 0 0

-38 -45 -60

0 0 ー

-28 -35 ー

ー ー ー

ー ー ー

ー ー ー

0 0 0 0

-125 -160 -200 -250

ー ー ー ー

ー ー ー ー

ー ー ー ー

ー ー ー ー

ー ー ー ー

ー ー ー ー

ー ー ー ー

max

max

7 7 8

4 4 5

3 2.5 3 2.5 4 4

11 9 13 11 19 16

5 7 8

23 19 11 9 5 31 23 13 10 7 38 25 15 11 8

23 19 8 31 23 10 38 25 11

44 31 18 13 8 50 35 20 15 10 56 41 23 ー ー

44 31 14 10 8 50 35 15 11 10 56 41 17 ー ー

26 19 14 10 8 30 21 15 11 10 34 25 17 ー ー

ー ー ー

63 48 28 ー ー 63 48 21 ー ー 94 56 35 ー ー 94 56 26 ー ー 125 75 ー ー ー 125 75 ー ー ー

38 29 21 ー ー 55 34 26 ー ー 75 45 ー ー ー

ー ー ー ー

155 200 250 310

ー ー ー ー

5 5 6

ー ー ー ー

4 2.5 4 2.5 5 4 6 4 7 4 8 5

ー ー ー ー

ー ー ー ー

8 8 9

155 200 250 310

ー ー ー ー

ー ー ー ー

5 5 6

4 4 5

3 3 4

2.5 2.5 4

5 4 5 4 6 5

8 7 10 8 11 10

5 7 8

5 5 6

4 4 5

7 5 8 7 8 8

14 11 8 19 14 10 23 15 11

7 8 8

5 7 8

ー ー ー ー

6 6 7

ー 94 ー ー ー 120 ー ー ー 150 ー ー ー 190 ー ー

ー ー ー ー

5 The dimensional difference ∆Ds of outer diameter to be applied for classes 4 and 2 is the same as the tolerance of dimensional difference ∆Dmp of average outer diameter. However, the dimensional difference is applied to diameter series 0, 1, 2, 3 and 4 against Class 4, and also to all the diameter series against Class 2.

A-34

ー ー ー ー

●Bearing Tolerances

Unitμm

Mean single plane bore diameter variation

Inner ring radial runout

Face runout with bore

Vdmp

Kia

Sd

Inner ring width deviation

Inner ring axial runout (with side) Sia

∆Bs

VBs

2

normal class class class class class 0 6 5 4 2

class class class class class 0 6 5 4 2

max

max

6 6 6

5 5 5

3 2 3 2 3 2

8 9 11

6 8 9

3 2.5 1.5 4 3 1.5 5 3.5 2 5 4 7 5 7 5

15 11 19 14 19 14

class class class 5 4 2

1.5 1.5 1.5

2.5 3.5 3.5

class 0,6

class class class 5 4 2

high

class 2 class 0,6 class 5,4

low high low high low

class class class class class 0 6 5 4 2

high low high low

max

7 7 7

3 1.5 3 1.5 3 1.5

7 7 7

3 3 3

1.5 1.5 1.5

0 0 0

-40 0 -120 0 -120 0

-40 -40 -80

ー 0 -250 ー 0 -250 0 -250 0 -250 0 -250

12 12 5 2.5 1.5 15 15 5 2.5 1.5 20 20 5 2.5 1.5

13 8 15 10 20 10

4 3 5 4 5 4

2.5 2.5 2.5

8 8 8

4 1.5 4 1.5 5 1.5

8 8 8

4 4 5

2.5 2.5 2.5

0 0 0

-120 0 -120 0 -120 -120 0 -120 0 -120 -150 0 -150 0 -150

0 -250 0 -250 0 -250 0 -250 0 -380 0 -250

20 20 5 2.5 1.5 20 20 5 3 1.5 25 25 6 4 1.5

25 13 30 18 30 18

6 5 8 6 8 6

2.5 2.5 5

9 10 10

5 2.5 6 2.5 6 4

9 10 10

5 7 7

2.5 2.5 5

0 0 0

-200 0 -200 0 -200 -250 0 -250 0 -250 -250 0 -250 0 -250

0 -380 0 -380 0 -500 0 -380 0 -500 0 -380

25 25 7 4 30 30 8 5 30 30 8 5

5 6 7

max

modified

class 5,4

3

4 2.5 1.5 4 2.5 1.5 4 2.5 1.5

10 10 10

max

Inner ring width varietion

-40 0 -40 0 -80 0

2.5 2.5 4

23 17 8 6 4 26 19 9 ー ー 30 23 12 ー ー

40 20 10 8 5 50 25 13 ー ー 60 30 15 ー ー

11 7 5 13 ー ー 15 ー ー

13 15 20

8 ー ー

5 ー ー

0 0 0

-300 0 -300 0 -300 -350 0 -350 ー ー -400 0 -400 ー ー

0 -500 0 -500 0 -500 0 -500 0 -630 0 -630

30 30 10 6 5 35 35 13 ー ー 40 40 15 ー ー

34 26 ー ー ー 38 30 ー ー ー 55 ー ー ー ー

65 35 ー ー ー 70 40 ー ー ー 80 ー ー ー ー

ー ー ー ー ー ー ー ー ー

ー ー ー

ー ー ー

ー ー ー

0 0 0

-450 ー -500 ー -750 ー

50 45 ー ー ー 60 50 ー ー ー 70 ー ー ー ー

ー ー ー ー

ー ー ー ー

ー ー ー ー

ー ー ー ー

0 0 0 0

75 94 120 150

ー ー ー ー

ー ー ー ー

ー ー ー ー

ー ー ー ー

90 100 120 140

ー ー ー ー

ー ー ー ー

ー ー ー ー

ー ー ー ー

ー ー ー ー

ー ー ー ー

-1,000 -1,250 -1,600 -2,000

ー ー ー ー

ー ー ー ー ー ー

ー ー ー

ー ー ー

ー ー ー ー ー ー

ー ー ー

ー ー ー ー

ー ー ー ー

ー ー ー ー

ー ー ー ー

80 ー ー ー ー 100 ー ー ー 120 ー ー ー 140 ー ー

ー ー ー ー

ー ー ー ー

ー ー ー ー

ー ー ー ー

2 To be applied for deep groove ball bearing and angular contact ball bearings. 3 To be applied for individual raceway rings manufactured for combined bearing use. 4 Nominal bore diameter of bearings of 0.6 mm is included in this dimensional division. Unit μm

Single radial plane outside diameter variation VDp 6 capped bearings diameter series 2,3,4    0,1,2,3,4 class 0 class 6 max

Mean single plane outside diameter variation VDmp class 0

class 6

class 5

class 4

class 2

Outer ring radial runout Outside surface inclination Kea

Outside ring axial runout Sea 7

SD

Outer ring width deviation

Outer ring width variation VCs

∆Cs class 0

class 6

max

class 5

class 4

class 2

class 5

max

class 4

class 2

class 5

max

class 4

class 0,6

class 2

all type

max

class 5

class 4

class 2

max

5 5 6

3 3 3

1.5 2 1.5 2 2.5 2

15 15 15

5 5 6

3 3 4

1.5 1.5 2.5

8 8 8

4 4 4

1.5 1.5 1.5

8 8 8

5 5 5

1.5 1.5 2.5

13 16 20

8 7 10 8 11 10

4 5 5

2 3 3.5 2 2.5 4

20 10 7 25 13 8 35 18 10

5 5 6

2.5 4 5

8 8 9

4 4 5

1.5 1.5 2.5

8 10 11

5 5 6

2.5 4 5

30 38 ー

25 30 ー

14 11 19 14 23 15

6 7 8

5 5 6

2.5 3.5 4

40 20 11 7 45 23 13 8 50 25 15 10

5 5 7

10 10 11

5 5 7

2.5 2.5 4

13 14 15

7 8 10

5 5 7

8 5 8 5 10 7

ー ー ー

ー ー ー

26 19 9 30 21 10 34 25 12

7 8 ー

4 5 ー

60 30 18 11 70 35 20 13 80 40 23 ー

7 8 ー

13 13 15

8 10 ー

5 7 ー

18 20 23

10 13 ー

7 8 ー

11 7 5 13 8 7 15 ー ー

ー ー ー

ー ー ー

38 29 14 55 34 18 75 45 ー

ー ー ー

ー ー ー

100 50 25 ー 120 60 30 ー 140 75 ー ー

ー ー ー

18 20 ー

ー ー ー

ー ー ー

25 30 ー

ー ー ー

ー ー ー

18 ー ー 20 ー ー ー ー ー

ー ー ー ー

ー ー ー ー

ー ー ー ー

ー ー ー ー

ー ー ー ー

160 190 220 250

ー ー ー ー

ー ー ー ー

ー ー ー ー

ー ー ー ー

ー ー ー ー

ー ー ー ー

ー ー ー ー

ー ー ー ー

10 10 12

9 9 10

16 20 26

6 6 7

94 120 150 190

ー ー ー ー

8 8 9

ー ー ー ー

ー ー ー ー

ー ー ー ー

6 To be applied in case snap rings are not installed on the bearings. 7 To be applied for deep groove ball bearings and angular contact ball bearings. 8 Nominal outer diameter of bearings of 2.5 mm is included in this dimensional division.

A-35

Identical to ∆Bs of inner ring of same bearing

Identical to ∆Bs and VBs of inner ring of same bearing

5 2.5 1.5 5 2.5 1.5 5 2.5 1.5 5 2.5 1.5 6 3 1.5 8 4 2.5

ー ー ー ー

2.5 2.5 4

ー ー ー ー

●Bearing Tolerances

Table 6.4 Tolerance of tapered roller bearings (Metric system) Table 6.4 (1) Inner rings  Nominal   bore  diameter

Single plane mean bore diameter deviation

Single radial plane bore diameter variation

Mean single plane bore diameter variation

∆dmp

Vdp

Vdmp

   d  

Inner ring radial runout Kia

Face runout with bore Sd

mm class 0,6X

class 5,6

over   incl.

class 4

1

class 0,6X

class 6

max

class 5

class 4

class 0,6X

class 6

max

class 5

class 4

class 0,6X

class 6

max

class 5

class 4

max

class class 5 4

max

10 18 30

18 30 50

0 0 0

-12 -12 -12

0 0 0

-7 -8 -10

0 0 0

-5 -6 -8

12 12 12

7 8 10

5 6 8

4 5 6

9 9 9

5 6 8

5 5 5

4 4 5

15 18 20

7 8 10

5 5 6

3 3 4

7 8 8

3 4 4

50 80 120

80 120 180

0 0 0

-15 -20 -25

0 0 0

-12 -15 -18

0 0 0

-9 -10 -13

15 20 25

12 15 18

9 11 14

7 8 10

11 15 19

9 11 14

6 8 9

5 5 7

25 30 35

10 13 18

7 8 11

4 5 6

8 9 10

5 5 6

180 250 315

250 315 400

0 0 0

-30 -35 -40

0 ー ー

-22 ー ー

0 ー ー

-15 ー ー

30 35 40

22 ー ー

17 ー ー

11 ー ー

23 26 30

16 ー ー

11 ー ー

8 ー ー

50 60 70

20 ー ー

13 ー ー

8 ー ー

11 ー ー

7 ー ー

400 500 630

500 630 800

0 0 0

-45 -50 -75

ー ー ー

ー ー ー

ー ー ー

ー ー ー

45 50 75

ー ー ー

ー ー ー

ー ー ー

34 38 56

ー ー ー

ー ー ー

ー ー ー

80 90 105

ー ー ー

ー ー ー

ー ー ー

ー ー ー

ー ー ー

800 1,000

0

-100









100







75







120











1 The dimensional difference ∆ds of bore diameter to be applied for class 4 is the same as the tolerance of dimensional difference ∆dmp of average bore diameter.

Table 6.4 (2) Outer rings  Nominal   outside  diameter

Single plane mean outside diameter deviation ∆Dmp

   D  

mm class 0,6X

class 5,6

class 4

3

Single radial plane outside diameter variation

Mean single plane outside diameter variation

VDp

VDmp

class 0,6X

class 6

class 5

class 4

class 0,6X

class 6

Outer ring radial runout Kea

Outside surface inclination SD

class 5

class 4

class 0,6X

class 6

class 5

class 4

2

class class 5 4

over

incl.

18 30 50

30 50 80

0 0 0

-12 -14 -16

0 0 0

-8 -9 -11

0 0 0

-6 -7 -9

12 14 16

8 9 11

6 7 8

5 5 7

9 11 12

6 7 8

5 5 6

4 5 5

18 20 25

9 10 13

6 7 8

4 5 5

8 8 8

4 4 4

80 120 150

120 150 180

0 0 0

-18 -20 -25

0 0 0

-13 -15 -18

0 0 0

-10 -11 -13

18 20 25

13 15 18

10 11 14

8 8 10

14 15 19

10 11 14

7 8 9

5 6 7

35 40 45

18 20 23

10 11 13

6 7 8

9 10 10

5 5 5

180 250 315

250 315 400

0 0 0

-30 -35 -40

0 0 0

-20 -25 -28

0 0 0

-15 -18 -20

30 35 40

20 25 28

15 19 22

11 14 15

23 26 30

15 19 21

10 13 14

8 9 10

50 60 70

25 30 35

15 18 20

10 11 13

11 13 13

7 8 10

400 500 630

500 630 800

0 0 0

-45 -50 -75

ー ー ー

ー ー ー

ー ー ー

ー ー ー

45 50 75

ー ー ー

ー ー ー

ー ー ー

34 38 56

ー ー ー

ー ー ー

ー ー ー

80 100 120

ー ー ー

ー ー ー

ー ー ー

ー ー ー

ー ー ー

800 1,000 1,250

1,000 1,250 1,600

0 0 0

-100 -125 -160

ー ー ー

ー ー ー

ー ー ー

ー ー ー

100 125 160

ー ー ー

ー ー ー

ー ー ー

75 84 120

ー ー ー

ー ー ー

ー ー ー

140 165 190

ー ー ー

ー ー ー

ー ー ー

ー ー ー

ー ー ー

max

max

max

max

max

2 The dimensional difference ∆Ds of outside diameter to be applied for class 4 is the same as the tolerance of dimensional difference ∆Dmp of average outside diameter. 3 The dimensional difference ∆ds of bore diameter to be applied for class 4 is the same as the tolerance of dimensional difference ∆dmp of average bore diameter.

A-36

●Bearing Tolerances

Unitμm

Overall width deviation of assembled single Overall width deviation Overall width deviation row tapered roller bearing, or height deviation of assembled double rows of assembled four rows

Inner ring width deviation

Inner ring axial runout (with side)

∆Bs

tapered roller bearing or height eviation

               ∆Ts

Sia

∆B1s,

class 4

class 0,6

class 6X

class 4,5

high low

high low

class 0,6

class 6X

class 4,5

∆C1s

∆B2s,

class 0,6,5

∆C2s

class 0,6,5

max

high

low

high

low

high

low

high

low

high

low

3 4 4

0 0 0

-120 -120 -120

0 0 0

-50 -50 -50

0 0 0

-200 -200 -240

+200 +200 +200

0 0 0

+100 +100 +100

0 0 0

+200 +200 +200

-200 -200 -200

ー ー +240

ー ー -240

ー ー ー

ー ー ー

4 5 7

0 0 0

-150 -200 -250

0 0 0

-50 -50 -50

0 0 0

-300 -400 -500

+200 +200 +350

0 -200 -250

+100 +100 +150

0 0 0

+200 +200 +350

-200 -200 -250

+300 +400 +500

-300 -400 -500

ー +500 +600

ー -500 -600

8 ー ー

0 0 0

-300 -350 -400

0 0 0

-50 -50 -50

0 -600 ー ー ー ー

+350 +350 +400

-250 -250 -400

+150 +200 +200

0 0 0

+350 ー ー

-250 ー ー

+600 +700 +800

-600 -700 -800

+750 +900 +1,000

-750 -900 -1,000

ー ー ー

0 0 0

-450 -500 -750

ー ー ー

ー ー ー

ー ー ー

ー ー ー

ー ー ー

ー ー ー

ー ー ー

ー ー ー

ー ー ー

ー ー ー

+900 +1,000 +1,500

-900 -1,000 -1,500

+1,200 +1,200 +1,500

-1,200 -1,200 -1,500



0

-1,000





















+1,500

-1,500

+1,500

-1,500

Unitμm

Outer ring axial runout

Outer ring width deviation ∆Cs

Sea

class 4

class 0,6,5,4

class 6X

4

high low

tapered roller bearing or height eviation

Table 6.4 (3) Effective width of outer and inner rings with roller  Nominal   bore  diameter

Effective width deviation of roller and inner ring assembly of tapererd roller bearing

   d

      ∆T1s

Unitμm

Tapered roller bearing outer ring effective width deviation ∆T2s

  mm class 0

class 0

class 6X

inf.

high

low

high

low

high

low

0 0 0

-100 -100 -100

10 18 30

18 30 50

+100 +100 +100

0 0 0

+50 +50 +50

0 0 0

+100 +100 +100

0 0 0

+50 +50 +50

0 0 0

0 0 0

-100 -100 -100

50 80 120

80 120 180

+100 +100 +150

0 -100 -150

+50 +50 +50

0 0 0

+100 +100 +200

0 -100 -100

+50 +50 +100

0 0 0

10 10 13

0 0 0

-100 -100 -100

180 250 315

250 315 400

+150 +150 +200

-150 -150 -200

+50 +100 +100

0 0 0

+200 +200 +200

-100 -100 -200

+100 +100 +100

0 0 0

ー ー ー

0 0 ー

-100 -100 ー

ー ー ー

ー ー ー

ー ー ー

max 5 5 5 6 7 8

sup.

inf. sup.

Identical to ∆Bs inner ring of same bearing

T1

incl.

class 6X

over

Master cup sub-unit

T2

Master cone sub-unit

4 To be applied for nominal bore diameters

d

A-37

high low

d

●Bearing Tolerances

Table 6.5 Tolerance for tapered roller bearings of inch system Table 6.5 (1) Inner rings

Unitμm

Nominal bore diameter

Single bore diameter deviation

d

 ∆ds  



mm over

  Class 2

Class 4

  Class 3

  Class 0

Class 00

incl.

high

low

high

low

high

low

high

low

high

low

  ー 76.2 266.7

76.2 266.7 304.8

+13 +25 +25

0 0 0

+13 +25 +25

0 0 0

+13 +13 +13

0 0 0

+13 +13 +13

0 0 0

+8 +8 ー

0 0 ー

304.8 609.6 914.4

609.6 914.4 1,219.2

+51 +76 +102

0 0 0

+51 ー ー

0 ー ー

+25 +38 +51

0 0 0

ー ー ー

ー ー ー

ー ー ー

ー ー ー

+127

0





+76

0











1,219.2

Table 6.5 (2) Outer rings

Unitμm

Nominal outside diameter

Single outside diameter deviation

d

∆Ds

mm





over ー   266.7 304.8 609.6 914.4 1,219.2

  Class 2

Class 4

  Class 3

  Class 0

over

incl

over

incl

over

incl

over

incl

over

incl

266.7 304.8 609.6

+25 +25 +51

0 0 0

+25 +25 +51

0 0 0

+13 +13 +25

0 0 0

+13 +13 ー 

0 0 ー

+8 ー  ー 

0 ー ー

+76 +102 +127

0 0 0

+76 ー   ー  

0 ー ー

+38 +51 +76

0 0 0

ー  ー  ー 

ー ー ー

ー  ー  ー 

ー ー ー

914.4 1,219.2 ー     

Table 6.5 (3) Effective width of inner rings with roller and outer rings Nominal bore diameter

Overall width deviation of assembled single row tapered roller bearing ∆Ts

d mm

ー   101.6 304.8 101.6 609.6 304.8 304.8 609.6

609.6 ー  

Class 00

incl.

+203 +356 +381 +381 +381

Table 6.5 (4) Radial deflection of inner and outer rings

A-38

●Bearing Tolerances

Master cup sub-unit

T1

Master cone sub-unit

T2

d

d

Unitμm

Effective width deviation of roller and inner ring assembly of tapered roller bearing

Tapered roller bearing outer ring effective width deviation ∆T2s

∆T1s  

  Class 4

high

  Class 2

low

+102 +152 ー 

0 -152 ー 

ー  ー 

ー  ー 

high +102 +102 +178 ー  ー 

  Class 3

low 0 0 1 -178 ー  ー 

high +102 +102 +102 ー  ー 

  Class 4

low

high

-102 -102 1 -102

+102 +203 ー 

0 -102 ー 

ー  ー 

ー  ー 

ー  ー 

1 To be applied for nominal bore diameters of 406.400 mm (16 inch) or less.

A-39

  Class 2

low

Class 3

high

low

high

low

+102 +102 +203

0 0 1 -203

+102 +102 +102

-102 -102 1 -102

ー  ー 

ー  ー 

ー  ー 

ー  ー 

●Bearing Tolerances

Table 6.6 Tolerance of tapered roller bearings of J series (Metric system) Table 6.6 (1) Inner rings Single plane mean bore diameter deviation

Nominal bore diameter

∆dmp

Single radial plane bore diameter variation

Mean single plane bore diameter variation

Vdp

Vdmp

  d mm

Class

Class

Class

Class

Class

Class

Class

Class

Class

Class

Class

Class

K

N

C

B

K

N

C

B

K

N

C

B

over

incl.

high

low

high

low

high

low

high

low

10 18 30

18 30 50

0 0 0

-12 -12 -12

0 0 0

-12 -12 -12

0 0 0

-7 -8 -10

0 0 0

-5 -6 -8

12 12 12

12 12 12

max 4 4 4

3 3 3

9 9 9

9 9 9

max 5 5 5

4 4 5

50 80 120

80 120 180

0 0 0

-15 -20 -25

0 0 0

-15 -20 -25

0 0 0

-12 -15 -18

0 0 0

-9 -10 -13

15 20 25

15 20 25

5 5 5

3 3 3

11 15 19

11 15 19

5 5 5

5 5 7

180

250

0

-30

0

-30

0

-22

0

-15

30

30

6

4

23

23

5

8

Note: Please consult NTN Engineering for Class A bearings.

Table 6.6 (2) Outer rings Single plane mean outside diameter deviation

Nominal outside diameter

Single radial plane outside Mean single plane outside outer ring diameter variation axial runout diameter variation

∆Dmp

VDmp

VDp

  D mm

Class

Class

Class

Class

K

N

C

B

Class Class Class Class K

N

C

Sea

Class Class Class Class

B

K

N

C

max

Class

B

B

over

incl.

high

low

high

low

high

low

high

low

18 30 50

30 50 80

0 0 0

-12 -14 -16

0 0 0

-12 -14 -16

0 0 0

-8 -9 -11

0 0 0

-6 -7 -9

12 14 16

12 14 16

4 4 4

3 3 3

9 11 12

9 11 12

5 5 6

4 5 5

3 3 4

80 120 150

120 150 180

0 0 0

-18 -20 -25

0 0 0

-18 -20 -25

0 0 0

-13 -15 -18

0 0 0

-10 -11 -13

18 20 25

18 20 25

5 5 5

3 3 3

14 15 19

14 15 19

7 8 9

5 6 7

4 4 5

180 250 315

250 315 400

0 0 0

-30 -35 -40

0 0 0

-30 -35 -40

0 0 0

-20 -25 -28

0 0 0

-15 -18 -20

30 35 40

30 35 40

6 8 10

4 5 5

23 26 30

23 26 30

10 13 14

8 9 10

6 6 6

max

max

Note: Please consult NTN Engineering for Class A bearings.

Table 6.6 (3) Effective width of inner and outer rings Nominal bore diameter   d

Tapered roller bearing outer ring effective width deviation      ∆T2s

Effective width deviation of roller and inner ring assembly of tapered roller bearing            ∆T1s  Class

mm

Unitμm

  

Class

Class

N

K

Class

Class

B

K

C

over

incl.

high

low

high

low

high

low high

10 80 120

80 120 180

+100 +100 +150

0 -100 -150

+50 +50 +50

0 0 0

+100 +100 +100

-100 -100 -100

180

250

+150

-150

+50

0

+100

-150

Class

Class

Class

C

B

N

low

high

low

high

low

high

low high

* * *

* * *

+100 +100 +200

0 -100 -100

+50 +50 +100

0 0 0

+100 +100 +100

-100 -100 -150

* * *

* * *

*

*

+200

-100

+100

0

+100

-150

*

*

Note 1: "*" mark are to be manufactured only for combined bearings. 2: Please consult NTN Engineering for Class A bearings.

A-40

low

●Bearing Tolerances

Unitμm

Overall width deviation of assembled single row tapered roller bearing

Inner ring axial runout (with side)

∆Ts

Sia Class

Class

Class

Class

Class

B

K

N

C

B

max

sup

inf

sup

3 4 4

+200 +200 +200

inf

0 +100 0 +100 0 +100

sup

0 0 0

+200 +200 +200

-200 +200 -200 +200 -200 +200

inf

sup

-200 -200 -200

inf

4 5 7

+200 +200 +350

0 +100 -200 +100 -250 +150

0 0 0

+200 +200 +200

-200 +200 -200 +200 -250 +200

-200 -200 -250

8

+350

-250 +150

0

+200

-300 +200

-300

Table 6.6 (4) Runout of inner and outer rings Unitμm Nominal outside diameter

Inner ring radial runout Kia and Outer ring radial runout Kea

D mm

Class

Class

Class

Class

K

N

C

B

max

over

incl.

18 30 50

30 50 80

18 20 25

18 20 25

5 6 6

3 3 4

80 120 150

120 150 180

35 40 45

35 40 45

6 7 8

4 4 4

180 250 315

250 315 400

50 60 70

50 60 70

10 11 13

5 5 5

Note: Please consult NTN Engineering for Class A bearings.

A-41

●Bearing Tolerances

Table 6.7 Tolerance of thrust ball bearings Table 6.7 (1) Inner rings Nominal bore diameter

Unitμm

Single plane mean bore diameter deviation ∆dmp

Single radial plane Thrust bearing shaft washer raceway bore diameter variation (or center washer raceway) thickness variation Vdp

  d mm

Si

Class

Class

Class

Class

Class

Class

Class

Class

0,6,5

4

0,6,5

4

0

6

5

4

over

incl.

high

low

high

low

ー 18 30

18 30 50

0 0 0

-8 -10 -12

0 0 0

-7 -8 -10

6 8 9

max 5 6 8

10 10 10

5 5 6

max 3 3 3

2 2 2

50 80 120

80 120 180

0 0 0

-15 -20 -25

0 0 0

-12 -15 -18

11 15 19

9 11 14

10 15 15

7 8 9

4 4 5

3 3 4

180 250 315

250 315 400

0 0 0

-30 -35 -40

0 0 0

-22 -25 -30

23 26 30

17 19 23

20 25 30

10 13 15

5 7 7

4 5 5

400 500

500 630

0 0

-45 -50

0 0

-35 -40

34 38

26 30

30 35

18 21

9 11

6 7

Table 6.7 (2) Outer rings Nominal outside diameter

Unitμm

Single plane mean outside diameter deviation ∆Dmp

Single radial plane outside diameter variation

  d

Thrust bearing housing washer raceway thickness variation Se

VDp

mm

Class

Class

Class

Class

Class

Class

Class

Class

0,6,5

4

0,6,5

4

0

6

5

4

over

incl.

high

low

high

low

max

10 18 30

18 30 50

0 0 0

-11 -13 -16

0 0 0

-7 -8 -9

8 10 12

5 6 7

50 80 120

80 120 180

0 0 0

-19 -22 -25

0 0 0

-11 -13 -15

14 17 19

8 10 11

180 250 315

250 315 400

0 0 0

-30 -35 -40

0 0 0

-20 -25 -28

23 26 30

15 19 21

400 500 630

500 630 800

0 0 0

-45 -50 -75

0 0 0

-33 -38 -45

34 38 55

25 29 34

Table 6.7 (3) Height of bearings center washer Unitμm

Nominal bore diameter

Single direction type 1     ∆Ts

  d mm over

incl.

high

low

ー 30 50

30 50 80

0 0 0

-75 -100 -125

80 120 180

120 180 250

0 0 0

-150 -175 -200

250 315 400 500

315 400 500 630

0 0 0 0

-225 -300 -350 -400

1 This standard is applied for flat back face bearing of class 0.

A-42

max

According to the tolerance of S1 against "d" or "d2" of the same bearings

●Bearing Tolerances

Table 6.8 Tolerance of spherical thrust roller bearing Table 6.8 (1) Inner rings Nominal bore diameter d mm over incl.

Table 6.8 (2) Outer ring Unitμm

Unitμm

Single plane mean Single radial Face bore diameter deviation plane bore runout diameter with bore variation ∆dmp Sd Vdp high low max max

Nominal outside diameter

Height deviation of single direction thrust bearing ∆Ts

d

Single plane mean outside diameter deviation

mm

∆Dmp

high

low

over

incl.

high

low

50 80 120

80 120 180

0 0 0

-15 -20 -25

11 15 19

25 25 30

+150 +200 +250

-150 -200 -250

120 180 250

180 250 315

0 0 0

-25 -30 -35

180 250 315

250 315 400

0 0 0

-30 -35 -40

23 26 30

30 35 40

+300 +350 +400

-300 -350 -400

315 400 500

400 500 630

0 0 0

-40 -45 -50

400

500

0

-45

34

45

+450

-450

630 800

800 1,000

0 0

-75 -100

Table 6.9 Tolerance of double direction type angular contact thrust ball bearings Table 6.9 (1) Inner rings and bearing height Nominal bore diameter d mm

Class 5

Class 4

Inner ring axial

Unitμm

Height deviation of single direction thrust bearing

Sia

Inner ring width variation VBs

Class 5 Class 4

Class 5 Class 4

Class 5 Class 4

Class 5, Class 4

max

max

max

Single plane mean bore diameter Face runout deviation ∆dmp with bore Single bore diameter deviation ∆ds Sd

runout (with side)

over

incl.

high

low

high

low

18 30 50

30 50 80

0 0 0

-6 -8 -9

0 0 0

-5 -6 -7

8 8 8

4 4 5

5 5 6

3 3 5

5 5 6

80 120 180

120 180 250

0 0 0

-10 -13 -15

0 0 0

-8 -10 -12

9 10 11

5 6 7

6 8 8

5 6 6

250 315

315 400

0 0

-18 -23

0 0

-15 -18

13 15

8 9

10 13

8 10

∆Ts

high

low

2.5 3 4

0 0 0

-300 -400 -500

7 8 10

4 5 6

0 0 0

-600 -700 -800

13 15

7 9

0 0

-900 -1,000

Table 6.9 (2) Outer rings Nominal outside diameter mm

Unitμm

Single plane mean outside diameter deviation ∆Dmp Single outside diameter deviation ∆Ds

Outside surface inclination

Outer ring axial runout

Outer ring width variation

SD

Sea

VCs

Class 5

Class 4

over

incl.

high

low

Class 5

Class 4

30 50 80

50 80 120

-30 -40 -50

-40 -50 -60

8 8 9

4 4 5

120 150 180

150 180 250

-60 -60 -75

-75 -75 -90

10 10 11

5 5 7

250 315 400

315 400 500

-90 -110 -120

-105 -125 -140

13 13 15

8 10 13

max

A-43

Class 5

Class 4

Class 5

max According to tolerance of Sia against "d" of the same bearings

Class 4 max

5 6 8

2.5 3 4

8 8 10

5 5 7

11 13 15

7 8 10

●Bearing Tolerances

6.2 Chamfer measurements and tolerance or allowable values of tapered hole

1

Bore diameter face rs min or r1s min of bearing or outer rs max or r1s max diameter face of bearing (Axial direction)

(Radial direction)

1

1

rsmin or r smin

rs min or r s min

Table 6.10 Allowable critical-value of bearing chamfer Table 6.10 (1) Radial bearing (Except tapered roller bearing)

rsmax or r smax

Side face of inner ring or center washer, or side face of outer ring

Table 6.10 (2) Tapered roller bearings of metric system Unit mm

Unit mm

rs min

1

or r1s min

Nominal bore diameter d over incl.

rs min2

rs max or r1s max Radial direction

Axial direction

0.1

0.2





0.08





0.16

0.3

0.1





0.2

0.4

0.15





0.3

0.6

0.2





0.5

0.8



40

0.6

1

40



0.8

1

0.05

0.3

0.6

1

1.1

1.5

2

2.1

2.5



40

1

2

40



1.3

2



50

1.5

3

50



1.9

3



120

2

3.5

120



2.5

4



120

2.3

4

120



3

5



80

3

4.5

or r1s min 0.3

0.6

1

1.5

2

2.5

3

Nominal bore diameter of bearing "d" or nominal outside diameter "D"

rs max or r1s max

over

incl.

Radial direction

Axial direction



40

0.7

1.4

40



0.9

1.6



40

1.1

1.7

40



1.3

2



50

1.6

2.5

50



1.9

3



120

2.3

3

120

250

2.8

3.5

250



3.5

4



120

2.8

4

120

250

3.5

4.5

250



4

5



120

3.5

5

120

250

4

5.5

250



4.5

6



120

4

5.5

80

220

3.5

5

120

250

4.5

6.5

220



3.8

6

250

400

5

7

400



5.5

7.5



120

5

7

120

250

5.5

7.5

250

400

6

8



280

4

6.5

280



4.5

7



100

3.8

6

100

280

4.5

6

3

4

280



5

7

400



6.5

8.5



280

5

8



180

6.5

8

280



5.5

180



7.5

9

4





6.5



180

7.5

10

5





8

180



9

11

3

5

8 9

6

10

6





10

13

7.5





12.5

17

9.5





15

19

12





18

24

15





21

30

19





25

38

2 These are the allowable minimum dimensions of the chamfer dimension "r" or "r1" and are described in the dimensional table. 3 Inner rings shall be in accordance with the division of "d" and outer rings with that of "D". Note: This standard will be applied to the bearings whose dimensional series (refer to the dimensional table) are specified in the standard of ISO 355 or JIS B 1512. Further, please consult NTN Engineering for bearings other than.

1 These are the allowable minimum dimensions of the chamfer dimension "r" and are described in the dimensional table.

A-44

●Bearing Tolerances

Table 6.10 (3) Thrust bearings

Table 6.11 (1) Tolerance and allowable values (Class 0) of tapered hole of radial bearings Unitμm ∆dmp

d mm

∆d1mp - ∆dmp

Vdp 1

over

incl.

high

low

high

low

max

+ 22 + 27 + 33

0 0 0

+ 15 + 18 + 21

0 0 0

9 11 13

0.05

0.1

10 18

10 18 30

0.08

0.16

0.1

0.2

30 50 80

50 80 120

+ 39 + 46 + 54

0 0 0

+ 25 + 30 + 35

0 0 0

16 19 22

0.15

0.3

0.2

0.5

120 180 250

180 250 315

+ 63 + 72 + 81

0 0 0

+ 40 + 46 + 52

0 0 0

40 46 52

0.3

0.8

0.6

1.5

315 400 500

400 500 630

+ 89 + 97 +110

0 0 0

+ 57 + 63 + 70

0 0 0

57 63 70

1

2.2

1.1

2.7

1.5

3.5

630 800 1,000 1,250

800 1,000 1,250 1,600

+125 +140 +165 +195

0 0 0 0

+ 80 + 90 +105 +125

0 0 0 0

ー ー ー ー

2

4

2.1

4.5

3

5.5

4

6.5

Table 6.11 (2) Allowable variations for radial bearing inner ring tapered bores Standard taper ratio 1:30 (Class 0) Units μm

6 7.5 9.5

15 19

∆dmp

d mm

5

12

2

∆d1mp - ∆dmp

Vdp 1

over

incl.

over

below

over

below

max

50 80 120

80 120 180

+15 +20 +25

0 0 0

+30 +35 +40

0 0 0

19 22 40

180 250 315

250 315 400

+30 +35 +40

0 0 0

+46 +52 +57

0 0 0

46 52 57

2

+63 0 63 +45 0 400 500 +50 0 +70 0 70 500 630 21 -2.09382c4425.1332 T Tf8.00604 TD(0 -2.129143.091 408.779 m70 0Tj0 -27b38 TD9599)Tj0 -2.1832 T TD5.5 1 Applies to all radial flat planes of inner ring tapered bore. 2 Does not apply to diameter series 7 and 8. Note: Quantifiers

1 For a standard taper ratio of 1:12 d1=d+  B 12 1 For a standard taper ratio of 1:30 d1=d+  B 30

∆dmp :Dimensional difference of the average bore diameter within the flat surface at the theoretical small end of the tapered bore. ∆d1mp :Dimensional difference of the average bore diameter within the flat surface at the theoretical large end of the tapered bore. Vdp :Unevenness of the bore diameter with the flat surface B :Nominal width of inner ring α :Half of the tapered bore’s nominal taper angle         For a standard taper ratio of 1:12 α=2° 23′ 9.4″         For a standard taper ratio of 1:30 α=0° 57′ 7.4″

A-45

●Bearing Tolerances

6.3 Bearing tolerance measurement methods

Table 6.12 shows some of the major methods of measuring rotation tolerances.

For reference, measurement methods for rolling bearing tolerances are in JIS B 1515.

Table 6.12 Rotation tolerance measurement methods

Characteristic tolerance

Measurement method Measuring load

Measuring load

For inner ring radial runout, record the total indicator reading (TIR)

Inner ring radial runout (Kia)

Measuring load

Measuring load

For outer ring radial runout, record the total indicator reading (TIR) after one revolution.

Outer ring radial runout (Kea)

Measuring load

Measuring load

For inner ring axial runout, record the total indicator reading (TIR) after rotating the inner ring one revolution.

Inner ring axial runout (Sia)

Measuring load

Measuring load

Outer ring axial runout (Sea)

For inner ring side runout with bore, record the total indicator reading (TIR) after rotating the inner ring one revolution with a tapered mandrel.

Inner ring side runout with bore (Sd)

1.2rs max

Outer ring outside surface inclination (SD)

For outer ring axial runout, record the total indicator reading (TIR) after rotating the inner ring one revolution.

1.2rs max Reinforcing plate

A-46

For outer ring outside surface inclination, record the total indicator reading (TIR) after aligning the ring with the reinforcing plate and rotating it one revolution.

●Bearing Fits 7 Bearing Fits ¡Raceway and shaft or housing abrasion caused by creeping and fretting corrosion ¡Seizing caused by loss of internal clearances ¡Increased noise and lowered rotational accuracy due to raceway groove deformation

7.1 Interference For rolling bearings, inner and outer rings are fixed on the shaft or in the housing so that relative movement does not occur between fitted surfaces during operation or under load. This relative movement (referred to as "creep") between the fitted surfaces of the bearing and the shaft or housing can occur in a radial direction, an axial direction, or in the direction of rotation. To help prevent this creeping movement, bearing rings and the shaft or housing are installed with one of three interference fits, a "tight fit" (also called shrink fit), "transition fit," or "loose fit" (also called clearance fit), and the degree of interference between their fitted surfaces varies. The most effective way to fix the fitted surfaces between a bearing's raceway and shaft or housing is to apply a "tight fit." The advantage of this tight fit for thin walled bearings is that it provides uniform load support over the entire ring circumference without any loss of load carrying capacity. However, with a tight fit, ease of installation and disassembly is lost; and when using a non-separable bearing as the floating-side bearing, axial displacement is not possible. For this reason, a tight fit cannot be recommended in all cases.

Please refer to insert pages A-93 - A94 for information concerning diagnosis of these conditions.

7.3 Fit selection Selection of a proper fit is dependent upon thorough analysis of bearing operating conditions, including consideration of: ¡Shaft and housing material, wall thickness, finished surface accuracy, etc. ¡Machinery operating conditions (nature and magnitude of load, rotational speed, temperature, etc.) 7.3.1 "Tight fit," "transition fit," or "loose fit" (1) For raceways under rotating loads, a tight fit is necessary. (Refer to Table 7.1) "Raceways under rotating loads" refers to raceways receiving loads rotating relative to their radial direction. For raceways under static loads, on the other hand, a loose fit is sufficient. (Example) Rotating inner ring load = the direction of the radial load on the inner ring is rotating relatively (2) For non-separable bearings, such as deep groove ball bearings, it is generally recommended that either the inner ring or outer ring be given a loose fit.

7.2 The necessity of a proper fit In some cases, improper fit may lead to damage and shorten bearing life, therefore it is necessary to make a careful analysis in selecting a proper fit. Some of the negative conditions caused by improper fit are listed below. ¡Raceway cracking, early peeling and displacement of raceway Table 7.1 Radial load and bearing fit

Illustration Static load

Ring load

Fit

Rotating inner ring load

Inner ring : Tight fit

Static outer ring load

Outer ring : Loose fit

Outer ring: Rotating

Static inner ring load

Inner ring : Loose fit

Inner ring: Rotating

Rotating outer ring load

Outer ring : Tight fit

Bearing rotation Inner ring: Rotatring Outer ring: Stationary

Unbalanced load

Inner ring: Stationary Outer ring: Rotating

Static load

Unbalanced load

Inner ring: Stationary

Outer ring: Stationary

A-47

●Bearing Fits

7.3.2 Recommended Fits Bearing fit is governed by the selection tolerances for bearing shaft diameters and housing bore diameters. Widely used fits for 0 Class tolerance bearings and various shaft and housing bore diameter tolerances are shown in Table 7.1. Generally-used, standard fits for most types of bearings and operating conditions are shown in Tables 7.2 - 7.7.

shown in formulae (7.1). ∆ dT = 0.0015 d ∆T ……………………………………(7.3) ∆ dT : Required effective interference for temperature difference μm ∆T : Difference between bearing temperature

and ambient temperature ˚C d : Bearing bore diameter mm

(3) Fitted surface variation and required interference Interference between fitted surfaces is reduced by roughness and other slight variations of these surfaces which are flattened in the fitting process. The degree of reduced interference depends upon the finish treatment of these surfaces, but in general it is necessary to assume the following interference reductions. For ground shafts: 1.0∼2.5μm For lathed shafts: 5.0∼7.0μm

Table 7.2: Fits for radial bearings Table 7.3: Fits for thrust bearings Table 7.4: Fits for electric motor bearings Table 7.6: Fits for inch series tapered roller bearings (ANSI Class 4) Table 7.7: Fits for inch series tapered roller bearings (ANSI Class 3 and 0) Table 7.5. shows fits and their numerical values. For special fits or applications, please consult NTN Engineering.

(4) Maximum interference When bearing rings are installed with an interference fit, tension or compression stress may occur along their raceways. If interference is too great, this may cause damage to the rings and reduce bearing life. For these reasons, maximum interference should not exceed the previously mentioned ratio of 1:1,000 of shaft or outside diameter.

7.3.3 Interference minimum and maximum values The following points should be considered when it is necessary to calculate the interference for an application: ¡In calculating the minimum required amount of interference keep in mind that: 1) interference is reduced by radial loads 2) interference is reduced by differences between bearing temperature and ambient temperature 3) interference is reduced by variation of fitted surfaces ¡Maximum interference should be no more than 1:1000 of the shaft diameter or outer diameter. Required interference calculations are shown below.

7.3.4 Other details (1) Tight interference fits are recommended for, ¡Operating conditions with large vibration or shock loads ¡Applications using hollow shafts or housings with thin walls ¡Applications using housings made of light alloys or plastic

(1) Radial loads and required interference Interference between inner rings mounted on solid shafts is reduced when acted upon by radial loads. Calculation of the minimum required amount of interference in such cases is shown in formulae (7.1) and (7.2). Fr ≦ 0.3 Cor 1/2 ∆ dF = 0.08 (d・Fr / B) 1/2 = 0.25 (d・Fr / B) Fr > 0.3 Cor ∆ dF = 0.02 (Fr / B) = 0.2 (Fr / B)

(2) Loose interference fits are preferable for, ¡Applications requiring high running accuracy ¡Applications using small sized bearings or thin walled bearings

N {kgf }

Housing

}………(7.1)

G6

G7 H7

Class 0

N {kgf }

}………(7.2)

H8 H6

J6 J7 K6 K7

∆ Dmp

M6 M7 N6 N7

Where,

P6 P7

∆ dF : Required effective interference for load μm d : Nominal bore diameter mm B : Inner ring width mm Fr : Radial load N{kgf} Cor : Basic static rated load N{kgf}

Loose fit

Transition fit Tight fit

Types of fits Tight fit

Transition fit

p6

(2) Temperature difference and required interference Interference between inner rings and steel shafts is reduced as a result of temperature increases (difference between bearing temperature and ambient temperature, ∆T) caused by bearing rotation. Calculation of the minimum required amount of interference in such cases is

Class 0

k5 h5 h6

∆dmp

J5

J6

g5 g6

Shafts Fig 7.1

A-48

k6

m5 m6

n5 n6

●Bearing Fits

(3) Consideration must also be given to the fact that fit selection will effect internal bearing clearance selection. (refer to page insert A-56)

(4) A particular type of fit is recommended for SL type cylindrical roller bearings.

Table 7.2 General standards for radial bearing fits (JIS Class 0, 6, 6X) Table 7.2 (1) Load Nature conditions, Fit of load magnitude

Tight fit / Transition fit

Indeterminate direction load Rotating inner ring load

Light or 1 fluctuating variable load

1

Normal load

Load conditions, magnitude Ball bearing

Static inner ring load

Transition fit

Centric axial load only

Transition fit

Inner ring axial displacement unnecessary

All loads

Spherical roller bearings

Tolerance class

Shaft diameter mm over incl

Tolerance class

  ∼ 18 18 ∼ 100 100 ∼ 200

h5 js6 k6

  ∼ 40 40 ∼ 140 140 ∼ 200

js6 k6 m6

  18 100 140 200

js5 k5 m5 m6 n6

  40 100 140 200

∼ 40 ∼ 100 ∼ 140 ∼ 200 ∼ 400

k5 m5 m6 n6 p6

  40 65 100 140 280

∼ 40 ∼ 65 ∼ 100 ∼ 140 ∼ 280 ∼ 500

k5 m5 m6 n6 p6 r6

Alteration of inner clearances to accommodate fit is not a consideration with single-row angular contact bearings and tapered roller bearings. Therefore, k5 and m5 may be substituted for k6 and m6.

50 ∼ 140 140 ∼ 200 200 ∼

n6 p6 r6

50 ∼ 100 100 ∼ 140 140 ∼ 200

n6 p6 r6

Use bearings with larger internal clearances than CN clearance bearings.

g6

When greater accuracy is required use g5. For large bearings, f6 may be used.

h6

When greater accuracy is required use h5.

js6

General; depending on the fit, shaft and inner rings are not fixed.

∼ 18 ∼ 100 ∼ 140 ∼ 200 ∼ 280

g6 All shaft diameters

All shaft diameters

js6

All shaft diameters h6

All shaft diameters

Tolerance class When greater accuracy is required js5, k5, and m5 may be substituted for js6, k6, and m6.

g6

h6

All shaft diameters

Shaft diameter mm over incl

Remarks

Shaft diameter mm over incl

Heavy 1 load or shock load Inner ring axial displacement possible

Cylindrical roller bearing Tapered roller bearing

js6

All shaft diameters

Table 7.2 (2) Fit with shaft (fits for tapered bore bearings (Class 0) with adapter assembly/withdrawal sleeve) All loads

All bearing types

All shaft diameters

Tolerance class

h9 / IT5 2 h10 / IT7

2

1 Standards for light loads, normal loads, and heavy loads Light loads: equivalent radial load ≦ 0.06 Cr Normal loads: 0.06 Cr <equivalent radial load ≦ 0.12 Cr Heavy loads: 0.12 Cr <equivalent radial load 2 IT5 and IT7 show shaft roundness tolerances, cylindricity tolerances, and related values. Note: All values and fits listed in the above tables are for solid steel shafts.

A-49

General applications Transmission shafts, etc.

●Bearing Fits

Table 7.2 (3) Housing fits

Nature Housing Fit of load

Load conditions, magnitude

Tolerance class

Outer ring axial displacement 2

Remarks

Loose fit Transition or loose fit

Rotating outer ring load or static outer ring load

Solid or split housing

G7 also acceptable for large type bearings as well as outer rings and housings with large temperature differences.

H7

Displacement possible

G7

Easy displacement

H8

Displacement possible

Shaft and inner rings reach high temperature

G7

Easy displacement

F7

Easy displacement

Requires silent operation

H6

Displacement possible

Js6

Displacement not possible (in principle)

Applies primarily to ball bearings

K6

Displacement not possible (in principle)

Applies primarily to roller bearings

All loads Light

1

to normal load

High rotation accuracy required with light to normal loads

Tight to transition fit Tight fit

Solid housing

Direction Inner ring static indeterminate load or outer load ring rotating load

Light to normal load

Js7

F7 also acceptable for large type bearings as well as outer rings and housings with large temperature differences.

Displacement possible When greater accuracy is required substitute Js6 for Js7 and K6 for K7.

Normal to heavy load

K7

Displacement not possible (in principle)

Heavy shock load

M7

Displacement not possible

Light or variable load

M7

Displacement not possible

Normal to heavy load

N7

Displacement not possible

Applies primarily to ball bearings

Heavy load (thin wall housing) or heavy shock load

P7

Displacement not possible

Applies primarily to roller bearings

Loose fit

Centered axial load only - Loose fit

Select a tolerance class that will provide clearance between outer ring and housing.

1 Standards for light loads, normal loads, and heavy loads Light loads:       equivalent radial load ≦ 0.06 Cr Normal loads: 0.06 Cr <equivalent radial load ≦ 0.12 Cr Heavy loads: 0.12 Cr < equivalent radial load 2 Indicates whether or not outer ring axial displacement is possible with non-separable type bearings. Note 1: All values and fits listed in the above tables are for cast iron or steel housings. 2: In cases where only a centered axial load acts on the bearing, select a tolerance class that will provide clearance in the axia direction for the outer ring.

A-50

●Bearing Fits

Table 7.3 Standard fits for thrust bearings (JIS Class 0 and 6) Table 7.3 (1) Shaft fits Load conditions

Fit

Shaft diameter mm over   incl

Tolerance class

All thrust bearings

Centered axial load only

Transition fit

All sizes

js6 or h6

Inner ring static load

Transition fit

All sizes

js6

Inner ring rotating load or direction indeterminate load

Transition fit

  ∼ 200 200 ∼ 400 400 ∼  

k6 or js6 m6 or k6 n6 or m6

Self-aligning roller thrust bearings

Combined load

Bearing type

Tight fit

Table 7.3 (2) Housing fits Bearing type

Load conditions

All thrust bearings

Centered axial load only

Remarks

Select a tolerance class that will provide clearance between outer ring and housing. Loose fit

Combined load

Self-aligning roller thrust bearings

Tolerance class

Fit

H8

Greater accuracy required with thrust ball bearings

Outer ring static load

H7

Direction Indeterminate Transition fit load or outer ring rotating load

K7

Normal operating conditions

M7

For relatively large radial loads

Note: All values and fits listed in the above tables are for cast iron or steel housings.

Table 7.4 Fits for electric motor bearings Bearing type

Shaft fits Shaft diameter mm Tolerance class Over incl.

Housing bore diameter Housing fits

Tolerance class

Deep groove ball bearings

∼ 18 18 ∼ 100 100 ∼ 160

j5 k5 m5

All sizes

H6 or J6

Cylindrical roller bearings

∼ 40 40 ∼ 160 160 ∼ 200

k5 m5 n6

All sizes

H6 or J6

A-51

●Bearing Fits

Table 7.5 Numeric value table of fitting for radial bearing of 0 class Table 7.5 (1) Fitting against shaft Nominal bore diameter of bearing

Single plane1 mean bore diameter deviation

g5 bearing

g6 shaft

bearing

h5 shaft

bearing

h6 shaft

bearing

j5 shaft

bearing

js5 shaft

bearing

j6 shaft

bearing

shaft

∆dmp

d mm over

incl

high

low

3

6

0

-8

4T∼ 9L

4T∼ 12L

8T∼ 5L

8T∼ 8L

11T∼ 2L

10.5T ∼ 2.5L

14T∼ 2L

6

10

0

-8

3T∼ 11L

3T∼ 14L

8T∼ 6L

8T∼ 9L

12T∼ 2L

11T ∼ 3L

15T∼ 2L

10

18

0

-8

2T∼ 14L

2T∼ 17L

8T∼ 8L

8T∼ 11L

13T∼ 3L

12T ∼ 4L

16T∼ 3L

18

30

0

-10

3T∼ 16L

3T∼ 20L

10T∼ 9L

10T∼ 13L

15T∼ 4L

14.5T ∼ 4.5L

19T∼ 4L

30

50

0

-12

3T∼ 20L

3T∼ 25L

12T∼ 11L

12T∼ 16L

18T∼ 5L

17.5T ∼ 5.5L

23T∼ 5L

50

80

0

-15

5T∼ 23L

5T∼ 29L

15T∼ 13L

15T∼ 19L

21T∼ 7L

21.5T ∼ 6.5L

27T∼ 7L

80

120

0

-20

8T∼ 27L

8T∼ 34L

20T∼ 15L

20T∼ 22L

26T∼ 9L

27.5T ∼ 7.5L

33T∼ 9L

120 140 160

140 160 180

0

-25

11T∼32L

11T∼ 39L

25T∼ 18L

25T∼25L

32T∼11L

34T ∼ 9L

39T∼11L

180 200 225

200 225 250

0

-30

15T∼35L

15T∼ 44L

30T∼ 20L

30T∼29L

37T∼13L

40T ∼10L

46T∼13L

250 280

280 315

0

-35

18T∼40L

18T∼ 49L

35T∼ 23L

35T∼32L

42T∼16L

46.5T∼11.5L

51T∼16L

315 355

355 400

0

-40

22T∼43L

22T∼ 54L

40T∼ 25L

40T∼36L

47T∼18L

52.5T∼12.5L

58T∼18L

400 450

450 500

0

-45

25T∼47L

25T∼ 60L

45T∼ 27L

45T∼40L

52T∼20L

58.5T∼13.5L

65T∼20L

J7

Js7

K6

1 Above table is not applicable to tapered roller bearings whose bore diameter is 30mm or less.

Table 7.5 (2) Fitting against housing Nominal outside diameter of bearing

Single plane 2 mean outside diameter deviation

d

∆Dmp

G7 housing

bearing

H6 housing

bearing

H7 housing

bearing

J6 housing

bearing

housing

bearing

housing

bearing

housing

bearing

mm over

incl

high.

low.

6

10

0

-8

5L∼ 28L

0∼ 17L

0∼ 23L

4T∼ 13L

7T∼ 16L

7.5T∼15.5L

7T∼ 10L

10

18

0

-8

6L∼ 32L

0∼ 19L

0∼ 26L

5T∼ 14L

8T∼ 18L

9T ∼17L

9T∼ 10L

18

30

0

-9

7L∼ 37L

0∼ 22L

0∼ 30L

5T∼ 17L

9T∼ 21L

10.5T∼19.5L

11T∼ 11L

30

50

0

-11

9L∼ 45L

0∼ 27L

0∼ 36L

6T∼ 21L

11T∼ 25L

12.5T∼23.5L

13T∼ 14L

50

80

0

-13

10L∼ 53L

0∼ 32L

0∼ 43L

6T∼ 26L

12T∼ 31L

15T ∼28L

15T∼ 17L

80

120

0

-15

12L∼ 62L

0∼ 37L

0∼ 50L

6T∼ 31L

13T∼ 37L

17.5T∼32.5L

18T∼ 19L

120

150

0

-18

14L∼ 72L

0∼ 43L

0∼ 58L

7T∼ 36L

14T∼ 44L

20T ∼38L

21T∼ 22L

150

180

0

-25

14L∼ 79L

0∼ 50L

0∼ 65L

7T∼ 43L

14T∼ 51L

20T ∼45L

21T∼ 29L

180

250

0

-30

15L∼ 91L

0∼ 59L

0∼ 76L

7T∼ 52L

16T∼ 60L

23T ∼53L

24T∼ 35L

250

315

0

-35

17L∼104L

0∼ 67L

0∼ 87L

7T∼ 60L

16T∼ 71L

26T ∼61L

27T∼ 40L

315

400

0

-40

18L∼115L

0∼ 76L

0∼ 97L

7T∼ 69L

18T∼ 79L

28.5T∼68.5L

29T∼ 47L

400

500

0

-45

20L∼128L

0∼ 85L

0∼108L

7T∼ 78L

20T∼ 88L

31.5T∼76.5L

32T∼ 53L

2 Above table is not application to tapered roller bearings whose outside diameter is 150mm or less. Note: T = tight, L = loose

A-52

●Bearing Fits

Unitμm

js6

k5

bearing

shaft

k6

bearing

shaft

m5

bearing

shaft

bearing

m6 shaft

n6

bearing

shaft

bearing

p6 shaft

bearing

r6 shaft

bearing

shaft

Nominal bore diameter of bearing d mm over

incl.

12T ∼ 4L

14T∼ 1T

17T∼ 1T

17T∼ 4T

20T∼ 4T

24T∼ 8T

28T∼ 12T





3

6

12.5T∼ 4.5L

15T∼ 1T

18T∼ 1T

20T∼ 6T

23T∼ 6T

27T∼10T

32T∼ 15T





6

10

13.5T∼ 5.5L

17T∼ 1T

20T∼ 1T

23T∼ 7T

26T∼ 7T

31T∼12T

37T∼ 18T





10

18

16.5T∼ 6.5L

21T∼ 2T

25T∼ 2T

27T∼ 8T

31T∼ 8T

38T∼15T

45T∼ 22T





18

30

20T ∼ 8L

25T∼ 2T

30T∼ 2T

32T∼ 9T

37T∼ 9T

45T∼17T

54T∼ 26T





30

50

24.5T∼ 9.5L

30T∼ 2T

36T∼ 2T

39T∼11T

45T∼11T

54T∼20T

66T∼ 32T





50

80

31T ∼11L

38T∼ 3T

45T∼ 2T

48T∼13T

55T∼13T

65T∼23T

79T∼ 37T





80

120

120 140 160

140 160 180

37.5T∼12.5L

46T∼3T

53T∼3T

58T∼15T

65T∼15T

77T∼27T

93T∼43T

113T∼ 63T 115T∼ 65T 118T∼ 68T

44.5T∼14.5L

54T∼4T

63T∼4T

67T∼17T

76T∼17T

90T∼31T

109T∼50T

136T∼ 77T 139T∼ 80T 143T∼ 84T

180 200 225

200 225 250

51T ∼16L

62T∼4T

71T∼4T

78T∼20T

87T∼20T

101T∼34T

123T∼56T

161T∼ 94T 165T∼ 98T

250 280

280 315

58T ∼18L

69T∼4T

80T∼4T

86T∼21T

97T∼21T

113T∼37T

138T∼62T

184T∼108T 190T∼114T

315 355

355 400

65T ∼20L

77T∼5T

90T∼4T

95T∼23T

108T∼23T

125T∼40T

153T∼68T

211T∼126T 217T∼132T

400 450

450 500

Unitμm

K7 housing

bearing

M7 housing

bearing

N7 housing

bearing

P7 housing

bearing

Nominal outside diameter of bearing d mm over

incl.

10T∼ 13L

15T∼ 8L

19T∼ 4L

24T∼ 1L

6

10

12T∼ 14L

18T∼ 8L

23T∼ 3L

29T∼ 3L

10

18

15T∼ 15L

21T∼ 9L

28T∼ 2L

35T∼ 5L

18

30

18T∼ 18L

25T∼ 11L

33T∼ 3L

42T∼ 6L

30

50

21T∼ 22L

30T∼ 13L

39T∼ 4L

52T∼ 8L

50

80

25T∼ 25L

35T∼ 15L

45T∼ 5L

59T∼ 9L

80

120

28T∼ 30L

40T∼ 18L

52T∼ 6L

68T∼ 10L

120

150

28T∼ 37L

40T∼ 25L

52T∼ 13L

68T∼ 3L

150

180

33T∼ 43L

46T∼ 30L

60T∼ 16L

79T∼ 3L

180

250

36T∼ 51L

52T∼ 35L

66T∼ 21L

88T∼ 1L

250

315

40T∼ 57L

57T∼ 40L

73T∼ 24L

98T∼ 1L

315

400

45T∼ 63L

63T∼ 45L

80T∼ 28L

400

500

108T∼ 0

A-53

●Bearing Fits

Table 7.6 Fits for inch series tapered roller bearing (ANSI class 4) Table 7.6 (1) Fit with shaft

Unitμm

Shaft diameter Load conditions

d over

mm incl.

Cone bore tolerance ∆ds high low

Shaft tolerance

Extreme fits

1

Remark

Rotating cone load Stationary cone load

high

low

max

Normal loads, no shock

∼ 76.2 76.2 ∼ 304.8 304.8 ∼ 609.6 609.6 ∼ 914.4

+13 +25 +51 +76

0 0 0 0

+ 38 + 64 +127 +190

+ 25 + 38 + 76 +114

38T 64T 127T 190T

Heavy loads or shock loads

∼ 76.2 76.2 ∼ 304.8 304.8 ∼ 609.6 609.6 ∼ 914.4

+13 +25 +51 +76

0 0 0 0

+ 64 + 38 38T ∼ 12T Use average tight cone fit of 0.5μm/mm, (0.0005 inch/inch) of cone bore, use a minimum fit of 25μm, 0.0010 inch tight.

Cone axial displacement on shaft necessary

∼ 76.2 76.2 ∼ 304.8 304.8 ∼ 609.6 609.6 ∼ 914.4

+13 +25 +51 +76

0 0 0 0

+ + + +

Cone axial displacement on shaft unnecessary

∼ 76.2 76.2 ∼ 304.8 304.8 ∼ 609.6 609.6 ∼ 914.4

+13 +25 +51 +76

0 0 0 0

13 25 51 76 0 0 0 0

-

min ∼ ∼ ∼ ∼

12T 13T 25T 38T

0 0 0 0

13T 25T 51T 76T

∼ ∼ ∼ ∼

13L 25L 51L 76L

13 25 51 76

0 0 0 0

∼ ∼ ∼ ∼

13L 50L 102L 152L

This extreme fits is applicable to little shock load conditions.

This extreme fits is not applicable to shock load conditions.

Table 7.6 (2) Fit with housing

Load conditions

Unitμm

Housing bore diameter D mm over incl.

Cup O.D. tolerance ∆Ds high low

Housing bore tolerance

Extreme fits

high

low

max

1

Types of fit min

76.2 127.0 304.8 609.6

∼ ∼ ∼ ∼ ∼

76.2 127.0 304.8 609.6 914.4

+25 +25 +25 +51 +76

0 0 0 0 0

+ 76 + 76 + 76 +152 +229

+ 51 + 51 + 51 +102 +152

26L 26L 26L 51L 76L

∼ ∼ ∼ ∼ ∼

76L 76L 76L 152L 229L

loose fit

Light and normal loads: cup axially adjustable

76.2 127.0 304.8 609.6

∼ ∼ ∼ ∼ ∼

76.2 127.0 304.8 609.6 914.4

+25 +25 +25 +51 +76

0 0 0 0 0

+ 25 + 25 + 51 + 76 +127

0 0 0 + 26 + 51

25T 25T 25T 25T 25T

∼ ∼ ∼ ∼ ∼

25L 25L 51L 76L 127L

tight interference fit

Heavy loads: cup not axially displaceable

76.2 127.0 304.8 609.6

∼ ∼ ∼ ∼ ∼

76.2 127.0 304.8 609.6 914.4

+25 +25 +25 +51 +76

0 0 0 0 0

-

13 25 25 25 25

- 38 - 51 - 51 - 76 -102

63T 76T 76T 127T 178T

∼ ∼ ∼ ∼ ∼

13T 25T 25T 25T 25T

76.2 127.0 304.8 609.6

∼ ∼ ∼ ∼ ∼

76.2 127.0 304.8 609.6 914.4

+25 +25 +25 +51 +76

0 0 0 0 0

-

13 25 25 25 25

- 38 - 51 - 51 - 76 -102

63T 76T 76T 127T 178T

∼ ∼ ∼ ∼ ∼

13T 25T 25T 25T 25T

Light and normal loads: cup easily axially displaceable Stationary cup load Rotating cup load

Cup not axially displaceable

1 For bearings with negation deviation indicated in bearing tables,same fit applies. Note 1: For bearings higher than class 2, consult NTN Engineering. 2: T= tight, L= loose

A-54

tight fit

●Bearing Fits

●Bearing Internal Clearance and Preload 8.

Bearing Internal Clearance and Preload

8.1 Bearing internal clearance

8.2

Bearing internal clearance (initial clearance) is the amount of internal clearance a bearing has before being installed on a shaft or in a housing.

The internal clearance of a bearing under operating conditions (effective clearance) is usually smaller than the same bearing's initial clearance before being installed and operated. This is due to several factors including bearing fit, the difference in temperature between the inner and outer rings, etc. As a bearing's operating clearance has an effect on bearing life, heat generation, vibration, noise, etc.; care must be taken in selecting the most suitable operating clearance.

As shown in Fig. 8.1, when either the inner ring or the outer ring is fixed and the other ring is free to move, displacement can take place in either an axial or radial direction. This amount of displacement (radially or axially) is termed the internal clearance and, depending on the direction, is called the radial internal clearance or the axial internal clearance.

Internal clearance selection

Effective internal clearance: The internal clearance differential between the initial clearance and the operating (effective) clearance (the amount of clearance reduction caused by interference fits, or clearance variation due to the temperature difference between the inner and outer rings) can be calculated by the following formula:

When the internal clearance of a bearing is measured, a slight measurement load is applied to the raceway so the internal clearance may be measured accurately. However, at this time, a slight amount of elastic deformation of the bearing occurs under the measurement load, and the clearance measurement value (measured clearance) is slightly larger than the true clearance. This discrepancy between the true bearing clearance and the increased amount due to the elastic deformation must be compensated for. These compensation values are given in Table 8.1. For roller bearings the amount of elastic deformation can be ignored.

δeff =δo −(δf +δt )…………………(8.1) where, δeff : Effective internal clearance, mm δo : Bearing internal clearance, mm δf : Reduced amount of clearance due to interference, mm δt : Reduced amount of clearance due to temperature differential of inner and outer r, mm

The internal clearance values for each bearing class are shown in Tables 8.3 through 8.11.

Table 8.1 Adjustment of radial internal clearance based on measured load Unitμm

δ2

Nominal Bore Diameter Measuring Load d mm N{kgf} over incl.

δ

10 1 18 50

δ1

18 50 200

24.5 49 147

{2.5} {5} {15}

Radial Clearance Increase C2

CN

3∼4 4∼5 6∼8

4 5 8

C3 C4 C5 4 6 9

4 6 9

4 6 9

1 This diameter is included in the group.

Table 8.2 Examples of applications where bearing clearances other than normal clearance are used Operating conditions

Applications Railway vehicle axles

With heavy or shock load, clearance is great. Vibration screens

Radial clearance =δ     Axial clearance =δ1+δ2

C3,C4 C4

Tractors and final speed regulators

C4

Paper making machines and driers

C3,C4

Rolling mill table rollers

C3

To reduce noise and vibration when rotating.

Micromotors

C2,CM

To reduce shaft runout, clearance is adjusted.

Main spindles of lathes (Double-row cylindrical roller bearings)

C9NA, C0NA

Shaft or inner ring is heated.

A-56

C3

Railway vehicle traction motors

With direction indeterminate load, both inner and outer rings are tight-fitted.

Fig. 8.1 Internal clearance

Selected clearance

●Bearing Internal Clearance and Preload

temperature difference between the two rings can be even greater. The amount of internal clearance is thus further reduced by the differential expansion of the two rings.

(1) Reduced clearance due to interference When bearings are installed with interference fits on shafts and in housings, the inner ring will expand and the outer ring will contract; thus reducing the bearings' internal clearance. The amount of expansion or contraction varies depending on the shape of the bearing, the shape of the shaft or housing, dimensions of the respective parts, and the type of materials used. The differential can range from approximately 70% to 90% of the effective interference.

δt =α・∆T・Do ………………………… (8.3) where, δt : Amount of reduced clearance due to heat differential, mm α : Bearing steel linear expansion coefficient 12.5 × 10-6/˚C ∆T : Inner/outer ring temperature differential, ℃ Do : Outer ring raceway diameter, mm

δf = (0.70∼0.90) ∆deff …………………… (8.2) where, δf : Reduced amount of clearance due to interference, mm ∆deff : Effective interference, mm

Outer ring raceway diameter, Do, values can be approximated by using formula (8.4) or (8.5). For ball bearings and spherical roller bearings, Do = 0.20 (d + 4.0D) ……………………… (8.4) For roller bearings (except self-aligning), Do = 0.25 (d + 3.0D) ……………………… (8.5) where, d : Bearing bore diameter, mm D : Bearing outside diameter, mm

(2) Reduced internal clearance due to inner/outer ring temperature difference. During operation, normally the outer ring will range from 5 to 10℃ cooler than the inner ring or rotating parts. However, if the cooling effect of the housing is large, the shaft is connected to a heat source, or a heated substance is conducted through the hollow shaft; the

Table 8.3 Radial internal clearance of deep groove ball bearings Nominal bore diameter d mm over incl.

Unitμm

C3

CN

C2

C4

min

max

min

max

min

max

min

C5 max

min

max

ー  2.5 6

2.5 6 10

0 0 0

6 7 7

4 2 2

11 13 13

10 8 8

20 23 23

ー  ー  14

ー  ー  29

ー  ー  20

ー  ー  37

10 18 24

18 24 30

0 0 1

9 10 11

3 5 5

18 20 20

11 13 13

25 28 28

18 20 23

33 36 41

25 28 30

45 48 53

30 40 50

40 50 65

1 1 1

11 11 15

6 6 8

20 23 28

15 18 23

33 36 43

28 30 38

46 51 61

40 45 55

64 73 90

65 80 100

80 100 120

1 1 2

15 18 20

10 12 15

30 36 41

25 30 36

51 58 66

46 53 61

71 84 97

65 75 90

105 120 140

120 140 160

140 160 180

2 2 2

23 23 25

18 18 20

48 53 61

41 46 53

81 91 102

71 81 91

114 130 147

105 120 135

160 180 200

180 200 225

200 225 250

2 2 2

30 35 40

25 25 30

71 85 95

63 75 85

117 140 160

107 125 145

163 195 225

150 175 205

230 265 300

250 280 315

280 315 355

2 2 3

45 55 60

35 40 45

105 115 125

90 100 110

170 190 210

155 175 195

245 270 300

225 245 275

340 370 410

355 400 450

400 450 500

3 3 3

70 80 90

55 60 70

145 170 190

130 150 170

240 270 300

225 250 280

340 380 420

315 350 390

460 510 570

500 560

560 630

10 10

100 110

80 90

210 230

190 210

330 360

310 340

470 520

440 490

630 690

A-57

●Bearing Internal Clearance and Preload

Table 8.4 Radial internal clearance of self-aligning ball bearings Nominal bore diameter d mm over

incl.

Bearing with cylindrical bore    C2 min max

min

   C3 min max

Normal max

   C4 min

max

   C5 min max

2.5 6 10

6 10 14

1 2 2

8 9 10

5 6 6

15 17 19

10 12 13

20 25 26

15 19 21

25 33 35

21 27 30

33 42 48

14 18 24

18 24 30

3 4 5

12 14 16

8 10 11

21 23 24

15 17 19

28 30 35

23 25 29

37 39 46

32 34 40

50 52 58

30 40 50

40 50 65

6 6 7

18 19 21

13 14 16

29 31 36

23 25 30

40 44 50

34 37 45

53 57 69

46 50 62

66 71 88

65 80 100

80 100 120

8 9 10

24 27 31

18 22 25

40 48 56

35 42 50

60 70 83

54 64 75

83 96 114

76 89 105

108 124 145

120 140

140

10 15

38 44

30 35

68 80

60 70

100 120

90 110

135 161

125 150

175 210

160

Table 8.5 Radial internal clearance of double row and duplex angular contact ball bearings Nominal bore diameter

   C2

   C1



Unitμm

   C3

Normal

   C4

d mm over

incl.

min

max

ー 10 18

10 18 30

3 3 3

8 8 10

30 50 80

50 80 100

3 3 3

100 120 150 180

120 150 180 200

3 3 3 3

min

max

min

max

min

max

min

max

6 6 6

12 12 12

8 8 10

15 15 20

15 15 20

22 24 32

22 30 40

30 40 55

10 11 13

8 11 13

14 17 22

14 17 22

25 32 40

25 32 40

40 50 60

55 75 95

75 95 120

15 16 18 20

15 16 18 20

30 33 35 40

30 35 35 40

50 55 60 65

50 55 60 65

75 80 90 100

110 130 150 180

140 170 200 240

Note: The clearance group in the table is applied only to contact angles in the table below.

Table 8.6 Radial internal clearance of bearings for electric motor Contact angle symbol

C 1 A B

Nominal contact angle

15˚ 30˚ 40˚

Unitμm

Applicable clearance group

Nominal bore diameter    d mm over incl.

C1,C2   C2,Normal,C3   Normal,C3,C4

1 Usually not to be indicated

Radial internal clearance CM Deep groove ball bearings Cylindrical roller bearings min max min max

10 (incl.) 18 24

18 24 30

4 5 5

11 12 12

ー ー 15

ー ー 30

30 40 50

40 50 65

9 9 12

17 17 22

15 20 25

30 35 40

65 80 100

80 100 120

12 18 18

22 30 30

30 35 35

45 55 60

120 140 160

140 160 180

24 24 ー

38 38 ー

40 50 60

65 80 90

180

200





65

100

Note 1: Suffix CM is added to bearing numbers. 2: Non-interchangeable clearance 3: This diameter is included in the group.

A-58

●Bearing Internal Clearance and Preload

Unitμm

Nominal bore diameter

Bearing with tapered bore    C2 min max

  Normal

   C3

   C4

d mm

   C5

min

max

min

max

min

max

min

max

over

incl.

ー ー ー

ー ー ー

ー ー ー

ー ー ー

ー ー ー

ー ー ー

ー ー ー

ー ー ー

ー ー ー

ー ー ー

2.5 6 10

6 10 14

ー 7 9

ー 17 20

ー 13 15

ー 26 28

ー 20 23

ー 33 39

ー 28 33

ー 42 50

ー 37 44

ー 55 62

14 18 24

18 24 30

12 14 18

24 27 32

19 22 27

35 39 47

29 33 41

46 52 61

40 45 56

59 65 80

52 58 73

72 79 99

30 40 50

40 50 65

23 29 35

39 47 56

35 42 50

57 68 81

50 62 75

75 90 108

69 84 100

98 116 139

91 109 130

123 144 170

65 80 100

80 100 120

40 45

68 74

60 65

98 110

90 100

130 150

120 140

165 191

155 180

205 240

120 140

140 160

Table 8.7 Radial internal clearance of cylindrical roller bearings, needle roller bearings (Interchangeable, cylindrical bore bearings) Nominal bore diameter d mm over incl.

Normal

C2

Unitμm

C3

C4

C5

min

max

min

max

min

max

min

max

min

max

―  10 24

10 24 30

0 0 0

25 25 25

20 20 20

45 45 45

35 35 35

60 60 60

50 50 50

75 75 75

30 40 50

40 50 65

5 5 10

30 35 40

25 30 40

50 60 70

45 50 60

70 80 90

60 70 80

85 100 110

80 95 110

105 125 140

65 80 100

80 100 120

10 15 15

45 50 55

40 50 50

75 85 90

65 75 85

100 110 125

90 105 125

125 140 165

130 155 180

165 190 220

120 140 160

140 160 180

15 20 25

60 70 75

60 70 75

105 120 125

100 115 120

145 165 170

145 165 170

190 215 220

200 225 250

245 275 300

180 200 225

200 225 250

35 45 45

90 105 110

90 105 110

145 165 175

140 160 170

195 220 235

195 220 235

250 280 300

275 305 330

330 365 395

250 280 315

280 315 355

55 55 65

125 130 145

125 130 145

195 205 225

190 200 225

260 275 305

260 275 305

330 350 385

370 410 455

440 485 535

355 400 450

400 450 500

100 110 110

190 210 220

190 210 220

280 310 330

280 310 330

370 410 440

370 410 440

460 510 550

510 565 625

600 665 735

A-59

―  65 70

―  90 95

●Bearing Internal Clearance and Preload

Table 8.8 Radial internal clearance of cylindrical roller bearings, needle roller bearings (non-interchangeable) Nominal bore diameter    d mm over incl.

Bearing with cylindrical bore    C1NA min max

   C2NA min max

   NA1 min max

   C3NA min max

   C4NA min max

   C5NA min max

ー 10 18

10 18 24

5 5 5

10 10 10

10 10 10

20 20 20

20 20 20

30 30 30

35 35 35

45 45 45

45 45 45

55 55 55

ー 65 65

ー 75 75

24 30 40

30 40 50

5 5 5

10 12 15

10 12 15

25 25 30

25 25 30

35 40 45

40 45 50

50 55 65

50 55 65

60 70 80

70 80 95

80 95 110

50 65 80

65 80 100

5 10 10

15 20 25

15 20 25

35 40 45

35 40 45

50 60 70

55 70 80

75 90 105

75 90 105

90 110 125

110 130 155

130 150 180

100 120 140

120 140 160

10 15 15

25 30 35

25 30 35

50 60 65

50 60 65

80 90 100

95 105 115

120 135 150

120 135 150

145 160 180

180 200 225

205 230 260

160 180 200

180 200 225

15 20 20

35 40 45

35 40 45

75 80 90

75 80 90

110 120 135

125 140 155

165 180 200

165 180 200

200 220 240

250 275 305

285 315 350

225 250 280

250 280 315

25 25 30

50 55 60

50 55 60

100 110 120

100 110 120

150 165 180

170 185 205

215 240 265

215 240 265

265 295 325

330 370 410

380 420 470

315 355 400 450

355 400 450 500

30 35 45 50

65 75 85 95

65 75 85 95

135 150 170 190

135 150 170 190

200 225 255 285

225 255 285 315

295 330 370 410

295 330 370 410

360 405 455 505

455 510 565 625

520 585 650 720

1 For bearings with normal clearance, only NA is added to bearing numbers. Ex. NU310NA, NN03020KNAP5

Table 8.9 Axial internal clearance of metric double row and duplex tapered roller bearings (except series 329X, 330, 322C, 323C) Nominal bore diameter    d mm over incl.

Contact angleα≦27˚ (e ≦ 0.76)    Normal

    C2

    C3

    C4

min

max

min

max

min

max

min

max

18 24 30

24 30 40

25 25 25

75 75 95

75 75 95

125 125 165

125 145 165

170 195 235

170 195 210

220 245 280

40 50 65

50 65 80

20 20 20

85 85 110

85 110 130

150 175 220

175 195 240

240 260 325

240 280 325

305 350 410

80 100 120

100 120 140

45 45 45

150 175 175

150 175 175

260 305 305

280 350 390

390 480 520

390 455 500

500 585 630

140 160 180

160 180 200

60 80 100

200 220 260

200 240 260

340 380 420

400 440 500

540 580 660

520 600 660

660 740 820

200 225 250

225 250 280

120 160 180

300 360 400

300 360 400

480 560 620

560 620 700

740 820 920

720 820 920

900 1,020 1,140

280 315 355 400

315 355 400 500

200 220 260 300

440 480 560 600

440 500 560 620

680 760 860 920

780 860 980 1,100

1,020 1,120 1,280 1,400

1,020 1,120 1,280 1,440

1,260 1,380 1,580 1,740

where, ∆r = radial internal clearance, μm ∆a = axial internal clearance, μm e = constant, see bearing tables

Note: Radial internal clearance is approximately obtained from: ∆r = 0.667・e・∆a

A-60

●Bearing Internal Clearance and Preload

Unitμm

Nominal bore diameter    d mm over incl.

Bearing with tapered bore    C9NA2 min max

   C0NA2 min max

   C1NA min max

   NA1 min max

   C2NA min max

   C3NA min max

5 5 5

5 10 10

7 7 7

17 17 17

10 10 10

20 20 20

20 20 20

30 30 30

35 35 35

45 45 45

45 45 45

55 55 55

ー 10 18

10 18 24

5 5 5

10 12 15

10 10 10

20 20 20

10 12 15

25 25 30

25 25 30

35 40 45

40 45 50

50 55 65

50 55 65

60 70 80

24 30 40

30 40 50

5 10 10

15 20 25

10 15 20

20 30 35

15 20 25

35 40 45

35 40 45

50 60 70

55 70 80

75 90 105

75 90 105

90 110 125

50 65 80

65 80 100

10 15 15

25 30 35

20 25 30

35 40 45

25 30 35

50 60 65

50 60 65

80 90 100

95 105 115

120 135 150

120 135 150

145 160 180

100 120 140

120 140 160

15 20 20

35 40 45

30 30 35

45 50 55

35 40 45

75 80 90

75 80 90

110 120 135

125 140 155

165 180 200

165 180 200

200 220 240

160 180 200

180 200 225

25 25 30

50 55 60

40 40 45

65 65 75

50 55 60

100 110 120

100 110 120

150 165 180

170 185 205

215 240 265

215 240 265

265 295 325

225 250 280

250 280 315

30 35 45 50

65 75 85 95

45 50 60 70

75 90 100 115

65 75 85 95

135 150 170 190

135 150 170 190

200 225 255 285

225 255 285 315

295 330 370 410

295 330 370 410

360 405 455 505

315 355 400 450

355 400 450  500

2 C9NA, C0NA and C1NA are applied only to precision bearings of Class 5 and higher.

Unitμm

Contact angleα> 27˚ (e > 0.76)     C2 min

max

   Normal min max

    C3 min

Nominal bore diameter

max

    C4 min

max

   d mm over incl.

10 10 10

30 30 40

30 30 40

50 50 70

50 60 70

70 80 100

70 80 90

90 100 120

18 24 30

24 30 40

10 10 10

40 40 50

40 50 60

70 80 100

80 90 110

110 120 150

110 130 150

140 160 190

40 50 65

50 65 80

20 20 20

70 70 70

70 70 70

120 120 120

130 150 160

180 200 210

180 210 210

230 260 260

80 100 120

100 120 140

30 ー ー

100 ー ー

100 ー ー

160 ー ー

180 ー ー

240 ー ー

240 ー ー

300 ー ー

140 160 180

160 180 200

ー ー ー

ー ー ー

ー ー ー

ー ー ー

ー ー ー

ー ー ー

ー ー ー

ー ー ー

200 225 250

225 250 280

ー ー ー ー

ー ー ー ー

ー ー ー ー

ー ー ー ー

ー ー ー ー

ー ー ー ー

ー ー ー ー

ー ー ー ー

280 315 355 400

315 355 400 500

A-61

●Bearing Internal Clearance and Preload

Table 8.10 Radial internal clearance of spherical roller bearings Nominal bore diameter   d mm

Bearing with cylindrical bore    C2 min max

  Normal min max

   C3 min max

   C4 min max

   C5 min max

over

incl.

14 18 24

18 24 30

10 10 15

20 20 25

20 20 25

35 35 40

35 35 40

45 45 55

45 45 55

60 60 75

60 60 75

75 75 95

30 40 50

40 50 65

15 20 20

30 35 40

30 35 40

45 55 65

45 55 65

60 75 90

60 75 90

80 100 120

80 100 120

100 125 150

65 80 100

80 100 120

30 35 40

50 60 75

50 60 75

80 100 120

80 100 120

110 135 160

110 135 160

145 180 210

145 180 210

180 225 260

120 140 160

140 160 180

50 60 65

95 110 120

95 110 120

145 170 180

145 170 180

190 220 240

190 220 240

240 280 310

240 280 310

300 350 390

180 200 225

200 225 250

70 80 90

130 140 150

130 140 150

200 220 240

200 220 240

260 290 320

260 290 320

340 380 420

340 380 420

430 470 520

250 280 315

280 315 355

100 110 120

170 190 200

170 190 200

260 280 310

260 280 310

350 370 410

350 370 410

460 500 550

460 500 550

570 630 690

355 400 450

400 450 500

130 140 140

220 240 260

220 240 260

340 370 410

340 370 410

450 500 550

450 500 550

600 660 720

600 660 720

750 820 900

500 560 630

560 630 710

150 170 190

280 310 350

280 310 350

440 480 530

440 480 530

600 650 700

600 650 700

780 850 920

780 850 920

1,000 1,100 1,190

710 800 900

800 900 1,000

210 230 260

390 430 480

390 430 480

580 650 710

580 650 710

770 860 930

770 860 930

1,010 1,120 1,220

1,010 1,120 1,220

1,300 1,440 1,570

1,000 1,120 1,250

1,120 1,250 1,400

290 320 350

530 580 640

530 580 640

780 860 950

780 860 950

1,020 1,120 1,240

1,020 1,120 1,240

1,330 1,460 1,620

1,330 1,460 1,620

1,720 1,870 2,080

Table 8.11 Axial internal clearance of four points contact ball bearings. Nominal bore diameter

    C2

Unit μm

    CN

    C3

    C4

  d mm over

incl.

min

max

min

max

min

max

min

max

17 40 60

40 60 80

26 36 46

66 86 96

56 76 86

106 126 136

96 116 126

146 166 176

136 156 166

186 206 226

80 100 140 180

100 140 180 220

56 66 76 96

106 126 156 176

96 116 136 156

156 176 196 216

136 156 176 196

196 216 236 256

186 206 226 246

246 266 296 316

A-62

●Bearing Internal Clearance and Preload

Unitμm

Nominal bore diameter

Bearing with tapered bore    C2 min max

  Normal

   C3

   C4

  d mm

   C5

min

max

min

max

min

max

min

max

over

incl.

ー 15 20

ー 25 30

ー 25 30

ー 35 40

ー 35 40

ー 45 55

ー 45 55

ー 60 75

ー 60 75

ー 75 95

14 18 24

18 24 30

25 30 40

35 45 55

35 45 55

50 60 75

50 60 75

65 80 95

65 80 95

85 100 120

85 100 120

105 130 160

30 40 50

40 50 65

50 55 65

70 80 100

70 80 100

95 110 135

95 110 135

120 140 170

120 140 170

150 180 220

150 180 220

200 230 280

65 80 100

80 100 120

80 90 100

120 130 140

120 130 140

160 180 200

160 180 200

200 230 260

200 230 260

260 300 340

260 300 340

330 380 430

120 140 160

140 160 180

110 120 140

160 180 200

160 180 200

220 250 270

220 250 270

290 320 350

290 320 350

370 410 450

370 410 450

470 520 570

180 200 225

200 225 250

150 170 190

220 240 270

220 240 270

300 330 360

300 330 360

390 430 470

390 430 470

490 540 590

490 540 590

620 680 740

250 280 315

280 315 355

210 230 260

300 330 370

300 330 370

400 440 490

400 440 490

520 570 630

520 570 630

650 720 790

650 720 790

820 910 1,000

355 400 450

400 450 500

290 320 350

410 460 510

410 460 510

540 600 670

540 600 670

680 760 850

680 760 850

870 980 1,090

870 980 1,090

1,100 1,230 1,360

500 560 630

560 630 710

390 440 490

570 640 710

570 640 710

750 840 930

750 840 930

960 1,070 1,190

960 1,070 1,190

1,220 1,370 1,520

1,220 1,370 1,520

1,500 1,690 1,860

710 800 900

800 900 1,000

530 570 620

770 830 910

770 830 910

1,030 1,120 1,230

1,030 1,120 1,230

1,300 1,420 1,560

1,300 1,420 1,560

1,670 1,830 2,000

1,670 1,830 2,000

2,050 2,250 2,470

1,000 1,120 1,250

1,120 1,250 1,400

A-63

●Bearing Internal Clearance and Preload

displacement does not occur. Thus, the natural frequency of the shaft is increased, which is suitable for high speeds.

8.3 Preload Normally, bearings are used with a slight internal clearance under operating conditions. However, in some applications, bearings are given an initial load; this means that the bearings' internal clearance is negative before operation. This is called "preload" and is commonly applied to angular ball bearings and tapered roller bearings.

Preload is also used to prevent or suppress shaft runout, vibration, and noise; improve running accuracy and locating accuracy; reduce smearing, and regulate rolling element rotation. Also, for thrust ball and roller bearings mounted on horizontal shafts, preloading keeps the rolling elements in proper alignment.

8.3.1 Purpose of preload Giving preload to a bearing results in the rolling element and raceway surfaces being under constant elastic compressive forces at their contact points. This has the effect of making the bearing extremely rigid so that even when load is applied to the bearing, radial or axial shaft

Method

Basic pattern

Applicable bearings

The most common method of preloading is to apply an axial load to two duplex bearings so that the inner and outer rings are displaced axially in relation to each other. This preloading method is divided into fixed position preload and constant pressure preload.

Object

Fixed position preload

Maintaining accuracy of Precision rotating shaft, angular contact preventing ball bearings vibration increasing rigidity

Tapered roller bearings, thrust Increasing ball bearings, bearing rigidity angular contact ball bearings

Characteristics Preloading is accomplished by a predetermined offset of the rings or by using spacers. For the standard preload see Table 8.13 Preload is accomplished by adjusting a threaded screw. The amount of preload is set by measuring the starting torque or axial displacement. Relationship between the starting torque M and preload T is approximately given by the following formulas:for duplex angular contact ball bearings:

Applications Grinding machines, lathes, milling machines, measuring instruments

Lathes, milling machines, differential gears of automotives, printing machines, wheel axles

for duplex tapered roller bearings:

Constant pressure preload

Angular contact ball bearings, deep groove ball bearings, precision tapered roller bearings

Tapered roller bearings with steep angle, spherical roller thrust bearings, thrust ball bearings

Note: In the above formulas

Maintaining accuracy and preventing vibration and noise with a constant amount of preload without being affected by loads or temperature

Preloading is accomplished by using coil or belleville springs. Recommended preloads are as follows: for deep groove ball bearings: 4∼10 d N 0.4∼1.0 d {kgf} for angular contact ball bearings: see Table 8.13

Preventing smearing on raceway of non-loaded side under axial loads

Preload is accomplished by using coil or belleville springs. Recommended preloads are as follows: for thrust ball bearings: 1.9 -13 T1=0.42 (nCoa) ×10   N 1.9 -13  =3.275(nCoa) ×10  {kgf}   T2=0.00083 Coa N{kgf} which ever is greater for spherical roller thrust bearings: T=0.025 Coa0.8  N =0.0158 Coa0.8 {kgf}

dp = pitch diameter of bearing, mm dp = (Bore+Outside dia) / 2

T = preload, N The starting torque M however, is greatly influenced by lubricants and a period of run-in time.

A-64

Internal grinding machines, electric motors, high speed shafts in small machines, tension reels

Rolling mills, extruding machines

d = bearing bore, mm n = number of revolutions, r/min Coa = basic static axial load rating, N

●Bearing Internal Clearance and Preload

8.3.2 Preloading methods and amounts The basic pattern, purpose and characteristics of bearing preloads are shown in Table 8.12. The definite position preload is effective for positioning the two bearings and also for increasing the rigidity. Due to the use of a spring for the constant pressure preload, the preloading amount can be kept constant, even when the distance between the two bearings fluctuates under the influence of operating heat and load.

8.3.3 Preload and rigidity The increased rigidity effect preloading has on bearings is shown in Fig. 8.2. When the offset inner rings of the two paired angular contact ball bearings are pressed together, each inner ring is displaced axially by the amount δ0 and is thus given a preload, F0, in the direction. Under this condition, when external axial load Fa is applied, bearing!will have an increased , displacement by the amount δa and bearing @s displacement will decrease. At this time the loads applied to bearing!and @ are FI and FII, respectively.

Also, the standard preloading amount for the paired angular contact ball bearings is shown in Table 8.13. Light and normal preload is applied to prevent general vibration, and medium and heavy preload is applied especially when rigidity is required.

Under the condition of no preload, bearing I will be displaced by the amount δb when axial load Fa is applied. Since the amount of displacement, δa, is less than δb, it indicates a higher rigidity for δa.

Bearing2 Bearing1

Axial load

Fa   Fo

Fo

Bearing2 Outer ring Steel ball Inner ring

δo δb

(1) Under free from preload δo (2) Under preloading

δo

Bearing1

δa

δo δo

Inner ring displacement Fo : Preload

δo

Fo δa F2

δa

(3) Under preloading and applied load

Fa F1 Fa

Fo

Inner ring displacement F1= F2+ Fa Fa: External axial load

δa

F2 δ1 δo

δ2 δo F1= F2+ Fa

Fig. 8.2 Fixed position preload versus axial displacement

A-65

Axial displacement

●Bearing Internal Clearance and Preload

Table 8.13 The normal preload of duplex arrangement angular contact ball bearings Nominal bore diameter d mm

Bearing 78C

Low

Normal

over

inch

12 18

12 18 32

10{ 1} 29{ 3}

32 40 50

40 50 65

65 80 90

79C,HSB9C

Central

-

Heavy

Low

Low

Normal

98{ 10}

10{ 1} 29{ 3} 78{ 8} 20{ 2} 49{ 5} 98{ 10} 29{ 3} 98{10} 196{ 20}

147{ 15} 29{ 3} 78{ 8} 196{ 20} 39{ 4} 98{ 10} 390{ 40} 49{ 5} 118{ 12}

196{ 20} 245{ 25} 294{ 30}

294{ 30} 490{ 50} 590{ 60}

80 90 95

29{ 3} 98{10} 196{ 20} 49{ 5} 147{15} 294{ 30} 49{ 5} 147{15} 294{ 30}

390{ 40} 78{ 8} 196{ 20} 590{ 60} 98{10} 245{ 25} 590{ 60} 98{10} 245{ 25}

390{ 40} 490{ 50} 490{ 50}

785{ 80} 98{10} 294{ 30} 980{100} 147{15} 390{ 40} 980{100} 147{15} 390{ 40}

95 100 105

100 105 110

49{ 5} 147{15} 294{ 30} 49{ 5} 147{15} 294{ 30} 78{ 8} 196{20} 490{ 50}

590{ 60} 118{12} 294{ 30} 590{ 60} 118{12} 294{ 30} 980{100} 118{12} 294{ 30}

685{ 70} 1,470{150} 147{15} 390{ 40} 685{ 70} 1,470{150} 196{20} 590{ 60} 685{ 70} 1,470{150} 196{20} 590{ 60}

110 120 140

120 140 150

78{ 8} 196{20} 490{ 50} 980{100} 147{15} 390{ 40} 880{ 90} 1,960{200} 196{20} 590{ 60} 98{10} 294{30} 590{ 60} 1,270{130} 196{20} 490{ 50} 980{100} 2,450{250} 294{30} 785{ 80} 147{15} 390{40} 785{ 80} 1,470{150} 245{25} 685{ 70} 1,470{150} 2,940{300} 294{30} 785{ 80}

150 160 170

160 170 180

147{15} 390{40} 785{ 80} 1,470{150} 245{25} 685{ 70} 1,470{150} 2,940{300} 490{50} 980{100} 147{15} 490{50} 980{100} 1,960{200} 245{25} 685{ 70} 1,470{150} 2,940{300} 490{50} 980{100} 147{15} 490{50} 980{100} 1,960{200} 294{30} 880{ 90} 1,960{200} 3,900{400} 490{50} 980{100}

180 190

190 200

196{20} 590{60}1,270{130} 2,450{250} 294{30} 880{ 90} 1,960{200} 3,900{400} 590{60}1,470{150} 196{20} 590{60}1,270{130} 2,450{250} 490{50}1,270{130} 2,940{300} 5,900{600} 590{60}1,470{150}

49{

-

Heavy

5}

8}

-

Central

196{ 20}

78{

147{ 15} 20{ 2}

Normal

70C,BNT0,

20{ 2} 20{ 2} 29{ 3}

29{ 29{ 78{

3} 3} 8}

49{ 5} 147{ 15} 49{ 5} 147{ 15} 98{10} 196{ 20}

Bearing

Nominal bore diameter d mm

79,HSB9 Normal

Central

70,HSB0 Heavy

Low

Normal

Central

Heavy

over

inch

12 18

12 18 32

39{ 4} 49{ 5} 98{ 10}

78{ 8} 147{ 15} 196{ 20}

147{ 15} 196{ 20} 294{ 30}

29{ 3} 29{ 3} 49{ 5}

78{ 8} 78{ 8} 147{ 15}

147{ 15} 147{ 15} 294{ 30}

32 40 50

40 50 65

147{ 15} 196{ 20} 245{ 25}

294{ 30} 390{ 40} 490{ 50}

590{ 60} 635{ 70} 785{ 80}

78{ 8} 78{ 8} 147{15}

294{ 30} 294{ 30} 490{ 50}

590{ 60} 590{ 60} 880{ 90}

880{ 90} 980{ 100} 1,470{ 150}

65 80 90

80 90 95

390{ 40} 490{ 50} 490{ 50}

785{ 80} 980{100} 980{100}

1,180{120} 1,470{150} 1,470{150}

147{15} 196{20} 196{20}

590{ 60} 880{ 90} 880{ 90}

1,470{150} 1,960{200} 1,960{200}

1,960{ 200} 2,940{ 300} 2,940{ 300}

95 100 105

100 105 110

685{ 70} 685{ 70} 685{ 70}

1,274{130} 1,274{130} 1,274{130}

1,960{200} 1,960{200} 1,960{200}

196{20} 294{30} 294{30}

880{ 90} 980{100} 980{100}

1,960{200} 2,450{250} 2,450{250}

2,940{ 300} 3,900{ 400} 3,900{ 400}

110 120 140

120 140 150

880{ 90} 980{100} 1,270{130}

1,780{180} 1,960{200} 2,450{250}

2,940{300} 3,450{350} 4,400{450}

294{30} 490{50} 490{50}

980{100} 1,470{150} 1,470{150}

2,450{250} 3,450{350} 3,450{350}

3,900{ 400} 5,900{ 600} 5,900{ 600}

150 160 170

160 170 180

1,270{130} 1,270{130} 1,780{180}

2,450{250} 2,450{250} 3,450{350}

4,400{450} 4,400{450} 5,900{600}

685{70} 685{70} 685{70}

2,450{250} 2,450{250} 2,450{250}

4,900{500} 4,900{500} 4,900{500}

8,800{ 900} 8,800{ 900} 8,800{ 900}

180 190

190 200

1,780{180} 2,450{250}

3,450{350} 4,900{500}

5,900{600} 7,850{800}

880{90} 880{90}

3,450{350} 3,450{350}

6,850{700} 6,850{700}

9,800{1,000} 9,800{1,000}

A-66

196{ 294{ 490{

20} 30} 50}

●Bearing Internal Clearance and Preload

Unit N{kgf}

  series HSB0C

72C,BNT2

Central

Heavy

Low

73C

Normal

Central

98{ 10} 147{ 15} 294{ 30}

98{ 10} 98{ 10} 147{ 15}

147{ 15} 196{ 20} 294{ 30}

20{ 2} 20{ 2} 49{ 5}

49{ 5} 49{ 5} 98{ 10}

294{ 30} 294{ 30} 490{ 50}

590{ 60} 78{ 8} 685{ 70} 98{10} 980{100} 147{15}

196{ 20} 294{ 30} 390{ 40}

Heavy

196{ 294{ 490{

Low

20} 29{ 30} 29{ 50} 76{

Normal

Central

3} 78{ 8} 3} 78{ 8} 8} 147{ 15}

Heavy

147{ 15} 196{ 20} 390{ 40}

294{ 390{ 685{

30} 40} 70}

490{ 50} 785{ 80} 98{ 10} 294{ 30} 590{ 60} 980{ 100} 590{ 60} 980{ 100} 145{ 15} 390{ 40} 980{100} 1,960{ 200} 785{ 80} 1,470{ 150} 196{ 20} 590{ 60} 1,470{150} 2,940{ 300}

685{ 70} 1,470{150} 196{20} 980{100} 1,960{200} 294{30} 980{100} 1,960{200} 294{30}

490{ 50} 980{100} 1,960{ 200} 294{ 30} 785{ 80} 1,960{200} 3,900{ 400} 685{ 70} 1,470{150} 2,940{ 300} 390{ 40} 980{100} 2,450{250} 4,900{ 500} 685{ 70} 1,960{200} 3,900{ 400} 390{ 40} 980{100} 2,950{300} 5,900{ 600}

980{100} 1,960{200} 294{30} 1,470{150} 2,450{250} 390{40} 1,470{150} 2,450{250} 390{40}

685{ 70} 1,960{200} 3,900{ 400} 390{ 40} 980{100} 2,950{300} 5,900{ 600} 980{100} 2,450{250} 4,900{ 500} 590{ 60} 1,470{150} 3,450{350} 6,850{ 700} 980{100} 2,450{250} 4,900{ 500} 590{ 60} 1,470{150} 3,450{350} 6,850{ 700}

1,470{150} 2,450{250} 390{40} 980{100} 2,450{250} 4,900{ 500} 590{ 60} 1,470{150} 3,450{350} 6,850{ 700} 1,960{200} 3,900{400} 490{50} 1,470{150} 2,940{300} 5,900{ 600} 785{ 80} 1,960{200} 4,400{450} 8,800{ 900} 1,960{200} 3,900{400} 490{50} 1,470{150} 2,940{300} 5,900{ 600} 785{ 80} 1,960{200} 4,400{450} 8,800{ 900} 2,450{250} 5,900{600} 685{70} 1,960{200} 4,400{450} 7,850{ 800} 880{ 90} 2,450{250} 5,900{600} 9,800{1,100} 2,450{250} 5,900{600} 685{70} 1,960{200} 4,400{450} 7,850{ 800} 880{ 90} 2,450{250} 5,900{600} 9,800{1,100} 2,450{250} 5,900{600} 685{70} 1,960{200} 4,400{450} 7,850{ 800} 880{ 90} 2,450{250} 5,900{600} 9,800{1,100} 3,450{350} 6,850{700} 785{80} 2,450{250} 4,900{500} 9,800{1,000} 980{100} 2,940{300} 6,850{700}11,800{1,200} 3,450{350} 6,850{700} 785{80} 2,450{250} 4,900{500} 9,800{1,000} 980{100} 2,940{300} 6,850{700}11,800{1,200}

Unit N{kgf}

  series 72,72B Low

29{ 29{ 78{

Normal

Central

3} 3} 8}

98{ 10} 98{ 10} 196{ 20}

196{ 20} 294{ 30} 490{ 50}

98{ 10} 147{ 15} 196{ 20}

390{ 40} 590{ 60} 785{ 80}

294{ 30} 490{ 50} 490{ 50}

73,73B Heavy

Low

Normal

Central

30} 40} 60}

390{ 40} 490{ 50} 980{ 100}

490{ 50} 785{ 80} 980{100}

980{ 100} 1,470{ 150} 2,450{ 250}

1,960{ 200} 2,450{ 250} 3,900{ 400}

390{ 40} 590{ 60} 590{ 60}

1,470{150} 1,960{200} 2,450{250}

3,450{ 350} 3,900{ 400} 4,900{ 500}

4,900{ 500} 5,880{ 600} 6,854{ 700}

5,900{ 600} 7,850{ 800} 7,850{ 800}

590{ 60} 685{ 70} 685{ 70}

2,450{250} 2,940{300} 2,940{300}

4,900{ 500} 5,900{ 600} 5,900{ 600}

6,860{ 700} 8,800{ 900} 8,800{ 900}

4,900{500} 5,900{600} 5,900{600}

7,850{ 800} 9,800{1,000} 9,800{1,000}

685{ 70} 880{ 90} 880{ 90}

2,940{300} 3,900{400} 3,900{400}

5,900{ 600} 7,850{ 800} 7,850{ 800}

8,800{ 900} 11,800{1,200} 11,800{1,200}

3,900{400} 3,900{400} 3,900{400}

7,850{800} 7,850{800} 7,850{800}

11,800{1,200} 11,800{1,200} 11,800{1,200}

980{100} 980{100} 980{100}

4,400{450} 4,400{450} 4,400{450}

8,800{ 900} 8,800{ 900} 8,800{ 900}

13,700{1,400} 13,700{1,400} 13,700{1,400}

4,400{450} 4,400{450}

8,800{900} 8,800{900}

13,700{1,400} 13,700{1,400}

1,470{150} 1,470{150}

5,900{600} 5,900{600}

11,800{1,200} 11,800{1,200}

15,700{1,600} 15,700{1,600}

294{ 390{ 785{

30} 40} 80}

49{ 5} 49{ 5} 98{ 10}

147{ 15} 147{ 15} 294{ 30}

880{ 90} 980{100} 1,470{150}

1,470{ 150} 1,960{ 200} 2,940{ 300}

147{ 15} 196{ 20} 294{ 30}

980{100} 1,470{150} 1,960{200}

2,450{250} 2,940{300} 3,900{400}

3,900{ 400} 4,900{ 500} 5,900{ 600}

490{ 50} 590{ 60} 590{ 60}

1,960{200} 2,450{250} 2,450{250}

3,900{400} 4,900{500} 4,900{500}

590{ 60} 785{ 80} 785{ 80}

2,450{250} 2,940{300} 2,940{300}

880{ 90} 880{ 90} 880{ 90} 980{100} 980{100}

A-67

294{ 390{ 590{

Heavy

●Allowable Speed 9. Allowable Speed As bearing speed increases, the temperature of the bearing also increases due to friction heat generated in the bearing interior. If the temperature continues to rise and exceeds certain limits, the efficiency of the lubricant start to fail down drastically, and the bearing can no longer continue to operate in a stable manner. Therefore, the maximum speed at which it is possible for the bearing to continuously operate without the generation of excessive heat beyond specified limits, is called the allowable speed (r/min). The allowable speed of a bearing depends on the type of bearing, bearing dimensions, type of cage, load, lubricating conditions, and cooling conditions.

1.0

0.9

fL

0.8

0.7

0.6

0.5 5

6

7

8

9

10

11

Cr P

The allowable speeds listed in the bearing tables for grease and oil lubrication are for standard NTN bearings under normal operating conditions, correctly installed, using the suitable lubricants with adequate supply and proper maintenance. Moreover, these values are based on normal load conditions (P ≦ 0.09C, Fa / Fr ≦ 0.3). For ball bearings with contact seals (LLU type), the allowable speed is determined by the peripheral lip speed of the seal.

Fig. 9.1 Value of adjustment factor FL depends on bearing load

1.0

Angular

contact ba

0.9 Deep g

For bearings to be used under heavier than normal load conditions, the allowable speed values listed in the bearing tables must be multiplied by an adjustment factor. The adjustment factors f L and f C are given in Figs. 9.1 and 9.2.

roove b

ll bearings

all beari

ngs

fC

0.8

Cyli Tap ndrical ere d ro roller b ller e bea arings ring s (F a/F

0.7

0.6

r≦

Also, when radial bearings are mounted on vertical shafts, lubricant retentions and cage guidance are not favorable compared to horizontal shaft mounting.

0.5

0

0.5

1.0

1.5

2e) 2.0

Fa Fr

Therefore, the allowable speed should be reduced to approximately 80% of the listed speed.

Fig. 9.2 Value of adjustment factor FC depends on combined load

For speeds other than those mentioned above, and for which data is incomplete, please consult NTN Engineering.

Table 9.1 Adjustment factor, fB, for allowable number of revolutions Type of bearing

It is possible to operate precision bearings with high speed specification cages at speeds higher than those listed in the bearing tables, if special precautions are taken. These precautions should include the use of forced oil circulation methods such as oil jet or oil mist lubrication.

Deep groove ball bearings Angular contact ball bearings Cylindrical roller bearings Tapered roller bearings

Under such high speed operating conditions, when special care is taken, the standard allowable speeds given in the bearing tables can be adjusted upward. The maximum speed adjustment values, f B, by which the bearing table speeds can be multiplied, are shown in Table 9.1. However, for any application requiring speeds in excess of the standard allowable speed, please consult NTN Engineering.

A-68

Adjustment factor fB 3.0 2.0 2.5 2.0

●Friction and Temperature Rise 10. Friction and Temperature Rise 10.1 Friction

10.2 Temperature rise

One of the main functions required of a bearing is that it must have low friction. Under normal operating conditions rolling bearings have a much smaller friction coefficient than the slide bearings, especially starting friction.

Almost all friction loss in a bearing is transformed into heat within the bearing itself and causes the temperature of the bearing to rise. The amount of thermal generation caused by friction moment can be calculated using formula (10.2).

The friction coefficient for rolling bearings is calculated on the basis of the bearing bore diameters and is expressed by formula (10.1).

Q=0.105×10 Mn N ……………… (10.2) -6 =1.03×10 Mn{kgf} where, Q:Thermal value, kW M:Friction moment, N・mm n:Rotational speed, r/min

-6

2M μ= Pd …………………………………… (10.1) where, μ:Friction coefficient M :Friction moment, Nmm P :Load, N d :Bearing bore diameter, mm

Bearing operating temperature is determined by the equilibrium or balance between the amount of heat generated by the bearing and the amount of heat conducted away from the bearing. In most cases the temperature rises sharply during initial operation, then increases slowly until it reaches a stable condition and then remains constant. The time it takes to reach this stable state will vary according to the amount of heat generated, the heat absorbing capacity of the housing and surrounding parts, the amount of cooling surface, amount of lubricating oil, and the surrounding ambient temperature. If the temperature continues to rise and does not become constant, it must be assumed that there is some improper function.

Although the dynamic friction coefficient for rolling bearings varies with the type of bearings, load, lubrication, speed, and other factors; for normal operating conditions, the approximate friction coefficients for various bearing types are listed in Table 10.1.

Table 10.1 Friction coefficient for bearings -3

Bearing type

Coefficient μ×10

Deep groove ball bearings Angular contact ball bearings Self-aligning ball bearings Cylindrical roller bearings Needle roller bearings Tapered roller bearings Spherical roller bearings Thrust ball bearings Thrust roller bearings

1.0∼1.5 1.2∼1.8 0.8∼1.2 1.0∼1.5 2.0∼3.0 1.7∼2.5 2.0∼2.5 1.0∼1.5 2.0∼3.0



Excessive bearing heat can be caused by: moment load, insufficient internal clearance, excessive preload, too little or too much lubricant, foreign matter in the bearing, or by heat generated at the sealing device.

A-69

●Lubrication 11. Lubrication 11.1 Lubrication of rolling bearings

(dust, water, etc.) into the bearing interior, removes dust and other impurities from the lubricant, and prevents the lubricant from leaking to the outside, is also a requirement.

The purpose of bearing lubrication is to prevent direct metallic contact between the various rolling and sliding elements. This is accomplished through the formation of a thin oil (or grease) film on the contact surfaces. However, for rolling bearings, lubrication has the following advantages:

Almost all rolling bearings use either grease or oil lubrication methods, but in some special applications, a solid lubricant such as molybdenum disulfide or graphite may be used.

(1) Friction and wear reduction (2) Friction heat dissipation (3) Prolonged bearing life (4) Prevention of rust (5) Protection against harmful elements

Fig. 11.1 shows the relationship between oil volume, friction loss, and bearing temperature. Table 11.1 details the characteristics of this relationship.

11.2 Lubrication methods and characteristics

In order to achieve the above effects, the most effective lubrication method for the operating conditions must be selected. Also, a good quality, reliable lubricant must be selected. In addition, an effectively designed sealing system that prevents the intrusion of damaging elements

The lubrication methods come in two general methods: you must be care for select of that from using condition. The characteristic are show in table 11.2.

high

high

Table 11.2 Comparison of grease lubrication and oil lubrication characteristics Method

Friction loss

A

B

C

D

Friction loss

Temperature increase

Temperature increase

E

Concern

Grease lubrication

Handling





Reliability





Cooling effect

×

○ necessary)

Seal structure





Power loss





Environment contamination





High speed rotation

×



Oil lubrication

(Circulation

Oil volume ◎: Very good ○:Good △:Fair ×:Poor

great Fig. 11.1

11.3 Grease lubrication Table 11.1 Oil volume, friction loss, bearing temperature (See Fig. 11.1) Range

Characteristics

Lubrication method

A

When oil volume is extremely low, direct metallic contact occurs in places between the rolling elements and raceway surfaces. Bearing abrasion and seizing occur.

ー ーー

B

A thin oil film develops over all surfaces, friction is minimal and bearing temperature is low.

Grease lubrication, oil mist, air-oil lubrication

C

As oil volume increases, heat buildup is balanced by cooling.

Circulating lubrication

D

Regardless of oil volume, temperature increases at a fixed rate.

Circulating lubrication

E

As oil volume increases, cooling Forced circulation predominates and bearing temperature lubrication, decreases. Oil jet lubrication

Grease type lubricants are relatively easy to handle and require only the simplest sealing devices-for these reasons, grease is the most widely used lubricant for rolling bearings. 11.3.1 Types and characteristics of grease Lubricating grease are composed of either a mineral oil base or a synthetic oil base. To this base a thickener and other additives are added. The properties of all greases are mainly determined by the kind of base oil used and by the combination of thickening agent and various additives. Standard greases and their characteristics are listed in Table 11.3. As performance characteristics of even the same type of grease will vary widely from brand to brand, it is best to check the manufacturers' data when selecting a grease.

A-70

●Lubrication

Table 11.3 Grease varieties and characteristics Grease name

Lithium grease

Sodium grease (Fiber grease)

Calcium compound base grease

Thickener

Li soap

Na soap

Ca+Na soap Ca+Li soap

Base oil

Mineral oil

Diester oil

Silicone oil

Mineral oil

Mineral oil

Dropping point ˚C

170 ∼ 190

170 ∼ 190

200 ∼ 250

150 ∼ 180

150 ∼ 180

Operating temperature range ˚C

-30 ∼ +130

-50 ∼ +130

-50 ∼ +160

-20 ∼ +130

-20 ∼ +120

Mechanical stability

Excellent

Good

Good

Excellent ∼ Good

Excellent ∼ Good

Pressure resistance

Good

Good

poor

Good

Excellent ∼ Good

Water resistance

Good

Good

Good

Good ∼ poor

Good ∼ poor

Widest range of applications. Applications

Grease used in all types of rolling bearings.

Excellent low temperature and wear characteristics.

Suitable for high and low temperatures.

Some emulsification when water is introduced.

Excellent pressure resistance and mechanical stability.

Suitable for small sized and miniature bearings.

Unsuitable for heavy load applications due to low oil film strength.

Excellent characteristics at relatively high temperatures.

Suitable for bearings receiving shock loads.

Grease name

Aluminum grease

Non-soap base grease Thickener

Thickener

AI soap

Bentone, silica gel, urea, carbon black, fluorine compounds, etc.

Base oil

Mineral oil

Mineral oil

Synthetic oil

Dropping point ˚C

70 ∼ 90

250 or above

250 or above

Operating temperature range ˚C

-10 ∼ +80

-10 ∼ +130

-50 ∼ +200

Mechanical stability

Good ∼ poor

Good

Good

Pressure resistance

Good

Good

Good

Water resistance

Good

Good

Good

Excellent viscosity characteristics. Applications

Suitable for bearings subjected to vibrations.

Can be used in a wide range of low to high temperatures. Shows excellent heat resistance, cold resistance, chemical resistance, and other characteristics when matched with a suitable base oil and thickener. Grease used in all types of rolling bearings.

A-71

●Lubrication

(1) Base oil Natural mineral oil or synthetic oils such as diester oil, silicone oil and fluorocarbon oil are used as grease base oils.

Table 11.4 Consistency of grease

Mainly, the properties of any grease is determined by the properties of the base oil. Generally, greases with a low viscosity base oil are best suited for low temperatures and high speeds; while greases made from high viscosity base oils are best suited for heavy loads. (2) Thickening agents Thickening agents are compounded with base oils to maintain the semi-solid state of the grease. Thickening agents consist of two types of bases, metallic soaps and non-soaps. Metallic soap thickeners include: lithium, sodium, calcium, etc.

NLGI Consistency No.

JIS (ASTM) Worked penetration

0

355∼385

For centralized greasing use

1

310∼340

For centralized greasing use

2

265∼295

For general use and sealed bearing use

3

220∼250

For general and high temperature use

4 

175∼205  For special use

Applications

(5) Mixing of greases When greases of different kinds are mixed together, the consistency of the greases will change (usually softer), the operating temperature range will be lowered, and other changes in characteristics will occur. As a general rule, greases with different bases oil, and greases with different thickener agents should never be mixed.

Non-soap base thickeners are divided into two groups; inorganic (silica gel, bentonite, etc.) and organic (polyurea, fluorocarbon, etc.).

Also, greases of different brands should not be mixed because of the different additives they contain.

The various special characteristics of a grease, such as limiting temperature range, mechanical stability, water resistance, etc. depend largely on the type of thickening agent used. For example, a sodium based grease is generally poor in water resistance properties, while greases with bentone, poly-urea and other non-metallic soaps as the thickening agent are generally superior in high temperature properties.

However, if different greases must be mixed, at least greases with the same base oil and thickening agent should be selected. But even when greases of the same base oil and thickening agent are mixed, the quality of the grease may still change due to the difference in additives. For this reason, changes in consistency and other qualities should be checked before being applied.

(3) Additives Various additives are added to greases to improve various properties and efficiency. For example, there are anti-oxidents, high-pressure additives (EP additives), rust preventives, and anti-corrosives.

11.3.2 Amount of grease The amount of grease used in any given situation will depend on many factors relating to the size and shape of the housing, space limitations, bearing's rotating speed and type of grease used.

For bearings subject to heavy loads and/or shock loads, a grease containing high-pressure additives should be used. For comparatively high operating temperatures or in applications where the grease cannot be replenished for long periods, a grease with an oxidation stabilizer is best to use.

As a general rule, housings and bearings should be only filled from 30% to 60% of their capacities. Where speeds are high and temperature rises need to be kept to a minimum, a reduced amount of grease should be used. Excessive amount of grease cause temperature rise which in turn causes the grease to soften and may allow leakage. With excessive grease fills oxidation and deterioration may cause lubricating efficiency to be lowered.

(4) Consistency The consistency of a grease, i.e. the stiffness and liquidity, is expressed by a numerical index. The NLGI values for this index indicate the relative softness of the grease; the larger the number, the stiffer the grease. The consistency of a grease is determined by the amount of thickening agent used and the viscosity of the base oil. For the lubrication of rolling bearings, greases with the NLGI consistency numbers of 1, 2, and 3 are used.

Moreover, the standard bearing space can be found by formula (11.1) V=K・W ……………………………… (11.1) where, V : Quantity of bearing space open type (approx.) cm3 K : Bearing space factor (Table 11.5) W : Mass of bearing kg

General relationships between consistency and application of grease are shown in Table 11.4.

A-72

●Lubrication

supply interval should be shortened accordingly.

Table 11.5 Bearings space ratio K    

Bearing type    

Retainer type 

K

 Ball bearings 1

Pressed retainer

61

  NU-type cylindrical roller bearings 2                

Pressed retainer Machined retainer

50 36

  N-type cylindrical roller bearings 3                 

Pressed retainer Machined retainer

55 37

 Tapered roller bearings

Pressed retainer

46



Pressed retainer Machined retainer

35 28

Spherical roller bearings

Generally, for every 10˚C increase in bearing temperature above 80˚C, the relubrication period is reduced by exponent "1/1.5". ――――――――――――――――――――――――――――――――――――

(Example) Find the grease relubrication time limit for deep groove ball bearing 6206, with a radial load of 2.0 kN operating at 3,600 r/min.

――――――――――――――――――――――――――――――――――――

1 Remove 160 series 2 Remove NU4 series 3 Remove N4 series

Cr / Pr = 19.5/2.0 kN = 9.8, from Fig. 9.1 the adjusted load, fL, is 0.96. From the bearing tables, the allowable speed for bearing 6206 is 11,000 r/min and the numbers of revolutions permissible at a radial load of 2.0 kN are

11.3.3 Replenishment As the lubricating efficiency of grease declines with the passage of time, fresh grease must be re-supplied at proper intervals. The replenishment time interval depends on the type of bearing, dimensions, bearing's rotating speed, bearing temperature, and type of grease.

no = 0.96×11,000 = 10,560 r/min 10,560 no therefore, = =2.93 n 3,600

Using the chart in Fig. 11.2, find the point corresponding to bore diameter d = 30 (from bearing table) on the vertical line for radial ball bearings. Draw a straight horizontal line to vertical line !. Then, draw a straight line from that point (A in example) to the point on [email protected] which corresponds to the no / n value (2.93 in example). The point, C, where this line intersects vertical line # indicates the relubrication interval h. In this case the life of the grease is approximately 5,500 hours.

An easy reference chart for calculating grease replenishment intervals is shown in Fig. 11.2. This chart indicates the replenishment interval for standard rolling bearing grease when used under normal operating conditions. As operating temperatures increase, the grease re-

no /n @

20.0 15.0

! 400 300 200

Bearing bore d, mm

100 50 40 30 20 10 7

Relubrication interval, h # 20,000

10.0 9.0 8.0 7.0 6.0

10,000

5.0

30,000

A C 500 300 200

Radial ball bearings

100 200 100 50 30

50 30 20

20 10

5,000 4,000

4.0 3.0

3,000

500 300 200

2,000 2.0

100 50 30 20

1,000 1.5 500 400

Thrust ball bearings

300 1.0

Cylindrical roller bearings

0.9

Tapered roller bearings Spherical roller bearings

0.8

0.7

no:factor fL×limiting speed for grease see Fig. 9.1 and bearing tables n :actual rotational speed, r/min Fig. 11.2 Diagram for relubrication interval of greasing

A-73

B

●Lubrication

11.4 Solid grease (For bearings with solid grease)

11.5 Oil lubrication

"Solid grease" is a lubricant composed mainly of lubricating grease and ultra-high polymer polyethylene. Solid grease has the same viscosity as grease at normal temperature, but by applying a special heat treatment process, this special grease solidifies retaining a large proportion of the lubricant within the bearing. The result of this solidification is that the grease does not easily leak from the bearing, even when the bearing is subjected to strong vibrations or centrifugal force. Bearings with solid grease are available in two types: the spot-pack type in which solid grease is injected into the retainer, and the full-pack type in which all empty space around the rolling elements is filled with solid grease. Spot-pack solid grease is standard for deep groove ball bearings, small diameter ball bearings, and bearing units. Full-pack solid grease is standard for self-aligning ball bearings, spherical roller bearings, and needle roller bearings. Primary advantages: (1) Clean working environment with minimal grease leakage (2) Low bearing torque with spot-pack type solid grease

Oil lubrication is suitable for applications requiring that bearing-generated heat or heat applied to the bearing from other sources be carried away from the bearing and dissipated to the outside.Table 11.6 shows the main methods of oil lubrication. 11.5.1 Selection of lubricating oil Under normal operating conditions, spindle oil, machine oil, turbine oil, and other mineral oils are widely used for the lubrication of rolling bearings. However, for temperatures above 150˚C or below -30˚C, synthetic oils such as diester oil, silicone oil, and fluorocarbon oil are used. For lubricating oils, viscosity is one of the most important properties and determines an oil’s lubricating efficiency. If viscosity is too low, formation of the oil film will be insufficient, and damage will occur to the load carrying surfaces of the bearing. If viscosity is too high, viscous resistance will also be great and result in temperature increases and friction loss. In general, for higher speed applications a lower viscosity oil should be used; for heavier load applications, a higher viscosity oil should be used. In regard to operating temperature and lubrication, Table 11.7 lists the required oil viscosity for different types of rolling bearings. Fig. 11.5 is an oil viscosity operating temperature comparison chart for the purpose of selecting a lubrication oil with viscosity characteristics appropriate to an application. Table 11.8 lists the selection standards for lubricating oil viscosity with reference to bearing operating conditions.

For more details, please refer to NTN special catalog of Solid grease bearings.

Solid grease

Table 11.7 Required lubricating oil viscosity for bearings Dynamic viscosity mm2 /s

Bearing type Ball bearings, Cylindrical roller bearings, Needle roller bearings Spherical roller bearings, Tapered roller bearings, Needle roller thrust bearings Self-aligning roller thrust bearings

13 20 30

Fig. 11.3 Deep groove ball bearing with spot-pack solid grease (Z shield) (Standard for deep groove ball bearings) 3,000 2,000

1: 2: 3: 4: 5: 6: 7:

1,000 500 300 200 100

Viscosity mm2/s

Solid grease

ISO ISO ISO ISO ISO ISO ISO

VG 320 VG 150 VG 68 VG 46 VG 32 VG 22 VG 15

50 30 20 15

1 2

10 8 6 5

6

4

3 4 5

7 3 - 30

- 20

- 10

0

10

20

30

40

50

60

70

80

90

100 110 120 130 140 150 160

Temperature ° C

Fig. 11.4 Spherical roller bearing with full-pack solid grease (Standard for spherical roller bearings)

FIg. 11.5 Relation between lubricating oil viscosity and temperature

A-74

●Lubrication

Lubrication method (Oil bath lubrication) ¡Oil bath lubrication is the most generally used method of lubrication and is widely used for low to moderate rotation speed applications. ¡For horizontal shaft applications, oil level should be maintained at approximately the center of the lowest rolling element, according to the oil gauge, when the bearing is at rest. For vertical shafts at low speeds, oil level should be maintained at 50 - 80% submergence of the rolling elements.

Example

Lubrication method (Disc lubrication) ¡In this method, a partially submerged disc rotates and pulls oil up into a reservoir from which it then drains down through the bearing, lubricating it.

(Oil spray lubrication) ¡In this method, an impeller or similar device mounted on the shaft draws up oil and sprays it onto the bearing. This method can be used at considerably high speeds.

(Oil mist lubrication) ¡Using pressurized air, lubricating oil is atomized before passing through the bearing. ¡Due to the low lubricant resistance, this method is well suited to high speed applications.

(Drip lubrication)

(Air-oil lubrication)

¡In this method, oil is collected above the bearing and allowed to drip down into the housing where it becomes a lubricating mist as it strikes the rolling elements. Another version allows only slight amounts of oil to pass through the bearing. ¡Used at relatively high speeds for light to moderate load applications. ¡In most cases, oil volume is a few drops per minute.

(Circulating lubrication)

¡In this method, the required minimum amount of lubricating oil is measured and fed to each bearing at ideal intervals using compressed air. ¡With fresh lubricating oil constantly being fed to the bearing, and with the cooling effect of the compressed air, bearing temperature rise can be minimized. ¡Because the required oil quantity is infinitesimal, the working environment can be kept clean.  Air-oil lubrication units are available from NTN.

(Oil jet lubrication)

¡Used for bearing cooling applications or for automatic oil supply systems in which the oil supply is centrally located. ¡One of the advantages of this method is that oil cooling devices and filters to maintain oil purity can be installed within the system. ¡In order for oil to thoroughly lubricate the bearing, oil inlets and outlets must be provided on opposite sides of the bearing.

¡This method lubricates by injecting oil under high pressure directly into the side of the bearing. This is a reliable system for high speed, high temperature or otherwise severe conditions. ¡Used for lubricating the bearings in jet engines, gas turbines, and other high speed equipment. ¡Under-race lubrication for machine tools is one example of this type of lubrication.

A-75

Example

●Lubrication

Table 11.8 Selection standards for lubricating oils (Reference) Bearing operating temperature ˚C −30∼

0

0∼ 60

60∼100

dn-value

Lubricating oil ISO viscosity grade (VG) Normal load

Suitable bearing

Heavy load or shock load

22,32

46

All types

15,000 Up to

46,68

100

All types

15,000 ∼80,000

32,46

68

All types

Up to allowable revolutions

80,000 ∼150,000

22,32

32

All types but thrust ball bearings

150,000∼500,000

10

22,32

Single row radial ball bearings, cylindrical roller bearings

15,000 Up to

150

220

All types

15,000 ∼80,000

100

150

All types

80,000 ∼150,000

68

100,150

All types but thrust ball bearings

150,000∼500,000

32

68

Single row radial ball bearings, cylindrical roller bearings

100 ∼150

Up to allowable revolutions

320

0∼ 60

Up to allowable revolutions

46,68

60∼100

Up to allowable revolutions

150

All types Self-aligning roller bearings

Note 1: Applied when lubrication method is either oil bath or circulating lubrication. 2: Please consult NTN Engineering in cases where operating conditions fall outside the range covered by this table.

11.5.2 Oil quantity In forced oil lubrication systems, the heat radiated away by the housing and surrounding parts plus the heat carried away by the lubricating oil is approximately equal to the amount of heat generated by the bearing and other sources.

Assume the bearing temperature is approximately equal to the expelled oil temperature, from Table 11.9, since K = 1 Q=1×180=180cm3 / min Table 11.9 Factor K

For standard housing applications, the quantity of oil required can be found by formula (11.2).

Expelled oil temp minus supplied oil temp ˚C

K

10       1.5 15       1 20       0.75 25       0.6

Q=K・q ……………………………… (11.2) where, Q: Quantity of oil for one bearing cm3/min. K: Allowable oil temperature rise factor (Table 11.9) q : Minimum oil quantity cm3/min. (Fig. 11.6) Because the amount of heat radiated will vary according to the type of housing, for actual operation it is advisable that the quantity of oil calculated by formula (11.2) be multiplied by a factor or 1.5 or 2.0. Then, the amount of oil can be adjusted to correspond to actual operating conditions. Furthermore, if it is assumed for calculation purposes that no heat is radiated by the housing, and that all bearing heat is removed by the oil, then the value in Fig. 11.3 for shaft diameter, d = 0, regardless of actual shaft diameter.

11.5.3 Relubrication intervals The intervals at which lubricating oil should be changed varies depending upon operating conditions, oil quantity, and type of oil used. In general, for oil bath lubrication where the operating temperature is 50˚C or less, oil should be replaced once a year. When the operating temperature is between 80˚C – 100˚C, oil should be replaced at least every three months. For important equipment, it is advisable that lubricating efficiency and oil purity deterioration be checked regularly to determine when oil replacement is necessary.

――――――――――――――――――――――――――――――――――――

(Example) For tapered roller bearing 30220U mounted on a flywheel shaft with a radial load of 9.5 kN{969 kgf}, operating at 1,800 r/min, what is the amount of lubricating oil required to keep the bearing temperature rise below 15˚C.

――――――――――――――――――――――――――――――――――――

d = 100 mm, dn = 100×1,800=18×104 From Fig. 11.6 q = 180cm3 / min A-76

●Lubrication

1

00 30,0 00 300 20,0 200 00 10,0 0 0 0 1 7,00 0 7 0 6,00 0 0 0 6 4,0 40 0 3,00 30 0 2,00 20 0 1,50 15 0 1,00 0 1 800 8 600 6 4 2

Fig. 11.6 Oil quantity guidelines

A-77

160 140 100 80 60 40 20 0

400 200

●External bearing sealing devices 12. External bearing sealing devices External seals have two main functions: to prevent lubricating oil from leaking out, and, to prevent dust, water, and other contaminants from entering the bearing. When selecting a seal, the following factors need to be taken into consideration: the type of lubricant (oil or grease), seal peripheral speed, shaft fitting errors, space limitations, seal friction and resultant heat increase, and cost. Sealing devices for rolling bearings fall into two main classifications: non-contact seals and contact seals.

action through the contact pressure of a resilient part of the seal (the lip is often made of synthetic rubber) and the sealing surface. Contact seals are generally far superior to non-contact seals in sealing efficiency, although their friction torque and temperature rise coefficients are higher. Furthermore, because the lip portion of a contact seal rotates while in contact with the shaft, the allowable seal peripheral speed varies depending on seal type.

¡Non-contact seals: Non-contact seals utilize a small clearance between the shaft and the housing cover. Therefore friction is negligible, making them suitable for high speed applications. In order to improve sealing capability, clearance spaces are often filled with lubricant.

Lubrication is necessary at the contact surface between the lip portion of the contact seal and the shaft. Ordinary bearing lubricant can also be used for this purpose. The following chart lists the special characteristics of seals and other points to be considered when choosing an appropriate seal.

¡Contact seals: Contact seals accomplish their sealing Type

Seal construction

Name

Seal characteristics and selection considerations

Clearance seal

This is an extremely simple seal design with a small radial clearance.

Oil groove seal

Several concentric oil grooves are provided on the housing inner diameter to greatly improve the sealing effect. When the grooves are filled with lubricant, the intrusion of contaminants from the outside is prevented.

(oil grooves on housing side)

Oil groove seal

Non-contact seals

(oil grooves on shaft and housing side)

Oil grooves are provided on both the shaft outer diameter and housing inner diameter for a seal with even greater sealing efficiency.

Axial labyrinth seal

This seal has a labyrinth passageway on the axial side of the housing.

Radial labyrinth seal

A labyrinth passageway is affixed to the radial side of the housing. For use with split housings. This offers better sealing efficiency than axial labyrinth seals.

Aligning labyrinth seal

The seal's labyrinth passageway is slanted and has sufficient clearance to prevent contact between the housing projections and the shaft even as the shaft realigns.

A-78

Cautionary points regarding selection ・In order to improve sealing efficiency, clearances between the shaft and housing should be minimized. However, care should be taken to confirm shaft/bearing rigidity and other factors to avoid direct shaft-housing contact during operation.

Oil groove clearance (reference) Shaft diameter mm

Clearance mm

50 Up to      0.2∼0.4 50 or above    0.5∼1.0 ・Oil groove width, depth (reference) width : 2∼5 mm depth : 4∼5 mm ・Three or more oil grooves should be provided. ・Sealing efficiency can be further improved by filling the oil groove portion with grease of which the viscosity grade is 150 to 200. ・Grease is generally used as the lubricant for labyrinth seals, and, except in low speed applications, is commonly used together with other sealing devices.

Cautionary points regarding selection ・In order to improve sealing efficiency, labyrinth passageway clearances should be minimized. However, care should be taken to confirm shaft/bearing rigidity, fit, internal clearances and other factors to avoid direct contact between labyrinth projections during operation.

Labyrinth clearance (reference) Shaft Clearance mm diameter mm Radial direction Axial direction ー∼ 50   0.2∼0.4  50∼200  0.5∼1.0 

1.0∼2.0 3.0∼5.0

・Sealing efficiency can be further improved by filling the labyrinth passageway with grease of which the viscosity grade is 150 to 200. ・Labyrinth seals are suitable for high speed applications.

●External bearing sealing devices Type

Seal construction

Name Oil comb sleeve

Non-contact seals

Internal slinger

External slinger

Seal characteristics and selection considerations In this design, lubricating oil that makes its way out of the housing along the shaft is thrown off by projections on the oil comb sleeve and recirculated.

By providing a slinger inside the housing, centrifugal force guides the lubricant flow back on the bearing and helps prevent it from dirtying the work environment.

By mounting a slinger on the outside of the housing, centrifugal force helps to prevent dust and other solid contaminants from entering.

Contact seals A-79

Cautionary points regarding selection ・By installation on the revolving shaft, these seal types make use of centrifugal force to aid lubrication, seal in lubricant, and prevent the entrance of contaminants. ・Installation of a slinger inside the housing further enhances the sealing in of lubricants. ・Installation of a slinger on the outside of the housing will provide greater protection against dust and other bearing contaminants. ・These seal types are commonly employed together with other sealing devices.

●External bearing sealing devices Type

Seal construction

Name

Seal characteristics and selection considerations

Combination seals

Z-seal + Labyrinth seal

This is an example of an axial labyrinth seal which has been combined with a Z-seal to increase its sealing efficiency. The axial labyrinth seal is affixed to the shaft with a setting bolt or other method. In the diagram on the left, both the direction of the Z-seal and the labyrinth seal are oriented to keep dust and other contaminants out of the bearing. Because a Z-seal has been incorporated, the allowable peripheral speed should not exceed 6 m/s.

Labyrinth seal + Oil groove seal + Slinger

This is an example of a combination of three different non-contact seals. It has the advantage of preventing both lubricant leakage from inside the bearing and infiltration of dust and other contaminants from the outside. It is widely used on mining equipment and as a sealing system with plummer blocks in extremely dusty application conditions.

Oil groove seal + Slinger + Z-seal

This is an example where an oil groove seal and slinger have been combined with a Z-seal to increase its sealing efficiency. In the diagram on the left, all three seals have been oriented to keep dust and other contaminants out of the bearing. The combination is widely used on mining equipment and as a sealing system with plummer blocks in extremely dusty application conditions.

A-80

●Bearing Materials 13. Bearing Materials For standard high temperature bearings used at temperatures from 150˚C – 200˚C, the addition of silicone to the steel improves heat resistance and results in a bearing with excellent rolling fatigue life with minimal dimensional change or softening at high temperatures.

13.1 Raceway and rolling element materials While the contact surfaces of a bearing's raceways and rolling elements are subjected to repeated heavy stress, they still must maintain high precision and rotational accuracy. To accomplish this, the raceways and rolling elements must be made of a material that has high hardness, is resistant to rolling fatigue, is wear resistant, and has good dimensional stability. The most common cause of fatigue cracking in bearings is the inclusion of non-metallic impurities in the steel. By using pure materials low in these non-metallic impurities, the rolling fatigue life of the bearing is lengthened.

A variety of heat resistant steels are also incorporated in bearings to minimize softening and dimensional changes when used at high temperatures. Two of these are high speed molybdenum steel and high speed tungsten steel. For bearings requiring heat resistance in high speed applications, there is also heat resistant case hardening molybdenum steel.

For all NTN bearings, steel low in oxygen content and non-metallic impurities, then refined by a vacuum degassing process as well as outside hearth smelting, is used. For bearings requiring especially high reliability and long life, steels of even higher in purity, such as vacuum smelted steel (VIM, VAR, CEVM) and electro-slag melted steel (ESR), are used.

4) Corrosion resistant bearing steel For applications requiring high corrosion resistance, stainless steel is used. To achieve this corrosion resistance a large proportion of the alloying element chrome is added to martensite stainless steel. 5) Induction hardened steel Besides the use of surface hardening steel, induction hardening is also utilized for bearing raceway surfaces, and for this purpose mid-carbon steel is used for its lower carbon content instead of through hardened steel. For induction hardening of the deep layers required for larger bearings and bearings with large surface dimensions, mid-carbon steel is fortified with chrome and molybdenum.

1) High/mid carbon alloy steel In general, steel varieties which can be hardened not just on the surface but also deep hardened by the socalled "through hardening method" are used for the raceways and rolling elements of bearings. Foremost among these is high carbon chromium bearing steel, which is widely used. For large type bearings and bearings with large cross sectional dimensions, induction hardened bearing steel incorporating manganese or molybdenum is used. Also in use is mid-carbon chromium steel incorporating silicone and manganese, which gives it hardening properties comparable to high carbon chromium steel.

6) Other bearing materials For ultra high speed applications and applications requiring very high level corrosion resistance, ceramic bearing materials such as Si3N4 are also available.

2) Case hardened (carburized) steel Because of its combination of a hard surface layer which has been carburized and hardened to an appropriate depth, and a relatively pliable inner core, case hardened steel has excellent efficiency against shock loads. NTN uses case hardened steel for almost all of its tapered roller bearings. In terms of case hardened steel for NTN's other bearings, chromium steel and chrome molybdenum steel are used for small to medium sized bearings, and nickel chrome molybdenum steel is used for large sized bearings. 3) Heat resistant bearing steel When bearings made of ordinary high carbon chromium steel which have undergone standard heat treatment are used at temperatures above 120˚C for long durations, unacceptably large dimensional changes can occur. For this reason, a dimension stabilizing treatment (TS treatment) has been devised for very high temperature applications. Through application of this dimension stabilizing treatment, shortening of rolling fatigue life due to decreases in bearing hardness at high temperatures can be avoided. (refer to page insert A-17 3.4.2) A-81

●Bearing Materials

13.2 Cage materials Bearing cage materials must have the strength to withstand rotational vibrations and shock loads. These materials must also have a low friction coefficient, be light weight, and be able to withstand bearing operation temperatures. For small and medium sized bearings, pressed cages of cold or hot rolled steel with a low carbon content of approx. 0.1% are used. However, depending on the application, austenitic stainless steel is also used. For large bearings, machined cages of machine structural carbon steel or high tensile cast brass are widely used, although aluminum alloy and other material cages are also available. For aircraft engine bearings, high tensile brass, midcarbon nickel, chrome, or molybdenum steel is used after undergoing various heat treatments and high temperature tempering. The sliding properties of these materials may also be enhanced when silver plated. Injection molded plastic cages are now widely used: most are made from fiber glass reinforced heat resistant polyimide resin. Plastic cages are light weight, corrosion resistant and have excellent damping and sliding properties. Heat resistant polyimide resins now enable the production of cages that perform well in applications ranging between -40˚C – 120˚C. However, they are not recommended for use at temperatures exceeding 120˚C.

A-82

●Shaft and Housing Design 14. Shaft and Housing Design Depending upon the design of a shaft or housing, the shaft may be influenced by an unbalanced load or other factors which can then cause large fluctuations in bearing efficiency. For this reason, it is necessary to keep the following points in mind when designing or choosing the design for shafts and housings.

14.1 Fixing of bearings When fixing a bearing in position on a shaft or housing, there are many instances where the interference fit alone is not enough to hold the bearing in place. Bearings must be fixed in place by various methods so that they do not move axially when placed under load. Moreover, even bearings which are not subjected to axial loads (such as cylindrical roller bearings, etc.), must be fixed in place axially because of the potential for ring displacement due to momentary loads and resulting shaft flexure which may cause damage. Table 14.1 shows general bearing fixing methods, and Table 14.2 shows fixing methods for bearings with tapered bores.

1) Bearing arrangement selection; most effective fixing method for bearing arrangement 2) Suitable shaft and housing fillet radius and abutment height dimensions 3) Dimensions of fitted surfaces; shape accuracy and abutment squareness 4) Allowable bearing misalignment; finishing precision and installation error of shaft and housing suitable for allowable alignment angle

Table 14.1 General bearing fixing methods Inner ring clamp

Outer ring clamp

Snap ring

Use of snap rings regulated under JIS B 2804, B 2805, and B 2806, makes construction very simple. However, interference with chamfers, bearing installation dimensions, and other related specifications must be considered carefully.

The most common method of fixing bearings in place is to use clamping nuts or bolts to hold the bearing or housing abutment against the ring end face.

Snap rings are not suitable for applications requiring high accuracy and where the snap ring receives large axial loads.

Table 14.2 Fixing methods for bearings with tapered bores Adapter sleeve mounting

Withdrawal sleeve mounting

When installing bearings on cylindrical shafts, adapter sleeves or withdrawal sleeves can be used to fix bearings in place axially.

Split ring mounting

For installation of tapered bore bearings directly on tapered shafts, the bearing is held in place by a split ring inserted into a groove on the shaft, and is fixed in place by a split ring nut or screw.

Fixing the bearing axially in this way depends upon friction between the sleeve and shaft.

A-83

●Shaft and Housing Design

14.2.2 For spacer and ground undercut In cases where a fillet radius (ra) larger than the bearing chamfer dimension is required to strengthen the shaft or to relieve stress concentration (Fig. 14.1a), or where the shaft abutment height is too low to afford adequate contact surface with the bearing (Fig. 14.1b), spacers may be used effectively.

14.2 Bearing fitting dimensions 14.2.1 Abutment height and fillet radius The shaft and housing abutment height (h) should be larger than the bearings' maximum allowable chamfer dimensions (rs max), and the abutment should be designed so that it directly contacts the flat part of the bearing end face. The fillet radius must be smaller than the bearing's minimum allowable chamfer dimension (rs min) so that it does not interfere with bearing seating. Table 14.3 lists abutment height (h) and fillet radius (ra). For bearings to be applied to very large axial loads as well, shaft abutments (h) should be higher than the values in the table.

Table 14.3 Fillet radius and abutment height rs min

ras max

0.05 0.08 0.1 0.15 0.2 0.3 0.6 1 1.1 1.5 2 2.1 2.5 3 4 5 6 7.5 9.5 12 15 19

0.05 0.08 0.1 0.15 0.2 0.3 0.6 1 1 1.5 2 2 2 2.5 3 4 5 6 8 10 12 15

Relief dimensions for ground shaft and housing fitting surfaces are given in Table 14.4.

Unit mm

h(min) Normal use1

Special use2 0.3 0.3 0.4 0.6 0.8

1.25 2.25 2.75 3.5 4.25 5 6 6 7 9 11 14 18 22 27 32 42

1 2 2.5 3.25 4 4.5 5.5 5.5 6.5 8 10 12 16 20 24 29 38

Table 14.4 Relief dimensions for ground shaft

1 It is necessary to be larger abutment height than the above value under larger thrust load. 2 The values in this "Special Case" column should be adopted in cases where the thrust load is extremely small except for tapered roller bearings angular contact bearings, spherical roller bearings. Note: ras max maximum allowable fillet radius.

A-84

●Shaft and Housing Design

14.2.3 Thrust bearings and relief dimensions For thrust bearings, it is necessary to make the raceway back face sufficiently broad in relation to load and rigidity, and relief dimensions from the dimension tables should be adopted. (Figs. 14.2 and 14.3) For this reason, shaft and abutment heights will be larger than for radial bearings. (Refer to dimension tables for all thrust bearing relief dimensions.)

14.4 Allowable bearing misalignment A certain amount of misalignment of a bearing's inner and outer rings occurs as a result of shaft flexure, shaft or housing finishing irregularities, and minor installation error. In situations where the degree of misalignment is liable to be relatively large, self-aligning ball bearings, spherical roller bearings, bearing units and other bearings with aligning properties are advisable. Although allowable misalignment will vary according to bearing type, load conditions, internal clearances, etc., Table 14.6 lists some general misalignment standards for normal applications. In order to avoid reduced wear life and cage abrasion, it is necessary to maintain levels of misalignment below these standard levels. Table 14.6 Bearing type and allowable misalignment/alignment allowance Allowable misalignment

Fig. 14.2

Deep groove ball bearings Angular contact ball bearings Single row Multi row back to back arrangement Face to face arrangement Cylindrical roller bearings Bearing series 2, 3, 4 Bearing series 22, 23, 49, 30

Fig. 14.3

14.3 Shaft and housing accuracy Table 14.5 shows the accuracies for shaft and housing fitting surface dimensions and configurations, as well as fitting surface roughness and abutment squareness for normal operating conditions.

Tapered roller bearings Single row/back to back arrangement Face-to-face arrangement Needle roller bearings Thrust bearings excluding self-aligning roller thrust bearings

Table 14.5 Shaft and housing accuracy Characteristics Dimensional accuracy Circularity (max.) Cylindricity

Shaft

Housing

IT6 (IT5)

IT7 (IT5)

IT3

IT4

1/1,000∼1/300 1/1,000 1/10,000 1/10,000 1/1,000 1/1,000 1/2,000

1/2,000 1/1,000 1/2,000 1/10,000

Alignment allowance

Abutment squareness

IT3

IT3

Fitted Small size bearings surface roughness Mid-large size bearings

0.8a

1.6a

1.6a

3.2a

Note: For precision bearings (P4, P5 accuracy), it is necessary to increase the circularity and cylindricity accuracies in this table by approximately 50%. For more specific information, please consult the NTN precision rolling bearing catalog.

A-85

Self-aligning ball bearings Spherical roller bearings

1/20 1/50∼1/30

Self-aligning roller thrust bearings Ball bearing units Without cover With cover

1/30 1/30 1/50

●Bearing Handling

15.2.1 Installation preparations Bearings should be fitted in a clean, dry work area. Especially for small and miniature bearings, a "clean room" should be provided as any contamination particles in the bearing will greatly affect bearing efficiency. Before installation, all fitting tools, shafts, housings, and related parts should be cleaned and any burrs or cutting chips removed if necessary. Shaft and housing fitting surfaces should also be checked for roughness, dimensional and design accuracy, and to ensure that they are within allowable tolerance limits. Bearings should not be unwrapped until just prior to installation. Normally, bearings to be used with grease lubricant can be installed as 7nd .outips reittinn trl jhey

●Bearing Handling

220

50 ℃



260 240

40 ℃

Diametric expansion of inner ring bore μm

240

60

260

280 80℃ 70 ℃

Ris diff e in te bef erence mp. hea ore/af bea ting ter ring 90℃

280

200 r6

inner ring

220 30



200

180

180

160

160

140

p6

140

120

n6

120

100

m6

100

80

Removal pawl Fig. 15.6 Removal of inner ring using an induction heater

80

60

k5

60

40

j5

40

20

20

50

100 150 200 250 300 350 400 450

500 550 600

Bearing bore diameter mm

Fig. 15.5 Temperature differential required for shrinkage fit of inner ring

the amount of thermal expansion. In any event, bearings should never be heated above 120˚C. The most commonly used method of heating bearings is to immerse them in hot oil. However, this method should not be used for prelubricated shielded and sealed bearings. To avoid overheating parts of the bearings they should never be brought into direct contact with the heat source, but instead should be suspended inside the heating tank or placed on a wire grid. If bearings are dry-heated with a heating cabinet or hot plate, they can be mounted without drying. For heating the inner rings of Nu, NJ or NUP cylindrical and similar type bearings without any ribs or with only a single rib, an induction heater can be used to quickly heat bearings in a dry state (always demagnetize). When heated bearings are installed on shafts, the inner rings must be held against the shaft abutment until the bearing has been cooled in order to prevent gaps from occurring between the ring and the abutment face. As shown in Fig. 15.6, a removal pawl, or tool, can also be used to dismount the inner ring when using the induction heating method described above.

a) Installation on tapered bore b) Installation with adapter sleeve

c) Installation using withdrawal sleeve Fig. 15.7 Installation methods using locknuts

15.2.3 Installation of tapered bore bearings Small type bearings with tapered bores are installed over a tapered shaft, withdrawal sleeves, or adapter sleeves by driving the bearing into place using a locknut. The locknut is tightened using a hammer or impact wrench. (Fig. 15.7) Large size bearings require considerable fitting force and must be installed hydraulically. In Fig. 15.8 the fitting surface friction and nut tightening

Fig. 15.8 Installation utilizing oil injection

A-87

●Bearing Handling

Fig. 15.10 Installation using hydraulic withdrawal sleeve

Fig. 15.11 Internal clearance measurement method for spherical roller bearings

torque needed to install bearings with tapered bores directly onto tapered shafts are decreased by injecting high pressure oil between the fitting surfaces. Fig. 15.9 a) shows one method of installation where a hydraulic nut is used to drive the bearing onto a tapered shaft. Fig. 15.9 b) and c) show installation using a hydraulic nut with adapter sleeves and withdrawal sleeves. Fig. 15.10 shows an installation method using a hydraulic withdrawal sleeve. With tapered bore bearings, as the inner ring is driven axially onto the shaft or adapter or withdrawal sleeve, the interference will increase and the bearing internal radial clearance will decrease. The amount of interference can be estimated by measuring the amount or radial clearance decrease. As shown in Fig. 15.11, the internal radial clearance between the rollers and outer ring of spherical roller bearings should be measured with a thickness gauge under no load while the rollers are held in the correct position. The measured clearance should be the same for both rows. Instead of using the decrease in amount of internal radial clearance to estimate the interference, it is possible to estimate by measuring the distance the bearing has been driven onto the shaft. For spherical roller bearings, Table 15.1 indicates the appropriate interference which will be achieved as a result of the internal radial clearance decrease, or the distance the bearing has been driven onto the shaft. For conditions such as heavy loads, high speeds, or when there is a large temperature differential between the inner and outer rings, etc. which necessitate large A-88

●Bearing Handling

Table 15.1 Installation of tapered bore spherical roller bearings Nominal bearing bore diameter d Over incl.

Reduction of radial internal clearance

Units mm

Minimum allowable residual clearance

Axial displacement drive up Taper, 1:12

Taper, 1:30

Min

Max

Min

Max

Min

Max

CN

C3

C4

30 40 50

40 50 65

0.02 0.025 0.03

0.025 0.03 0.035

0.35 0.4 0.45

0.4 0.45 0.6

ー ー ー

ー ー ー

0.015 0.02 0.025

0.025 0.03 0.035

0.04 0.05 0.055

65 80 100

80 100 120

0.04 0.045 0.05

0.045 0.055 0.06

0.6 0.7 0.75

0.7 0.8 0.9

ー 1.75 1.9

ー 2.25 2.25

0.025 0.035 0.05

0.04 0.05 0.065

0.07 0.08 0.1

120 140 160

140 160 180

0.065 0.075 0.08

0.075 0.09 0.1

1.1 1.2 1.3

1.2 1.4 1.6

2.75 3 3.25

3 3.75 4

0.055 0.055 0.06

0.08 0.09 0.1

0.11 0.13 0.15

180 200 225

200 225 250

0.09 0.1 0.11

0.11 0.12 0.13

1.4 1.6 1.7

1.7 1.9 2

3.5 4 4.25

4.25 4.75 5

0.07 0.08 0.09

0.1 0.12 0.13

0.16 0.18 0.2

250 280 315

280 315 355

0.12 0.13 0.15

0.15 0.16 0.18

1.9 2 2.4

2.4 2.5 2.8

4.75 5 6

6 6.25 7

0.1 0.11 0.12

0.14 0.15 0.17

0.22 0.24 0.26

355 400 450

400 450 500

0.17 0.2 0.21

0.21 0.24 0.26

2.6 3.1 3.3

3.3 3.7 4

6.5 7.75 8.25

8.25 9.25 10

0.13 0.13 0.16

0.19 0.2 0.23

0.29 0.31 0.35

500 560 630

560 630 710

0.24 0.26 0.3

0.3 0.33 0.37

3.7 4 4.6

4.6 5.1 5.7

9.25 10 11.5

11.5 12.5 14.5

0.17 0.2 0.21

0.25 0.29 0.31

0.36 0.41 0.45

710 800 900

800 900 1,000

0.34 0.37 0.41

0.43 0.47 0.53

5.3 5.7 6.3

6.7 7.3 8.2

13.3 14.3 15.8

16.5 18.5 20.5

0.23 0.27 0.3

0.35 0.39 0.43

0.51 0.57 0.64

1,000 1,120

1,120 1,250

0.45 0.49

0.58 0.63

6.8 7.4

8.7 9.4

17 18.5

22.5 24.5

0.32 0.34

0.48 0.54

0.7 0.77

Fig. 15.12 Axial internal clearance adjustment

Shim

Fig. 15.13 Measurement of axial internal clearance adjustment

Fig. 15.14 Internal clearance adjustment using shims

A-89

●Bearing Handling

15.4 Post installation running test To insure that the bearing has been properly installed, a running test is performed after installation is completed. The shaft or housing is first rotated by hand and if no problems are observed a low speed, no load power test is performed. If no abnormalities are observed, the load and speed are gradually increased to operating conditions. During the test if any unusual noise, vibration, or temperature rise is observed the test should be stopped and the equipment examined. If necessary, the bearing should be disassembled for inspection. To check bearing running noise, the sound can be amplified and the type of noise ascertained with a listening instrument placed against the housing. A clear, smooth and continuous running sound is normal. A high, metallic or irregular sound indicates some error in function. Vibration can be accurately checked with a vibration measuring instrument, and the amplitude and frequency characteristics measured against a fixed standard. Usually the bearing temperature can be estimated from the housing surface temperature. However, if the bearing outer ring is accessible through oil inlets, etc., the temperature can be more accurately measured. Under normal conditions, bearing temperature rises with rotation time and then reaches a stable operating temperature after a certain period of time. If the temperature does not level off and continues to rise, or if there is a sudden temperature rise, or if the temperature is unusually high, the bearing should be inspected.

(a)

(b)

Fig. 15.15 Puller disassembly

Fig. 15.16 Press disassembly

15.5 Bearing disassembly Bearings are often removed as part of periodic inspection procedures or during the replacement of other parts. However, the shaft and housing are almost always reinstalled, and in more than a few cases the bearings themselves are reused. These bearings, shafts, housings, and other related parts must be designed to prevent damage during disassembly procedures, and the proper disassembly tools must be employed. When removing inner and outer rings which have been installed with interference fits, the dismounting force should be applied to that ring only and not applied to other parts of the bearing, as this may cause internal damage to the bearing's raceway or rolling elements.

Groove

Groove Fig. 15.17 Extracting grooves

15.5.1 Disassembly of bearings with cylindrical bores For small type bearings, the pullers shown in Fig. 15.15 a) and b) or the press method shown in Fig. 15.16 can be used for disassembly. When used properly, these methods can improve disassembly efficiency and prevent damage to bearings. To facilitate disassembly procedures, attention should be given to planning the designs of shafts and housings, such as providing extraction grooves on the shaft and housing for puller claws as shown Figs. 15.17 and 15.18. Threaded bolt holes should also be provided in housings to facilitate the pressing out of outer rings as shown in Fig. 15.19.

Groove

Fig. 15.18 Extraction groove for outer ring disassembly

A-90

●Bearing Handling

Large bearings, installed with tight fits, and having been in service for a long period of time, will likely have developed fretting corrosion on fitted surfaces and will require considerable dismounting force. In such instances, dismounting friction can be reduced by injecting oil under high pressure between the shaft and inner ring surfaces as shown in Fig. 15.20. For NU, NJ and NUP type cylindrical roller bearings, the induction heating method shown in Fig. 15.6 can also be used for easier disassembly of the inner ring. This method is highly efficient for frequent disassembly of bearings with identical dimensions.

15.5.2 Disassembly of bearings with tapered bores Small type bearings with adapters can be easily disassembled by loosening the locknut and driving the inner ring off with a metal block as shown in Fig. 15.21. Bearings which have been installed with withdrawal sleeves can be disassembled by tightening down the lock nut as shown in Fig. 15.22. For large type bearings on tapered shafts, adapters, or withdrawal sleeves, disassembly is greatly facilitated by hydraulic methods. Fig. 15.23 shows one method of hydraulic injection disassembly in which high pressure oil is injected between the fitted surfaces of the tapered shaft and bearing.

Metal block

Fig. 15.19 Outer ring disassembly bolt

Fig. 15.21 Disassembly of bearing with adapter

High pressure oil

High pressure oil

Fig. 15.20 Disassembly using high pressure oil (hydraulic)

Fig. 15.22 Disassembly of bearing with withdrawal sleeve

Metal block

Fig. 15.23 Disassembly using high pressure oil (hydraulic)

A-91

●Bearing Handling

Fig. 15.24 shows two methods of disassembling bearings with adapters or withdrawal sleeves using a hydraulic nut. Fig. 15.25 shows a disassembly method using a hydraulic withdrawal sleeve where high pressure oil is injected between fitted surfaces and a nut is then employed to extract the sleeve.

a) Disassembly of adapter sleeve

b) Disassembly of withdrawal sleeve fig. 15.24 Disassembly using hydraulic nut

Fig. 15.25 Extraction using hydraulic withdrawal sleeve

A-92

●Bearing Damage and Corrective Measures 16. Bearing Damage and Corrective Measures While it is of course impossible to directly observe bearings in operation, one can get a good idea of how they are operating by monitoring noise, vibration, temperature

and lubricant condition. Types of damage typically encountered are presented in Table 16.1.

Table 16.1 Bearing damage and corrective measures Description

Causes

Correction

The surface of the race way wearing away. Conspicuous hills and valleys form soon afterward.

¡Excessive loads or improper handling. ¡Improper mounting. ¡Improper precision in the shaft or housing. ¡Insufficient clearance. ¡Contamination. ¡Rust. ¡Drop in hardness due to abnormally high temperatures.

¡Review application conditions. ¡Select a different type of bearing. ¡Reevaluate the clearance. ¡Improve the precision of the shaft and housing. ¡Reevaluate the layout (design) of the area around the bearing. ¡Review assembly procedures. ¡Review lubricant type and lubrication methods.

Seizure

The bearing heats up and becomes discolored. Eventually the bearing will seize up.

¡Insufficient clearance (including clearances made smaller by local deformation). ¡Insufficient lubrication or improper lubricant. ¡Excessive loads (excessive pressure). ¡Skewed rollers.

¡Check for proper clearance. (Increase clearances.) ¡Riview lubricant type and quantity. ¡Review application conditions. ¡Take steps to prevent misalignment. ¡Reevaluate the design of the area around the bearing (including fitting of the bearing). ¡Improve assembly procedures.

Cracking and notching

Localized flaking occurs. Little cracks or notches appear.

¡Excessive shock loads. ¡Excessive interference. ¡Large flaking. ¡Friction cracking. ¡Inadequate abutment or chamfer. ¡Improper handling. (gouges from large foreign objects.)

¡Review application conditions. ¡Select proper interference and review materials. ¡Improve assembly procedures and take more care in handling. ¡Take measures to prevent friction cracking. (Review lubricant type.) ¡Reevaluate the design of the area around the bearing.

Retainer damage

Rivets break or become loose resulting in retainer damage.

¡Excessive moment loading. ¡High speed or excessive speed fluctuations. ¡Inadequate lubrication. ¡Impact with foreign objects. ¡Excessive vibration. ¡Improper mounting. (Mounted misaligned) ¡Abnormal temperature rise. (Plastic retainers)

¡Review of application conditions. ¡Reevaluation of lubrication conditions. ¡Review of retainer type selection. ¡Take more care in handling. ¡Investigate shaft and housing rigidity.

Flaking

¡Reinspect bearing’s internal clearances. ¡Review accuracy of shaft and housing finish. ¡Review rigidity of shaft and housing.

Meandering wear patterns

Abrasion or an irregular, meandering ¡Shaft or housing of insufficient accuracy. wear pattern left by rolling elements ¡Improper installation - Insufficient shaft along raceway or housing rigidity. surfaces. ¡Shaft whirling caused by excessive internal bearing clearances.

Smearing and scuffing

The surface becomes rough and some small deposits form. Scuffing generally refers to roughness on the race collar and the ends of the rollers.

¡Inadequate lubrication. ¡Entrapped foreign particles. ¡Roller skewing due to a misaligned bearing. ¡Bare spots in the collar oil film due to large axial loading. ¡Surface roughness. ¡Excessive slippage of the rolling elements.

¡Reevaluation of the lubricant type and lubrication method. ¡Review of operating conditions. ¡Setting of a suitable pre-load. ¡Improve sealing performance. ¡Take care to handle the bearing properly.

The surface becomes either partially or fully rusted, and occasionally rust even occurs along the rolling element pitch lines.

¡Poor storage conditions. ¡Poor packaging. ¡Insufficient rust inhibitor. ¡Penetration by water, acid, etc. ¡Handling with bare hands.

¡Take measures to prevent rusting while in storage. ¡Improve sealing performance. ¡Periodically inspect the lubricating oil. ¡Take care when handling the bearing.

Rust and corrosion

A-93

●Bearing Damage and Corrective Measures

Table 16.1 Bearing damage and corrective measures Description

Causes

Correction

There are two types of fretting. In one, a rusty wear powder forms on the mating surfaces. In the other, brinelling indentations form on the raceway at the rolling element pitch.

¡Insufficient interference. ¡Small bearing oscillation angle. ¡Insufficient lubrication. ¡Fluctuating loads. ¡Vibration during transport.

¡Review the interference and apply a coat of lubricant. ¡Pack the inner and outer rings separately for transport. ¡When the two cannot be separated, apply a pre-load. ¡Select a different kind of lubricant. ¡Select a different type of bearing.

The surfaces wear and dimensional deformation results. Wear is often accompanied by roughness and scratches.

¡Entrapment of foreign particles in the lubricant. ¡Inadequate lubrication. ¡Skewed rollers.

¡Review lubricant type and lubrication methods. ¡Improve sealing performance. ¡Take steps to prevent misalignment.

Electrolytic corrosion

Pits form on the raceway. The pits gradually grow into ripples.

¡Electric current flowing through the rollers. ¡Create a bypass circuit for the

Dents and scratches

Scoring during assembly, gouges due to hard foreign objects, and surface denting due to mechanical shock.

¡Entrapment of foreign objects. ¡Bite-in on the flaked-off side. ¡Dropping or other mechanical shocks due to careless handling. ¡Assembled misaligned.

¡Improve handling and assembly methods. ¡Take measures to prevent the entrapment of foreign objects. ¡Should the damage have been caused by little pieces of metal, thoroughly check all other locations.

Slipping is accompanied by Slipping or creeping mirrorlike or discolored surfaces on the ID and OD. Scuffing may also occur.

¡Insufficient interference in the mating section. ¡Sleeve not fastened down properly. ¡Abnormal temperature rise. ¡Excessive loads.

¡Reevaluate the interference. ¡Reevaluate usage conditions. ¡Review the precision of the shaft and housing.

Fretting

Wear

Surface matting

Peeling

current. ¡Insulate the bearing so that current does not pass through it.

Luster of raceway surfaces is gone; ¡Infiltration of bearing by foreign matter. surface is matted, rough, and / or ¡Insufficient lubrication. evenly dimpled. Surface covered with minute dents.

¡Reevaluation of lubricant type and lubrication method. ¡Review sealing mechanisms. ¡Examine lubrication oil purity. (filter may be excessively dirty, etc.)

Patches of minute flaking or peeling (size, approx. 10μm). Innumerable hair-line cracks visible though not yet peeling. (This type of damage frequently seen on roller bearings.)

¡Reevaluation of lubricant type and lubrication method. ¡Improve sealing performance. (to prevent infiltration of foreign matter) ¡Take care to operate smoothly.

¡Infiltration of bearing by foreign matter. ¡Insufficient lubrication.

A-94

●Technical Data ※This data is based on typical dimensions. NTN do not guarantee at this data.

17. Technical data

0.50

0.50

0.40

0.40 Axial internal clearance mm

Axial internal clearance mm

17.1 Deep groove ball bearing radial internal clearances and axial internal clearances

0.30 0.20 30 68 20 68 15 05 8 6 10 68 68 00 68

0.10 0.08 0.06 0.05 0.003

0.005

0.01

0.02

0.03

0.30

0.10 0.08 0.06 0.05 0.003

0.05

30 60 20 60 15 05 60 10 60 60 00 60

0.20

0.005

0.50

0.50

0.40

0.40

0.30

30 69 0 2 69 15 69 10 69 05 69 00 69

0.08 0.06 0.05 0.003

0.005

0.01

0.02

0.03

0.05

Fig. 17.1.3 Series 60 radial internal/axial internal clearances

Axial internal clearance mm

Axial internal clearance mm

fig. 17.1.1 Series 68 radial internal/axial internal clearances

0.10

0.02

Radial internal clearance mm

Radial internal clearance mm

0.20

0.01

0.03

0.30

0.10 0.08 0.06 0.05 0.003

0.05

30 62 20 62 5 1 62 10 62 05 62 00 62

0.20

0.005

0.01

0.02

0.03

0.05

Radial internal clearance mm

Radial internal clearance mm Fig. 17.1.2 Series 69 radial internal/axial internal clearances

Fig. 17.1.4 Series 62 radial internal/axial internal clearances

17.2 Angular contact ball bearing axial load and axial displacement

C

1

10

79

79

C 20

79

0C

793

0.03

mm

79 05 C

0.04 5C

Axial displacement

Axial displacement

mm

0.04

0.02

0.01

0 0

0.5

1.0

1.5

2.0

0.03 5

790

0.02

7910 7915 7920

0.01

7930

0

3

2.5×10 N

0

Axial load

0.5

1.0

1.5

2.0

Axial load

Fig. 17.2.1 Series 79 C axial load and axial displacement

Fig. 17.2.2 Series 79 axial load and axial displacement

A-95

3

2.5×10 N

●Technical Data

0.01

0

0

0.5

1.0 1.5 Axial load

2.0

Fig. 17.2.3 Series 70 C axial load and axial displacement

mm Axial displacement

Axial displacement mm

00

70

05

70

0.02

7010 5

701

0.01

7020

7030

0

0.5

1.0 1.5 Axial load

2.0

0

05

0.5

1.0 1.5 Axial load

3

2.5×10 N

2.0

0.03

00

72

0.02

5 720 0 721

7215

0.01

7220

7230

0

0.5

1.0

1.5

3

2.5×10 N

2.0

Axial load Fig. 17.2.7 Series 72 axial load and axial displacement

0.04 mm

0.04

0.03

0.02

0B 700

0.01

B 7005 B 7010

Axial displacement

mm

C

0.01

0

3

2.5×10 N

Fig. 17.2.4 Series 70 axial load and axial displacement

Axial displacement

30

0.04

0.03

7015B 7020B

7030B

0

72

Fig. 17.2.6 Series 72 C axial load and axial displacement

0.04

0

C C C 10 215 20 7 72

72

0.02

0

3

2.5×10 N

C

0C

0.02

0.03

72

7

C 15 0C 70 702 30C 70

720

C

0 01

Axial displacement mm

0.03

0.04

70 05 C

0C 700

Axial displacement mm

0.04

0

0.5

1.0 1.5 Axial load

2.0

0.03

0.02

7205B

Fig. 17.2.5 Series 70 B axial load and axial displacement

7210B

0.01

B

7215

B

7220

7230B

0

3

2.5×10 N

0B

720

0

0.5

1.0 1.5 Axial load

2.0

3

2.5×10 N

Fig. 17.2.8 Series 72 B axial load and axial displacement

A-96

●Technical Data

17.3 Tapered roller bearing axial load and axial displacement

Axial displacement mm

0.02 5X

00

32 T-

4

0.01

4T-

10X

320

5XU 3201

0XU

3202

0 0

1.0

2.0

3

4.0×10 N

3.0

Axial load FIg. 17.3.1 Series 320 axial load and axial displacement

Axial displacement mm

0.02 U 0X 91 2 3 U 15X 329 XU 20 329

0.01

0 0

1.0

2.0

3

4.0×10 N

3.0

Axial load Fig. 17.3.2 Series 329 axial load and axial displacement

30 5

0

31

30

-3 0

4T

4T

Axial displacement mm

0.02

5U

31

30

0.01

20U 303 5D 3030

4T-

10D 4T-303 30315DU

0 0

1.0

2.0

3.0

3

4.0×10 N

Axial load FIg. 17.3.3 Series 303/303 D axial load and axial displacement

A-97

●Technical Data

interference derived from the measured valued for the bearing bore diameter and shaft. This difference is due to the roughness or variations of the finished surfaces to be fitted, and therefore it is necessary to assume the following reductions in effective interference:

17.4 Fitting surface pressure Table 17.4.1 lists equations for calculating the pressure and maximum allowable stress between fitting surfaces. Table 17.4.2 can be used to determine the approximate average groove diameter for bearing inner and outer rings. The effective interference, in other words the actual interference after fitting, is smaller than the apparent

For ground shafts: 1.0 ∼ 2.5μm For lathed shafts : 5.0 ∼ 7.0μm

Table 17.4.1 Fitted surface pressure and maximum allowable stress

∆deff

2

d

d d

1- (

Di

2

)

do Di

Fitted surface pressure

Hollow steel shaft/ inner ring fit

P=

E

∆deff

2

[1- (d / Di) ] [1- (do / d) ] 2

∆d

2

2

[1 - (do / Di) ]

∆deff E D

MPa {kgf / mm2}

Steel housing/ outer ring fit

P=

Maximum Shaft / inner ring fit allowable stress MPa {kgf / mm2}

Housing/ outer ring fit

E

2

2

∆Deff [1 - (Do / D) ] [1 - (D / Dh) ]

2

σt max = P σt max = P

[1 - (Do /Dh) ]

D

1 + (d / Di)

2

1 – (d / Di) 2

Outer ring inner diameter face maximum allowable stress

2

1 – (Do / D)

Average groove diameter Bearing type

Deep groove ball bearings

All types

Cylindrical roller bearings1 All types Spherical All types roller bearings

1.05

4d + D

Outer ring ( Do ) 0.95

5 0.98 4 2d + D 3

d + 4D 5

3d + D 1.05

d + 3D 4

0.97

Dh ∆Deff

: Housing inner diameter, bearing outer diameter : Outer ring average groove diameter : Housing outer diameter : Effective interference

Inner ring bore diameter face maximum allowable stress

2

Table 17.4.2 Average groove diameter

Inner ring ( Di )

Do

2

: Shaft diameter, inner ring bore diameter : Hollow shaft inner diameter : Inner ring average groove diameter : Effective interference : Elasticity factor = 208,000 MPa{ 21,200 kgf / mm2 }

d + 4D 5

d: Inner ring bore diameter mm D: Outer ring outer diameter mm 1 Average groove diameter values shown for double rib type.

A-98

D Dh

P=

E

do d

Solid steel shaft/ inner ring fit

Di

Codes (units: N {kgf} , mm)

Equation

Do

Fit conditions

Pm

2 MPa kgf/mm 250 25 200 20 150 15

kgf/mm2 MPa 5 50 4 40 3 30

2

20

1

10

100

10

50 40

5 4

30

3

20

2

10

1

p6 n6 m5 k5

0.5 0.4

5 4

0.3

3

0.2

2

0.1

1

js5

5 20

30

50

70 100

200 300

17.5 Necessary press fit and pullout force Equations (7.1) and (7.2) below can be used to calculate the necessary pullout force for press fit for inner rings and shafts or outer rings and housings. For shaft and inner rings: Kd = μ・P・π・d・B …………………………(7.1) KD = μ・P・π・D・B …………………………(7.2) Where, Kd : Inner ring press fit or pullout force N{kgf} KD : Outer ring press fit or pullout force N{kgf} P : Fitted surface pressure MPa{kgf/mm2} (Refer to Table 17.4.1) d : Shaft diameter, inner ring bore diameter mm D : Housing inner diameter, outer ring outer diameter mm B : Inner or outer ring width μ : Sliding friction coefficient (Refer to Table 17.5.1)

Maximum allowable stress

Fitted surface pressure

●Technical Data

σt max

0.5

500

Nominal bearing bore diameter (Class 0)

mm

Fig. 17.4.1 Average fit interference as it relates to surface pressure and max. allowable stress

Table 17.5.1 Press fit and pullout sliding friction coefficient

5 4

Pm

0.5 0.4

5 4

0.3

3

0.2

2

MPa kgf/mm2 400 40

50 40

3

30

2

20

n6

10

m5 k5 js5

1

p6

20

30

50

70 100

200 300

300 250 200

30 25 20

150

15

100

10

50

5

40 30

4 3

20

2

10

1

Maximum allowable stress

Fitted surface pressure

kgf/mm2 MPa 10 100

σt max

500

Nominal bearing bore diameter (Class 0)

mm

Fig. 17.4.2 Maximum fit interference as it relates to surface pressure and max. allowable stress

A-99

Type

μ

Inner (outer) ring press fit onto cylindrical shaft (bore) Inner (outer) ring pullout from cylindrical shaft (bore) Inner ring press fit onto tapered shaft or sleeve Inner ring pullout from tapered shaft Sleeve press fit onto shaft/bearing Sleeve pullout from shaft/bearing

0.12 0.18 0.17 0.14 0.30 0.33

A-100

Ball and Roller Bearings

INDEX OF BEARING TABLES

Deep Groove Ball Bearings ………………………………………………………………… B-5 Deep groove ball bearings

67,68,69,160,60,62,63,64 …………………………………………… B-8

Expansion compensating bearings

EC-60,EC-62,EC-63………………………………………… B-26

Miniature and Extra Small Ball Bearings …………………………………………… B-29 Metric system sizes Inch system sizes

67,68,69,60,62,63,BC ……………………………………………………… B-32 R,RA ……………………………………………………………………………… B-36

With ring grooves, snap rings

SC…………………………………………………………………… B-38

Angular Contact Ball Bearings …………………………………………………………… B-41 79,70,72,72B,73,73B ………………………………………… B-44

Single and duplex arrangements

78C,79C,70C,72C,73C ………………………… B-56

High speed single and duplex arrangements Ultra-high speed angular contact ball bearings Ceramic ball angular contact ball bearings Four-point contact ball bearings

BNT0,BNT2,HSB9C,HSB0C ………………… B-64

5S-BNT,5S-HSB …………………………………… B-68

QJ2,QJ3 ………………………………………………………… B-70

Double row angular contact ball bearings

52,53 ………………………………………………… B-72

Self-Aligning Ball Bearings ………………………………………………………………… B-77 12(K), 22(K), 13(K), 23(K) …………………………………………………………………………… B-78 Adapters for self-aligning ball bearings ……………………………………………………………… B-84

Cylindrical Roller Bearings ………………………………………………………………… B-89 NU,NJ,NUP,N,NF10,2,22,3,23,4 ……………………………………………………………………… B-92 L type loose rib

HJ2,22,3,23,4 ……………………………………………………………………… B-110

Multi-row cylindrical roller bearings

NN49(K),NNU49(K),NN30(K),NNU30(K) ………………… B-114

Four-row cylindrical roller bearings

4R …………………………………………………………… B-120

B-2

Tapered Roller Bearings …………………………………………………… B-131 Metric system sizes 329X,320X,330,331,302,322,322C,332,303,303D,313X,323,323C …………… B-138 Inch system sizes ……………………………………………………………………………………… B-156 Multi-row tapered roller bearings (outward facing type) 4130,4230,4131,4231,4302,4322,4303,4303D,4323 …………………………… B-194 Multi-row tapered roller bearings (inward facing type) 3230,3231………………………………… B-208 Four-row tapered roller bearings

CR0 ……………………………………………………………… B-212

Spherical Roller Bearings …………………………………………………………………… B-229 239(K),230(K),240(K30),231(K),241(K30),222(K),232(K),213(K),223(K) ……………………… B-232 Adapters for spherical roller bearings………………………………………………………………… B-252 Withdrawal sleeves for spherical roller bearings …………………………………………………… B-257

Thrust Bearings …………………………………………………………………………………… B-265 Single direction type

511,512,513,514 …………………………………………………………… B-270

Double row angular contact thrust ball bearings

5629(M),5620(M) …………………………… B-274

High speed duplex angular contact thrust ball bearings Self-aligning roller thrust bearings

HTA9DB,HTA0DB …………………… B-278

292,293,294 ………………………………………………… B-282

B-3

●Deep Groove Ball Bearings

Open type

Shielded type

Sealed type (non-contact)

Expansion Compensating Bearing

1. Design features and special characteristics Deep groove ball bearings are very widely used. A deep groove is formed on each inner and outer ring of the bearing enabling them to sustain radial and axial loads in either direction as well as well as the complex loads which result from the combination of these forces. Deep groove ball bearings are suitable for high speed applications.

In addition to the open type, deep groove ball bearings come in a number of varieties, including prelubricated bearings, bearings with one or both sides sealed or shielded, bearings with snap rings and high capacity specification, etc. Table 1 shows the construction and special characteristics of various sealed deep groove ball bearings.

Table 1 Sealed ball bearings: construction and characteristics Type, code no.

Shielded type Non-contact type ZZ

Sealed type Non-contact type LLB

Contact type LLU

Low torque type LLH

¡Metal shield plate is affixed to outside ring; inner ring incorporates a V-groove and labyrinth clearance.

¡Outer ring incorporates synthetic rubber molded to a steel plate; seal edge is aligned with V-groove along inner ring surface with labyrinth clearance.

¡Outer ring incorporates synthetic rubber molded to a steel plate; seal edge contacts V-groove along inner ring surface.

¡Basic construction the same as LU type, but specially designed lip on edge of seal prevents penetration by foreign matter; low torque construction.

Torque

Low

Low

Rather high

Medium

Dust proofing

Very good

Better than ZZ-type

Excellent

Much better than LLB-type

Water proofing

Poor

Poor

Very good

Very good

High speed capacity

Same as open type

Same as open type

Limited by contact seals

Much better than LLU-type

Allowable temp.range 1

Depends on lubricant

-25 ℃∼120 ℃

-25 ℃∼110 ℃

-25 ℃∼120 ℃

Construction

Performance comparison

1 Please consult NTN Engineering about applications which exceed the allowable temperature range of products listed on this table. Note : This chart lists double shielded and double sealed bearings, but single shielded (Z) and single sealed (LB, LU, LH) are also available. Grease lubrication should be used with single shielded and single sealed bearings.

B-5

●Deep Groove Ball Bearings

2. Standard cage types As shown in Table 2, pressed cages are generally used in deep groove ball bearings. However, machined cages are also used in larger sized bearings designed for high speed applications.

equipped outer ring and the light alloy bearing housing, a good interference fit can be achieved with stable performance across a wide temperature range. Another advantage is a large reduction in the occurrence of outer ring creeping.

Table 2 Standard cages for deep groove ball bearings Bearing series 67 68 69 160 60 62 63 64

Pressed cage

Machined cage

6700∼ 6706 6800∼ 6834 6900∼ 6934 16001∼16052 6000∼ 6052 6200∼ 6244 6300∼ 6344 6403∼ 6416

― 6836∼ 68/600 6936∼ 69/500 16056∼ 16072 6056∼ 6084 ― ― ―

(1) Allowable load Maximum allowable load Cp (refer to the table of boundary dimensions) has been determined in accordance with outer ring strength; therefore, it is necessary to select a bearing with a maximum allowable load greater than the largest anticipated bearing load. (2) Housing and bearing fit Table 3 shows the recommended fits for bearings with light metal alloy housings. In cases where the bearing is going to be interference fit with the housing, it is very important not to damage the high polymer material. Therefore it is essential that the lip of the housing diameter be given a 10˚–15˚ chamfer as shown in Diagram 2. Furthermore, as shown in Diagram 2, it is also advisable to apply the interference fit using a press in order not force the

3. Other bearing types 3. 1 Bearings with snap rings Some bearings accommodate a snap ring which is attached along the outer diameter of the outer ring. By using snap rings, positioning in the axial direction is possible and housing installation is simplified. In addition to open type, shielded and sealed types are also manufactured. Consult NTN Engineering.

Table 3 Recommended fits for outer ring and housing bore Conditions

3. 2 Expansion compensating bearings Expansion compensating bearings have the same boundary dimensions as standard bearings, except that a high polymer material with a large coefficient of thermal expansion has been inserted along the outer circumference of the outer ring. Due to the extremely small difference of thermal expansion attained between the fitted surfaces of the high polymer

High polymer material

Load type, etc.

Housing material

Rotating outer ring load Rotating inner ring load; light load Direction indeterminate load; ordinary load

Al alloy Mg alloy Other light alloys

Rotating outer ring load; heavy load Direction indeterminate load; shock load

Al alloy Mg alloy Other light alloys

0.5mm over

Suitable bearing

Housing bore tolerance class

Deep groove ball bearing H6 Cylindrical roller bearing Thickwalled type deep groove ball bearing

N6

10° ∼15°

Diagram 2. Fitting method and housing inner diameter chamfer

Diagram 1. Expansion compensating bearings

B-6

●Deep Groove Ball Bearings

3.4 AC bearings (creep prevention bearings)

bearing into the housing in a misaligned position. (Diagram 2) (3) Radial internal clearance Regulations for radial internal clearance are the same as those for standard deep groove ball bearings. For standard fit and application conditions, a C3 clearance is used with this bearing. For more detailed information concerning this bearing and the availability of roller bearings contact NTN Engineering.

AC bearings have the same boundary dimensions as standard bearings with the addition of two O-rings imbedded in the outside circumference of the outer ring. (Diagram 3) This bearing has a steel housing, can withstand rotating outer ring loads, and is suitable for applications where a "tight fit" is not possible but the fear of creeping exists. With its capacity for axial load displacement, an AC bearing can also be installed as a floating side bearing to accommodate shaft fluctuations. Before installing the bearing into the housing, high viscosity oil (base oil viscosity, 100 mm2/s or more) or grease should be applied to the space between the two O-rings. This lubricant forms a thin oil layer inside the bearing which prevents contact between the outer ring and housing, lowers the coefficient of friction, and is still able to prevent creeping by utilizing the friction force of the O-rings.

3.3 TMB ball bearings TMB ball bearings have the same boundary dimensions as standard deep groove ball bearings, but have undergone a special heat treatment that considerably extends wear life. These bearings are especially effective in countering reduced wear life due to the effects of infiltration by dust and other foreign matter. ¡TMB ball bearings' special characteristics are identical to standard bearings at rated loads, but with a bearing characterization factor of a2 = 2.2 ¡TMB 62 series bearings can be used in place of standard 63 series bearings enabling lighter weight, more compact designs ¡Greater resistance to reduced wear life due to infiltration by dust and other foreign matter

For dimensional specifications, handling procedures, and other detailed information concerning AC bearings, contact NTN Engineering.

O-rings

For dimensional specifications and other detailed information about TMB ball bearings, contact NTN Engineering.

Diagram 3. AC bearing

B-7

●Deep Groove Ball Bearings

B r

r D

d

Open type

Shielded type (ZZ)

Non-contact sealed type (LLB, LLF)

Low torque sealed type (LLH)

Contact sealed type (LLU)

d 10∼20mm Boundary dimensions

Basic load ratings dynamic

mm d

D

B

static

dynamic

kN 1

rs min

Limiting speeds static

kgf

rNS min

Cr

Cor

Cr

Cor

rpm grease oil open type open type ZZ LLB Z LB LLH

Bearing numbers

LLU

open type

nonlow sealed contact torque contact type type type type

10

15 3 19 5 22 6 26 8 30 9 35 11

0.1 ― 0.3 ― 0.3 0.3 0.3 ― 0.6 0.5 0.6 0.5

0.855 1.83 2.7 4.55 5.10 8.20

0.435 0.925 1.27 1.96 2.39 3.50

87 187 275 465 520 835

44 94 129 200 244 355

10,000 32,000 30,000 29,000 25,000 23,000

12,000 ― ― 38,000 ― 24,000 36,000 ― 21,000 34,000 25,000 21,000 30,000 21,000 18,000 27,000 20,000 16,000

6700 6800 6900 6000 6200 6300

― ZZ ZZ ZZ ZZ ZZ

― ― ― LLB ― LLU LLB ― LLU LLB LLH LLU LLB LLH LLU LLB LLH LLU

12

18 4 21 5 24 6 28 7 28 8 32 10 37 12

0.2 ― 0.3 ― 0.3 0.3 0.3 ― 0.3 ― 0.6 0.5 1 0.5

0.930 1.92 2.89 5.10 5.10 6.10 9.70

0.530 1.04 1.46 2.39 2.39 2.75 4.20

95 195 295 520 520 620 990

54 106 149 244 244 280 425

8,300 29,000 27,000 26,000 26,000 22,000 20,000

9,500 ― ― 35,000 ― 20,000 32,000 ― 19,000 30,000 ― ― 30,000 21,000 18,000 26,000 20,000 16,000 24,000 19,000 15,000

6701 6801 6901 16001 6001 6201 6301

― ZZ ZZ ― ZZ ZZ ZZ

LLF ― ― LLB ― LLU LLB ― LLU ― ― ― LLB LLH LLU LLB LLH LLU LLB LLH LLU

15

21 4 24 5 28 7 32 8 32 9 35 11 42 13

0.2 0.3 0.3 0.3 0.3 0.6 1

― 0.940 ― 2.08 0.3 3.65 ― 5.60 0.3 5.60 0.5 7.75 0.5 11.4

0.585 96 1.26 212 2.00 375 2.83 570 2.83 570 3.60 790 5.45 1,170

59 128 204 289 289 365 555

6,600 26,000 24,000 22,000 22,000 19,000 17,000

7,600 ― ― 31,000 ― 17,000 28,000 ― 16,000 26,000 ― ― 26,000 18,000 15,000 23,000 18,000 15,000 21,000 15,000 12,000

6702 6802 6902 16002 6002 6202 6302

― ZZ ZZ ― ZZ ZZ ZZ

LLF ― ― LLB ― LLU LLB ― LLU ― ― ― LLB LLH LLU LLB LLH LLU LLB LLH LLU

17

23 26 30 35 35 40 47 62

4 5 7 8 10 12 14 17

0.2 0.3 0.3 0.3 0.3 0.6 1 1.1

― 1.00 0.660 102 67 ― 2.23 1.46 227 149 0.3 4.65 2.58 475 263 ― 6.80 3.35 695 345 0.3 6.80 3.35 695 345 0.5 9.60 4.60 980 465 0.5 13.5 6.55 1,380 665 ― 22.7 10.8 2,320 1,100

5,000 24,000 22,000 20,000 20,000 18,000 16,000 14,000

6,700 ― ― 28,000 ― 15,000 26,000 ― 14,000 24,000 ― ― 24,000 16,000 14,000 21,000 15,000 12,000 19,000 14,000 11,000 16,000 ― ―

6703 6803 6903 16003 6003 6203 6303 6403

― ZZ ZZ ― ZZ ZZ ZZ ―

LLF ― ― LLB ― LLU LLB ― LLU ― ― ― LLB LLH LLU LLB LLH LLU LLB LLH LLU ― ― ―

20

27 4 32 7 37 9 42 8 42 12 47 14 52 15

0.2 0.3 0.3 0.3 0.6 1 1.1

― 1.04 0.3 4.00 0.3 6.40 ― 7.90 0.5 9.40 0.5 12.8 0.5 15.9

5,000 21,000 19,000 18,000 18,000 16,000 14,000

5,700 ― ― 25,000 ― 13,000 23,000 ― 12,000 21,000 ― ― 21,000 13,000 11,000 18,000 12,000 10,000 17,000 12,000 10,000

6704 6804 6904 16004 6004 6204 6304

― ZZ ZZ ― ZZ ZZ ZZ

LLF ― ― LLB ― LLU LLB ― LLU ― ― ― LLB LLH LLU LLB LLH LLU LLB LLH LLU

0.730 106 2.47 410 3.70 650 4.50 810 5.05 955 6.65 1,310 7.90 1,620

74 252 375 455 515 680 805

1 Smallest allowable dimension for chamfer dimension r.

B-8

●Deep Groove Ball Bearings CY a

f

B rN

b rNa

r ro

r

D D1

ro

ra

d

Bearing numbers 2

da

With snap ring

Snap ring groove dimensions mm

2

snap ring

DX Da

D2

With snap ring groove

snap ring groove

CZ

Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa Fa ≦e Fr Fr >e e Cor X Y X Y 0.010 0.18 2.46 0.020 0.20 2.14 0.040 0.24 1.83 0.070 0.27 1.61 0.10 0.29 1 0 0.56 1.48 0.15 0.32 1.35 0.20 0.35 1.25 0.30 0.38 1.13 0.40 0.41 1.05 0.50 0.44 1.00 static Por=0.6Fr+0.5Fa When Por<Fr use Por=Fr

Snap ring dimensions mm

D1

a

b

ro

D2

f

max

max

min

max

max

max

min

da max

3

4

Abutment and fillet dimensions

Mass

mm

kg

Da

DX

CY

CZ

ras

r Nas

max

(approx.)

max

min

max

max

(approx.)

― ― N ―5 N N

― ― NR ―5 NR NR

― ― ― ― ― ― ― ― 20.8 1.05 0.8 0.2 ― ― ― ― 28.17 2.06 1.35 0.4 33.17 2.06 1.35 0.4

― ― 24.8 ― 34.7 39.7

― ― 0.7 ― 1.12 1.12

10.8 12 12 12 14 14

― 12.5 13 13.5 16 17

14.2 17 20 24 26 31

― ― 25.5 ― 35.5 40.5

― ― 1.5 ― 2.9 2.9

― ― 0.7 ― 1.2 1.2

0.1 0.3 0.3 0.3 0.6 0.6

― ― 0.3 ― 0.5 0.5

0.0015 0.005 0.009 0.019 0.032 0.053

― ― N ― ―5 N N

― ― NR ― ―5 NR NR

― ― 22.8 ― ― 30.15 34.77

― ― 26.8 ― ― 36.7 41.3

― ― 0.7 ― ― 1.12 1.12

13.6 14 14 14 14 16 17

13.8 14.5 15 ― 16 17 18.5

16.4 19 22 26 26 28 32

― ― 27.5 ― ― 37.5 42

― ― 1.5 ― ― 2.9 2.9

― ― 0.7 ― ― 1.2 1.2

0.2 0.3 0.3 0.3 0.3 0.6 1

― ― 0.3 ― ― 0.5 0.5

0.002 0.006 0.011 0.019 0.021 0.037 0.06

― ― N ― N N N

― ― NR ― NR NR NR

― ― ― ― ― ― ― ― 26.7 1.3 0.95 0.25 ― ― ― ― 30.15 2.06 1.35 0.4 33.17 2.06 1.35 0.4 39.75 2.06 1.35 0.4

― ― 30.8 ― 36.7 39.7 46.3

― ― 0.85 ― 1.12 1.12 1.12

16.6 17 17 17 17 19 20

16.8 17.5 17.5 ― 19 20 23

19.4 22 26 30 30 31 37

― ― 31.5 ― 37.5 40.5 47

― ― 1.9 ― 2.9 2.9 2.9

― ― 0.9 ― 1.2 1.2 1.2

0.2 0.3 0.3 0.3 0.3 0.6 1

― ― 0.3 ― 0.3 0.5 0.5

0.0025 0.007 0.016 0.025 0.03 0.045 0.082

― ― N ― N N N ―

― ― NR ― NR NR NR ―

― ― 28.7 ― 33.17 38.1 44.6 ―

― ― 0.25 ― 0.4 0.4 0.4 ―

― ― 32.8 ― 39.7 44.6 52.7 ―

― ― 0.85 ― 1.12 1.12 1.12 ―

18.6 19 19 19 19 21 22 23.5

18.8 19.5 20 ― 21 23 25 ―

21.4 24 28 33 33 36 42 55.5

― ― 33.5 ― 40.5 45.5 53.5 ―

― ― 1.9 ― 2.9 2.9 3.3 ―

― ― 0.9 ― 1.2 1.2 1.2 ―

0.2 0.3 0.3 0.3 0.3 0.6 1 1

― ― 0.3 ― 0.3 0.5 0.5 ―

0.0025 0.008 0.018 0.032 0.039 0.066 0.115 0.27

― N N ― N N N

― NR NR ― NR NR NR

― ― ― ― 30.7 1.3 0.95 0.25 35.7 1.7 0.95 0.25 ― ― ― ― 39.75 2.06 1.35 0.4 44.6 2.46 1.35 0.4 49.73 2.46 1.35 0.4

― 34.8 39.8 ― 46.3 52.7 57.9

― 0.85 0.85 ― 1.12 1.12 1.12

21.6 22 22 22 24 25 26.5

22.3 22.5 24 ― 26 28 28.5

25.4 30 35 40 38 42 45.5

― 35.5 40.5 ― 47 53.5 58.5

― 1.9 2.3 ― 2.9 3.3 3.3

― 0.9 0.9 ― 1.2 1.2 1.2

0.2 0.3 0.3 0.3 0.6 1 1

― 0.3 0.3 ― 0.5 0.5 0.5

0.0045 0.019 0.036 0.051 0.069 0.106 0.144

― ― 1.05 ― ― 2.06 2.06

― ― 1.3 ― 2.06 2.06 2.46 ―

― ― 0.8 ― ― 1.35 1.35

― ― 0.95 ― 1.35 1.35 1.35 ―

― ― 0.2 ― ― 0.4 0.4

2 Sealed and shielded bearings are also available. 3 This dimension applies to sealed and shielded bearings. 4 Does not include bearings with snap rings. 5 See page B-38.

B-9

●Deep Groove Ball Bearings

B r

r D

d

Open type

Shielded type (ZZ)

Non-contact sealed type (LLB, LLF)

Low torque sealed type (LLH)

Contact sealed type (LLU)

d 20∼35mm Boundary dimensions

Basic load ratings dynamic

mm d

1

20

72 19

1.1

22

44 12 50 14 56 16

0.6 0.5 9.40 1 0.5 12.9 1.1 0.5 18.4

25

32 37 42 47 47 52 62 80

0.2 0.3 0.3 0.3 0.6 1 1.1 1.5

28

52 12 58 16 68 18

0.6 0.5 12.5 1 0.5 17.9 1.1 0.5 26.7

30

37 42 47 55 55 62 72 90

0.2 0.3 0.3 0.3 1 1 1.1 1.5

32

58 13 65 17 75 20 47 55 62 62 72 80 100

4 7 9 9 13 16 19 23

7 10 9 14 17 21 25

Limiting speeds static

kgf

rNS

rs min

4 7 9 8 12 15 17 21

dynamic

kN

B

35

D

static

min

Cr

― 28.5

― 0.3 0.3 ― 0.5 0.5 0.5 ―

― 0.3 0.3 ― 0.5 0.5 0.5 ―

Cor

13.9 5.05 6.80 9.25

1.10 0.840 4.30 2.95 7.05 4.55 8.35 5.10 10.1 5.85 14.0 7.85 21.2 10.9 34.5 17.5 7.40 9.75 14.0

1.14 0.950 4.70 3.65 7.25 5.00 11.2 7.35 13.2 8.3 19.5 11.3 26.7 15.0 43.5 23.9

Cr

Cor

rpm grease oil open type open type ZZ LLB Z LB LLH



Bearing numbers

LLU



2,900 1,420

12,000 14,000

955 1,320 1,880

17,000 20,000 13,000 10,000 14,000 17,000 12,000 9,700 13,000 15,000 11,000 9,200

515 690 945

4,600 ― ― 21,000 ― 10,000 19,000 ― 9,800 18,000 ― ― 18,000 11,000 9,400 15,000 11,000 8,900 14,000 9,700 8,100 12,000 ― ―

open type

6404

nonlow sealed contact torque contact type type type type









60/22 ZZ 62/22 ZZ 63/22 ZZ

LLB LLH LLU LLB LLH LLU LLB LLH LLU

― ZZ ZZ ― ZZ ZZ ZZ ―

LLF ― ― LLB ― LLU LLB ― LLU ― ― ― LLB LLH LLU LLB LLH LLU LLB LLH LLU ― ― ―

60/28 ZZ 62/28 ZZ 63/28 ZZ

LLB LLH LLU LLB LLH LLU LLB LLH LLU

112 86 435 300 715 460 855 520 1,030 595 1,430 800 2,160 1,110 3,550 1,780

4,000 18,000 16,000 15,000 15,000 13,000 12,000 10,000

6705 6805 6905 16005 6005 6205 6305 6405

1,270 755 1,830 995 2,730 1,430

14,000 16,000 10,000 12,000 14,000 9,700 11,000 13,000 8,900

8,400 8,100 7,400

117 97 480 370 740 510 1,150 750 1,350 845 1,980 1,150 2,720 1,530 4,400 2,440

3,300 15,000 14,000 13,000 13,000 11,000 10,000 8,800

3,800 18,000 17,000 15,000 15,000 13,000 12,000 10,000

― ― ― ― 9,200 8,800 7,900 ―

― 8.800 8,400 ― 7,700 7,300 6,600 ―

6706 6806 6906 16006 6006 6206 6306 6406

― ZZ ZZ ― ZZ ZZ ZZ ―

LLF ― ― LLB ― LLU LLB ― LLU ― ― ― LLB LLH LLU LLB LLH LLU LLB LLH LLU ― ― ―

1 0.5 11.8 1 0.5 20.7 1.1 0.5 29.8

8.05 11.6 16.9

1,200 820 2,110 1,190 3,050 1,730

12,000 15,000 11,000 12,000 9,500 11,000

8,700 8,400 7,700

7,200 7,100 6,500

60/32 62/32 63/32

ZZ ZZ ZZ

LLB LLH LLU LLB LLH LLU LLB LLH LLU

0.3 0.6 0.3 1 1.1 1.5 1.5

4.05 6.85 8.20 10.3 15.3 19.1 31.0

500 975 1,190 1,630 2,620 3,400 5,600

13,000 12,000 12,000 12,000 9,800 8,800 7,800

― ― ― 8,200 7,600 7,300 ―

7,600 7,100 ― 6,800 6,300 6,000 ―

6807 6907 16007 6007 6207 6307 6407

ZZ ZZ ― ZZ ZZ ZZ ―

LLB ― LLU LLB ― LLU ― ― ― LLB LLH LLU LLB LLH LLU LLB LLH LLU ― ― ―

0.3 0.5 ― 0.5 0.5 0.5 ―

4.90 9.55 11.7 16.0 25.7 33.5 55.0

410 695 835 1,050 1,560 1,950 3,150

1 Smallest allowable dimension for chamfer dimension r.

B-10

16,000 15,000 14,000 14,000 11,000 10,000 9,100

●Deep Groove Ball Bearings CY a

f

B

b

rN

rNa

r ro

r

D D1

ro

ra

d

Bearing numbers 2

snap ring







N N N

NR NR NR

41.75 47.6 53.6

― N N ― N N N ―

― NR NR ― NR NR NR ―

N N N

D1

a

b

ro

D2

f

max

min

max

max

max

2.06 2.46 2.46





3

Mass

mm

kg

Da

DX

CY

CZ

ras

r Nas

max

(approx.)

max

min

max

max

min

max

26.5



65.5







1



(approx.)

0.4

1.12 1.12 1.12

26 27 28.5

26.5 29.5 31

40 45 49.5

49 56.5 62.5

2.9 3.3 3.3

1.2 1.2 1.2

0.6 1 1

0.5 0.5 0.5

0.074 0.117 0.176

― ― ― ― 35.7 1.3 0.95 0.25 40.7 1.7 0.95 0.25 ― ― ― ― 44.6 2.06 1.35 0.4 49.73 2.46 1.35 0.4 59.61 3.28 1.9 0.6 ― ― ― ―

― 39.8 44.8 ― 52.7 57.9 67.7 ―

― 0.85 0.85 ― 1.12 1.12 1.7 ―

26.6 27 27 27 29 30 31.5 33

27.3 28 29 ― 30.5 32 35 ―

30.4 35 40 45.0 43 47 55.5 72

― 40.5 45.5 ― 53.5 58.5 68.5 ―

― 1.9 2.3 ― 2.9 3.3 4.6 ―

― 0.9 0.9 ― 1.2 1.2 1.7 ―

0.2 0.3 0.3 0.3 0.6 1 1 1.5

― 0.3 0.3 ― 0.5 0.5 0.5 ―

0.005 0.022 0.042 0.06 0.08 0.128 0.232 0.53

NR NR NR

49.73 55.6 64.82

57.9 63.7 74.6

1.12 1.12 1.7

32 33 34.5

34 35.5 38.5

48 53 61.5

58.5 64.5 76

2.9 3.3 4.6

1.2 1.2 1.7

0.6 1 1

0.5 0.5 0.5

0.098 0.171 0.284

― N N ― N N N ―

― NR NR ― NR NR NR ―

― ― ― ― 40.7 1.3 0.95 0.25 45.7 1.7 0.95 0.25 ― ― ― ― 52.6 2.08 1.35 0.4 59.61 3.28 1.9 0.6 68.81 3.28 1.9 0.6 ― ― ― ―

― 44.8 49.8 ― 60.7 67.7 78.6 ―

― 0.85 0.85 ― 1.12 1.7 1.7 ―

31.6 32 32 32 35 35 36.5 38

32.3 33 34 ― 37 39 43 ―

35.4 40 45 53 50 57 65.5 82

― 45.5 50.5 ― 61.5 68.5 80 ―

― 1.9 2.3 ― 2.9 4.6 4.6 ―

― 0.9 0.9 ― 1.2 1.7 1.7 ―

0.2 0.3 0.3 0.3 1 1 1 1.5

― 0.3 0.3 ― 0.5 0.5 0.5 ―

0.006 0.026 0.048 0.091 0.116 0.199 0.36 0.735

N N N

NR NR NR

55.6 62.6 71.83

63.7 70.7 81.6

1.12 1.7 1.7

37 37 38.5

39 40 43.5

53 60 68.5

64.5 71.5 83

2.9 4.6 4.6

1.2 1.7 1.7

0.5 0.5 0.5

0.129 0.226 0.382

N N ― N N N

NR NR ― NR NR NR ―

45.7 1.3 0.95 0.25 53.7 1.7 0.95 0.25 ― ― ― ― 59.61 2.08 1.9 0.6 68.81 3.28 1.9 0.6 76.81 3.28 1.9 0.6 ― ― ― ―

49.8 57.8 ― 67.7 78.6 86.6 ―

0.85 0.85 ― 1.7 1.7 1.7 ―

37 39 37 40 41.5 43 43

38 40 ― 42 45 47 ―

45 51 60 57 65.5 72 92

50.5 58.5 ― 68.5 80 88 ―

1.9 2.3 ― 3.4 4.6 4.6 ―

0.9 0.9 ― 1.7 1.7 1.7 ―

0.3 0.5 ― 0.5 0.5 0.5 ―

0.029 0.074 0.11 0.155 0.288 0.457 0.952

2.08 3.28 3.28

1.35 1.35 1.9

1.35 1.9 1.9

0.4 0.4 0.4



da

4

Abutment and fillet dimensions

48.3 55.7 61.7

2.06 2.46 3.28

1.35 1.35 1.35



Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa Fa ≦e Fr Fr >e e Cor X Y X Y 0.010 0.18 2.46 0.020 0.20 2.14 0.040 0.24 1.83 0.070 0.27 1.61 0.10 0.29 1 0 0.56 1.48 0.15 0.32 1.35 0.20 0.35 1.25 0.30 0.38 1.13 0.40 0.41 1.05 0.50 0.44 1.00 static Por=0.6Fr+0.5Fa When Por<Fr use Por=Fr

Snap ring dimensions mm

max



da

With snap ring

Snap ring groove dimensions mm

snap ring groove

DX Da

D2

With snap ring groove

2

CZ

0.4 0.4 0.6

0.4 0.6 0.6

1 1 1 0.3 0.6 0.3 1 1 1.5 1.5

2 Sealed and shielded bearings are also available. 3 This dimension applies to sealed and shielded bearings. 4 Does not include bearings with snap rings.

B-11

●Deep Groove Ball Bearings

B r

r D

d

Shielded type (ZZ)

Open type

Non-contact sealed type (LLB)

Low torque sealed type (LLH)

Contact sealed type (LLU)

d 40∼60mm Boundary dimensions

Basic load ratings dynamic

mm

static

dynamic

kN 1

Limiting speeds static

kgf

rNS Cor

Cr

Cor

LLU

open type

nonlow sealed contact torque contact type type type type

d

D

B

rs min

40

52 62 68 68 80 90 110

7 12 9 15 18 23 27

0.3 0.6 0.3 1 1.1 1.5 2

0.3 0.5 ― 0.5 0.5 0.5 ―

5.10 12.2 12.6 16.8 29.1 40.5 63.5

4.40 8.90 9.65 11.5 17.8 24.0 36.5

520 1,240 1,290 1,710 2,970 4,150 6,500

445 910 985 1,170 1,820 2,450 3,750

12,000 11,000 10,000 10,000 8,700 7,800 7,000

14,000 13,000 12,000 12,000 10,000 9,200 8,200

― ― ― 7,300 6,700 6,400 ―

6,700 6,300 ― 6,100 5,600 5,300 ―

6808 6908 16008 6008 6208 6308 6408

ZZ ZZ ― ZZ ZZ ZZ ―

LLB ― LLU LLB ― LLU ― ― ― LLB LLH LLU LLB LLH LLU LLB LLH LLU ― ― ―

45

58 68 75 75 85 100 120

7 12 10 16 19 25 29

0.3 0.6 0.6 1 1.1 1.5 2

0.3 0.5 ― 0.5 0.5 0.5 ―

5.35 13.1 12.9 21.0 32.5 53.0 77.0

4.95 10.4 10.5 15.1 20.4 32.0 45.0

550 1,330 1,320 2,140 3,350 5,400 7,850

500 1,060 1,070 1,540 2,080 3,250 4,600

11,000 9,800 9,200 9,200 7,800 7,000 6,300

12,000 12,000 11,000 11,000 9,200 8,200 7,400

― ― ― 6,500 6,200 5,600 ―

5,900 5,600 ― 5,400 5,200 4,700 ―

6809 6909 16009 6009 6209 6309 6409

ZZ ZZ ― ZZ ZZ ZZ ―

LLB ― LLU LLB ― LLU ― ― ― LLB LLH LLU LLB LLH LLU LLB LLH LLU ― ― ―

50

65 72 80 80 90 110 130

7 12 10 16 20 27 31

0.3 0.6 0.6 1 1.1 2 2.1

0.3 0.5 ― 0.5 0.5 0.5 ―

6.60 13.4 13.2 21.8 35.0 62.0 83.0

6.10 11.2 11.3 16.6 23.2 38.5 49.5

670 1,370 1,350 2,230 3,600 6,300 8,450

620 1,140 1,150 1,690 2,370 3,900 5,050

9,600 11,000 8,900 11,000 8,400 9,800 8,400 9,800 7,100 8,300 6,400 7,500 5,700 6,700

― ― ― 6,000 5,700 5,000 ―

5,300 5,100 ― 5,000 4,700 4,200 ―

6810 6910 16010 6010 6210 6310 6410

ZZ ZZ ― ZZ ZZ ZZ ―

LLB ― LLU LLB ― LLU ― ― ― LLB LLH LLU LLB LLH LLU LLB LLH LLU ― ― ―

55

72 80 90 90 100 120 140

9 13 11 18 21 29 33

0.3 1 0.6 1.1 1.5 2 2.1

0.3 0.5 ― 0.5 0.5 0.5 ―

8.80 16.0 18.6 28.3 43.5 71.5 89.0

8.10 13.3 15.3 21.2 29.2 45.0 54.0

900 1,630 1,900 2,880 4,450 7,300 9,050

825 1,350 1,560 2,170 2,980 4,600 5,500

8,700 10,000 8,200 9,600 7,700 9,000 7,700 9,000 6,400 7,600 5,800 6,800 5,200 6,100

― ― ― ― ― ― ―

4,800 4,600 ― 4,500 4,300 3,900 ―

6811 6911 16011 6011 6211 6311 6411

ZZ ZZ ― ZZ ZZ ZZ ―

LLB LLB ― LLB LLB LLB ―

― ― ― ― ― ― ―

LLU LLU ― LLU LLU LLU ―

60

78 85 95 95 110 130 150

10 13 11 18 22 31 35

0.3 1 0.6 1.1 1.5 2.1 2.1

0.3 11.5 0.5 16.4 ― 20.0 0.5 29.5 0.5 52.5 0.5 82.0 ― 102

10.6 14.3 17.5 23.2 36.0 52.0 64.5

1,170 1,670 2,040 3,000 5,350 8,350 10,400

1,080 1,450 1,780 2,370 3,700 5,300 6,550

8,000 7,600 7,000 7,000 6,000 5,400 4,800

― ― ― ― ― ― ―

4,400 4,300 ― 4,100 3,800 3,600 ―

6812 6912 16012 6012 6212 6312 6412

ZZ ZZ ― ZZ ZZ ZZ ―

LLB LLB ― LLB LLB LLB ―

― ― ― ― ― ― ―

LLU LLU ― LLU LLU LLU ―

min

Cr

rpm grease oil open type open type ZZ LLB Z LB LLH

Bearing numbers

1 Smallest allowable dimension for chamfer dimension r.

B-12

9,400 8,900 8,300 8,300 7,000 6,300 5,700

●Deep Groove Ball Bearings CY a

f

B rN

b rNa

r ro

r

D D1

ro

ra

d

Bearing numbers snap ring

N N ― N N N ―

NR NR ― NR NR NR ―

N N ― N N N ―

NR NR ― NR NR NR ―

da

With snap ring

Snap ring groove dimensions mm

2

snap ring groove

DX Da

D2

With snap ring groove

2

CZ

When Por<Fr use Por=Fr

Snap ring dimensions mm

D1

a

b

ro

D2

f

max

max

min

max

max

max

min

50.7 1.3 0.95 0.25 60.7 1.7 0.95 0.25 ― ― ― ― 64.82 2.49 1.9 0.6 76.81 3.28 1.9 0.6 86.79 3.28 2.7 0.6 ― ― ― ―

54.8 64.8 ― 74.6 86.6 96.5 ―

0.85 0.85 ― 1.7 1.7 2.46 ―

42 44 42 45 46.5 48 49

43 45 ― 47 51 54 ―

56.7 1.3 0.95 0.25 66.7 1.7 0.95 0.25 ― ― ― ― 71.83 2.49 1.9 0.6 81.81 3.28 1.9 0.6 96.8 3.28 2.7 0.6 ― ― ― ―

60.8 70.8 ― 81.6 91.6 106.5 ―

0.85 0.85 ― 1.7 1.7 2.46 ―

N N ― N N N ―

NR 63.7 1.3 0.95 0.25 NR 70.7 1.7 0.95 0.25 ― ― ― ― ― NR 76.81 2.49 1.9 0.6 NR 86.79 3.28 2.7 0.6 NR 106.81 3.28 2.7 0.6 ― ― ― ― ―

67.8 74.8 ― 86.6 96.5 116.6 ―

N N ― N N N ―

NR 70.7 1.7 0.95 0.25 NR 77.9 2.1 1.3 0.4 ― ― ― ― ― NR 86.79 2.87 2.7 0.6 NR 96.8 3.28 2.7 0.6 NR 115.21 4.06 3.1 0.6 ― ― ― ― ―

N N ― N N N ―

NR 76.2 1.7 1.3 NR 82.9 2.1 1.3 ― ― ― ― NR 91.82 2.87 2.7 NR 106.81 3.28 2.7 NR 125.22 4.06 3.1 ― ― ― ―

0.4 0.4 ― 0.6 0.6 0.6 ―

Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa Fa ≦e Fr Fr >e e Cor X Y X Y 0.010 0.18 2.46 0.020 0.20 2.14 0.040 0.24 1.83 0.070 0.27 1.61 0.10 0.29 1 0 0.56 1.48 0.15 0.32 1.35 0.20 0.35 1.25 0.30 0.38 1.13 0.40 0.41 1.05 0.50 0.44 1.00 static Por=0.6Fr+0.5Fa

da

4

Abutment and fillet dimensions

Mass

mm

kg

Da

DX

CY

CZ

ras

r Nas

max

(approx.)

max

min

max

max

55.5 65.5 ― 76 88 98 ―

1.9 2.3 ― 3.8 4.6 5.4 ―

0.9 0.9 ― 1.7 1.7 2.5 ―

0.3 0.6 0.3 1 1 1.5 2.0

0.3 0.5 ― 0.5 0.5 0.5 ―

0.033 0.11 0.125 0.19 0.366 0.63 1.23

47 49 49 50 51.5 53 54

48 56 61.5 51 64 72 ― 71 ― 52.5 70 83 55.5 78.5 93 61.5 92 108 ― 111 ―

1.9 2.3 ― 3.8 4.6 5.4 ―

0.9 0.9 ― 1.7 1.7 2.5 ―

0.3 0.6 0.6 1 1 1.5 2

0.3 0.5 ― 0.5 0.5 0.5 ―

0.04 0.128 0.171 0.237 0.398 0.814 1.53

0.85 0.85 ― 1.7 2.46 2.46 ―

52 54 54 55 56.5 59 61

54 63 68.5 55.5 68 76 ― 76 ― 57.5 75 88 60 83.5 98 68.5 101 118 ― 119 ―

1.9 2.3 ― 3.8 5.4 5.4 ―

0.9 0.9 ― 1.7 2.5 2.5 ―

0.3 0.6 0.6 1 1 2 2

0.3 0.5 ― 0.5 0.5 0.5 ―

0.052 0.132 0.18 0.261 0.454 1.07 1.88

74.8 84.4 ― 96.5 106.5 129.7 ―

0.85 1.12 ― 2.46 2.46 2.82 ―

57 60 59 61.5 63 64 66

59 70 76 61.5 75 86 ― 86 ― 64 83.5 98 67 92 108 74 111 131.5 ― 129 ―

2.3 2.9 ― 5 5.4 6.5 ―

0.9 1.2 ― 2.5 2.5 2.9 ―

0.3 1 0.6 1 1.5 2 2

0.3 0.5 ― 0.5 0.5 0.5 ―

0.083 0.18 0.258 0.388 0.601 1.37 2.29

82.7 89.4 ― 101.6 116.6 139.7 ―

1.12 1.12 ― 2.46 2.46 2.82 ―

62 65 64 66.5 68 71 71

64.5 76 84 66.5 80 91 ― 91 ― 69 88.5 103 75 102 118 80.5 119 141.5 ― 139 ―

2.5 2.9 ― 5 5.4 6.5 ―

1.2 1.2 ― 2.5 2.5 2.9 ―

0.3 1 0.6 1 1.5 2 2

0.3 0.5 ― 0.5 0.5 0.5 ―

0.106 0.193 0.283 0.414 0.783 1.73 2.77

max

3

50 58 66 63 73.5 82 101

(approx.)

2 Sealed and shielded bearings are also available. 3 This dimension applies to sealed and shielded bearings. 4 Does not include bearings with snap rings.

B-13

●Deep Groove Ball Bearings

B r

r D

d

Shielded type (ZZ)

Open type

Non-contact sealed type (LLB)

Contact sealed type (LLU)

d 65∼85mm Boundary dimensions

Basic load ratings dynamic

mm

dynamic

kN

Limiting speeds static

rpm oil open type Z LB

LLU

open type

nonsealed contact type type

Cr

Cor

Cr

Cor

0.5 0.5 ― 0.5 0.5 0.5 ―

11.6 17.4 20.5 30.5 57.5 92.5 111

11.0 16.1 18.7 25.2 40.0 60.0 72.5

1,180 1,770 2,090 3,100 5,850 9,450 11,300

1,120 1,640 1,910 2,570 4,100 6,100 7,400

7,400 7,000 6,500 6,500 5,500 4,900 4,400

8,700 8,200 7,700 7,700 6,500 5,800 5,200

4,100 4,000 ― 3,900 3,600 3,300 ―

6813 6913 16013 6013 6213 6313 6413

ZZ ZZ ― ZZ ZZ ZZ ―

LLB LLB ― LLB LLB LLB ―

LLU LLU ― LLU LLU LLU ―

0.6 1 0.6 1.1 1.5 2.1 3

0.5 0.5 ― 0.5 0.5 0.5 ―

12.1 23.7 24.4 38.0 62.0 104 128

11.9 21.2 22.6 31.0 44.0 68.0 89.5

1,230 2,420 2,480 3,900 6,350 10,600 13,100

1,220 2,160 2,300 3,150 4,500 6,950 9,100

6,900 6,500 6,100 6,100 5,100 4,600 4,100

8,100 7,700 7,100 7,100 6,000 5,400 4,800

3,800 3,700 ― 3,600 3,400 3,100 ―

6814 6914 16014 6014 6214 6314 6414

ZZ ZZ ― ZZ ZZ ZZ ―

LLB LLB ― LLB LLB LLB ―

LLU LLU ― LLU LLU LLU ―

10 16 13 20 25 37 45

0.6 1 0.6 1.1 1.5 2.1 3

0.5 0.5 ― 0.5 0.5 0.5 ―

12.5 24.4 25.0 39.5 66.0 113 138

12.9 22.6 24.0 33.5 49.5 77.0 99.0

1,280 1,310 2,480 2,300 2,540 2,450 4,050 3,400 6,750 5,050 11,600 7,850 14,000 10,100

6,400 6,100 5,700 5,700 4,800 4,300 3,800

7,600 7,200 6,700 6,700 5,600 5,000 4,500

3,600 3,500 ― 3,300 3,200 2,900 ―

6815 6915 16015 6015 6215 6315 6415

ZZ ZZ ― ZZ ZZ ZZ ―

LLB LLB ― LLB LLB LLB ―

LLU LLU ― LLU LLU LLU ―

100 110 125 125 140 170 200

10 16 14 22 26 39 48

0.6 1 0.6 1.1 2 2.1 3

0.5 0.5 ― 0.5 0.5 0.5 ―

12.7 24.9 25.4 47.5 72.5 123 164

13.3 24.0 25.1 40.0 53.0 86.5 125

1,290 1,360 2,540 2,450 2,590 2,560 4,850 4,050 7,400 5,400 12,500 8,850 16,700 12,800

6,000 5,700 5,300 5,300 4,500 4,000 3,600

7,100 6,700 6,200 6,200 5,300 4,700 4,200

3,400 3,200 ― 3,100 3,000 2,700 ―

6816 6916 16016 6016 6216 6316 6416

ZZ ZZ ― ZZ ZZ ZZ ―

LLB LLB ― LLB LLB LLB ―

LLU LLU ― LLU LLU LLU ―

110 120 130 130 150 180

13 18 14 22 28 41

1 1.1 0.6 1.1 2 3

0.5 0.5 ― 0.5 0.5 0.5

18.7 32.0 25.9 49.5 83.5 133

19.0 29.6 26.2 43.0 64.0 97.0

1,910 3,250 2,640 5,050 8,500 13,500

5,700 5,400 5,000 5,000 4,200 3,800

6,700 6,300 5,900 5,900 5,000 4,500

3,100 3,000 ― 2,900 2,800 2,600

6817 6917 16017 6017 6217 6317

ZZ ZZ ― ZZ ZZ ZZ

LLB LLB ― LLB LLB LLB

LLU LLU ― LLU LLU LLU

1

D

B

rs min

65

85 90 100 100 120 140 160

10 13 11 18 23 33 37

0.6 1 0.6 1.1 1.5 2.1 2.1

70

90 100 110 110 125 150 180

10 16 13 20 24 35 42

75

95 105 115 115 130 160 190

80

kgf

Bearing numbers

grease open type ZZ LLB

d

85

static

rNS min

1,940 3,000 2,670 4,400 6,500 9,850

1 Smallest allowable dimension for chamfer dimension r.

B-14

contact type

●Deep Groove Ball Bearings CY a

f

B rN

b rNa

r ro

r

D D1

ro

ra

d

Bearing numbers 2

da

With snap ring

Snap ring groove dimensions mm

2

snap ring

DX Da

D2

With snap ring groove

snap ring groove

CZ

Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa Fa ≦e Fr Fr >e e Cor X Y X Y 0.010 0.18 2.46 0.020 0.20 2.14 0.040 0.24 1.83 0.070 0.27 1.61 0.10 0.29 1 0 0.56 1.48 0.15 0.32 1.35 0.20 0.35 1.25 0.30 0.38 1.13 0.40 0.41 1.05 0.50 0.44 1.00 static Por=0.6Fr+0.5Fa When Por<Fr use Por=Fr

Snap ring dimensions mm

D1

a

b

ro

D2

f

max

max

min

max

max

max

min

da max

3

4

Abutment and fillet dimensions

Mass

mm

kg

Da

DX

CY

CZ

ras

r Nas

max

(approx.)

max

min

max

max

(approx.)

N N ― N N N ―

NR 82.9 1.7 1.3 NR 87.9 2.1 1.3 ― ― ― ― NR 96.8 2.87 2.7 NR 115.21 4.06 3.1 NR 135.23 4.9 3.1 ― ― ― ―

0.4 0.4 ― 0.6 0.6 0.6 ―

89.4 94.4 ― 106.5 129.7 149.7 ―

1.12 1.12 ― 2.46 2.82 2.82 ―

69 70 69 71.5 73 76 76

70 81 91 71.5 85 96 ― 96 ― 74 93.5 108 80.5 112 131.5 86 129 152 ― 149 ―

2.5 2.9 ― 5 6.5 7.3 ―

1.2 1.2 ― 2.5 2.9 2.9 ―

0.6 1 0.6 1 1.5 2 2

0.5 0.5 ― 0.5 0.5 0.5 ―

0.128 0.206 0.307 0.421 0.99 2.08 3.3

N N ― N N N ―

NR 87.9 1.7 1.3 NR 97.9 2.5 1.3 ― ― ― ― NR 106.81 2.87 2.7 NR 120.22 4.06 3.1 NR 145.24 4.9 3.1 ― ― ― ―

0.4 0.4 ― 0.6 0.6 0.6 ―

94.4 104.4 ― 116.6 134.7 159.7 ―

1.12 1.12 ― 2.46 2.82 2.82 ―

74 75 74 76.5 78 81 83

75.5 77.5 ― 80.5 85 92.5 ―

86 95 106 103.5 117 139 167

96 106 ― 118 136.5 162 ―

2.5 3.3 ― 5 6.5 7.3 ―

1.2 1.2 ― 2.5 2.9 2.9 ―

0.6 1 0.6 1 1.5 2 2.5

0.5 0.5 ― 0.5 0.5 0.5 ―

0.137 0.334 0.441 0.604 1.07 2.52 4.83

N N ― N N N ―

NR NR ― NR NR NR ―

92.9 1.7 1.3 102.6 2.5 1.3 ― ― ― 111.81 2.87 2.7 125.22 4.06 3.1 155.22 4.9 3.1 ― ― ―

0.4 0.4 ― 0.6 0.6 0.6 ―

99.4 110.7 ― 121.6 139.7 169.7 ―

1.12 1.12 ― 2.46 2.82 2.82 ―

79 80 79 81.5 83 86 88

80 82.5 ― 85.5 90.5 99 ―

91 100 111 108.5 122 149 177

101 112 ― 123 141.5 172 ―

2.5 3.3 ― 5 6.5 7.3 ―

1.2 1.2 ― 2.5 2.9 2.9 ―

0.6 1 0.6 1 1.5 2 2.5

0.5 0.5 ― 0.5 0.5 0.5 ―

0.145 0.353 0.464 0.649 1.18 3.02 5.72

N N ― N N N ―

NR NR ― NR NR NR ―

97.9 1.7 1.3 107.6 2.5 1.3 ― ― ― 120.22 2.87 3.1 135.23 4.9 3.1 163.65 5.69 3.5 ― ― ―

0.4 0.4 ― 0.6 0.6 0.6 ―

104.4 115.7 ― 134.7 149.7 182.9 ―

1.12 1.12 ― 2.82 2.82 3.1 ―

84 85 85 88 84 ― 86.5 91.5 89 95.5 91 105 93 ―

96 105 121 118.5 131 159 187

106 117 ― 136.5 152 185 ―

2.5 3.3 ― 5.3 7.3 8.4 ―

1.2 1.2 ― 2.9 2.9 3.1 ―

0.6 1 0.6 1 2 2 2.5

0.5 0.5 ― 0.5 0.5 0.5 ―

0.154 0.373 0.597 0.854 1.4 3.59 6.76

N N ― N N N

NR NR ― NR NR NR

107.6 2.1 1.3 117.6 3.3 1.3 ― ― ― 125.22 2.87 3.1 145.24 4.9 3.1 173.66 5.69 3.5

0.4 0.4 ― 0.6 0.6 0.6

115.7 125.7 ― 139.7 159.7 192.9

1.12 1.12 ― 2.82 2.82 3.1

90 91 91.5 94 89 ― 91.5 97 94 103 98 112

105 113.5 126 123.5 141 167

117 127 ― 141.5 162 195

2.9 4.1 ― 5.3 7.3 8.4

1.2 1.2 ― 2.9 2.9 3.1

1 1 0.6 1 2 2.5

0.5 0.5 ― 0.5 0.5 0.5

0.27 0.536 0.626 0.89 1.79 4.23

2 Sealed and shielded bearings are also available. 3 This dimension applies to sealed and shielded bearings. 4 Does not include bearings with snap rings.

B-15

●Deep Groove Ball Bearings CY a

f

B rN

b rNa

r ro

r

D D1

ro

ra

d

Bearing numbers

da

With snap ring

Snap ring groove dimensions mm

2

DX Da

D2

With snap ring groove

2

CZ

When Por<Fr use Por=Fr

Snap ring dimensions mm

Mass

mm

kg

snap ring

N N ― N N N

NR NR ― NR NR NR

112.6 2.1 1.3 122.6 3.3 1.3 ― ― ― 135.23 3.71 3.1 155.22 4.9 3.1 183.64 5.69 3.5

0.4 0.4 ― 0.6 0.6 0.6

120.7 130.7 ― 149.7 169.7 202.9

1.12 1.12 ― 2.82 2.82 3.1

95 96 96.5 99 95 ― 98 102 99 109 103 118

110 118.5 135 132 151 177

N N ― N N N

NR NR ― NR NR NR

117.6 2.1 1.3 127.6 3.3 1.3 ― ― ― 140.23 3.71 3.1 163.65 5.69 3.5 193.65 5.69 3.5

0.4 0.4 ― 0.6 0.6 0.6

125.7 135.7 ― 154.7 182.9 212.9

1.12 1.12 ― 2.82 3.1 3.1

100 101.5 100 103 106 108

101 104 ― 109 116 125

N N ― N N ―

NR NR ― NR NR ―

122.6 2.1 1.3 137.6 3.3 1.9 ― ― ― 145.24 3.71 3.1 173.66 5.69 3.5 ― ― ―

0.4 0.6 ― 0.6 0.6 ―

130.7 145.7 ― 159.7 192.9 ―

1.12 1.7 ― 2.82 3.1 ―

105 106.5 105 108 111 113

N N ― N N ―

NR NR ― NR NR ―

127.6 2.1 1.3 142.6 3.3 1.9 ― ― ― 155.22 3.71 3.1 183.64 5.69 3.5 ― ― ―

0.4 0.6 ― 0.6 0.6 ―

135.7 150.7 ― 169.7 202.9 ―

1.12 1.7 ― 2.82 3.1 ―

N N ― N N ―

NR NR ― NR NR ―

137.6 2.5 1.9 147.6 3.3 1.9 ― ― ― 163.65 3.71 3.5 193.65 5.69 3.5 ― ― ―

0.6 0.6 ― 0.6 0.6 ―

145.7 155.7 ― 182.9 212.9 ―

N N ― N

NR 147.6 2.5 1.9 NR 161.8 3.7 1.9 ― ― ― ― NR 173.66 3.71 3.5

0.6 0.6 ― 0.6

155.7 171.5 ― 192.9

D1

a

b

ro

D2

f

max

min

max

max

max

da

4

Abutment and fillet dimensions

snap ring groove

max

Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa Fa ≦e Fr Fr >e e Cor X Y X Y 0.010 0.18 2.46 0.020 0.20 2.14 0.040 0.24 1.83 0.070 0.27 1.61 0.10 0.29 1 0 0.56 1.48 0.15 0.32 1.35 0.20 0.35 1.25 0.30 0.38 1.13 0.40 0.41 1.05 0.50 0.44 1.00 static Por=0.6Fr+0.5Fa

Da

DX

CY

CZ

ras

r Nas

max

(approx.)

max

min

max

max

122 132 ― 152 172 205

2.9 4.1 ― 6.1 7.3 8.4

1.2 1.2 ― 2.9 2.9 3.1

1 1 1 1.5 2 2.5

0.5 0.5 ― 0.5 0.5 0.5

0.285 0.554 0.848 1.02 2.15 4.91

115 123.5 140 137 159 187

127 137 ― 157 185 215

2.9 4.1 ― 6.1 8.4 8.4

1.2 1.2 ― 2.9 3.1 3.1

1 1 1 1.5 2 2.5

0.5 0.5 ― 0.5 0.5 0.5

0.3 0.579 0.885 1.08 2.62 5.67

106 110 ― 110 122 133

120 133.5 145 142 169 202

132 147 ― 162 195 ―

2.9 4.7 ― 6.1 8.4 ―

1.2 1.7 ― 2.9 3.1 ―

1 1 1 1.5 2 2.5

0.5 0.5 ― 0.5 0.5 ―

0.313 0.785 0.91 1.15 3.14 7

110 111.5 110 114 116 118

― 115 ― 119 125 134

125 138.5 155 151 179 212

137 152 ― 172 205 ―

2.9 4.7 ― 6.1 8.4 ―

1.2 1.7 ― 2.9 3.1 ―

1 1 1 2 2 2.5

0.5 0.5 ― 0.5 0.5 ―

0.33 0.816 1.2 1.59 3.7 8.05

1.7 1.7 ― 3.1 3.1 ―

115 116.5 115 119 121 123

― 120 ― 126 132 149

135 143.5 165 161 189 227

147 157 ― 185 215 ―

3.9 4.7 ― 6.4 8.4 ―

1.7 1.7 ― 3.1 3.1 ―

1 1 1 2 2 2.5

0.5 0.5 ― 0.5 0.5 ―

0.515 0.849 1.46 1.96 4.36 9.54

1.7 1.7 ― 3.1

125 ― 126.5 ― 125 ― 129 136

145 157 158.5 173 175 ― 171 195

3.9 5.1 ― 6.4

1.7 1.7 ― 3.1

1 1 1 2

0.5 0.5 ― 0.5

0.555 1.15 1.56 2.07

min

max

3

(approx.)

2 Sealed and shielded bearings are also available. 3 This dimension applies to sealed and shielded bearings. 4 Does not include bearings with snap rings.

B-17

●Deep Groove Ball Bearings

B r

r D

d

Open type

Shielded type (ZZ)

Contact sealed type (LLU)

d 120∼170mm Boundary dimensions

Basic load ratings dynamic

mm

static kN

1

Limiting speeds

dynamic

static kgf

rpm grease oil open type open type ZZ Z

Bearing numbers

LLU

open type

sealed type

contact type

3,400 3,100

2,000 ―

6224 6324

ZZ ―

LLU ―

3,700 3,500 3,200 3,200 2,700 2,400

4,300 4,100 3,800 3,800 3,100 2,800

― ― ― 1,900 ― ―

6826 6926 16026 6026 6226 6326

― ― ― ZZ ― ―

― ― ― LLU ― ―

4,550 7,300 8,650 11,100 15,300 25,100

3,400 3,200 3,000 3,000 2,500 2,200

4,000 3,800 3,500 3,500 2,900 2,600

― ― ― 1,800 ― ―

6828 6928 16028 6028 6228 6328

― ― ― ZZ ― ―

― ― ― LLU ― ―

4,850 8,650 9,850 12,800 18,000 28,000

5,600 9,200 10,300 12,800 17,100 28,900

3,100 3,000 2,800 2,800 2,300 2,100

3,700 3,500 3,200 3,200 2,700 2,400

― ― ― 1,700 ― ―

6830 6930 16030 6030 6230 6330

― ― ― ZZ ― ―

― ― ― LLU ― ―

57.0 96.0 108 144 186 286

4,950 8,850 10,100 14,500 18,900 28,300

5,800 9,800 11,000 14,700 19,000 29,200

2,900 2,800 2,600 2,600 2,100 1,900

3,400 3,300 3,000 3,000 2,500 2,300

― ― ― 1,600 ― ―

6832 6932 16032 6032 6232 6332

― ― ― ZZ ― ―

― ― ― LLU ― ―

70.5 95.5 128 172 223 355

6,100 8,750 12,100 17,200 21,700 33,500

7,200 9,750 13,100 17,600 22,800 36,000

2,700 2,600 2,400 2,400 2,000 1,800

3,200 3,100 2,800 2,800 2,400 2,100

― ― ― ― ― ―

6834 6934 16034 6034 6234 6334

― ― ― ― ― ―

― ― ― ― ― ―

rNS

d

D

B

rs min

min

Cr

Cor

Cr

Cor

120

215 260

40 55

2.1 3

― ―

155 207

131 185

15,900 21,100

13,400 18,800

2,900 2,600

130

165 180 200 200 230 280

18 24 22 33 40 58

1.1 1.5 1.1 2 3 4

0.5 0.5 ― 0.5 ― ―

37.0 65.0 80.0 106 167 229

41.0 67.5 79.5 101 146 214

3,750 6,650 8,150 10,800 17,000 23,400

4,200 6,850 8,100 10,300 14,900 21,800

140

175 190 210 210 250 300

18 24 22 33 42 62

1.1 1.5 1.1 2 3 4

0.5 0.5 ― ― ― ―

38.5 66.5 82.0 110 166 253

44.5 71.5 85.0 109 150 246

3,900 6,800 8,350 11,200 17,000 25,800

150

190 210 225 225 270 320

20 28 24 35 45 65

1.1 2 1.1 2.1 3 4

0.5 ― ― ― ― ―

47.5 85.0 96.5 126 176 274

55.0 90.5 101 126 168 284

160

200 220 240 240 290 340

20 28 25 38 48 68

1.1 2 1.5 2.1 3 4

0.5 ― ― ― ― ―

48.5 87.0 99.0 143 185 278

170

215 230 260 260 310 360

22 28 28 42 52 72

1.1 2 1.5 2.1 4 4

― ― ― ― ― ―

60.0 86.0 119 168 212 325

1 Smallest allowable dimension for chamfer dimension r.

B-18

●Deep Groove Ball Bearings CY a

f

B

b

rN

rNa

r ro

r

D D1

ro

ra

d

Bearing numbers snap ring

― ―

― ―

N N ― N ― ―

NR 161.8 3.3 1.9 NR 176.8 3.7 1.9 ― ― NR 193.65 5.69 3.5 ― ― ― ― ― ― ― ―

0.6 0.6 ― 0.6 ― ―

N N ― ― ― ―

NR 171.8 NR 186.8 ― ― ― ― ― ― ― ―

3.3 3.7 ― ― ― ―

1.9 1.9 ― ― ― ―

N ― ― ― ― ―

NR 186.8 ― ― ― ― ― ― ― ― ― ―

3.3 ― ― ― ― ―

N ― ― ― ― ―

NR 196.8 ― ― ― ― ― ― ― ― ― ―

― ― ― ― ― ―

― ― ― ― ― ―

D1

a

b

ro

D2

f

max

max

min

max

max

max

― ― ― ― ― ―

― ―

― ―

― ―

― ―

da min

max

― ―

131 133

171.5 186.5 ― 212.9 ― ―

1.7 1.7 ― 3.1 ― ―

136.5 ― 138 ― 136.5 ― 139 148 143 ― 146 ―

0.6 0.6 ― ― ― ―

181.5 196.5 ― ― ― ―

1.7 1.7 ― ― ― ―

1.9 ― ― ― ― ―

0.6 ― ― ― ― ―

196.5 ― ― ― ― ―

3.3 ― ― ― ― ―

1.9 ― ― ― ― ―

0.6 ― ― ― ― ―

206.5 ― ― ― ― ―

― ― ― ― ― ―

― ― ― ― ― ―

― ― ― ― ― ―

― ― ― ― ― ―

Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa Fa ≦e Fr Fr >e e Cor X Y X Y 0.010 0.18 2.46 0.020 0.20 2.14 0.040 0.24 1.83 0.070 0.27 1.61 0.10 0.29 1 0 0.56 1.48 0.15 0.32 1.35 0.20 0.35 1.25 0.30 0.38 1.13 0.40 0.41 1.05 0.50 0.44 1.00 static Por=0.6Fr+0.5Fa When Por<Fr use Por=Fr

Snap ring dimensions mm

snap ring groove

― ―

da

With snap ring

Snap ring groove dimensions mm

2

DX Da

D2

With snap ring groove

2

CZ

3

4

Abutment and fillet dimensions

Mass

mm

kg

Da

DX

CY

CZ

ras

r Nas

max

(approx.)

max

min

max

max

― ―

― ―

2 2.5

― ―

5.15 12.4

158.5 173 172 188 193.5 ― 191 215 217 ― 264 ―

4.7 5.1 ― 8.4 ― ―

1.7 1.7 ― 3.1 ― ―

1 1.5 1 2 2.5 3

0.5 0.5 ― 0.5 ― ―

0.8 1.52 2.31 3.16 5.82 15.3

146.5 ― 148 ― 146.5 ― 149 158 153 ― 156 ―

168.5 183 182 198 203.5 ― 201 ― 237 ― 284 ―

4.7 5.1 ― ― ― ―

1.7 1.7 ― ― ― ―

1 1.5 1 2 2.5 3

0.5 0.5 ― ― ― ―

0.85 1.62 2.45 3.35 7.57 18.5

1.7 ― ― ― ― ―

156.5 ― 159 ― 156.5 ― 161 169 163 ― 166 ―

183.5 198 201 ― 218.5 ― 214 ― 257 ― 304 ―

4.7 ― ― ― ― ―

1.7 ― ― ― ― ―

1 2 1 2 2.5 3

0.5 ― ― ― ― ―

1.16 2.47 3.07 4.08 9.41 22

1.7 ― ― ― ― ―

166.5 ― 169 ― 168 ― 171 183 173 ― 176 ―

193.5 208 211 ― 232 ― 229 ― 277 ― 324 ―

4.7 ― ― ― ― ―

1.7 ― ― ― ― ―

1 2 1.5 2 2.5 3

0.5 ― ― ― ― ―

1.23 2.61 3.64 5.05 11.7 26

― ― ― ― ― ―

176.5 179 178 181 186 186

― ― ― ― ― ―

― ― ― ― ― ―

1 2 1.5 2 3 3

― ― ― ― ― ―

1.63 2.74 4.93 6.76 14.5 30.7

143 ―

― ― ― ― ― ―

204 247

208.5 221 252 249 294 344

― ―

(approx.)

― ― ― ― ― ―

2 Sealed and shielded bearings are also available. 3 This dimension applies to sealed and shielded bearings. 4 Does not include bearings with snap rings.

B-19

●Deep Groove Ball Bearings

B ra

r

ra

r D

Da

d

da

Open Type

d 180∼260mm Boundary dimensions

Basic load ratings dynamic

mm

static

Limiting speeds

dynamic

kN

static kgf

Bearing numbers

rpm

Cr

Cor

Cr

Cor

grease open type

1.1 2 2 2.1 4 4

60.5 110 117 189 227 355

73.0 119 134 199 241 405

6,200 11,200 11,900 19,300 23,200 36,000

7,450 12,200 13,600 20,300 24,600 41,500

2,600 2,400 2,300 2,300 1,900 1,700

3,000 2,900 2,700 2,700 2,200 2,000

6836 6936 16036 6036 6236 6336

24 33 31 46 55 78

1.5 2 2 2.1 4 5

73.0 113 134 197 255 355

88.0 127 156 215 281 415

7,450 11,500 13,700 20,100 26,000 36,000

9,000 13,000 15,900 21,900 28,700 42,500

2,400 2,300 2,100 2,100 1,800 1,600

2,900 2,700 2,500 2,500 2,100 1,900

6838 6938 16038 6038 6238 6338

200

250 280 310 310 360 420

24 38 34 51 58 80

1.5 2.1 2 2.1 4 5

74.0 157 142 218 269 410

91.5 168 160 243 310 500

7,550 16,000 14,400 22,200 27,400 42,000

9,300 17,100 16,300 24,800 31,500 51,000

2,300 2,200 2,000 2,000 1,700 1,500

2,700 2,600 2,400 2,400 2,000 1,800

6840 6940 16040 6040 6240 6340

220

270 300 340 340 400 460

24 38 37 56 65 88

1.5 2.1 2.1 3 4 5

76.5 160 181 241 297 410

98.0 180 216 289 365 520

7,800 16,400 18,500 24,600 30,500 42,000

10,000 18,400 22,000 29,400 37,000 53,000

2,100 2,000 1,800 1,800 1,500 1,400

2,400 2,300 2,200 2,200 1,800 1,600

6844 6944 16044 6044 6244 6344

240

300 320 360 360

28 38 37 56

2 2.1 2.1 3

85.0 170 178 249

112 203 217 310

8,650 17,300 18,200 25,400

11,400 20,700 22,100 32,000

1,900 1,800 1,700 1,700

2,200 2,100 2,000 2,000

6848 6948 16048 6048

260

320 360 400 400

28 46 44 65

2 2.1 3 4

87.0 222 227 291

120 280 299 375

8,900 22,600 23,200 29,700

12,200 28,500 30,500 38,500

1,700 1,600 1,500 1,500

2,000 1,900 1,800 1,800

6852 6952 16052 6052

d

1

D

B

rs min

180

225 250 280 280 320 380

22 33 31 46 52 75

190

240 260 290 290 340 400

1 Smallest allowable dimension for chamfer dimension r.

B-20

oil open type

open type

●Deep Groove Ball Bearings Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa Fa ≦e Fr Fr >e e Cor X Y X Y 0.010 0.18 2.46 0.020 0.20 2.14 0.040 0.24 1.83 0.070 0.27 1.61 0.10 0.29 1 0 0.56 1.48 0.15 0.32 1.35 0.20 0.35 1.25 0.30 0.38 1.13 0.40 0.41 1.05 0.50 0.44 1.00 static Por=0.6Fr+0.5Fa When Por<Fr use Por=Fr

Abutment and fillet dimensions

Mass

mm

kg

da

Da

ras

min

max

max

(approx.)

186.5 189 189 191 196 196

218.5 241 271 269 304 364

1 2 2 2 3 3

2.03 4.76 6.49 8.8 15.1 35.6

198 199 199 201 206 210

232 251 281 279 324 380

1.5 2 2 2 3 4

2.62 4.98 6.77 9.18 18.2 41

208 211 209 211 216 220

242 269 301 299 344 400

1.5 2 2 2 3 4

2.73 7.1 8.68 11.9 21.6 46.3

228 231 231 233 236 240

262 289 329 327 384 440

1.5 2 2 2.5 3 4

3 7.69 11.3 15.7 30.2 60.8

249 251 251 253

291 309 349 347

2 2 2 2.5

4.6 8.28 12.1 16.8

269 271 273 276

311 349 387 384

2 2 2.5 3

5 13.9 18.5 25

B-21

●Deep Groove Ball Bearings

B ra

r

ra

r D

Da

d

da

Open Type

d 280∼440mm Boundary dimensions

Basic load ratings dynamic

mm

static

Limiting speeds

dynamic

kN

static kgf

Bearing numbers

rpm

Cr

Cor

grease open type

177 299 315 420

13,900 23,200 23,700 33,000

18,100 30,500 32,500 43,000

1,600 1,500 1,400 1,400

1,900 1,800 1,600 1,600

6856 6956 16056 6056

162 276 292 355

210 375 410 480

16,500 28,200 29,800 36,000

21,500 38,500 42,000 49,000

1,500 1,400 1,300 1,300

1,700 1,600 1,500 1,500

6860 6960 16060 6060

2.1 3 4 4

168 285 300 370

228 405 440 530

17,200 29,000 30,500 38,000

23,200 41,000 45,000 54,000

1,400 1,300 1,200 1,200

1,600 1,500 1,400 1,400

6864 6964 16064 6064

38 56 57 82

2.1 3 4 5

170 293 340 420

236 430 515 610

17,400 29,800 35,000 42,500

24,000 44,000 52,500 62,500

1,300 1,200 1,100 1,100

1,500 1,400 1,300 1,300

6868 6968 16068 6068

360

440 480 540 540

38 56 57 82

2.1 3 4 5

187 300 350 440

258 455 550 670

19,100 30,500 36,000 44,500

26,300 46,500 56,000 68,000

1,200 1,100 1,100 1,100

1,400 1,300 1,200 1,200

6872 6972 16072 6072

380

480 520 560

46 65 82

2.1 4 5

231 325 455

340 510 725

23,600 33,000 46,500

34,500 52,000 74,000

1,100 1,100 990

1,300 1,200 1,200

6876 6976 6076

400

500 540 600

46 65 90

2.1 4 5

226 335 510

340 535 825

23,100 34,000 52,000

34,500 54,500 84,000

1,100 990 930

1,200 1,200 1,100

6880 6980 6080

420

520 560 620

46 65 90

2.1 4 5

260 340 530

405 560 895

26,500 35,000 54,000

41,500 57,000 91,000

1,000 940 880

1,200 1,100 1,000

6884 6984 6084

440

540 600

46 74

2.1 4

264 365

420 615

26,900 37,500

43,000 63,000

950 890

1,100 1,000

6888 6988

d

1

D

B

rs min

Cr

Cor

280

350 380 420 420

33 46 44 65

2 2.1 3 4

137 227 232 325

300

380 420 460 460

38 56 50 74

2.1 3 4 4

320

400 440 480 480

38 56 50 74

340

420 460 520 520

1 Smallest allowable dimension for chamfer dimension r.

B-22

oil open type

open type

●Deep Groove Ball Bearings Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa Fa ≦e Fr Fr >e e Cor X Y X Y 0.010 0.18 2.46 0.020 0.20 2.14 0.040 0.24 1.83 0.070 0.27 1.61 0.10 0.29 1 0 0.56 1.48 0.15 0.32 1.35 0.20 0.35 1.25 0.30 0.38 1.13 0.40 0.41 1.05 0.50 0.44 1.00 static Por=0.6Fr+0.5Fa When Por<Fr use Por=Fr

Abutment and fillet dimensions

Mass

mm

kg

da

Da

ras

min

max

max

289 291 293 296

341 369 407 404

2 2 2.5 3

7.4 14.8 23 31

311 313 316 316

369 407 444 444

2 2.5 3 3

10.5 23.5 32.5 43.8

331 333 336 336

389 427 464 464

2 2.5 3 3

10.9 24.8 34.2 46.1

351 353 356 360

409 447 504 500

2 2.5 3 4

11.5 26.2 47.1 61.8

371 373 376 380

429 467 524 520

2 2.5 3 4

12.3 27.5 49.3 64.7

391 396 400

469 504 540

2 3 4

19.7 39.8 67.5

411 416 420

489 524 580

2 3 4

20.6 41.6 87.6

431 436 440

509 544 600

2 3 4

21.6 43.4 91.1

451 456

529 584

2 3

22.5 60

(approx.)

B-23

●Deep Groove Ball Bearings

B ra

r

ra

r D

Da

d

da

Open Type

d 460∼600mm Boundary dimensions

Basic load ratings dynamic

mm d

static kN

1

D

B

rs min

460

580 620

56 74

480

600 650

500

Limiting speeds

dynamic

static kgf

Bearing numbers

rpm oil open type

open type

900 850

1,100 1,000

6892 6992

55,000 78,500

860 810

1,000 950

6896 6996

33,500 45,500

57,000 82,500

820 770

970 910

68/500 69/500

580

34,000

59,500

770

900

68/530

335

600

34,000

61,500

710

840

68/560

375

705

38,500

72,000

660

780

68/600

Cr

Cor

Cr

Cor

3 4

315 375

515 645

32,000 38,500

52,500 66,000

56 78

3 5

320 430

540 770

32,500 44,000

620 670

56 78

3 5

325 445

560 805

530

650

56

3

330

560

680

56

3

600

730

60

3

1 Smallest allowable dimension for chamfer dimension r.

B-24

grease open type

●Deep Groove Ball Bearings Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa Fa ≦e Fr Fr >e e Cor X Y X Y 0.010 0.18 2.46 0.020 0.20 2.14 0.040 0.24 1.83 0.070 0.27 1.61 0.10 0.29 1 0 0.56 1.48 0.15 0.32 1.35 0.20 0.35 1.25 0.30 0.38 1.13 0.40 0.41 1.05 0.50 0.44 1.00 static Por=0.6Fr+0.5Fa When Por<Fr use Por=Fr

Abutment and fillet dimensions

Mass

mm

kg

da

Da

ras

min

max

max

473 476

567 604

2.5 3

34.8 62.2

493 500

587 630

2.5 4

36.2 73.0

513 520

607 650

2.5 4

37.5 75.5

543

637

2.5

39.5

573

667

2.5

41.5

613

717

2.5

51.7

(approx.)

B-25

Expansion Compensating Bearings B r r D

d

Open type

Shielded type (ZZ)

Non-contact sealed type (LLB)

d 10 ‘50mm Boundary dimensions

Basic load ratings dynamic static

dynamic

static

Allowable load

Limiting speeds

Contact sealed type (LLU) Bearing numbers

Cr

Cor

Cr

Cor

Cp

Cp

rpm grease oil open type open type ZZ,LLB Z,LB

0.3 0.6 0.6

4.55 5.10 8.20

1.96 2.39 3.50

465 520 835

200 244 355

1.65 2.39 3.45

168 244 355

29,000 34,000 25,000 30,000 23,000 27,000

21,000 18,000 16,000

EC-6000 ZZ EC-6200 ZZ EC-6300 ZZ

LLB LLB LLB

LLU LLU LLU

8 10 12

0.3 0.6 1

5.10 6.10 9.70

2.39 2.75 4.20

520 620 990

244 280 425

1.78 2.29 3.65

181 233 375

26,000 30,000 22,000 26,000 20,000 24,000

18,000 16,000 15,000

EC-6001 ZZ EC-6201 ZZ EC-6301 ZZ

LLB LLB LLB

LLU LLU LLU

32 35 42

9 11 13

0.3 0.6 1

5.60 7.75 11.4

2.83 3.60 5.45

570 790 1,170

289 365 555

2.83 2.78 4.40

289 284 450

22,000 26,000 19,000 23,000 17,000 21,000

15,000 15,000 12,000

EC-6002 ZZ EC-6202 ZZ EC-6302 ZZ

LLB LLB LLB

LLU LLU LLU

17

35 40 47

10 12 14

0.3 0.6 1

6.80 9.60 13.5

3.35 4.60 6.55

695 980 1,380

345 465 665

2.88 3.45 6.55

294 350 665

20,000 24,000 18,000 21,000 16,000 19,000

14,000 12,000 11,000

EC-6003 ZZ EC-6203 ZZ EC-6303 ZZ

LLB LLB LLB

LLU LLU LLU

20

42 47 52

12 14 15

0.6 1 1.1

9.40 12.8 15.9

5.05 6.65 7.90

955 1,310 1,620

515 680 805

5.05 6.55 7.90

515 515 805

18,000 21,000 16,000 18,000 14,000 17,000

11,000 10,000 10,000

EC-6004 ZZ EC-6204 ZZ EC-6304 ZZ

LLB LLB LLB

LLU LLU LLU

25

47 52 62

12 15 17

0.6 1 1.1

10.1 14.0 21.2

5.85 7.85 10.9

1,030 595 5.85 595 1,430 800 6.55 665 2,160 1,110 10.9 1,110

15,000 18,000 13,000 15,000 12,000 14,000

9,400 8,900 8,100

EC-6005 ZZ EC-6205 ZZ EC-6305 ZZ

LLB LLB LLB

LLU LLU LLU

30

55 62 72

13 16 19

1 1 1.1

13.2 19.5 26.7

8.30 11.3 15.0

1,350 845 8.30 845 1,980 1,150 9.85 1,000 2,720 1,530 15.0 1,530

13,000 15,000 11,000 13,000 10,000 12,000

7,700 7,300 6,600

EC-6006 ZZ EC-6206 ZZ EC-6306 ZZ

LLB LLB LLB

LLU LLU LLU

35

62 72 80

14 17 21

1 1.1 1.5

16.0 25.7 33.5

10.3 15.3 19.1

1,630 1,050 10.3 2,620 1,560 14.5 3,400 1,950 18.5

1,050 1,480 1,890

12,000 14,000 9,800 11,000 8,800 10,000

6,800 6,300 6,000

EC-6007 ZZ EC-6207 ZZ EC-6307 ZZ

LLB LLB LLB

LLU LLU LLU

40

68 80 90

15 18 23

1 1.1 1.5

16.8 29.1 40.5

11.5 17.8 24.0

1,710 1,170 11.5 2,970 1,820 17.5 4,150 2,450 23.4

1,170 1,780 2,380

10,000 12,000 8,700 10,000 7,800 9,200

6,100 5,600 5,300

EC-6008 ZZ EC-6208 ZZ EC-6308 ZZ

LLB LLB LLB

LLU LLU LLU

45

75 85 100

16 19 25

1 1.1 1.5

21.0 32.5 53.0

15.1 20.4 32.0

2,140 1,540 15.1 3,350 2,080 16.2 5,400 3,250 27.4

1,540 1,660 2,790

9,200 11,000 7,800 9,200 7,000 8,200

5,400 5,200 4,700

EC-6009 ZZ EC-6209 ZZ EC-6309 ZZ

LLB LLB LLB

LLU LLU LLU

50

80 90 110

16 20 27

1 1.1 2

21.8 35.0 62.0

16.6 23.2 38.5

2,230 1,690 16.6 3,600 2,370 22.2 6,300 3,900 33.0

1,690 2,270 3,350

8,400 7,100 6,400

5,000 4,700 4,200

EC-6010 ZZ EC-6210 ZZ EC-6310 ZZ

LLB LLB LLB

LLU LLU LLU

mm

kN

d

D

B

10

26 30 35

8 9 11

12

28 32 37

15

rs min

2

kgf

kN

kgf

9,800 8,300 7,500

1

LU,LLU

open type

non1 1 sealed contact contact type type type

1 This bearing number is for double sealed and double shielded type bearings, but single sealed and single shielded type are also available. 2 Smallest allowable dimension for chamfer dimension r.

B-26

Expansion Compensating Bearings Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa Fa ≦e Fr Fr >e e Cor X Y X Y 0.010 0.18 2.46 0.020 0.20 2.14 0.040 0.24 1.83 0.070 0.27 1.61 0.10 0.29 1 0 0.56 1.48 0.15 0.32 1.35 0.20 0.35 1.25 0.30 0.38 1.13 0.40 0.41 1.05 0.50 0.44 1.00 static Por=0.6Fr+0.5Fa

ra

ra Da

da

Abutment and fillet dimensions mm da

Mass kg open type

3 max

Da

ras

max

max

12 14 14

13.5 16 17

24 26 31

0.3 0.6 0.6

0.019 0.031 0.051

14 16 17

16 17.5 18.5

26 28 32

0.3 0.6 1

0.021 0.036 0.058

17 19 20

19 20.5 23

30 31 37

0.3 0.6 1

0.029 0.043 0.079

19 21 22

21 23 25

33 36 42

0.3 0.6 1

0.037 0.062 0.11

24 25 26.5

26 28 28.5

38 42 45.5

0.6 1 1

0.066 0.101 0.139

29 30 31.5

30.5 32 35

43 47 55.5

0.6 1 1

0.075 0.122 0.223

35 35 36.5

37 39 43

50 57 65.5

1 1 1

0.11 0.191 0.334

40 41.5 43

42 45 47

57 65.5 72

1 1 1.5

0.148 0.277 0.44

45 46.5 48

47 51 54

63 73.5 82

1 1 1.5

0.183 0.352 0.609

50 51.5 53

52.5 55.5 61.5

70 78.5 92

1 1 1.5

0.233 0.391 0.80

55 56.5 59

57.5 60 68.5

75 83.5 101

1 1 2

0.246 0.444 1.03

min

When Por<Fr use Por=Fr

iapprox. j

3 This dimension applies to sealed and shielded bearings.

B-27

●Miniature and Extra Small Bearings

Open type

Shielded type

Open type with snap ring

1. Design features and special characteristics The dimensional range of miniature and extra small ball bearings is given in Table 1. Boundary dimensions for both metric and inch systems are in accordance with the internationally specified ISO and ANSI/ABMA standards. The most widely used sealed and shielded type ball bearings have a 1–2 mm wider width dimension than open type bearings. The main variations of these bearings are shown in Table 2. Bearings with snap rings, which simplify the bearing housing construction and design, have also been serialized and are listed in dimension tables. Among the most generally used sealed and shielded bearings are standard ZZ and ZZA type which incorporate non-contact steel shield plates. Diagram 1 also shows non-contact type rubber sealed LLB and resin sealed SSA type bearings, and the contact-type rubber sealed LLU bearing.

Table 1 Dimensional range Bearing

Dimensional range

Miniature ball bearings

Nominal outer diameter D<9mm

Extra small ball bearings

Nominal bore diameter d<10mm Nominal outer diameter D≧9mm

Rubber sealed (non-contact type) LLB

Rubber sealed (contact type) LLU

Resin sealed (non-contact type) SSA

Diagram 1.

Table 2 Main types and construction Standard type code Type

Open type

Shielded type

Construction

Metric system

6 BC

6 X X ZZ W 6 X X ZZ WBC X X X ZZ

Flange-attached type code Inch system

Construction

Metric system

Inch system

R

FL6 FLBC

FLR

RA X X ZZ

FL 6 X X X ZZ FLW 6 X X X ZZ FLWBC X X ZZ

FLRA X X ZZ

Note: 1. Representative type codes are shown. For further details, please refer to dimension tables. 2. For shielded type bearings, there are instances where ZA may change to SA depending on the bearing number.

B-29

●Miniature and Extra Small Bearings

2. Standard cage types

3. Dimensional and rotational accuracy

Pressed cages are standard for these bearings. However, molded resin cages are used for some bearings depending on the application.

The accuracy of miniature and small ball bearings complies with JIS standards. Accuracy standards are listed in the Bearings Accuracy clause on page A-31. Flange accuracies are listed in Table 3.

Table 3 Accuracy of outer ring flanges Outer diameter dimensional tolerance ∆D1S or ∆D2S Above Below

Back face axial runout

Width dimension tolerance

Width unevenness

Sea1 Max.

∆C1S or ∆C2S Above Below

VC1S or VC2S Max.

Class 0





Class 6





8

11

4

7

Class 5 Class 4

* (see table below)

Class 2

1.5

31 4

1 Nominal outer diameter, 18 mm or less.



Units

Flange nominal outer diameter D1 or D2 mm over up to incl.

μm

Outside cylindrical surface runout relative to back face SD1 Max.

Accuracy class

ISO standard

Units

μm

Outer diameter dimensional tolerance ∆D1S or ∆D2S Above

Below



10

+220

−36

10

18

+270

−43

18

30

+330

−52

30

50

+390

−62

B-30

Identical to same bearing's inner ring V BS Identical to same bearing's inner ring VBS

5 2.5 1.5

●Miniature and Extra Small Bearings

4. Radial internal clearance Radial internal clearance values should be applied as listed in the table regarding the Bearing Internal Clearance and Preload clause on page A-54. However, for miniature and extra small bearings, the radial clearance values for high precision bearings given in Table 4

are applied in many cases. For more specific selection information, please refer to the NTN Miniature and Extra Small Ball Bearings Catalog, or contact NTN Engineering.

Table 4 Radial internal clearance for high precision bearings MIL Standard Code Internal clearance

Tight C2S Min.

Max.

0     5

Units

Standard CNS

Min.

Max.

3     8

CNM Min.

Max.

5     10

CNL Min.

Max.

8     13

Loose C3S Min.

Max.

10     15

Note: 1. These standards are specified in accordance with MIL 23063. However, NTN codes are shown. 2. Clearance values do not include compensation for measuring load.

B-31

C3M Min.

Max.

13     20

μm

Extra Loose C3L Min.

Max.

20     28

●Miniature and Extra Small Ball Bearings Metric system sizes B B

B1

B1

B1 C1

C2

d D1

D2

r

r

r

r D

d

D

Open type

With single shield (Z)

With double shield (ZZ)

With flanged outer ring (FL)

With flanged outer ring and single shield (FL…Z)

d 1.5∼5mm Boundary dimensions

Basic load ratings dynamic

mm

static

dynamic

N 1

Limiting speeds static

kgf

rpm Cor

grease

oil

10.0 17.0 28.0

3.00 5.00 9.00

88,000 79,000 71,000

100,000 93,000 84,000

37.0 51.0 51.0 89.0 89.0 120 125

11.0 17.0 17.0 28.0 28.0 40.0 39.0

4.00 5.00 5.00 9.00 9.00 12.0 13.0

83,000 74,000 74,000 67,000 67,000 59,000 62,000

98,000 87,000 87,000 79,000 79,000 70,000 73,000

153 209 284 284 430 550

59.0 73.0 96.0 96.0 152 174

16.0 21.0 29.0 29.0 44.0 56.0

6.00 7.50 10.0 10.0 16.0 18.0

70,000 65,000 59,000 59,000 56,000 56,000

82,000 76,000 70,000 70,000 66,000 66,000

0.08 0.1 0.15 0.15 0.15 0.15 0.15

242 390 560 560 635 635 640

94.0 130 180 180 219 219 224

25.0 40.0 57.0 57.0 65.0 65.0 65.0

9.50 13.0 18.0 18.0 22.0 22.0 23.0

60,000 58,000 54,000 54,000 50,000 50,000 50,000

71,000 68,000 63,000 63,000 59,000 59,000 58,000

0.6 0.6 1 0.8 1 1 1 ―

0.08 0.08 0.15 0.15 0.15 0.2 0.2 0.3

222 395 640 650 715 970 1,310 1,760

88.0 140 224 235 276 360 490 680

23.0 40.0 65.0 66.0 73.0 99.0 134 179

9.00 14.0 23.0 24.0 28.0 36.0 50.0 69.0

54,000 52,000 49,000 46,000 45,000 43,000 42,000 37,000

63,000 61,000 57,000 55,000 52,000 51,000 49,000 44,000

0.6 0.6 0.8

0.08 0.15 0.15

217 500 715

91.0 211 276

22.0 51.0 73.0

9.50 21.0 28.0

49,000 46,000 45,000

57,000 55,000 52,000

d

D

B

B1

D1

D2

C1

C2

rs min

Cr

Cor

Cr

1.5

4 5 6

1.2 2 2.5

2 2.6 3

5 6.5 7.5

5 6.5 7.5

0.4 0.6 0.6

0.6 0.8 0.8

0.15 0.15 0.15

102 171 274

29.0 51.0 86.0

2

4 5 5 6 6 7 7

1.2 1.5 2 2.3 2.5 2.5 2.8

2 2.3 2.5 3 ― ― 3.5

― 6.1 ― 7.5 7.2 ― 8.5

― 6.1 ― 7.5 ― ― 8.5

― 0.5 ― 0.6 0.6 ― 0.7

― 0.6 ― 0.8 ― ― 0.9

0.05 0.08 0.1 0.15 0.15 0.15 0.15

104 171 171 279 279 390 380

2.5

5 6 7 7 8 8

1.5 1.8 3 2.5 2.5 2.8

2.3 2.6 3 3.5 2.8 4

― 7.1 ― 8.5 9.2 9.5

― 7.1 8.2 8.5 ― 9.5

― 0.5 ― 0.7 0.6 0.7

― 0.8 0.6 0.9 ― 0.9

0.08 0.08 0.15 0.15 0.15 0.15

3

6 7 8 8 9 9 10

2 2 2.5 3 2.5 3 4

2.5 3 ― 4 4 5 4

7.2 8.1 9.2 9.5 10.2 10.5 11.5

7.2 8.1 ― 9.5 10.6 10.5 11.5

0.6 0.5 0.6 0.7 0.6 0.7 1

0.6 0.8 ― 0.9 0.8 1 1

4

7 8 9 10 11 12 13 16

2 2 2.5 3 4 4 5 5

2.5 3 4 4 4 4 5 5

8.2 9.2 10.3 11.2 12.5 13.5 15 ―

8.2 9.2 10.3 11.6 12.5 13.5 15 ―

0.6 0.6 0.6 0.6 1 1 1 ―

5

8 9 10

2 2.5 3

2.5 3 4

9.2 10.2 11.2

9.2 10.2 11.6

0.6 0.6 0.6

1 Smallest allowable dimension for chamfer dimension r.

B-32

●Miniature and Extra Small Ball Bearings Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa Fa Fr ≦e Fr >e e Cor X Y X Y 0.010 0.18 2.46 0.020 0.20 2.14 0.040 0.24 1.83 0.070 0.27 1 0 0.56 1.61 0.10 0.29 1.48 0.15 0.32 1.35 0.20 0.35 1.25 0.30 0.38 1.13 static Por=0.6Fr+0.5Fa

B1 C2 ra ra

ra D2

da

Da

da

With flanged outer ring and double shield (FL…ZZ)

When Por<Fr use Por=Fr

Bearing numbers

Abutment and fillet dimensions

Mass (approx.)

mm open

with single shield

with double with flanged shield outer ring

with flanged OR and with flanged OR and single shield double shield min

g Da

ras

max

max

max

open

with flanged outer ring

da 2

68/1.5 69/1.5A 60/1.5

W68/1.5SA W69/1.5ASA W60/1.5ZA

SSA SSA ZZA

FL68/1.5 FL69/1.5A FL60/1.5

FLW68/1.5SA FLW69/1.5ASA FLW60/1.5ZA

SSA SSA ZZA

2.3 2.7 2.7

2.4 2.9 3.0

3.2 3.8 4.8

0.05 0.15 0.15

0.07 0.18 0.35

0.09 0.24 0.42

672 682 BC2-5 692 BC2-6 BC2-7A 602

― W682SA WBC2-5SA W692SA ― ― W602ZA

― SSA SSA SSA ― ― ZZA

― FL682 ― FL692 FLBC2-6 ― FL602

― FLW682SA ― FLW692SA ― ― FLW602ZA

― SSA ― SSA ― ― ZZA

2.5 2.8 2.8 3.2 3.2 3.2 3.2

2.6 2.9 2.9 3.3 3.3 3.6 3.7

3.5 4.2 4.2 4.8 4.8 5.8 5.8

0.05 0.08 0.10 0.15 0.15 0.15 0.15

0.06 0.13 0.16 0.31 0.32 0.44 0.54

― 0.17 ― 0.38 0.38 ― 0.64

67/2.5 68/2.5 ― 69/2.5 BC2.5-8 60/2.5

W67/2.5ZA W68/2.5ZA WBC2.5-7ZA W69/2.5SA WBC2.5-8ZA W60/2.5ZA

ZZA ZZA ZZA SSA ZZA ZZA

― FL68/2.5 ― FL69/2.5 FLBC2.5-8 FL60/2.5

― FLW68/2.5ZA FLWBC2.5-7ZA FLW69/2.5SA ― FLW60/2.5ZA

― ZZA ZZA SSA ― ZZA

3.1 3.1 3.7 3.7 3.7 3.7

3.3 3.6 4.0 4.0 4.3 4.1

4.4 4.8 5.8 5.8 6.8 6.8

0.08 0.08 0.15 0.15 0.15 0.15

0.11 0.22 3 0.6 0.43 0.57 0.72

― 0.26 3 0.67 0.53 0.65 0.83

673 683 BC3-8 693 BC3-9 603 623

WA673SA W683ZA ― W693Z WBC3-9ZA W603ZA 623ZA

SSA ZZA ― ZZ ZZA ZZA ZZA

FL673 FL683 FLBC3-8 FL693 FLBC3-9 FL603 FL623

FLWA673SA FLW683ZA ― FLW693Z FLAWBC3-9ZA FLW603ZA FL623ZA

SSA ZZA ― ZZ ZZA ZZA ZZA

3.6 3.9 4.2 4.2 4.2 4.2 4.2

4.1 4.1 4.4 4.4 5.0 5.0 5.2

5.4 5.8 6.8 6.8 7.8 7.8 8.8

0.08 0.1 0.15 0.15 0.15 0.15 0.15

0.2 0.33 0.52 0.61 0.71 0.92 1.6

0.26 0.38 0.6 0.72 0.79 1 1.8

674A BC4-8 684AX50 BC4-10 694

WA674ASA WBC4-8Z W684AX50Z WBC4-10Z 694Z ZZ 5.2

SSA ZZ ZZ ZZ

FL674A FLBC4-8 FL684AX50 FLBC4-10

FLWA674ASA FLWBC4-8Z FLW684AX50Z FLAWBC4-10Z

SSA ZZ ZZ ZZ

4.6 4.8 5.0 5.2

5.0 5.0 5.2 6.0

6.4 6.8 7.8 8.8

0.08 0.08 0.1 0.15

0.28 0.38 0.67 1

0.35 0.46 0.76 1.1

8.8

0.85

0.72

2 This dimension applies to sealed and shielded bearings. 3 Values for double shielded bearings shown

B-33

●Miniature and Extra Small Ball Bearings

B B

B1

B1

B1 C1

C2

d D1

D2

r

r

r

r D

d

D

Open type

With single shield (Z)

With double shield (ZZ)

With flanged outer ring (FL)

With flanged outer ring and single shield (FL…Z)

d 5∼9mm Boundary dimensions

Basic load ratings dynamic

mm d

D

B

B1

D1

static

dynamic

N D2

C1

C2

rs min

1

5

6

7

8

9

1 Smallest allowable dimension for chamfer dimension r.

B-34

Cr

Limiting speeds static

kgf Cor

Cr

rpm Cor

grease

oil

●Miniature and Extra Small Ball Bearings Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa Fa Fr ≦e Fr >e e Cor X Y X Y 0.010 0.18 2.46 0.020 0.20 2.14 0.040 0.24 1.83 0.070 0.27 1 0 0.56 1.61 0.10 0.29 1.48 0.15 0.32 1.35 0.20 0.35 1.25 0.30 0.38 1.13 static Por=0.6Fr+0.5Fa

B1 C2 ra ra

ra D2

da

Da

da

With flanged outer ring and double shield (FL…ZZ)

When Por<Fr use Por=Fr

Bearing numbers

Abutment and fillet dimensions

Mass (approx.)

mm open

with single shield

with double with flanged shield outer ring

with flanged OR and with flanged OR and single shield double shield min

da 2

max

g Da

ras

max

max

open

with flanged outer ring

− 685 695 − 605 625 635

WBC5-11Z W685Z 695Z WBC5-13Z 605Z 625Z 635Z

ZZ ZZ ZZ ZZ ZZ ZZ ZZ

― FL685 FL695 ― FL605 FL625 ―

FLWBC5-11Z FLW685Z FL695Z FLWBC5-13Z FL605Z FL625Z ―

ZZ ZZ ZZ ZZ ZZ ZZ ―

6.2 6.2 6.6 6.6 6.6 7 7

6.8 6.8 6.9 6.9 7.4 7.6 9.5

9.8 9.8 11.4 11.4 12.4 14 17

0.2 0.15 0.2 0.2 0.2 0.3 0.3

1.8 1.1 2.4 3 3.4 3.5 4.8 8

2 1.3 2.7 3 3.7 3.9 5.2 ―

676A BC6-12 686 696 BC6-16A 606 626

WA676AZ WBC6-12Z W686Z 696Z BC6-16AZ 606Z 626Z

ZZ ZZ ZZ ZZ ZZ ZZ ZZ

FL676A FLBC6-12 FL686 FL696 ― FL606 FL626

FLWA676AZ FLAWBC6-12Z FLW686Z FL696Z ― FL606Z FL626Z

ZZ ZZ ZZ ZZ ― ZZ ZZ

6.6 7.2 7.0 7.6 7.6 8 8

6.7 7.9 7.2 7.8 8.0 8.6 9.5

9.2 10.8 11.8 13.4 14.4 15 17

0.1 0.15 0.15 0.2 0.2 0.3 0.3

0.65 1.3 1.9 3.8 5.2 6 8.1

0.74 1.4 2.2 4.3 ― 6.5 9.2

677 BC7-13 687A 697 607 627

WA677ZA WBC7-13ZA W687AZ 697Z 607Z 627Z

ZZA ZZA ZZ ZZ ZZ ZZ

FL677 FLBC7-13 FL687A FL697 ― ―

FLWA677ZA FLAWBC7-13ZA FLW687AZ FL697Z ― ―

ZZA ZZA ZZ ZZ ― ―

7.8 8.2 8.2 9 9 9

8.1 8.9 8.7 10.0 10.4 12.2

10.2 11.8 12.8 15 17 20

0.1 0.15 0.15 0.3 0.3 0.3

0.67 1.4 2.1 5.2 8 13

0.77 1.5 2.4 5.7 ― ―

678A BC8-14 688A 698 608 628

W678AZ WBC8-14Z W688AZ 698Z 608Z 628Z

ZZ ZZ ZZ ZZ ZZ ZZ

FL678A FLBC8-14 FL688A FL698 FL608 ―

FLAW678AZ FLWBC8-14Z FLW688AZ FL698Z FL608Z ―

ZZ ZZ ZZ ZZ ZZ ―

8.8 9.2 9.6 10 10 10

9.1 9.5 10.0 10.6 12.2 12.1

11.2 12.8 14.4 17 20 22

0.1 0.15 0.2 0.3 0.3 0.3

0.75 1.8 3.1 7.3 12 17

0.86 1.9 3.5 8.4 13 ―

679 689 699 609 629X50

W679ZA W689Z 699Z 609Z 629X50Z

ZZA ZZ ZZ ZZ ZZ

― FL689 − − −

― FLW689Z − − −

― ZZ − − −

9.8 10.6 11 11 13

10.4 10.7 11.6 13.1 13.9

13.2 15.4 18 22 22

0.1 0.2 0.3 0.3 0.3

1.4 3.2 8.2 14 20

― 3.6 ― ― ―

2 This dimension applies to sealed and shielded bearings. 3 Values for double shielded bearings shown.

B-35

Miniature and Extra Small Ball Bearings Inch system sizes B B

B1

B1

B1 C1

C2

d D1

D1

r

r

r

r D

d

D

Open type

With single shield (Z)

With double shield (ZZ)

With flanged outer ring (FL)

With flanged outer ring and single shield (FL…Z)

d 1.984∼9.525mm Boundary dimensions

Basic load ratings dynamic

static

dynamic

Cr

Cor

Cr

mm d

D

1.984

6.35

2.380

B

N 1

Limiting speeds static kgf

rpm Cor

grease

oil

28

9

67,000

79,000

42.0 152

13 44

4.5 16

73,000 56,000

85,000 66,000

96.0 180 224 224 395

29 57 65 65 117

10 18 23 23 40

59,000 54,000 49,000 49,000 43,000

70,000 63,000 58,000 58,000 51,000

133

34

14

51,000

60,000

395 710 1,310 1,310

143 268 490 490

40 72 134 134

15 27 50 50

49,000 46,000 41,000 41,000

58,000 55,000 48,000 48,000

0.08 0.13 0.3 0.41

210 830 1,480 2,340

94.0 370 615 885

21 84 151 238

9.5 38 63 90

43,000 39,000 36,000 34,000

51,000 46,000 43,000 40,000

0.41

3,300 1,400

31,000

37,000

B1

D1

C1

C2

rs min

2.38

3.571

7.52

0.58

0.79

0.08

279

89.0

4.762 7.938

1.588 2.779

2.38 3.571

5.94 9.12

0.46 0.58

0.79 0.79

0.08 0.13

124 430

3.175

6.35 7.938 9.525 9.525 12.7

2.38 2.779 2.779 3.967 4.366

2.779 3.571 3.571 3.967 4.366

7.52 9.12 10.72 11.18 ―

0.58 0.58 0.53 0.76 ―

0.79 0.79 0.79 0.76 ―

0.08 0.08 0.13 0.3 0.3

284 560 640 640 1,150

3.967

7.938

2.779

3.175

9.12

0.58

0.91

0.08

335

4.762

7.938 9.525 12.7 12.7

2.779 3.175 3.967 4.978

3.175 3.175 ― 4.978

9.12 10.72 ― 14.35

0.58 0.58 ― 1.07

0.91 0.79 ― 1.07

0.08 0.08 0.3 0.3

6.350

9.525 12.7 15.875 19.05

3.175 3.175 4.978 ―

3.175 4.762 4.978 7.142

10.72 13.89 17.53 ―

0.58 0.58 1.07 ―

0.91 1.14 1.07 ―

9.525

22.225



7.142

24.61



1.57

1 Smallest allowable dimension for chamfer dimension r.

B-36

340

142

Miniature and Extra Small Ball Bearings Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa Fa Fr ≦e Fr >e e Cor X Y X Y 0.010 0.18 2.46 0.020 0.20 2.14 0.040 0.24 1.83 0.070 0.27 1 0 0.56 1.61 0.10 0.29 1.48 0.15 0.32 1.35 0.20 0.35 1.25 0.30 0.38 1.13 static Por=0.6Fr+0.5Fa

B1 C2 ra ra

ra D1

da

Da

da

With flanged outer ring and double shield (FL…ZZ)

When Por<Fr use Por=Fr

Bearing numbers

Abutment and fillet dimensions

Mass (approx.

mm open

with single shield

with double with flanged shield outer ring

with flanged OR and with flanged OR and da single shield double shield min

max

max

max

open

with flanged outer ring

2

Da

ras

R1-4

RA1-4ZA

ZZA

FLR1-4

FLRA1-4ZA

ZZA

2.8

3.3

5.5

0.08

0.35

0.41

R133 R1-5

RA133ZA RA1-5ZA

ZZA ZZA

FLR133 FLR1-5

FLRA133ZA FLRA1-5ZA

ZZA ZZA

2.9 3.2

3.1 4.3

4 7.1

0.08 0.1

0.12 0.69

0.16 0.76

R144 R2-5 R2-6 R2 RA2

RA144ZA RA2-5Z RA2-6ZA RA2ZA RA2Z

ZZA ZZ ZZA ZZA ZZ

FLR144 FLR2-5 FLR2-6 FLR2 ―

FLRA144ZA FLRA2-5Z FLRA2-6ZA FLRA2ZA ―

ZZA ZZ ZZA ZZA ―

3.9 4 4 4.8 4.8

4.0 4.4 5.2 5.2 5.4

5.5 7 8.7 7.8 11

0.08 0.08 0.1 0.3 0.3

0.27 0.61 0.88 1.3 2.5

0.33 0.68 0.96 1.5 ―

R155

RA155ZA

ZZA

FLR155

FLRA155ZA

ZZA

4.8

5.3

7

0.08

0.54

0.61

R156 R166 R3 RA3

RA156Z R166Z ― RA3Z

ZZ ZZ ― ZZ

FLR156 FLR166 ― FLRA3

FLRA156Z FLRA166Z ― FLRA3Z

ZZ ZZ ― ZZ

5.5 5.6 6.4 6.0

5.6 5.9 7.2 6.4

7 8.7 11 11

0.08 0.08 0.3 0.3

0.44 0.8 2.2 2.4

0.51 0.89 ― 2.7

R168A R188 R4 ―

R168AZ RA188ZA R4Z RA4Z

AZZ ZZA ZZ ZZ

― FLR188 FLR4 ―

FLRA168AZ FLRA188ZA FLR4Z ―

ZZ ZZA ZZ ―

7.1 7.2 8 8.4

7.3 8.2 8.6 9.5

8.7 11.8 14.2 17

0.08 0.1 0.3 0.4

0.6 1.6 4.4 2 11

R6Z

ZZ

FLR6Z

ZZ

11.5

11.9

20.2

0.4

14





2 This dimension applies to sealed and shielded bearings. 3 Values for double shielded bearings shown.

B-37

j

g

3

0.69 1.7 4.8 ― 3

15

●Miniature and Extra Small Ball Bearings With Ring Grooves, Snap Rings

a f

b rN

r ro

ro

r D D1

D2

d

B

Snap ring groove Shielded type (ZZ)

d 5∼12mm Boundary dimensions dynamic mm 1

Basic load ratings static dynamic static N kgf

Snap ring Shielded type (ZZ)

Limiting speeds rpm

rNa

with snap ring groove shielded type

with snap ring shielded type

grease

oil

44 52

40,000 39,000

47,000 46,000

SC559ZZN SC571ZZN

65 110 137 238

37 45 54 90

40,000 39,000 37,000 34,000

47,000 46,000 44,000 40,000

*F-SC6A06ZZ1N

SC6A04ZZN SC6A17ZZN SC669ZZN

ZZ1NR ZZNR ZZNR ZZNR

585 1,400

128 340

60 142

35,000 32,000

41,000 37,000

SC890ZZN SC850ZZN

ZZNR ZZNR

4,550

1,960

465

200

29,000

34,000

SC0039ZZN

ZZNR

5,100

2,390

520

204

26,000

30,000

SC0142ZZN

ZZNR

d

D

B

rs min

5

13 14

4 5

0.2 0.2

0.1 0.2

1,080 1,330

430 505

110 135

6

12 13 15 19

4 5 5 6

0.15 0.15 0.2 0.3

0.1 0.1 0.2 0.3

640 1,080 1,350 2,340

365 440 530 885

8

16 22

5 7

0.2 0.3

0.1 0.4

1,260 3,350

10

26

8

0.3

0.3

12

28

8

0.3

0.3

min

Bearing numbers

Cr

Cor

Cr

Cor

1 Smallest allowable dimension for chamfer dimension r. Note: "*" mark indicates stainless steel is used.

B-38

ZZNR ZZNR

●Miniature and Extra Small Ball Bearings Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa Fa Fr ≦e Fr >e e Cor X Y X Y 0.010 0.18 2.46 0.020 0.20 2.14 0.040 0.24 1.83 0.070 0.27 1 0 0.56 1.61 0.10 0.29 1.48 0.15 0.32 1.35 0.20 0.35 1.25 0.30 0.38 1.13 static Por=0.6Fr+0.5Fa

CY CZ

r Na

ra ra

DX

Da

da

When Por<Fr use Por=Fr

Snap ring groove dimensions

Snap ring dimensions

Abutment and fillet dimensions

Mass

mm

mm

mm

kg

D1

a

b

ro

D2

f

Da

DX

CY

CZ

ras

rNas with snap ring

max

max

min

max

max

max

min

max

max

(approx.)

max

min

max

max

(approx.)

da

12.15 13.03

0.88 1.28

0.55 0.65

0.2 0.06

15.2 16.13

0.55 0.54

6.6 6.6

6.9 7.4

11.4 12.4

15.9 16.9

1.2 1.6

0.6 0.6

0.2 0.2

0.1 0.2

0.002 0.004

11.15 12.15 14.03 17.9

0.78 1.08 1.03 0.93

0.60 0.55 0.65 0.80

0.02 0.2 0.06 0.2

14.2 15.2 17.2 22.0

0.55 0.55 0.60 0.70

7.2 7.0 7.6 8.0

7.9 7.2 7.8 9.5

10.8 11.8 13.4 17.0

14.9 15.9 17.9 22.8

1.1 1.4 1.4 1.4

0.6 0.6 0.7 0.7

0.15 0.15 0.2 0.3

0.1 0.1 0.2 0.3

0.001 0.002 0.004 0.008

14.95 20.8

0.53 2.35

0.65 0.80

0.05 0.2

18.2 24.8

0.54 0.70

9.6 10.0

10.0 12.7

14.4 20

18.9 25.5

0.9 2.8

0.6 0.7

0.2 0.3

0.1 0.4

0.003 0.013

24.5

2.20

0.90

0.3

28.8

0.85

12

13.5

24

29.5

2.8

0.9

0.3

0.3

0.02

26.44

2.20

0.90

0.3

32.7

0.85

14

16

26

33.4

2.8

0.9

0.3

0.3

0.022

B-39

●Angular Contact Ball Bearings

Angular contact ball bearing

High speed use angular contact ball bearing

Ultra high speed use angular

Four-point contact ball

Double row angular contact

contact ball bearing

bearing

ball bearing

1. Design features and special characteristics

Contact angle

1.1 Angular contact ball bearing Angular contact ball bearings are non-separable type bearings. The line connecting the contact points of the ball and inner ring and the ball and outer ring creates an angle with the line drawn in the radial direction called the contact angle. In addition to radial loads, single direction axial loads can also be accommodated by angular contact ball bearings. Furthermore, since an axial load is generated from a radial force, these bearings are generally used in pairs facing each other. Standard type, high speed use type and ultra high speed varieties of angular contact ball bearings are available through NTN, and there are also many duplex varieties. A bearing accuracy of JIS Class 5 or higher is applied to duplex type angular contact ball bearings, and in many cases they are given a preload, in compliance with standard preload levels, before being used in an application. Table 2 shows information concerning angular contact ball bearings, and Table 3 shows similar information for duplex angular contact ball bearings.

Diagram 1.

Table 1 Contact angle and contact angle codes Contact angle

15˚

Code

C

30˚

40˚

A1

B

1 A 30˚contact angle is standard, and therefore the code "A" will usually be omitted.

Table 2 Angular contact ball bearing types and characteristics Type

Design

Characteristics

Standard type

¡Available in bearing series 79, 70, 72, 72B, 73, and 73B. ¡Contact angles: 30˚and 40˚ (with B) available. ¡Standard bearing cage type differs depending on bearing no. (Refer to Table 4)

High speed use

¡Available in bearing series 78C, 79C, 70C, 72C, and 73C. ¡Contact angles: 15˚ ¡All bearing accuracies JIS Class 5 or higher. ¡Standard bearing cage type differs depending on bearing no. (Refer to Table 4)

Ultra high speed use

BNT type

HSB type

¡Available in bearing series HSB9C, HSB0C, BNT0, and BNT2; all boundary dimensions agree with JIS  series dimensions. ¡Contact angles: 15˚; HSB type HSB9 and HSB0: 15˚and 30˚. ¡All bearing accuracies JIS Class 5 or higher. ¡BNT type internal design can be altered; suitable for higher speed applications than high speed use bearings. ¡HSB series bearings have smaller diameter of balls than high speed use type bearings, so benefit by less  torque for high precision, high speed applications. ¡The inner ring bore diameter and outer ring inner diameter of the HSB series have a ground undercut on  one side enabling easy oil flow. ¡For even higher speed applications, there is a bearing in this series equipped with ceramic ball bearings. ¡For standard cage types refer to Table 4; molded resin cages are also available for some varieties.

B-41

●Angular Contact Ball Bearings Table 3 Duplex angular contact ball bearings ― types and characteristics Duplex type Back-to-back duplex (DB) Face-to face duplex (DF)

Characteristics ¡Can accommodate radial loads and axial loads in either direction. ¡Has a large distanceRbetween the acting load center of the bearing, and therefore a large  momentary force load capacity. ¡Allowable misalignment angle is small.

r

r

¡Can accommodate radial loads and axial loads in either direction. ¡Has a smaller distanceRbetween the acting load center of the bearing, and therefore a smaller  momentary force load capacity. ¡Has a larger allowable misalignment angle than back-to-back duplex type. ¡Can accommodate radial loads and single direction axial loads. ¡Axial loads are received by both bearings as a set, and therefore heavy axial loads can be  accommodated.

Tandem duplex (DT)

Note: 1. Duplex bearings are manufactured in a set to specified clearance and preload values, therefore they must be assembled together with identically numbered bearings and not mixed with other arrangements. 2. Triplex arrangements of angular contact bearings are also available. Consult NTN Engineering for details.

loads, axial loads in either direction, and have a high capacity for momentary loads as well. As shown in Diagram 3, sealed and shielded type double row angular contact ball bearings are also available. Standard loads vary from those of open type bearings.

1.2 Four-point angular contact ball bearings Four-point angular contact ball bearings have a contact angle of 30˚ and inner rings which are separated in half. As shown in Diagram 2, when the inner and outer rings receive a radial load the ball bearings contact the inner and outer rings at four points. This construction enables a single bearing to accommodate axial loads from either direction, and when generally under a simple axial load or heavy axial load, the bearing functions in reliance on two contact points like ordinary bearings.

■Flush ground "Flush ground" is the name given to the finishing method shown in Diagram 4 where the offset of the front and back faces of the bearing are ground to the same value. By doing this, a stated clearance or preload value can be achieved by using bearings with identical codes for these values, in other words by combining either DB or DF series bearings. DT series bearings can also be used in various arrangements to achieve uniform load distribution. All BNT type bearings are flush ground, but other angular contact ball bearing series are not. If it is necessary to flush grind any of these other bearings, please consult NTN Engineering.

Diagram 2.

Offset B Back face

Front face

1.3 Double row angular contact ball bearings The structure of double row angular contact ball bearings is designed by arranging two single row angular contact bearings back-to-back in duplex (DB) to form one united bearing with a contact angle of 30˚. These bearings are capable of accommodating radial

Open type

Shielded type (ZZ)

Offset A

A=B Diagram 4.

Non-contact sealed type (LLB) Diagram 3.

B-42

Contact sealed type (LLU)

●Angular Contact Ball Bearings

2. Standard cage types Table 4 lists the standard cage types for angular contact ball bearings. For high speed use angular contact ball bearings, molded resin cages and machined cages are widely used.

Table 4 Standard cages for angular contact ball bearings Type Bearing series

7914 7026 7224 7324 7224B 7324B

∼ 7960 ∼ 7040 ∼ 7240 ∼ 7340 ∼ 7240B ∼ 7340B

― ― ― ― ―

7805C ∼ 7834C 7914C ∼ 7934C 7026C    ∼ 7040C 7221C ∼ 7240C 7300C ∼ 7302C 7313C ∼ 7340C

BNT0 BNT2 HSB9C HSB0C

― ― ― HSB010C∼HSB032C

― ― ― ―

BNT000 ∼ BNT009 BNT200 ∼ BNT209 HSB910C ∼ HSB934C HSB034C

QJ2 QJ3

― ―

― ―

QJ208 QJ306

Double row

     ―    7904C∼7913C    7000C∼7024C    7200C∼7220C    7303C∼7312C

     ―      ―    7200 ∼7222    7300 ∼7322    7200B∼7222B    7300B∼7322B

Machined cage

4-point contact

High speed use

78C 79C 70C 72C 73C

7904∼7913 7000∼7024 ― ― ― ―

Pressed cage

Ultra high speed use

Standard

79 70 72 73 72B 73B

Molded resin cage

52 53

― ―

  5200 ∼5218   5302 ∼5315

∼ QJ224 ∼ QJ324

5219,5220 ―

Note: 1. Standard cages for 5S-BNT and 5S-HSB type bearings are the same as cages for BNT and HSB type bearings. 2. Due to the material characteristics of molded resin cages, use at application temperatures in excess of 120℃ is not possible.

B-43

●Single and Duplex Arrangements 2B

B r

ra

r1

r1

ra

r

D

da

Da

d

a

a

Single

a

a

Tandem arrangement (DT)

Face-to-face arrangement (DF)

Back-to-back arrangement (DB)

d 10∼30mm Boundary dimensions

Basic load ratings dynamic

mm

static

dynamic

kN 3

3

Limiting speeds

1

static

kgf

2

Bearing numbers

Load center

rpm

Mass

mm

kg single

a

(approx.)

grease

oil

212 279 257 500 470

29,000 28,000 24,000 26,000 22,000

39,000 37,000 32,000 34,000 29,000

7000 7200 7200B 7300 7300B

9 10.5 13 12 15

0.023 0.029 0.029 0.04 0.041

515 775 715 1,140 1,080

251 405 375 535 505

26,000 25,000 21,000 23,000 19,000

35,000 33,000 28,000 30,000 26,000

7001 7201 7201B 7301 7301B

10 11.5 14 13 16.5

0.025 0.035 0.036 0.044 0.045

3.15 4.70 4.35 7.20 6.65

590 925 855 1,370 1,270

320 480 445 735 680

23,000 22,000 18,000 19,000 17,000

31,000 29,000 25,000 26,000 22,000

7002 7202 7202B 7302 7302B

11.5 12.5 16 15 19

0.035 0.046 0.046 0.055 0.057

7.15 12.0 11.0 15.9 14.8

3.85 6.60 6.10 8.65 8.00

730 1,220 1,120 1,630 1,510

390 675 625 880 820

21,000 19,000 17,000 18,000 15,000

28,000 26,000 22,000 24,000 20,000

7003 7203 7203B 7303 7303B

12.5 14.5 18 16 20.5

0.046 0.064 0.066 0.107 0.109

0.3 0.6 0.6 0.6 0.6

9.70 14.5 13.3 18.7 17.3

5.60 8.40 7.70 10.4 9.65

990 1,480 1,360 1,910 1,770

570 855 785 1,060 985

19,000 17,000 15,000 16,000 13,000

25,000 23,000 20,000 21,000 18,000

7004 7204 7204B 7304 7304B

15 17 21.5 18 22.5

0.08 0.1 0.102 0.138 0.141

0.3 0.6 1 1 1.1 1.1

0.15 0.3 0.6 0.6 0.6 0.6

7.15 10.7 16.2 14.8 26.4 24.4

4.95 6.85 10.3 9.40 15.8 14.6

730 1,100 1,650 1,510 2,690 2,490

505 700 1,050 960 1,610 1,490

17,000 16,000 14,000 12,000 13,000 11,000

22,000 21,000 19,000 16,000 17,000 15,000

7905 7005 7205 7205B 7305 7305B

14 16.5 19 24 21 27

0.05 0.093 0.125 0.129 0.23 0.234

0.3 1

0.15 0.6

7.55 13.9

5.75 9.45

770 1,410

585 965

14,000 13,000

19,000 18,000

7906 7006

15.5 19

0.058 0.135

d

D

B

2B

rs min

rls min

Cr

10

26 30 30 35 35

8 9 9 11 11

16 18 18 22 22

0.3 0.6 0.6 0.6 0.6

0.15 0.3 0.3 0.3 0.3

4.65 5.45 5.00 10.1 9.50

2.07 2.74 2.52 4.95 4.60

470 555 510 1,030 970

12

28 32 32 37 37

8 10 10 12 12

16 20 20 24 24

0.3 0.6 0.6 1 1

0.15 0.3 0.3 0.6 0.6

5.05 7.60 7.00 11.2 10.5

2.46 3.95 3.65 5.25 4.95

15

32 35 35 42 42

9 11 11 13 13

18 22 22 26 26

0.3 0.6 0.6 1 1

0.15 0.3 0.3 0.6 0.6

5.80 9.05 8.35 13.5 12.5

17

35 40 40 47 47

10 12 12 14 14

20 24 24 28 28

0.3 0.6 0.6 1 1

0.15 0.3 0.3 0.6 0.6

20

42 47 47 52 52

12 14 14 15 15

24 28 28 30 30

0.6 1 1 1.1 1.1

25

42 47 52 52 62 62

9 12 15 15 17 17

18 24 30 30 34 34

30

47 55

9 13

18 26

Cor

Cr

Cor

1 This value achieved with machined cages; when pressed cages are used, 80% of this value is acceptable. 2 Bearing numbers appended with the code "B" have a contact angle of 40˚; bearings with this code have a contact angle of 30˚. 3 Smallest allowable dimension for chamfer dimension r or r1. B-44

●Single and Duplex Arrangements

r 1a

ra

ra

Equivalent bearing load dynamic Pr=XFr+YFa

r1a

Contact angle

Single, DT DB, DF Fa / Fr≦e Fa / Fr>e Fa / Fr≦e Fa / Fr>e X Y X Y X Y X Y

e

30˚ 0.80 40˚ 1.14

Db

da

Da

db

1 1

0 0

0.39 0.76 0.35 0.57

1 1

0.78 0.63 1.24 0.55 0.57 0.93

static Por=Xo Fr+Yo Fa Contact angle

30˚ 40˚

Single, DT Xo Yo 0.5 0.5

0.33 0.26

DB, DF

Xo 1 1

Yo 0.66 0.52

For single and DT arrangement, When Por<Fr use Por=Fr

Basic load ratings dynamic static dynamic static (duplex) (duplex) kN kgf Cr Cor Cr Cor

Limiting speeds (duplex) rpm grease

oil

1

Bearing numbers

2

DB

DF

DT

Abutment and fillet dimensions mm Da

da

db

Db

ras

r1as

min

min

max

max

max

max

7.50 8.80 8.10 16.5 15.4

4.15 5.45 5.05 9.85 9.20

765 900 825 1,680 1,570

425 560 515 1,000 940

23,000 22,000 19,000 20,000 18,000

31,000 30,000 26,000 27,000 24,000

DB DB DB DB DB

DF DF DF DF DF

DT DT DT DT DT

12.5 14.5 14.5 14.5 14.5

12.5 12.5 12.5 12.5 12.5

23.5 25.5 25.5 30.5 30.5

24.8 27.5 27.5 32.5 32.5

0.3 0.6 0.6 0.6 0.6

0.15 0.3 0.3 0.3 0.3

8.20 12.3 11.4 18.2 17.1

4.90 7.95 7.35 10.5 9.90

840 1,260 1,160 1,850 1,750

500 810 750 1,070 1,010

21,000 20,000 17,000 18,000 16,000

28,000 26,000 23,000 24,000 21,000

DB DB DB DB DB

DF DF DF DF DF

DT DT DT DT DT

14.5 16.5 16.5 17.5 17.5

14.5 14.5 14.5 16.5 16.5

25.5 27.5 27.5 31.5 31.5

26.8 29.5 29.5 32.5 32.5

0.3 0.6 0.6 1 1

0.15 0.3 0.3 0.6 0.6

9.40 14.7 13.6 21.9 20.3

6.30 9.40 8.70 14.4 13.3

960 1,500 1,390 2,230 2,070

640 960 885 1,470 1,360

18,000 17,000 15,000 15,000 13,000

24,000 23,000 20,000 21,000 18,000

DB DB DB DB DB

DF DF DF DF DF

DT DT DT DT DT

17.5 19.5 19.5 20.5 20.5

17.5 17.5 17.5 19.5 19.5

29.5 30.5 30.5 36.5 36.5

30.8 32.5 32.5 37.5 37.5

0.3 0.6 0.6 1 1

0.15 0.3 0.3 0.6 0.6

11.6 19.4 17.9 25.9 24.0

7.65 13.2 12.2 17.3 16.0

1,190 1,980 1,830 2,640 2,450

780 1,350 1,250 1,760 1,640

17,000 15,000 13,000 14,000 12,000

22,000 21,000 18,000 19,000 16,000

DB DB DB DB DB

DF DF DF DF DF

DT DT DT DT DT

19.5 21.5 21.5 22.5 22.5

19.5 19.5 19.5 21.5 21.5

32.5 35.5 35.5 41.5 41.5

33.8 37.5 37.5 42.5 42.5

0.3 0.6 0.6 1 1

0.15 0.3 0.3 0.6 0.6

15.8 23.6 21.6 30.5 28.2

11.2 16.8 15.4 20.8 19.3

1,610 2,400 2,200 3,100 2,870

1,140 1,710 1,570 2,130 1,970

15,000 14,000 12,000 12,000 11,000

20,000 18,000 16,000 17,000 14,000

DB DB DB DB DB

DF DF DF DF DF

DT DT DT DT DT

24.5 25.5 25.5 27 27

24.5 24.5 24.5 24.5 24.5

37.5 41.5 41.5 45 45

39.5 42.5 42.5 47.5 47.5

0.6 1 1 1 1

0.3 0.6 0.6 0.6 0.6

11.6 17.5 26.3 24.0 43.0 39.5

9.95 13.7 20.6 18.8 31.5 29.3

1,180 1,780 2,690 2,450 4,400 4,050

1,010 1,400 2,100 1,920 3,250 2,980

13,000 12,000 11,000 10,000 10,000 9,100

18,000 17,000 15,000 13,000 14,000 12,000

DB DB DB DB DB DB

DF DF DF DF DF DF

DT DT DT DT DT DT

27.5 29.5 30.5 30.5 32 32

27.5 29.5 29.5 29.5 29.5 29.5

39.5 42.5 46.5 46.5 55 55

40.8 44.5 47.5 47.5 57.5 57.5

0.3 0.6 1 1 1 1

0.15 0.3 0.6 0.6 0.6 0.6

12.3 22.5

11.5 18.9

1,250 2,300

1,170 1,930

12,000 11,000

15,000 14,000

DB DB

DF DF

DT DT

32.5 35.5

32.5 35.5

44.5 49.5

45.8 50.5

0.3 1

0.15 0.6

Note: For bearing series 79 and 70, inner rings are constructed with groove abutments on both sides. Therefore, the inner ring chamfer dimension r1 is identical to dimension r. Furthermore, the radius r1a of the shaft corner roundness is likewise identical to ra.

B-45

●Single and Duplex Arrangements 2B

B r

ra

r1

r1

ra

r

D

da

Da

d

a

a

Single

a

a

Tandem arrangement (DT)

Face-to-face arrangement (DF)

Back-to-back arrangement (DB)

d 30∼55mm Boundary dimensions

Basic load ratings dynamic

mm

static

dynamic

kN 3

3

Limiting speeds

1

static

kgf

2

Bearing numbers

rpm

Load center

Mass

mm

kg single

a

(approx.)

grease

oil

1,510 1,380 2,280 2,090

12,000 11,000 11,000 9,600

16,000 14,000 15,000 13,000

7206 7206B 7306 7306B

21.5 27.5 24.5 31.5

0.193 0.197 0.345 0.352

1,220 1,790 3,050 2,760 4,050 3,750

905 1,280 2,050 1,870 2,680 2,470

13,000 12,000 11,000 9,300 9,800 8,400

17,000 16,000 14,000 12,000 13,000 11,000

7907 7007 7207 7207B 7307 7307B

18 21 24 31 27 34.5

0.088 0.18 0.281 0.287 0.462 0.469

10.2 14.6 25.1 23.0 33.0 30.5

1,290 1,910 3,600 3,250 5,000 4,550

1,040 1,490 2,560 2,340 3,350 3,100

11,000 10,000 9,600 8,300 8,600 7,400

15,000 14,000 13,000 11,000 12,000 9,900

7908 7008 7208 7208B 7308 7308B

20.5 23 26.5 34 30.5 39

0.13 0.222 0.355 0.375 0.625 0.636

15.7 22.3 39.5 36.0 63.5 58.5

12.9 17.7 28.7 26.2 44.0 40.0

1,600 2,270 4,050 3,650 6,450 5,950

1,310 1,800 2,930 2,680 4,500 4,100

10,000 9,500 8,700 7,400 7,800 6,600

14,000 13,000 12,000 9,900 10,000 8,900

7909 7009 7209 7209B 7309 7309B

22.5 25.5 28.5 37 33.5 43.0

0.15 0.282 0.404 0.41 0.837 0.854

0.3 0.6 0.6 0.6 1 1

16.6 23.7 41.5 37.5 74.0 68.0

14.5 20.1 31.5 28.6 52.0 48.0

1,690 2,410 4,200 3,800 7,600 6,950

1,470 2,050 3,200 2,920 5,350 4,950

9,200 8,600 7,900 6,700 7,100 6,000

12,000 11,000 10,000 9,000 9,400 8,100

7910 7010 7210 7210B 7310 7310B

23.5 27 30 39.5 36.5 47

0.157 0.306 0.457 0.466 1.09 1.11

0.6 0.6 1 1 1 1

17.3 31.0 51.0 46.5 86.0 79.0

16.1 26.3 39.5 36.0 61.5 56.5

1,770 3,150 5,200 4,700 8,750 8,050

1,640 2,680 4,050 3,700 6,300 5,800

8,400 7,900 7,100 6,100 6,400 5,500

11,000 11,000 9,500 8,200 8,600 7,300

7911 7011 7211 7211B 7311 7311B

26 30 33 43 40 52

0.214 0.447 0.6 0.612 1.39 1.42

d

D

B

2B

rs min

rls min

Cr

Cor

30

62 62 72 72

16 16 19 19

32 32 38 38

1 1 1.1 1.1

0.6 0.6 0.6 0.6

22.5 20.5 33.5 31.0

14.8 13.5 22.3 20.5

2,300 2,090 3,450 3,150

35

55 62 72 72 80 80

10 14 17 17 21 21

20 28 34 34 42 42

0.6 1 1.1 1.1 1.5 1.5

0.3 0.6 0.6 0.6 1 1

12.0 17.5 29.7 27.1 40.0 36.5

8.85 12.6 20.1 18.4 26.3 24.2

40

62 68 80 80 90 90

12 15 18 18 23 23

24 30 36 36 46 46

0.6 1 1.1 1.1 1.5 1.5

0.3 0.6 0.6 0.6 1 1

12.7 18.8 35.5 32.0 49.0 45.0

45

68 75 85 85 100 100

12 16 19 19 25 25

24 32 38 38 50 50

0.6 1 1.1 1.1 1.5 1.5

0.3 0.6 0.6 0.6 1 1

50

72 80 90 90 110 110

12 16 20 20 27 27

24 32 40 40 54 54

0.6 1 1.1 1.1 2 2

55

80 90 100 100 120 120

13 18 21 21 29 29

26 36 42 42 58 58

1 1.1 1.5 1.5 2 2

Cr

Cor

1 This value achieved with machined cages; when pressed cages are used, 80% of this value is acceptable. 2 Bearing numbers appended with the code "B" have a contact angle of 40˚; bearings with this code have a contact angle of 30˚. 3 Minimal allowable dimension for chamfer dimension r or r1. B-46

●Single and Duplex Arrangements

r 1a

ra

ra

Equivalent bearing load dynamic Pr=XFr+YFa

r1a

Contact angle

Single, DT DB, DF Fa / Fr≦e Fa / Fr>e Fa / Fr≦e Fa / Fr>e X Y X Y X Y X Y

e

30˚ 0.80 40˚ 1.14

Db

da

Da

db

1 1

0 0

0.39 0.76 0.35 0.57

1 1

0.78 0.63 1.24 0.55 0.57 0.93

static Por=Xo Fr+Yo Fa Contact angle

30˚ 40˚

Single, DT Xo Yo 0.5 0.5

0.33 0.26

DB, DF

Xo

Yo 0.66 0.52

1 1

For single and DT arrangement, When Por<Fr use Por=Fr

Basic load ratings dynamic static dynamic static (duplex) (duplex) kN kgf Cr Cor Cr Cor

Limiting speeds (duplex) rpm grease

oil

1

Bearing numbers

2

DB

DF

DT

Abutment and fillet dimensions mm Da

da

db

Db

ras

r1as

min

min

max

max

max

max

36.5 33.5 54.5 50.0

29.6 27.1 44.5 41.0

3,750 3,400 5,550 5,100

3,000 2,760 4,550 4,200

9,800 8,600 8,900 7,700

13,000 11,000 12,000 10,000

DB DB DB DB

DF DF DF DF

DT DT DT DT

35.5 35.5 37 37

34.5 34.5 34.5 34.5

56.5 56.5 65 65

57.5 57.5 67.5 67.5

1 1 1 1

0.6 0.6 0.6 0.6

19.5 28.5 48.5 44.0 65.0 59.5

17.7 25.1 40.0 36.5 52.5 48.5

1,990 2,900 4,900 4,500 6,600 6,100

1,810 2,560 4,100 3,750 5,350 4,950

10,000 9,400 8,600 7,500 7,800 6,800

13,000 13,000 11,000 10,000 10,000 9,000

DB DB DB DB DB DB

DF DF DF DF DF DF

DT DT DT DT DT DT

39.5 40.5 42 42 43.5 43.5

39.5 40.5 39.5 39.5 40.5 40.5

50.5 56.5 65 65 71.5 71.5

52.5 57.5 67.5 67.5 74.5 74.5

0.6 1 1 1 1.5 1.5

0.3 0.6 0.6 0.6 1 1

20.6 30.5 57.5 52.0 79.5 73.0

20.4 29.2 50.5 46.0 66.0 60.5

2,100 3,100 5,850 5,300 8,100 7,400

2,080 2,970 5,150 4,700 6,700 6,200

9,000 8,300 7,700 6,700 6,900 6,000

12,000 11,000 10,000 8,900 9,200 8,000

DB DB DB DB DB DB

DF DF DF DF DF DF

DT DT DT DT DT DT

44.5 45.5 47 47 48.5 48.5

44.5 45.5 44.5 44.5 45.5 45.5

57.5 62.5 73.0 73 81.5 81.5

59.5 63.5 75.5 75.5 84.5 84.5

0.6 1 1 1 1.5 1.5

0.3 0.6 0.6 0.6 1 1

25.5 36.0 64.5 58.5 103 95.0

25.7 35.5 57.5 52.5 88.0 80.5

2,600 3,700 6,550 5,950 10,500 9,650

2,620 3,600 5,850 5,350 8,950 8,250

8,100 7,500 6,900 6,000 6,200 5,400

11,000 10,000 9,200 8,000 8,200 7,200

DB DB DB DB DB DB

DF DF DF DF DF DF

DT DT DT DT DT DT

49.5 50.5 52 52 53.5 53.5

49.5 50.5 49.5 49.5 50.5 50.5

63.5 69.5 78 78 91.5 91.5

65.5 70.5 80.5 80.5 94.5 94.5

0.6 1 1 1 1.5 1.5

0.3 0.6 0.6 0.6 1 1

27.0 38.5 67.0 60.5 121 111

28.9 40.0 63.0 57.0 105 96.0

2,750 3,900 6,850 6,200 12,300 11,300

2,950 4,100 6,400 5,850 10,700 9,850

7,300 6,800 6,300 5,500 5,600 4,900

9,800 9,100 8,300 7,300 7,500 6,500

DB DB DB DB DB DB

DF DF DF DF DF DF

DT DT DT DT DT DT

54.5 55.5 57 57 60 60

54.5 67.5 69.5 55.5 74.5 75.5 54.5 83 85.5 54.5 83 85.5 55.5 100 104.5 55.5 100 104.5

0.6 1 1 1 2 2

0.3 0.6 0.6 0.6 1 1

28.1 50.5 83.0 75.0 139 128

32.0 52.5 79.0 72.0 123 113

2,870 5,150 8,450 7,650 14,200 13,000

3,300 5,350 8,050 7,350 12,600 11,600

6,700 6,300 5,700 5,000 5,100 4,500

8,900 8,400 7,600 6,600 6,800 5,900

DB DB DB DB DB DB

DF DF DF DF DF DF

DT DT DT DT DT DT

60.5 62 63.5 63.5 65 65

60.5 74.5 75.5 62 83 85.5 60.5 91.5 94.5 60.5 91.5 94.5 60.5 110 114.5 60.5 110 114.5

1 1 1.5 1.5 2 2

0.6 0.6 1 1 1 1

Note: For bearing series 79 and 70, inner rings are constructed with groove abutments on both sides. Therefore, the inner ring chamfer dimension r1 is identical to dimension r. Furthermore, the radius r1a of the shaft corner roundness is, likewise, identical to ra.

B-47

●Single and Duplex Arrangements

d 60∼85mm Boundary dimensions

Basic load ratings dynamic

mm d

static

dynamic

kN 3

3

Limiting speeds

1

static

kgf

2

Bearing numbers

rpm

Load center

Mass

mm

kg single

a

(approx.)

grease

oil

1,780 2,860 5,000 4,550 7,300 6,700

7,800 7,200 6,600 5,700 5,900 5,100

10,000 9,600 8,800 7,600 7,900 6,800

7912 7012 7212 7212B 7312 7312B

27.5 31.5 36 47.5 43 56

0.23 0.478 0.765 0.78 1.74 1.77

1,860 3,450 7,150 6,500 11,300 10,400

1,840 3,200 5,900 5,350 8,350 7,700

7,200 6,700 6,100 5,200 5,500 4,700

9,600 9,000 8,100 7,000 7,300 6,300

7913 7013 7213 7213B 7313 7313B

29 33 38 50.5 46 59.5

0.245 0.509 0.962 0.981 2.11 2.15

2,670 4,350 7,800 7,050 12,700 11,700

2,670 4,000 6,500 5,900 9,550 8,800

6,700 6,200 5,700 4,900 5,100 4,400

9,000 8,300 7,600 6,500 6,800 5,800

7914 7014 7214 7214B 7314 7314B

32.5 36 40 53 49.5 63.5

0.397 0.705 1.09 1.11 2.56 2.61

26.50 27.1 43.50 41.5 79.0 68.5 71.5 62.0 136 106 125. 97.5

2,710 2,760 4,450 4,250 8,050 7,000 7,300 6,350 13,800 10,800 12,700 9,900

6,300 5,800 5,300 4,500 4,800 4,100

8,400 7,800 7,100 6,000 6,300 5,400

7915 7015 7215 7215B 7315 7315B

34 37.5 42.5 56 52.5 68

0.42 0.745 1.17 1.19 3.07 3.13

0.6 0.6 1 1 1.1 1.1

26.9 53.5 89.0 80.5 147 135

28.0 50.5 76.0 69.5 119 109

2,740 2,860 5,450 5,150 9,100 7,750 8,200 7,050 15,000 12,100 13,800 11,100

5,900 5,500 5,000 4,300 4,500 3,800

7,800 7,300 6,600 5,700 5,900 5,100

7916 7016 7216 7216B 7316 7316B

35.5 40.5 45 59 55.5 72

0.444 0.994 1.39 1.42 3.65 3.72

0.6 0.6 1 1

36.0 54.5 99.5 90.0

38.0 53.5 88.5 80.5

3,700 5,600 10,100 9,150

5,500 5,100 4,700 4,000

7,400 6,900 6,200 5,300

7917 7017 7217 7217B

38.5 42 48 63.5

0.628 1.04 1.78 1.82

D

B

2B

rs min

rls min

Cr

Cor

Cr

60

85 95 110 110 130 130

13 18 22 22 31 31

26 36 44 44 62 62

1 1.1 1.5 1.5 2.1 2.1

0.6 0.6 1 1 1.1 1.1

18.1 32.0 61.5 56.0 98.0 90.0

17.4 28.1 49.0 44.5 71.5 66.0

1,840 3,250 6,300 5,700 10,000 9,200

65

90 100 120 120 140 140

13 18 23 23 33 33

26 36 46 46 66 66

1 1.1 1.5 1.5 2.1 2.1

0.6 0.6 1 1 1.1 1.1

18.3 33.5 70.5 63.5 111 102

18.0 31.5 58.0 52.5 82.0 75.0

70

100 110 125 125 150 150

16 20 24 24 35 35

32 40 48 48 70 70

1 1.1 1.5 1.5 2.1 2.1

0.6 0.6 1 1 1.1 1.1

26.2 42.5 76.5 69.0 125 114

26.2 39.5 63.5 58.0 93.5 86

75

105 115 130 130 160 160

16 20 25 25 37 37

32 40 50 50 74 74

1 1.1 1.5 1.5 2.1 2.1

0.6 0.6 1 1 1.1 1.1

80

110 125 140 140 170 170

16 22 26 26 39 39

32 44 52 52 78 78

1 1.1 2 2 2.1 2.1

85

120 130 150 150

18 22 28 28

36 44 56 56

1.1 1.1 2 2

Cor

3,850 5,450 9,050 8,200

1 This value achieved with machined cages; when pressed cages are used, 80% of this value is acceptable. 2 Bearing numbers appended with the code "B" have a contact angle of 40˚; bearings with this code have a contact angle of 30˚. 3 Minimal allowable dimension for chamfer dimension r or r1. B-48

●Single and Duplex Arrangements

r 1a

ra

ra

Equivalent bearing load dynamic Pr=XFr+YFa

r1a

Contact angle

Single, DT DB, DF Fa / Fr≦e Fa / Fr>e Fa / Fr≦e Fa / Fr>e X Y X Y X Y X Y

e

30˚ 0.80 40˚ 1.14

Db

da

Da

db

1 1

0 0

0.39 0.76 0.35 0.57

1 1

0.78 0.63 1.24 0.55 0.57 0.93

static Por=Xo Fr+Yo Fa Contact angle

30˚ 40˚

Single, DT Xo Yo 0.5 0.5

0.33 0.26

DB, DF

Xo

Yo 0.66 0.52

1 1

For single and DT arrangement, When Por<Fr use Por=Fr

Basic load ratings dynamic static dynamic static (duplex) (duplex) kN kgf Cr Cor Cr Cor

Limiting speeds (duplex) rpm grease

oil

1

Bearing numbers

2

DB

DF

DT

Abutment and fillet dimensions

da

db

min

min

mm Da max

Db

ras

r1as

max

max

max

29.3 52.0 100 91.0 159 146

35.0 56.0 98.0 89.0 143 132

2,990 5,300 10,200 9,250 16,200 14,900

3,550 5,700 10,000 9,100 14,600 13,400

6,200 5,800 5,300 4,600 4,700 4,100

8,300 7,700 7,000 6,100 6,300 5,500

DB DB DB DB DB DB

DF DF DF DF DF DF

DT DT DT DT DT DT

65.5 67 68.5 68.5 72 72

65.5 67 65.5 65.5 67 67

79.5 88 101.5 101.5 118 118

80.5 90.5 104.5 104.5 123 123

1 1 1.5 1.5 2 2

0.6 0.6 1 1 1 1

29.7 55.0 114 103 180 166

36.0 62.5 116 105 164 151

3,050 5,600 11,600 10,500 18,400 16,900

3,700 6,400 11,800 10,700 16,700 15,400

5,700 5,400 4,900 4,200 4,400 3,800

7,600 7,100 6,500 5,600 5,800 5,100

DB DB DB DB DB DB

DF DF DF DF DF DF

DT DT DT DT DT DT

70.5 72 73.5 73.5 77 77

70.5 72 70.5 70.5 72 72

84.5 93 111.5 111.5 128 128

85.5 95.5 114.5 114.5 133 133

1 1 1.5 1.5 2 2

0.6 0.6 1 1 1 1

42.5 69.5 124 112 203 186

52.5 78.5 127 116 187 172

4,350 7,050 12,600 11,500 20,700 19,000

5,350 8,050 13,000 11,800 19,100 17,600

5,300 5,000 4,500 3,900 4,100 3,500

7,100 6,600 6,000 5,200 5,400 4,700

DB DB DB DB DB DB

DF DF DF DF DF DF

DT DT DT DT DT DT

75.5 77 78.5 78.5 82 82

75.5 77 75.5 75.5 77 77

94.5 103 116.5 116.5 138 138

95.5 105.5 119.5 119.5 143 143

1 1 1.5 1.5 2 2

0.6 0.6 1 1 1 1

43.0 71.0 128 116 221 202

54.0 83.5 137 124 212 195

4,400 7,250 13,100 11,800 22,500 20,600

5,500 8,500 14,000 12,700 21,600 19,800

5,000 4,600 4,200 3,700 3,800 3,300

6,700 6,200 5,600 4,900 5,000 4,400

DB DB DB DB DB DB

DF DF DF DF DF DF

DT DT DT DT DT DT

80.5 82 83.5 83.5 87 87

80.5 82 80.5 80.5 82 82

99.5 108 121.5 121.5 148 148

100.5 110.5 124.5 124.5 153 153

1 1 1.5 1.5 2 2

0.6 0.6 1 1 1 1

43.5 86.5 145 131 239 219

56.0 101 152 139 238 218

4,450 8,850 14,700 13,300 24,400 22,300

5,700 10,300 15,500 14,100 24,200 22,300

4,700 4,400 3,900 3,400 3,500 3,100

6,200 5,800 5,300 4,600 4,700 4,100

DB DB DB DB DB DB

DF DF DF DF DF DF

DT DT DT DT DT DT

85.5 87 90 90 92 92

85.5 87 85.5 85.5 87 87

104.5 118 130 130 158 158

105.5 120.5 134.5 134.5 163 163

1 1 2 2 2 2

0.6 0.6 1 1 1 1

59.0 89.0 162 146

76.0 107 177 161

6,000 9,050 16,500 14,900

7,750 10,900 18,100 16,400

4,400 4,100 3,700 3,200

5,900 5,500 5,000 4,300

DB DB DB DB

DF DF DF DF

DT DT DT DT

92 92 95 95

92 92 90.5 90.5

113 123 140 140

115.5 125.5 144.5 144.5

1 1 2 2

0.6 0.6 1 1

Note: For bearing series 79 and 70, inner rings are constructed with groove abutments on both sides. Therefore, the inner ring chamfer dimension r1 is identical to dimension r. Furthermore, the radius r1a of the shaft corner roundness is, likewise, identical to ra.

B-49

●Single and Duplex Arrangements 2B

B r

ra

r1

r1

ra

r

D

da

Da

d

a

a

Single

a

a

Tandem arrangement (DT)

Face-to-face arrangement (DF)

Back-to-back arrangement (DB)

d 85∼120mm Boundary dimensions

Basic load ratings dynamic

mm d

static

dynamic

kN 3

3

Limiting speeds

1

static

kgf

2

Bearing numbers

rpm grease

oil

Load center

Mass

mm

kg single

a

(approx.)

D

B

2B

rs min

rls min

85

180 180

41 41

82 82

3 3

1.1 1.1

159 146

133 122

16,200 13,500 14,800 12,400

4,200 3,600

5,600 4,800

7317 7317B

59 76

4.34 4.43

90

125 140 160 160 190 190

18 24 30 30 43 43

36 48 60 60 86 86

1.1 1.5 2.0 2.0 3.0 3.0

0.6 1 1 1 1.1 1.1

36.0 65.0 118 107 171 156

38.0 63.5 103 94.0 147 135

3,650 3,850 6,650 6,450 12,000 10,500 10,900 9,550 17,400 15,000 15,900 13,800

5,200 4,900 4,400 3,800 4,000 3,400

7,000 6,500 5,900 5,000 5,300 4,500

7918 7018 7218 7218B 7318 7318B

40 45 51 67.5 62 80.5

0.658 1.35 2.18 2.22 5.06 5.16

95

130 145 170 170 200 200

18 24 32 32 45 45

36 48 64 64 90 90

1.1 1.5 2.1 2.1 3 3

0.6 1 1.1 1.1 1.1 1.1

37.0 67.0 133 121 183 167

40.5 67.0 118 107 162 149

3,800 6,800 13,600 12,300 18,600 17,100

4,150 6,800 12,000 11,000 16,600 15,200

5,000 4,600 4,100 3,500 3,700 3,200

6,600 6,100 5,500 4,700 5,000 4,200

7919 7019 7219 7219B 7319 7319B

41.5 46.5 54.5 71.5 65 84.5

0.688 1.41 2.67 2.72 5.89 6

100

140 150 180 180 215 215

20 24 34 34 47 47

40 48 68 68 94 94

1.1 1.5 2.1 2.1 3 3

0.6 1 1.1 1.1 1.1 1.1

48.0 68.5 144 130 207 190

52.5 70.5 126 114 193 178

4,900 6,950 14,700 13,300 21,100 19,400

5,350 7,200 12,800 11,700 19,700 18,100

4,700 4,400 3,900 3,400 3,500 3,000

6,200 5,800 5,200 4,500 4,700 4,000

7920 7020 7220 7220B 7320 7320B

44.5 48 57.5 76 69 89.5

0.934 1.47 3.2 3.26 7.18 7.32

105

145 160 190 190 225 225

20 26 36 36 49 49

40 52 72 72 98 98

1.1 2 2.1 2.1 3 3

0.6 1 1.1 1.1 1.1 1.1

48.5 80.0 157 142 220 202

54.5 81.5 142 129 210 194

4,950 8,150 16,000 14,500 22,400 20,600

5,550 8,350 14,400 13,100 21,500 19,700

4,400 4,100 3,700 3,200 3,400 2,900

5,900 5,500 5,000 4,300 4,500 3,800

7921 7021 7221 7221B 7321 7321B

46 51.5 60.5 80 72 93.5

0.972 1.86 3.79 3.87 8.2 8.36

110

150 170 200 200 240 240

20 28 38 38 50 50

40 56 76 76 100 100

1.1 2 2.1 2.1 3 3

0.6 1 1.1 1.1 1.1 1.1

49.5 92.0 170 154 246 226

56.0 93.0 158 144 246 226

5,050 9,350 17,300 15,700 25,100 23,000

5,700 9,450 16,100 14,700 25,100 23,100

4,200 3,900 3,500 3,000 3,200 2,700

5,700 5,300 4,700 4,000 4,300 3,700

7922 7022 7222 7222B 7322 7322B

47.5 54.5 64 84 76 99

1.01 2.3 4.45 4.54 9.6 9.8

165

22

44

1.1

0.6

61.0

69.5

6,200

7,100

3,900

5,200

7924

52

1.66

120

Cr

Cor

Cr

Cor

1 This value achieved with machined cages; when pressed cages are used, 80% of this value is acceptable. 2 Bearing numbers appended with the code "B" have a contact angle of 40˚; bearings with this code have a contact angle of 30˚. 3 Minimal allowable dimension for chamfer dimension r or r1. B-50

●Single and Duplex Arrangements

r 1a

ra

ra

Equivalent bearing load dynamic Pr=XFr+YFa

r1a

Contact angle

Single, DT DB, DF Fa / Fr≦e Fa / Fr>e Fa / Fr≦e Fa / Fr>e X Y X Y X Y X Y

e

30˚ 0.80 40˚ 1.14

Db

da

Da

db

1 1

0 0

0.39 0.76 0.35 0.57

1 1

0.78 0.63 1.24 0.55 0.57 0.93

static Por=Xo Fr+Yo Fa Contact angle

30˚ 40˚

Single, DT Xo Yo 0.5 0.5

0.33 0.26

DB, DF

Xo

Yo 0.66 0.52

1 1

For single and DT arrangement, When Por<Fr use Por=Fr

Basic load ratings dynamic static dynamic static (duplex) (duplex) kN kgf Cr Cor Cr Cor

Limiting speeds (duplex) rpm grease

oil

1

Bearing numbers

2

DB

DF

DT

Abutment and fillet dimensions

da

db

min

min

258 236

265 244

26,300 24,100

27,000 24,900

3,300 2,900

4,500 3,900

DB DB

DF DF

DT DT

99 99

58.0 106 191 173 277 254

75.5 127 206 188 294 270

5,900 10,800 19,500 17,700 28,300 25,900

7,700 12,900 21,000 19,100 30,000 27,600

4,200 3,900 3,500 3,100 3,200 2,700

5,500 5,200 4,700 4,100 4,200 3,700

DB DB DB DB DB DB

DF DF DF DF DF DF

DT DT DT DT DT DT

60.5 109 217 196 297 272

81.5 134 236 215 325 298

6,150 11,100 22,100 20,000 30,500 27,700

8,300 13,600 24,100 21,900 33,000 30,500

3,900 3,700 3,300 2,900 3,000 2,600

5,300 4,900 4,400 3,800 3,900 3,400

DB DB DB DB DB DB

DF DF DF DF DF DF

78.0 111 233 212 335 310

105 141 251 229 385 355

7,950 11,300 23,800 21,600 34,500 31,500

10,700 14,400 25,600 23,300 39,500 36,000

3,700 3,500 3,100 2,700 2,800 2,400

5,000 4,600 4,200 3,600 3,700 3,300

DB DB DB DB DB DB

79.0 130 254 231 355 330

109 163 283 258 420 385

8,050 13,300 25,900 23,500 36,500 33,500

11,100 16,700 28,900 26,300 43,000 39,500

3,500 3,300 3,000 2,600 2,700 2,300

4,700 4,400 4,000 3,500 3,600 3,100

80.0 149 276 250 400 365

112 186 315 289 490 455

8,150 15,200 28,100 25,500 41,000 37,500

11,400 18,900 32,500 29,400 50,000 46,000

3,400 3,100 2,800 2,500 2,600 2,200

99.0

139

10,100

14,200

3,100

mm Da max

Db

ras

r1as

max

max

max

92 92

166 166

173 173

2.5 2.5

1 1

97 98.5 100 100 104 104

97 98.5 95.5 95.5 97 97

118 131.5 150 150 176 176

120.5 134.5 154.5 154.5 183 183

1 1.5 2 2 2.5 2.5

0.6 1 1 1 1 1

DT DT DT DT DT DT

102 103.5 107 107 109 109

102 103.5 102 102 102 102

123 136.5 158 158 186 186

125.5 139.5 163 163 193 193

1 1.5 2 2 2.5 2.5

0.6 1 1 1 1 1

DF DF DF DF DF DF

DT DT DT DT DT DT

107 108.5 112 112 114 114

107 108.5 107 107 107 107

133 141.5 168 168 201 201

135.5 144.5 173 173 208 208

1 1.5 2 2 2.5 2.5

0.6 1 1 1 1 1

DB DB DB DB DB DB

DF DF DF DF DF DF

DT DT DT DT DT DT

112 115 117 117 119 119

112 115 112 112 112 112

138 150 178 178 211 211

140.5 154.5 183 183 218 218

1 2 2 2 2.5 2.5

0.6 1 1 1 1 1

4,500 4,200 3,800 3,300 3,400 3,000

DB DB DB DB DB DB

DF DF DF DF DF DF

DT DT DT DT DT DT

117 120 122 122 124 124

117 120 117 117 117 117

143 160 188 188 226 226

145.5 164.5 193 193 233 233

1 2 2 2 2.5 2.5

0.6 1 1 1 1 1

4,100

DB

DF

DT

127

127

158

160.5

1

0.6

Note: For bearing series 79 and 70, inner rings are constructed with groove abutments on both sides. Therefore, the inner ring chamfer dimension r1 is identical to dimension r. Furthermore, the radius r1a of the shaft corner roundness is, likewise, identical to ra.

B-51

●Single and Duplex Arrangements 2B

B r

ra

r1

r

ra

r

D

a

a

a

a

Face-to-face arrangement (DF)

Back-to-back arrangement (DB)

Single

da

Da

d

Tandem arrangement (DT)

d 120∼170mm Boundary dimensions

Basic load ratings dynamic

mm d

static

dynamic

kN 2

2

Limiting speeds static

kgf

1

Bearing numbers

Load center

rpm

mm

kg single

a

(approx.)

Cr

Cor

grease

98.5 177 162 252 231

9,550 18,600 16,900 25,100 23,000

10,000 18,100 16,500 25,700 23,600

3,600 3,200 2,800 2,900 2,500

4,800 4,300 3,700 3,900 3,300

7024 7224 7224B 7324 7324B

57.5 68.5 90.5 82.5 107

2.47 6.26 6.26 14.7 14.7

75.0 117 196 177 273 250

87.5 125 198 180 293 268

7,650 12,000 20,000 18,100 27,900 25,500

8,900 12,800 20,200 18,300 29,800 27,400

3,600 3,300 3,000 2,500 2,700 2,300

4,700 4,400 4,000 3,400 3,600 3,100

7926 7026 7226 7226B 7326 7326B

56.5 64 72 95.5 88 115

1.82 3.73 7.15 7.15 17.6 17.6

1 1 1.1 1.1 1.5 1.5

75.5 120 203 183 300 275

90.0 133 215 195 335 310

7,700 12,200 20,700 18,700 30,500 28,100

9,150 13,500 21,900 19,900 34,500 31,500

3,300 3,100 2,700 2,300 2,500 2,100

4,400 4,100 3,600 3,100 3,300 2,800

7928 7028 7228 7228B 7328 7328B

59.5 67 77.5 103 94.5 123

1.94 3.96 8.78 8.78 21.5 21.5

2 2.1 3 3 4 4

1 1.1 1.1 1.1 1.5 1.5

97.5 137 232 210 330 300

117 154 259 235 380 350

9,900 14,000 23,700 21,400 33,500 30,500

11,900 15,700 26,400 24,000 39,000 36,000

3,100 2,800 2,500 2,200 2,300 2,000

4,100 3,800 3,400 2,900 3,100 2,600

7930 7030 7230 7230B 7330 7330B

66 71.5 83 111 100 131

2.96 4.82 11 11 25.1 25.1

56 76 96 96 136 136

2 2.1 3 3 4 4

1 1.1 1.1 1.1 1.5 1.5

98.5 155 263 238 345 315

121 176 305 279 420 385

10,000 15,800 26,800 24,200 35,500 32,000

12,300 18,000 31,500 28,400 43,000 39,500

2,800 2,700 2,400 2,000 2,100 1,800

3,800 3,600 3,200 2,700 2,800 2,400

7932 7032 7232 7232B 7332 7332B

69 77 89 118 106 139

3.13 5.96 13.7 13.7 29.8 29.8

56 84 104 104 144

2 2.1 4 4 4

1 1.1 1.5 1.5 1.5

102 186 295 266 390

129 214 360 325 485

10,400 18,900 30,000 27,200 39,500

13,100 21,900 36,500 33,000 49,500

2,700 2,500 2,200 1,900 2,000

3,600 3,300 3,000 2,500 2,700

7934 7034 7234 7234B 7334

71.5 83 95.5 127 113

3.29 7.96 17 17 35.3

D

B

2B

rs min

rls min

120

180 215 215 260 260

28 40 40 55 55

56 80 80 110 110

2 2.1 2.1 3 3

1 1.1 1.1 1.1 1.1

93.5 183 165 246 225

130

180 200 230 230 280 280

24 33 40 40 58 58

48 66 80 80 116 116

1.5 2 3 3 4 4

1 1 1.1 1.1 1.5 1.5

140

190 210 250 250 300 300

24 33 42 42 62 62

48 66 84 84 124 124

1.5 2 3 3 4 4

150

210 225 270 270 320 320

28 35 45 45 65 65

56 70 90 90 130 130

160

220 240 290 290 340 340

28 38 48 48 68 68

170

230 260 310 310 360

28 42 52 52 72

Cr

Cor

oil

Mass

1 Bearing numbers appended with the code "B" have a contact angle of 40˚; bearings with this code have a contact angle of 30˚. 2 Smallest allowable dimension for chamfer dimension r.

B-52

●Single and Duplex Arrangements

r 1a

ra

Equivalent bearing load dynamic Pr=XFr+YFa

ra

r1a

Contact angle

Db

da

Da

Single, DT DB, DF Fa / Fr≦e Fa / Fr>e Fa / Fr≦e Fa / Fr>e X Y X Y X Y X Y

e

30˚ 0.80 40˚ 1.14

da

1 1

0 0

0.39 0.76 0.35 0.57

1 1

0.78 0.63 1.24 0.55 0.57 0.93

static Por=Xo Fr+Yo Fa Contact angle

30˚ 40˚

Single, DT Xo Yo 0.5 0.5

0.33 0.26

DB, DF

Xo

Yo 0.66 0.52

1 1

For single and DT arrangement, When Por<Fr use Por=Fr

Basic load ratings dynamic static dynamic static (duplex) (duplex) kN kgf Cr Cor Cr Cor

Limiting speeds (duplex) rpm grease

oil

Bearing numbers

1

DB

DF

DT

Abutment and fillet dimensions

da

Da

mm Db

ras

r1as

min

max

max

max

max

152 297 269 400 365

197 355 325 505 460

15,500 30,500 27,400 41,000 37,500

20,100 36,000 33,000 51,500 47,000

2,900 2,600 2,300 2,300 2,000

3,800 3,400 3,000 3,100 2,700

DB DB DB DB DB

DF DF DF DF DF

DT DT DT DT DT

130 132 132 134 134

170 203 203 246 246

174.5 208 208 253 253

2 2 2 2.5 2.5

1 1 1 1 1

121 191 320 288 445 405

175 251 395 360 585 535

12,400 19,400 32,500 29,400 45,500 41,500

17,800 25,600 40,500 36,500 59,500 54,500

2,800 2,600 2,400 2,100 2,100 1,900

3,800 3,500 3,100 2,700 2,800 2,500

DB DB DB DB DB DB

DF DF DF DF DF DF

DT DT DT DT DT DT

138.5 140 144 144 148 148

171.5 190 216 216 262 262

174.5 194.5 223 223 271.5 271.5

1.5 2 2.5 2.5 3 3

1 1 1 1 1.5 1.5

123 194 330 297 490 445

180 265 430 390 670 615

12,500 19,800 33,500 30,500 50,000 45,500

18,300 27,000 44,000 40,000 68,500 63,000

2,600 2,400 2,200 1,900 2,000 1,700

3,500 3,300 2,900 2,500 2,600 2,300

DB DB DB DB DB DB

DF DF DF DF DF DF

DT DT DT DT DT DT

148.5 150 154 154 158 158

181.5 200 236 236 282 282

184.5 204.5 243 243 291.5 291.5

1.5 2 2.5 2.5 3 3

1 1 1 1 1.5 1.5

158 222 375 340 535 490

234 305 515 470 765 700

16,100 22,700 38,500 34,500 54,500 50,000

23,900 31,500 53,000 48,000 78,000 71,500

2,400 2,300 2,000 1,800 1,800 1,600

3,300 3,000 2,700 2,400 2,400 2,100

DB DB DB DB DB DB

DF DF DF DF DF DF

DT DT DT DT DT DT

160 162 164 164 168 168

200 213 256 256 302 302

204.5 218 263 263 311.5 311.5

2 2 2.5 2.5 3 3

1 1 1 1 1.5 1.5

160 252 425 385 565 515

241 355 615 555 845 770

16,300 25,700 43,500 39,500 57,500 52,500

24,600 36,000 62,500 57,000 86,000 79,000

2,300 2,100 1,900 1,600 1,700 1,500

3,000 2,800 2,500 2,200 2,300 2,000

DB DB DB DB DB DB

DF DF DF DF DF DF

DT DT DT DT DT DT

170 172 174 174 178 178

210 228 276 276 322 322

214.5 233 283 283 331.5 331.5

2 2 2.5 2.5 3 3

1 1 1 1 1.5 1.5

165 300 480 435 630

257 430 715 650 970

16,900 31,000 49,000 44,000 64,500

26,200 43,500 73,000 66,500 99,000

2,100 2,000 1,800 1,500 1,600

2,800 2,600 2,400 2,100 2,100

DB DB DB DB DB

DF DF DF DF DF

DT DT DT DT DT

180 182 188 188 188

220 248 292 292 342

224.5 253 301.5 301.5 351.5

2 2 3 3 3

1 1 1.5 1.5 1.5

B-53

●Single and Duplex Arrangements 2B

B r

ra

r1

r

ra

r

D

a

a

a

a

Face-to-face arrangement (DF)

Back-to-back arrangement (DB)

Single

da

Da

d

Tandem arrangement (DT)

d 170∼300mm Boundary dimensions

Basic load ratings dynamic

mm d

D

B

2B

170

360

72

180

250 280 320 320 380 380

static

dynamic

kN 2

2

Cr

Limiting speeds static

kgf Cor

Cr

1

Bearing numbers

Load center

rpm Cor

grease

oil

Mass

mm

kg single

a

(approx.)

rs min

rls min

144

4

1.5

355

445

36,000 45,500

1,700

2,300

7334B

147

35.3

33 46 52 52 75 75

66 92 104 104 150 150

2 2.1 4 4 4 4

1 1.1 1.5 1.5 1.5 1.5

131 219 305 276 410 375

163 266 385 350 535 490

13,400 22,300 31,000 28,100 41,500 38,000

16,600 27,100 39,000 35,500 54,500 50,000

2,500 2,300 2,100 1,800 1,900 1,600

3,300 3,100 2,800 2,400 2,500 2,100

7936 7036 7236 7236B 7336 7336B

78.5 89.5 98 131 118 155

4.87 10.4 17.7 17.7 40.9 40.9

190

260 290 340 340 400 400

33 46 55 55 78 78

66 92 110 110 156 156

2 2.1 4 4 5 5

1 1.1 1.5 1.5 2 2

133 224 305 273 430 390

169 280 390 355 585 535

13,500 22,800 31,000 27,800 44,000 40,000

17,200 28,600 39,500 36,000 59,500 54,500

2,400 2,200 2,000 1,700 1,800 1,500

3,200 2,900 2,600 2,200 2,300 2,000

7938 7038 7238 7238B 7338 7338B

81.5 92.5 104 139 124 163

5.1 10.8 21.3 21.3 47 47

200

280 310 360 360 420 420

38 51 58 58 80 80

76 102 116 116 160 160

2.1 2.1 4 4 5 5

1.1 1.1 1.5 1.5 2 2

185 252 335 305 450 410

231 325 450 410 605 555

18,900 25,700 34,500 31,000 46,000 42,000

23,600 33,000 46,000 41,500 62,000 56,500

2,200 2,100 1,900 1,600 1,700 1,400

3,000 2,800 2,500 2,100 2,200 1,900

7940 7040 7240 7240B 7340 7340B

88.5 99 110 146 130 170

7.15 14 25.3 25.3 53.1 53.1

220

300

38

76

2.1

1.1

187

239

19,000 24,300

2,000

2,700

7944

94

7.74

240

320

38

76

2.1

1.1

197

264

20,100 26,900

1,800

2,400

7948

100

8.34

260

360

46

92

2.1

1.1

258

375

26,300 38,000

1,700

2,200

7952

112

14

280

380

46

92

2.1

1.1

261

385

26,600 39,500

1,500

2,100

7956

118

14.8

300

420

56

112

3

1.1

325

520

33,500 53,000

1,400

1,900

7960

132

23.7

1 Bearing numbers appended with the code "B" have a contact angle of 40˚; bearings with this code have a contact angle of 30˚. 2 Minimal allowable dimension for chamfer dimension r or r1.

B-54

●Single and Duplex Arrangements

r 1a

ra

Equivalent bearing load dynamic Pr=XFr+YFa

ra

r1a

Contact angle

Db

da

Da

Single, DT DB, DF Fa / Fr≦e Fa / Fr>e Fa / Fr≦e Fa / Fr>e X Y X Y X Y X Y

e

30˚ 0.80 40˚ 1.14

da

1 1

0 0

0.39 0.76 0.35 0.57

1 1

0.78 0.63 1.24 0.55 0.57 0.93

static Por=Xo Fr+Yo Fa Contact angle

30˚ 40˚

Single, DT Xo Yo 0.5 0.5

0.33 0.26

DB, DF

Xo

Yo 0.66 0.52

1 1

For single and DT arrangement, When Por<Fr use Por=Fr

Basic load ratings dynamic static dynamic static (duplex) (duplex) kN kgf Cr Cor Cr Cor

59,000

Limiting speeds (duplex) rpm

Bearing numbers

1

DB

DF

DT

Abutment and fillet dimensions

da

Da

mm Db

ras

r1as

min

max

max

max

max

grease

oil

90,500

1,400

1,800

DB

DF

DT

188

342

351.5

3

1.5

575

890

213 355 495 450 665 605

325 530 770 700 1 070 975

21,700 33,500 36,500 54,000 50,500 78,500 45,500 71,000 68,000 109,000 62,000 99,500

2,000 1,900 1,700 1,400 1,500 1,300

2,700 2,500 2,200 1,900 2,000 1,700

DB DB DB DB DB DB

DF DF DF DF DF DF

DT DT DT DT DT DT

190 192 198 198 198 198

240 268 302 302 362 362

244.5 273 311.5 311.5 371.5 371.5

2 2 3 3 3 3

1 1 1.5 1.5 1.5 1.5

216 365 495 445 695 635

335 560 780 705 1 170 1 070

22,000 34,500 37,000 57,000 50,000 79,500 45,000 72,000 71,000 119,000 64,500 109,000

1,900 1,800 1,600 1,400 1,400 1,200

2,500 2,300 2,100 1,800 1,900 1,600

DB DB DB DB DB DB

DF DF DF DF DF DF

DT DT DT DT DT DT

200 202 208 208 212 212

250 278 322 322 378 378

254.5 283 331.5 331.5 390 390

2 2 3 3 4 4

1 1 1.5 1.5 2 2

300 410 550 495 730 665

465 650 900 815 1 210 1 110

30,500 47,000 41,500 66,000 56,000 92,000 50,500 83,000 74,500 124,000 68,000 113,000

1,800 1,700 1,500 1,300 1,300 1,200

2,400 2,200 2,000 1,700 1,800 1,500

DB DB DB DB DB DB

DF DF DF DF DF DF

DT DT DT DT DT DT

212 212 218 218 222 222

268 298 342 342 398 398

273 303 351.5 351.5 410 410

2 2 3 3 4 4

1 1 1.5 1.5 2 2

305

475

31,000

48,500

1,600

2,100

DB

DF

DT

232

288

293

2

1

320

530

32,500

54,000

1,500

1,900

DB

DF

DT

252

308

313

2

1

420

750

42,500

76,500

1,300

1,800

DB

DF

DT

272

348

353

2

1

425

775

43,000

79,000

1,200

1,600

DB

DF

DT

292

368

373

2

1

530

1 040

54,000 106,000

1,100

1,500

DB

DF

DT

314

406

413

2.5

1

B-55

●High Speed Single and Duplex Arrangements 2B

B r

ra

r1

r

ra

r d

D

Da

a

a

Single

a

a Tandem arrangement (DT)

Face-to-face arrangement (DF)

Back-to-back arrangement (DB)

da

d 10∼40mm Boundary dimensions

Basic load ratings dynamic

mm

static

dynamic

kN 2

2

Limiting speeds

1

static

kgf

Bearing numbers

rpm

Load center

Mass

mm

kg single

a

(approx.)

grease

oil

225 269

43,000 41,000

58,000 55,000

7000C 7200C

6.5 7

0.019 0.029

555 720

269 355

39,000 36,000

52,000 49,000

7001C 7201C

6.5 8

0.021 0.036

3.40 4.50 6.85

635 915 1,360

345 460 700

34,000 32,000 28,000

45,000 42,000 38,000

7002C 7202C 7302C

7.5 9 10.5

0.029 0.045 0.081

7.70 11.2 15.7

4.10 5.75 8.25

785 1,140 1,600

420 590 840

31,000 29,000 26,000

41,000 38,000 35,000

7003C 7203C 7303C

8.5 10 11.5

0.038 0.062 0.109

0.3 0.6 0.6

10.5 14.6 18.5

6.05 8.15 9.95

1,070 1,490 1,890

615 835 1,020

27,000 25,000 23,000

36,000 34,000 31,000

7004C 7204C 7304C

10 11.5 12.5

0.066 0.1 0.14

0.3 0.3 0.6 1 1.1

0.15 0.15 0.3 0.6 0.6

5.05 7.85 11.7 16.6 26.4

3.85 5.40 7.45 10.2 15.3

515 800 1,190 1,690 2,690

390 555 755 1,050 1,560

27,000 25,000 23,000 21,000 19,000

36,000 33,000 31,000 28,000 26,000

7805C 7905C 7005C 7205C 7305C

7.5 9 11 12.5 14.5

0.021 0.042 0.078 0.121 0.222

14 18 26 32 38

0.3 0.3 1 1 1.1

0.15 0.15 0.6 0.6 0.6

5.35 8.30 15.1 23.0 32.5

4.50 6.25 10.3 14.7 20.3

545 845 1,540 2,350 3,300

460 640 1,050 1,500 2,070

23,000 21,000 20,000 18,000 16,000

31,000 28,000 26,000 24,000 22,000

7806C 7906C 7006C 7206C 7306C

8.5 9.5 12.5 14 16.5

0.025 0.048 0.112 0.191 0.33

7 10 14 17 21

14 20 28 34 42

0.3 0.6 1 1.1 1.5

0.15 0.3 0.6 0.6 1

5.80 13.2 19.1 30.5 40.5

5.25 9.65 13.7 19.9 25.8

590 1,340 1,950 3,100 4,100

535 985 1,390 2,030 2,630

20,000 19,000 17,000 16,000 14,000

27,000 25,000 23,000 21,000 19,000

7807C 7907C 7007C 7207C 7307C

9 11 13.5 15.5 18

0.028 0.073 0.149 0.273 0.44

7 12 15 18

14 24 30 36

0.3 0.6 1 1.1

0.15 0.3 0.6 0.6

6.05 14.0 20.6 36.5

5.75 11.1 15.9 25.2

615 1,420 2,100 3,700

585 1,140 1,620 2,570

18,000 17,000 15,000 14,000

24,000 22,000 21,000 19,000

7808C 7908C 7008C 7208C

9.5 13 14.5 17

0.031 0.109 0.184 0.35

d

D

B

2B

rs min

rls min

10

26 30

8 9

16 18

0.3 0.6

12

28 32

8 10

16 20

15

32 35 42

9 11 13

17

35 40 47

20

Cr

Cor

Cr

Cor

0.15 0.3

4.90 5.40

2.20 2.64

500 555

0.3 0.6

0.15 0.3

5.40 7.10

2.64 3.45

18 22 26

0.3 0.6 1

0.15 0.3 0.6

6.25 9.00 13.30

10 12 14

20 24 28

0.3 0.6 1

0.15 0.3 0.6

42 47 52

12 14 15

24 28 30

0.6 1 1.1

25

37 42 47 52 62

7 9 12 15 17

14 18 24 30 34

30

42 47 55 62 72

7 9 13 16 19

35

47 55 62 72 80

40

52 62 68 80

1 This value was achieved with laminated phenol resin machined cages; in the case of molded resin cages,with oil lubricant, the value will be 75% of this. 2 Minimal allowable dimension for chamfer dimension r or r1.

B-56

●High Speed Single and Duplex Arrangements r1a

Equivalent bearing load dynamic Pr=XFr+YFa

ra

Single, DT DB, DF Fa/Fr≦e Fa/Fr>e Fa/Fr≦e Fa/Fr>e X Y X Y X Y X Y

3)

Fa

ra da

Db

0.010 0.020 0.040 0.070 0.10 0.15 0.20 0.30 0.40 0.50

da

Da

e

Cor

ra

0.37 0.39 0.41 0.44 0.46 0.49 0.51 0.55 0.56 0.56

1

0

1.51 1.45 1.36 1.28 0.44 1.22 1.15 1.10 1.02 1.00 1.00

2.46 1.70 2.35 1.62 2.21 1.52 2.08 1.43 1.37 0.72 1.98 1.87 1.29 1.78 1.23 1.66 1.15 1.63 1.12 1.63 1.12

1

static Por=Xo Fr+Yo Fa Single, DT Xo Yo 0.5

0.46

DB, DF

Xo 1

Yo 0.92

For single and DT arrangement, When Por<Fr use Por=Fr

Basic load ratings dynamic static dynamic static (duplex) (duplex) kN kgf Cr Cor Cr Cor

1

Limiting speeds (duplex) rpm grease

oil

Bearing numbers

DB

DF

DT

Abutment and fillet dimensions

da

Da

mm Db

ras

r1as

min

max

max

max

max

7.95 8.80

4.40 5.25

815 900

450 540

34,000 32,000

46,000 43,000

DB DB

DF DF

DT DT

12.5 14.5

23.5 25.5

24.8 27.5

0.3 0.6

0.15 0.3

8.80 11.5

5.25 6.95

900 1,170

540 705

31,000 29,000

41,000 38,000

DB DB

DF DF

DT DT

14.5 16.5

25.5 27.5

26.8 29.5

0.3 0.6

0.15 0.3

10.1 14.6 21.6

6.75 9.05 13.7

1,030 1,490 2,200

690 920 1,400

27,000 25,000 23,000

36,000 33,000 30,000

DB DB DB

DF DF DF

DT DT DT

17.5 19.5 20.5

29.5 30.5 36.5

30.8 32.5 37.5

0.3 0.6 1

0.15 0.3 0.6

12.5 18.1 25.6

8.25 11.5 16.5

1,280 1,850 2,610

840 1,180 1,680

24,000 23,000 21,000

33,000 30,000 27,000

DB DB DB

DF DF DF

DT DT DT

19.5 21.5 22.5

32.5 35.5 41.5

33.8 37.5 42.5

0.3 0.6 1

0.15 0.3 0.6

17.0 23.7 30.0

12.1 16.3 19.9

1,740 2,420 3,050

1,230 1,670 2,030

22,000 20,000 18,000

29,000 27,000 24,000

DB DB DB

DF DF DF

DT DT DT

24.5 25.5 27

37.5 41.5 45

39.5 42.5 47.5

0.6 1 1

0.3 0.6 0.6

8.20 12.7 19.0 27.0 43.0

7.65 10.8 14.9 20.5 30.5

835 1,300 1,940 2,750 4,350

780 1,110 1,510 2,090 3,100

21,000 19,000 18,000 17,000 15,000

28,000 26,000 24,000 22,000 20,000

DB DB DB DB DB

DF DF DF DF DF

DT DT DT DT DT

27.5 27.5 29.5 30.5 32

34.5 39.5 42.5 46.5 55

35.8 40.8 44.5 47.5 57.5

0.3 0.3 0.6 1 1

0.15 0.15 0.3 0.6 0.6

8.70 13.5 24.6 37.5 52.5

9.00 12.5 20.6 29.5 40.5

890 1,380 2,510 3,800 5,350

920 1,280 2,100 3,000 4,150

18,000 17,000 16,000 14,000 13,000

24,000 22,000 21,000 19,000 17,000

DB DB DB DB DB

DF DF DF DF DF

DT DT DT DT DT

32.5 32.5 35.5 35.5 37

39.5 44.5 49.5 56.5 65

40.8 45.8 50.5 57.5 67.5

0.3 0.3 1 1 1

0.15 0.15 0.6 0.6 0.6

9.40 21.4 31.0 49.5 65.5

10.5 19.3 27.3 40.0 51.5

960 2,180 3,150 5,050 6,700

1,070 1,970 2,790 4,050 5,250

16,000 15,000 14,000 13,000 11,000

21,000 20,000 18,000 17,000 15,000

DB DB DB DB DB

DF DF DF DF DF

DT DT DT DT DT

37.5 39.5 40.5 42 43.5

44.5 50.5 56.5 65 71.5

45.8 52.5 57.5 67.5 74.5

0.3 0.6 1 1 1.5

0.15 0.3 0.6 0.6 1

9.80 22.7 33.5 59.0

11.5 22.3 32.0 50.5

1,000 2,310 3,400 6,000

1,170 2,270 3,250 5,150

14,000 13,000 12,000 11,000

19,000 18,000 16,000 15,000

DB DB DB DB

DF DF DF DF

DT DT DT DT

42.5 44.5 45.5 47

49.5 57.5 62.5 73

50.8 59.5 63.5 75.5

0.3 0.6 1 1

0.15 0.3 0.6 0.6

3 For back-to-back and face-to-face duplex arrangements, find with the formula 2Fa / Cor. Note: This bearing has a contact angle of 15°and is manufactured with accuracies of JIS Class 5 or higher.

B-57

●High Speed Single and Duplex Arrangements 2B

B r

ra

r1

r

ra

r d

D

Da

a

a

Single

a

a Tandem arrangement (DT)

Face-to-face arrangement (DF)

Back-to-back arrangement (DB)

da

d 40∼75mm Boundary dimensions

Basic load ratings dynamic

mm

static

dynamic

kN 2

2

Limiting speeds

1

static

kgf

Bearing numbers

rpm

Load center

Mass

mm

kg single

a

(approx.)

Cor

grease

oil

5,050

3,300

13,000

17,000

7308C

20

0.606

7.40 14.1 19.3 28.8 43.0

775 1,760 2,490 4,150 6,550

755 1,430 1,960 2,940 4,400

16,000 15,000 14,000 13,000 11,000

21,000 20,000 19,000 17,000 15,000

7809C 7909C 7009C 7209C 7309C

10.5 13.5 16 18 22.5

0.038 0.126 0.233 0.4 0.83

7.90 18.3 26.0 43.0 75.0

8.05 15.8 21.9 31.5 51.5

805 1,870 2,650 4,350 7,650

820 1,620 2,230 3,250 5,250

14,000 14,000 13,000 12,000 10,000

19,000 18,000 17,000 15,000 14,000

7810C 7910C 7010C 7210C 7310C

11 14 16.5 19.5 24.5

0.049 0.131 0.253 0.454 1.05

0.15 0.6 0.6 1 1

13.1 19.1 34.0 53.0 87.0

12.7 17.7 28.6 40.0 60.5

1,330 1,950 3,500 5,400 8,850

1,300 1,810 2,920 4,100 6,200

13,000 12,000 12,000 11,000 9,400

18,000 16,000 15,000 14,000 13,000

7811C 7911C 7011C 7211C 7311C

13 15.5 18.5 21 26.5

0.079 0.178 0.37 0.593 1.34

0.3 1 1.1 1.5 2.1

0.15 0.6 0.6 1 1.1

13.4 20.0 35.0 64.0 99.0

13.6 19.5 30.5 49.5 70.5

1,370 2,040 3,550 6,550 10,100

1,390 1,990 3,150 5,050 7,150

12,000 11,000 11,000 9,700 8,700

16,000 15,000 14,000 13,000 12,000

7812C 7912C 7012C 7212C 7312C

14 16 19.5 22.5 28.5

0.101 0.191 0.387 0.757 1.68

20 26 36 46 66

0.6 1 1.1 1.5 2.1

0.3 0.6 0.6 1 1.1

14.1 20.2 37.0 70.0 112

14.9 20.4 34.5 55.0 80.5

1,440 2,060 3,800 7,100 11,400

1,520 2,080 3,500 5,600 8,200

11,000 11,000 9,900 9,000 8,100

15,000 14,000 13,000 12,000 11,000

7813C 7913C 7013C 7213C 7313C

15 17 20 24 30

0.122 0.204 0.421 0.948 2.06

10 16 20 24 35

20 32 40 48 70

0.6 1 1.1 1.5 2.1

0.3 0.6 0.6 1 1.1

14.5 28.9 47.0 76.0 126

15.8 29.0 43.0 60.0 92.0

1,470 2,950 4,800 7,750 12,900

1,610 2,960 4,400 6,150 9,350

10,000 9,900 9,200 8,300 7,500

14,000 13,000 12,000 11,000 10,000

7814C 7914C 7014C 7214C 7314C

15.5 19.5 22 25 32

0.13 0.331 0.583 1.04 2.5

10 16

20 32

0.6 1

0.3 0.6

14.8 29.4

16.7 30.5

1,510 3,000

1,700 3,100

9,700 9,200

13,000 12,000

7815C 7915C

16.5 20

0.138 0.35

d

D

B

2B

rs min

rls min

40

90

23

46

1.5

45

58 68 75 85 100

7 12 16 19 25

14 24 32 38 50

50

65 72 80 90 110

7 12 16 20 27

55

72 80 90 100 120

Cr

Cor

1

49.5

32.5

0.3 0.6 1 1.1 1.5

0.15 0.3 0.6 0.6 1

7.60 17.3 24.4 41.0 64.0

14 24 32 40 54

0.3 0.6 1 1.1 2

0.15 0.3 0.6 0.6 1

9 13 18 21 29

18 26 36 42 58

0.3 1.0 1.1 1.5 2.0

60

78 85 95 110 130

10 13 18 22 31

20 26 36 44 62

65

85 90 100 120 140

10 13 18 23 33

70

90 100 110 125 150

75

95 105

Cr

1 This value was achieved with laminated phenol resin machined cages; in the case of molded resin cages,with oil lubricant, the value will be 75% of this. 2 Minimal allowable dimension for chamfer dimension r or r1.

B-58

●High Speed Single and Duplex Arrangements r1a

Equivalent bearing load dynamic Pr=XFr+YFa

ra

Single, DT DB, DF Fa/Fr≦e Fa/Fr>e Fa/Fr≦e Fa/Fr>e X Y X Y X Y X Y

3)

Fa

ra da

Db

0.010 0.020 0.040 0.070 0.10 0.15 0.20 0.30 0.40 0.50

da

Da

e

Cor

ra

0.37 0.39 0.41 0.44 0.46 0.49 0.51 0.55 0.56 0.56

1

0

1.51 1.45 1.36 1.28 0.44 1.22 1.15 1.10 1.02 1.00 1.00

2.46 1.70 2.35 1.62 2.21 1.52 2.08 1.43 1.37 0.72 1.98 1.87 1.29 1.78 1.23 1.66 1.15 1.63 1.12 1.63 1.12

1

static Por=Xo Fr+Yo Fa Single, DT Xo Yo 0.5

DB, DF

Xo

0.46

Yo 0.92

1

For single and DT arrangement, When Por<Fr use Por=Fr

Basic load ratings dynamic static dynamic static (duplex) (duplex) kN kgf Cr Cor Cr Cor

1

Limiting speeds (duplex) rpm grease

oil

Bearing numbers

DB

DF

DT

Abutment and fillet dimensions

da

Da

mm Db

ras

r1as

min

max

max

max

max

80.0

64.5

8,150

6,600

10,000

13,000

DB

DF

DT

48.5

81.5

84.5

1.5

1

12.3 28.1 39.5 66.5 104

14.8 28.1 38.5 57.5 86.0

1,260 2,870 4,050 6,750 10,600

1,510 2,870 3,950 5,850 8,800

13,000 12,000 11,000 10,000 9,000

17,000 16,000 15,000 13,000 12,000

DB DB DB DB DB

DF DF DF DF DF

DT DT DT DT DT

47.5 49.5 50.5 52 53.5

55.5 63.5 69.5 78 91.5

56.8 65.5 70.5 80.5 94.5

0.3 0.6 1 1 1.5

0.15 0.3 0.6 0.6 1

12.8 29.8 42.0 69.5 122

16.1 31.5 44.0 63.5 103

1,300 3,050 4,300 7,100 12,400

1,640 3,250 4,450 6,450 10,500

11,000 11,000 10,000 9,100 8,200

15,000 14,000 13,000 12,000 11,000

DB DB DB DB DB

DF DF DF DF DF

DT DT DT DT DT

52.5 54.5 55.5 57 60

62.5 67.5 74.5 83 100

63.8 69.5 75.5 85.5 104.5

0.3 0.6 1 1 2

0.15 0.3 0.6 0.6 1

21.2 31.0 55.5 86.0 141

25.5 35.5 57.5 80.0 121

2,160 3,150 5,650 8,750 14,400

2,600 3,600 5,850 8,150 12,400

10,000 9,800 9,200 8,300 7,500

14,000 13,000 12,000 11,000 9,900

DB DB DB DB DB

DF DF DF DF DF

DT DT DT DT DT

57.5 60.5 62 63.5 65

69.5 74.5 83 91.5 110

70.8 75.5 85.5 94.5 114.5

0.3 1 1 1.5 2

0.15 0.6 0.6 1 1

21.8 32.5 57.0 104 161

27.2 39.0 61.5 99.0 141

2,230 3,300 5,800 10,600 16,400

2,770 4,000 6,250 10,100 14,300

9,600 9,000 8,400 7,700 6,900

13,000 12,000 11,000 10,000 9,200

DB DB DB DB DB

DF DF DF DF DF

DT DT DT DT DT

62.5 65.5 67 68.5 72

75.5 79.5 88 101.5 118

76.8 80.5 90.5 104.5 123

0.3 1 1 1.5 2

0.15 0.6 0.6 1 1

22.9 33.0 60.5 113 182

29.9 40.5 68.5 110 161

2,340 3,350 6,150 11,600 18,600

3,050 4,150 7,000 11,200 16,400

8,900 8,400 7,800 7,100 6,400

12,000 11,000 10,000 9,500 8,500

DB DB DB DB DB

DF DF DF DF DF

DT DT DT DT DT

69.5 70.5 72 73.5 77

80.5 84.5 93 111.5 128

82.5 85.5 95.5 114.5 133

0.6 1 1 1.5 2

0.3 0.6 0.6 1 1

23.5 47.0 76.0 123 205

31.5 58.0 86.0 120 184

2,390 4,800 7,750 12,600 20,900

3,250 5,900 8,750 12,300 18,700

8,200 7,800 7,300 6,600 5,900

11,000 10,000 9,700 8,800 7,900

DB DB DB DB DB

DF DF DF DF DF

DT DT DT DT DT

74.5 75.5 77 78.5 82

85.5 94.5 103 116.5 138

87.5 95.5 105.5 119.5 143

0.6 1 1 1.5 2

0.3 0.6 0.6 1 1

24.0 47.5

33.5 61.0

2,450 4,850

3,400 6,200

7,700 7,300

10,000 9,700

DB DB

DF DF

DT DT

79.5 80.5

90.5 99.5

92.5 100.5

0.6 1

0.3 0.6

3 For back-to-back and face-to-face duplex arrangements, find with the formula 2Fa / Cor. Note: This bearing has a contact angle of 15°and is manufactured with accuracies of JIS Class 5 or higher.

B-59

●High Speed Single and Duplex Arrangements

d 75∼105mm Boundary dimensions

Basic load ratings dynamic

mm d

D

B

2B

static

dynamic

kN 2

rs min

rls min

2

Cr

Limiting speeds static

kgf Cor

Cr

rpm Cor

grease

oil

1

Bearing numbers

Load center mm

kg single

a

(approx.)

80

85

90

95

100

105

1 This value was achieved with laminated phenol resin machined cages; in the case of molded resin cages,with oil lubricant, the value will be 75% of this. 2 Minimal allowable dimension for chamfer dimension r or r1.

B-60

Mass

●High Speed Single and Duplex Arrangements r1a

Equivalent bearing load dynamic Pr=XFr+YFa

ra

Single, DT DB, DF Fa/Fr≦e Fa/Fr>e Fa/Fr≦e Fa/Fr>e X Y X Y X Y X Y

3)

Fa

ra da

Db

0.010 0.020 0.040 0.070 0.10 0.15 0.20 0.30 0.40 0.50

da

Da

e

Cor

ra

0.37 0.39 0.41 0.44 0.46 0.49 0.51 0.55 0.56 0.56

1

0

1.51 1.45 1.36 1.28 0.44 1.22 1.15 1.10 1.02 1.00 1.00

2.46 1.70 2.35 1.62 2.21 1.52 2.08 1.43 1.37 0.72 1.98 1.87 1.29 1.78 1.23 1.66 1.15 1.63 1.12 1.63 1.12

1

static Por=Xo Fr+Yo Fa Single, DT Xo Yo 0.5

DB, DF

Xo

0.46

Yo 0.92

1

For single and DT arrangement, When Por<Fr use Por=Fr

Basic load ratings dynamic static dynamic static (duplex) (duplex) kN kgf Cr Cor Cr Cor

1

Limiting speeds (duplex) rpm grease

oil

Bearing numbers

DB

DF

DT

Abutment and fillet dimensions

da

Da

mm Db

ras

r1as

min

max

max

max

max

78.0 129 223

91.5 131 208

7,950 13,100 22,800

9,300 13,400 21,200

6,800 6,200 5,500

9,000 8,200 7,400

DB DB DB

DF DF DF

DT DT DT

82 83.5 87

108 121.5 148

110.5 124.5 153

1 1.5 2

0.6 1 1

24.6 48.5 95.5 151 242

35.0 63.0 111 155 234

2,510 4,950 9,700 15,400 24,700

3,600 6,450 11,300 15,800 23,800

7,200 6,800 6,400 5,800 5,200

9,600 9,100 8,500 7,700 6,900

DB DB DB DB DB

DF DF DF DF DF

DT DT DT DT DT

84.5 85.5 87 90 92

95.5 104.5 118 130 158

97.5 105.5 120.5 134.5 163

0.6 1 1 2 2

0.3 0.6 0.6 1 1

36.0 65.0 98.0 169 261

49.5 84.5 117 181 261

3,650 6,650 9,950 17,200 26,600

5,050 8,650 12,000 18,400 26,600

6,800 6,400 6,000 5,400 4,900

9,100 8,600 8,000 7,200 6,500

DB DB DB DB DB

DF DF DF DF DF

DT DT DT DT DT

90.5 92 92 95 99

104.5 113 123 140 166

105.5 115.5 125.5 144.5 173

1 1 1 2 2.5

0.6 0.6 0.6 1 1

37.0 64.5 116 199 297

52.5 85.0 138 209 315

3,750 6,550 11,900 20,300 30,500

5,350 8,700 14,100 21,400 32,000

6,400 6,100 5,700 5,100 4,600

8,500 8,100 7,500 6,800 6,100

DB DB DB DB DB

DF DF DF DF DF

DT DT DT DT DT

95.5 97 98.5 100 104

109.5 118 131.5 150 176

110.5 120.5 134.5 154.5 183

1 1 1.5 2 2.5

0.6 0.6 1 1 1

38.0 67.0 119 226 320

55.5 91.5 146 240 350

3,850 6,850 12,200 23,000 32,500

5,650 9,350 14,900 24,400 35,500

6,000 5,800 5,400 4,800 4,300

8,000 7,700 7,100 6,400 5,800

DB DB DB DB DB

DF DF DF DF DF

DT DT DT DT DT

100.5 102 103.5 107 109

114.5 123 136.5 158 186

115.5 125.5 139.5 163 193

1 1 1.5 2 2.5

0.6 0.6 1 1 1

38.0 86.0 122 242 360

56.5 117 154 254 415

3,900 8,750 12,500 24,700 37,000

5,750 12,000 15,800 25,900 42,000

5,700 5,400 5,100 4,600 4,100

7,600 7,200 6,800 6,100 5,500

DB DB DB DB DB

DF DF DF DF DF

DT DT DT DT DT

105.5 107 108.5 112 114

119.5 133 141.5 168 201

120.5 135.5 144.5 173 208

1 1 1.5 2 2.5

0.6 0.6 1 1 1

39.0 87.5 143 264 385

59.5 123 179 286 450

4,000 8,900 14,600 26,900 39,000

6,050 12,500 18,200 29,100 46,000

5,500 5,200 4,800 4,400 3,900

7,300 6,900 6,400 5,800 5,200

DB DB DB DB DB

DF DF DF DF DF

DT DT DT DT DT

110.5 112 115 117 119

124.5 138 150 178 211

125.5 140.5 154.5 183 218

1 1 2 2 2.5

0.6 0.6 1 1 1

3 For back-to-back and face-to-face duplex arrangements, find with the formula 2Fa / Cor. Note: This bearing has a contact angle of 15°and is manufactured with accuracies of JIS Class 5 or higher.

B-61

●High Speed Single and Duplex Arrangements

d 110∼200mm Boundary dimensions

Basic load ratings dynamic

mm d

D

B

2B

static

dynamic

kN 2

rs min

rls min

2

Cr

Limiting speeds static

kgf Cor

Cr

rpm Cor

grease

oil

1

Bearing numbers

Load center mm

kg single

a

(approx.)

110

120

130

140

150

160

170 180

1 This value was achieved with laminated phenol resin machined cages; in the case of molded resin cages,with oil lubricant, the value will be 75% of this. 2 Minimal allowable dimension for chamfer dimension r or r1.

B-62

Mass

●High Speed Single and Duplex Arrangements r1a

Equivalent bearing load dynamic Pr=XFr+YFa

ra

Single, DT DB, DF Fa/Fr≦e Fa/Fr>e Fa/Fr≦e Fa/Fr>e X Y X Y X Y X Y

3)

Fa

ra da

Db

0.010 0.020 0.040 0.070 0.10 0.15 0.20 0.30 0.40 0.50

da

Da

e

Cor

ra

0.37 0.39 0.41 0.44 0.46 0.49 0.51 0.55 0.56 0.56

1

0

1.51 1.45 1.36 1.28 0.44 1.22 1.15 1.10 1.02 1.00 1.00

2.46 1.70 2.35 1.62 2.21 1.52 2.08 1.43 1.37 0.72 1.98 1.87 1.29 1.78 1.23 1.66 1.15 1.63 1.12 1.63 1.12

1

static Por=Xo Fr+Yo Fa Single, DT Xo Yo 0.5

DB, DF

Xo

0.46

Yo 0.92

1

For single and DT arrangement, When Por<Fr use Por=Fr

Basic load ratings dynamic static dynamic static (duplex) (duplex) kN kgf Cr Cor Cr Cor

1

Limiting speeds (duplex) rpm grease

oil

Bearing numbers

DB

DF

DT

Abutment and fillet dimensions

da

Da

mm Db

ras

r1as

min

max

max

max

max

56.0 89.0 164 286 405

85.0 127 203 320 485

5,750 9,050 16,700 29,200 41,000

8,700 12,900 20,700 32,500 49,000

5,200 4,900 4,600 4,100 3,700

6,900 6,600 6,100 5,500 5,000

DB DB DB DB DB

DF DF DF DF DF

DT DT DT DT DT

115.5 117 120 122 124

134.5 143 160 188 226

135.5 145.5 164.5 193 233

1 1 2 2 2.5

0.6 0.6 1 1 1

57.0 109 168 325

89.5 157 216 385

5,800 11,200 17,100 33,000

9,100 16,000 22,000 39,000

4,700 4,500 4,200 3,800

6,300 6,000 5,600 5,000

DB DB DB DB

DF DF DF DF

DT DT DT DT

125.5 127 130

144.5 158 170

145.5 160.5 174.5

1 1 2

0.6 0.6 1

3 For back-to-back and face-to-face duplex arrangements, find with the formula 2Fa / Cor. Note: This bearing has a contact angle of 15°and is manufactured with accuracies of JIS Class 5 or higher.

B-63

●Ultra-High Speed Angular Contact Ball Bearings BNT type Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa Fa >e Fr ≦e Fr e Cor X Y X Y 0.010 0.35 1.58 0.020 0.36 1.54 0.040 0.38 1.48 0.070 0.40 1.41 0.10 0.41 1.37 1 0 0.44 0.15 0.43 1.31 0.20 0.44 1.26 0.30 0.47 1.20 0.40 0.49 1.15 0.50 0.50 1.11 static Por=0.52Fr+0.54Fa

B r

ra

r

r1

ra

r d

D

Da

da

a

When Por<Fr use Por=Fr

d 10∼45mm Boundary dimensions mm 1

Basic load ratings dynamic static dynamic static kN kgf 1

Limiting speeds rpm

Cr

Cor

grease

oil

1.45 1.71

385 420

148 175

48,000 46,000

64,000 61,000

4.15 5.40

1.73 2.28

420 550

176 232

43,000 40,000

0.15 0.3

4.75 6.85

2.22 2.97

485 700

226 300

0.3 0.6

0.15 0.3

5.90 8.55

2.70 3.80

600 870

12 14

0.6 1

0.3 0.6

8.00 11.2

3.95 5.35

47 52

12 15

0.6 1

0.3 0.6

8.95 12.7

30

55 62

13 16

1 1

0.6 0.6

35

62 72

14 17

1 1.1

40

68 80

15 18

45

75 85

16 19

d

D

B

rs min

r1s min

Cr

Cor

10

26 30

8 9

0.3 0.6

0.15 0.3

3.75 4.15

12

28 32

8 10

0.3 0.6

0.15 0.3

15

32 35

9 11

0.3 0.6

17

35 40

10 12

20

42 47

25

Bearing numbers

Abutment and fillet dimensions mm da Da ras

Load Mass center mm kg

min

max

max

a

(approx.)

BNT000 BNT200

12.5 14.5

23.5 25.5

0.3 0.6

6.5 7

0.015 0.019

57,000 54,000

BNT001 BNT201

14.5 16.5

25.5 27.5

0.3 0.6

6.5 8

0.020 0.025

38,000 35,000

50,000 47,000

BNT002 BNT202

17.5 19.5

29.5 30.5

0.3 0.6

7.5 9

0.029 0.035

275 385

34,000 32,000

46,000 42,000

BNT003 BNT203

19.5 21.5

32.5 35.5

0.3 8.5 0.6 10

0.033 0.054

815 1,140

405 545

30,000 28,000

40,000 38,000

BNT004 BNT204

24.5 25.5

37.5 41.5

0.6 10 1 11.5

0.057 0.092

4.85 6.70

910 1,290

495 685

25,000 24,000

34,000 31,000

BNT005 BNT205

29.5 30.5

42.5 46.5

0.6 11 1 12.5

0.067 0.127

11.6 17.6

6.75 9.60

1,180 1,800

685 980

22,000 20,000

29,000 27,000

BNT006 BNT206

35.5 35.5

49.5 56.5

1 1

12.5 14

0.109 0.201

0.6 0.6

14.6 23.2

8.95 13.1

1,490 2,370

910 1,330

19,000 18,000

26,000 24,000

BNT007 BNT207

40.5 42

56.5 65

1 1

13.5 15.5

0.146 0.294

1 1.1

0.6 0.6

15.7 27.8

10.4 16.5

1,600 2,830

1,060 1,680

17,000 16,000

23,000 21,000

BNT008 BNT208

45.5 47

62.5 73

1 1

14.5 17

0.182 0.383

1 1.1

0.6 0.6

18.6 31.0

12.6 18.9

1,900 3,200

1,290 1,920

15,000 14,000

21,000 19,000

BNT009 BNT209

50.5 52

69.5 78

1 1

16 18

0.235 0.437

1 Minimal allowable dimension for chamfer dimension r or r1. Note: This bearing is manufactured with accuracies of JIS Class 5 or higher.

B-64

●Ultra-High Speed Angular Contact Ball Bearings HSB type Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa Fa >e Fr ≦e Fr e Cor X Y X Y 0.010 0.35 1.58 0.020 0.36 1.54 0.040 0.38 1.48 0.070 0.40 1.41 0.10 0.41 1.37 1 0 0.44 0.15 0.43 1.31 0.20 0.44 1.26 0.30 0.47 1.20 0.40 0.49 1.15 0.50 0.50 1.11 static Por=0.52Fr+0.54Fa

B r

r1

r1

r

D

ra ra

d

da

Da

a

When Por<Fr use Por=Fr

d 50∼110mm Boundary dimensions

Basic load ratings dynamic static dynamic static kN kgf

mm 1

1

Limiting speeds rpm grease

oil

745 1,160

15,000 14,000

20,000 19,000

1,380 2,300

940 1,380

14,000 13,000

9.95 15.0

1,420 2,410

1,010 1,530

14.3 24

10.7 15.8

1,460 2,450

0.6 0.6

18 29.4

13.5 19.9

1 1.1

0.6 0.6

18.5 31.5

16 22

1 1.1

0.6 0.6

120 130

18 22

1.1 1.1

90

125 140

18 24

95

130 145

100

d

D

B

rs min

r1s min

50

72 80

12 16

0.6 1

0.3 0.6

55

80 90

13 18

1 1.1

60

85 95

13 18

65

90 100

70

Cr

Cor

Cr

10.6 20.8

7.30 11.4

1,080 2,120

0.6 0.6

13.5 22.6

9.20 13.6

1 1.1

0.6 0.6

13.9 23.7

13 18

1 1.1

0.6 0.6

100 110

16 20

1 1.1

75

105 115

16 20

80

110 125

85

Cor

Bearing numbers

Abutment and fillet dimensions mm da Da ras

Load Mass center mm kg a

max

HSB910C HSB010C

54.5 55.5

67.5 74.5

0.6 14 1 16.5

0.141 0.256

18,000 17,000

HSB911C HSB011C

60.5 62

74.5 83

1 1

15.5 18.5

0.192 0.397

13,000 12,000

17,000 16,000

HSB912C HSB012C

65.5 67

79.5 88

1 1

16 19.5

0.206 0.425

1,090 1,610

12,000 11,000

16,000 15,000

HSB913C HSB013C

70.5 72

84.5 93

1 1

17 20

0.22 0.452

1,830 3,000

1,370 2,030

11,000 10,000

15,000 14,000

HSB914C HSB014C

75.5 94.5 77 103

1 1

19.5 22

0.362 0.64

14.4 22.4

1,880 3,200

1,470 2,290

10,000 9,500

14,000 13,000

HSB915C HSB015C

80.5 99.5 82 108

1 1

20 22.5

0.383 0.68

18.9 36

15.4 25.7

1,930 3,650

1,570 2,620

9,600 8,900

13,000 12,000

HSB916C HSB016C

85.5 104.5 87 118

1 1

20.5 24.5

0.405 0.915

0.6 0.6

22.7 36.5

18.3 26.8

2,320 3,700

1,860 2,740

9,000 8,400

12,000 11,000

HSB917C HSB017C

92 92

1 1

22.5 25.5

0.578 0.959

1.1 1.5

0.6 1

23.4 42

19.5 31.5

2,380 4,300

1,980 3,200

8,500 7,900

11,000 11,000

HSB918C HSB018C

97 118 98.5 131.5

1 23.5 1.5 27.5

0.607 1.25

18 24

1.1 1.5

0.6 1

24 42.5

20.6 32.5

2,440 4,350

2,110 3,350

8,100 7,500

11,000 10,000

HSB919C 102 123 HSB019C 103.5 136.5

1 24 1.5 28

0.636 1.3

140 150

20 24

1.1 1.5

0.6 1

33.5 44

28 35

3,450 4,500

2,850 3,600

7,600 7,100

10,000 9,500

HSB920C 107 133 HSB020C 108.5 141.5

1 26 1.5 28.5

0.856 1.36

105

145 160

20 26

1.1 2

0.6 1

34.5 50.5

29.7 40.5

3,550 5,150

3,050 4,150

7,300 6,700

9,700 9,000

HSB921C 112 HSB021C 115

138 150

1 2

26.5 31

0.893 1.73

110

150 170

20 28

1.1 2

0.6 1

35 62.5

30.5 49.5

3,550 6,400

3,150 5,000

6,900 6,400

9,200 8,600

HSB922C 117 HSB022C 120

143 160

1 2

27.5 33

0.928 2.13

1 Minimal allowable dimension for chamfer dimension r or r1. Note: This bearing is manufactured with accuracies of JIS Class 5 or higher.

B-65

113 123

max

(approx.)

min

●Ultra-High Speed Angular Contact Ball Bearings

Pr=XFr+YFa

B r

ra

r1

r1

ra

r

D

d

da

Da

Fa Cor

e

0.010 0.020 0.040 0.070 0.10 0.15 0.20 0.30 0.40 0.50

0.35 0.36 0.38 0.40 0.41 0.43 0.44 0.47 0.49 0.50

Fa Fr ≦e X Y

1

Fa >e Fr X Y 1.58 1.54 1.48 1.41 1.37 0 0.44 1.31 1.26 1.20 1.15 1.11

a

d 120∼170mm Boundary dimensions mm d

D

B

1

rs min

r1s min

Basic load ratings dynamic static dynamic static kN kgf 1

Cr

Cor

Cr

Cor

Limiting speeds rpm grease

150 160 170

1 Minimal allowable dimension for chamfer dimension r or r1. Note: This bearing is manufactured with accuracies of JIS Class 5 or higher.

B-66

oil

Bearing numbers

Abutment and fillet dimensions mm da Da ras min

max

max

Load Mass center mm kg a

(approx.)

B-67

●Ceramic Ball Angular Contact Ball Bearings 5S-BNT type B r

ra

r

r1

ra

r d

D

Da

da

a

d 10∼45mm Boundary dimensions

Basic load ratings dynamic (approx.) kN kgf

mm d

D

B

rs min

10

26 30

8 9

0.3 0.6

12

28 32

8 10

15

32 35

17

1

rls min

1

2

Bearing numbers da

Abutment and fillet dimensions mm Da

ras

min

max

max

Load center mm

Mass

a

(approx.)

kg

Cr

Cr

0.15 0.3

3.75 4.95

385 500

5S-BNT000 5S-BNT200

12.5 14.5

23.5 25.5

0.3 0.6

6.5 7

0.013 0.016

0.3 0.6

0.15 0.3

4.15 5.40

420 550

5S-BNT001 5S-BNT201

14.5 16.5

25.5 27.5

0.3 0.6

6.5 8

0.018 0.021

9 11

0.3 0.6

0.15 0.3

4.75 6.85

485 700

5S-BNT002 5S-BNT202

17.5 19.5

29.5 30.5

0.3 0.6

7.5 9

0.026 0.03

35 40

10 12

0.3 0.6

0.15 0.3

5.90 8.55

600 870

5S-BNT003 5S-BNT203

19.5 21.5

32.5 35.5

0.3 0.6

8.5 10

0.029 0.046

20

42 47

12 14

0.6 1

0.3 0.6

8.00 11.2

815 1,140

5S-BNT004 5S-BNT204

24.5 25.5

37.5 41.5

0.6 1

10 11.5

0.05 0.08

25

47 52

12 15

0.6 1

0.3 0.6

8.95 12.7

910 1,290

5S-BNT005 5S-BNT205

29.5 30.5

42.5 46.5

0.6 1

11 12.5

0.059 0.113

30

55 62

13 16

1 1

0.6 0.6

11.6 17.6

1,180 1,800

5S-BNT006 5S-BNT206

35.5 35.5

49.5 56.5

1 1

12.5 14

0.097 0.113

35

62 72

14 17

1 1.1

0.6 0.6

14.6 23.2

1,490 2,370

5S-BNT007 5S-BNT207

40.5 42

56.5 65

1 1

13.5 15.5

0.128 0.255

40

68 80

15 18

1 1.1

0.6 0.6

15.7 27.8

1,600 2,830

5S-BNT008 5S-BNT208

45.5 47

62.5 73

1 1

14.5 17

0.162 0.331

45

75 85

16 19

1 1.1

0.6 0.6

18.6 31.0

1,900 3,200

5S-BNT009 5S-BNT209

50.5 52

69.5 78

1 1

16 18

0.208 0.374

1 Minimal allowable dimension for chamfer dimension r or r1. 2 There is no JIS regulation table concerning basic rated loads for ceramic ball angular contact ball bearings. In NTN wear life testing, these bearings displayed the same wear life as steel angular contact ball bearings; therefore, the values for steel bearings have been given as reference.

B-68

●Ceramic Ball Angular Contact Ball Bearings 5S-HSB type B r

r1

r1

r

D

ra ra

d

da

Da

a

d 50∼120mm Boundary dimensions

Basic load ratings dynamic (approx.) kN kgf

mm 1

1

Bearing numbers

ras

min

max

max

Load center mm

Mass

a

(approx.)

kg

D

B

rs min

rls min

50

72 80

12 16

0.6 1

0.3 0.6

10.6 20.8

1,080 2,120

5S-HSB910C 5S-HSB010C

54.5 55.5

67.5 74.5

0.6 1

14 16.5

0.134 0.234

55

80 90

13 18

1 1.1

0.6 0.6

13.5 22.6

1,380 2,300

5S-HSB911C 5S-HSB011C

60.5 62

74.5 83

1 1

15.5 18.5

0.18 0.372

60

85 95

13 18

1 1.1

0.6 0.6

13.9 23.7

1,420 2,410

5S-HSB912C 5S-HSB012C

65.5 67

79.5 88

1 1

16 19.5

0.194 0.398

65

90 100

13 18

1 1.1

0.6 0.6

14.3 24.0

1,460 2,450

5S-HSB913C 5S-HSB103C

70.5 72

84.5 93

1 1

17 20

0.207 0.423

70

100 110

16 20

1 1.1

0.6 0.6

18.0 29.4

1,830 3,000

5S-HSB914C 5S-HSB014C

75.5 77

94.5 103

1 1

19.5 22

0.343 0.601

75

105 115

16 20

1 1.1

0.6 0.6

18.5 31.5

1,880 3,200

5S-HSB915C 5S-HSB015C

80.5 82

99.5 108

1 1

20 22.5

0.363 0.636

80

110 125

16 22

1 1.1

0.6 0.6

18.9 36.0

1,930 3,650

5S-HSB916C 5S-HSB016C

85.5 87

104.5 118

1 1

20.5 24.5

0.384 0.86

85

120 130

18 22

1.1 1.1

0.6 0.6

22.7 36.5

2,320 3,700

5S-HSB917C 5S-HSB017C

92 92

113 123

1 1

22.5 25.5

0.55 0.901

90

125 140

18 24

1.1 1.5

0.6 1

23.4 42.0

2,380 4,300

5S-HSB918C 5S-HSB018C

97 98.5

118 131.5

1 1.5

23.5 27.5

0.577 1.18

95

130 145

18 24

1.1 1.5

0.6 1

24.0 42.5

2,440 4,350

5S-HSB919C 5S-HSB019C

102 103.5

123 136.5

1 1.5

24 28

0.604 1.23

140

20 24

1.1 1.5

0.6 1

33.5 44.0

3,450 4,500

5S-HSB920C 5S-HSB020C

107 108.5

133 141.5

1 1.5

26 28.5

0.837 1.28

145

20 26

1.1 2

0.6 1

34.5 50.5

3,550 5,150

5S-HSB921C 5S-HSB021C

112 115

138 150

1 2

26.5 31

0.837 1.63

150

20 28

1.1 2

0.6 1

35.0 62.5

3,550 6,400

5S-HSB922C 5S-HSB022C

117 120

143 160

1 2

27.5 33

0.87 1.99

165

22 28

1.1 2

0.6 1

41.0 63.0

4,150 6,450

5S-HSB924C 5S-HSB024C

127 130

158 170

1 2

30 34

1.2 2.13

105 160 110 170 120 180

Cr

da

Abutment and fillet dimensions mm Da

d

100 150

Cr

2

1 Minimal allowable dimension for chamfer dimension r or r1. 2 There is no JIS formula concerning basic rated loads for ceramic ball angular contact ball bearings. In NTN fatigue life tests, these bearings achieved the same fatigue life as steel angular contact ball bearings; therefore, the values for steel bearings have been given as reference. Note: For bearings with a bore diameter larger than 120mm, consult NTN Engineering. B-69

●Four-Point Contact Ball Bearings QJ type B ra

r r

ra

D

d

da

Da

Equivalent bearing load dynamic Pa=Fa static Poa= Fa

a

d 30∼90mm Boundary dimensions

Basic load ratings dynamic static dynamic static kN kgf

mm 1

Limiting speeds rpm

Ca

Coa

Ca

Coa

grease

oil

1.1

39.5

57.5

4,050

5,850

8,000

11,000

21

1.5

49.5

73.0

5,050

7,450

7,000

80 90

18 23

1.1 1.5

44.0 60.5

70.5 91.5

4,500 6,200

7,200 9,350

45

85 100

19 25

1.1 1.5

49.5 81.0 79.0 121

5,050 8,050

50

90 110

20 27

1.1 2

52.0 89.0 92.0 145

55

100 120

21 29

1.5 2

60

110 130

22 31

65

120 140

70

d

D

B

rs min

30

72

19

35

80

40

Bearing numbers

Abutment and fillet dimensions mm da Da ras

Load center mm a

Mass kg (approx.)

min

max

max

QJ306

37

65

1

30

0.42

9,300

QJ307

43.5

71.5

1.5

33

0.57

6,900 6,200

9,200 8,200

QJ208 QJ308

47 48.5

73 81.5

1 1.5

34.5 37.5

0.45 0.78

8,250 12,300

6,200 5,500

8,200 7,400

QJ209 QJ309

52 53.5

78 91.5

1 1.5

37.5 42

0.52 1.05

5,300 9,400

9,050 14,700

5,600 5,000

7,500 6,700

QJ210 QJ310

57 60

83 100

1 2

40.5 46

0.603 1.38

64.0 112 106 170

6,550 10,900

11,400 17,400

5,100 4,600

6,800 6,100

QJ211 QJ311

63.5 65

91.5 110

1.5 2

44.5 50.5

0.78 1.76

1.5 2.1

77.5 138 122 198

7,900 12,400

14,000 20,200

4,700 4,200

6,300 5,700

QJ212 QJ312

68.5 72

101.5 118

1.5 2

49 55

0.98 2.18

23 33

1.5 2.1

84.5 153 138 228

8,600 14,100

15,600 23,200

4,400 3,900

5,800 5,200

QJ213 QJ313

73.5 77

111.5 128

1.5 2

53.5 59

1.24 2.7

125 150

24 35

1.5 2.1

92.0 168 155 260

9,350 15,800

17,200 26,500

4,000 3,600

5,400 4,800

QJ214 QJ314

78.5 82

116.5 138

1.5 2

56.5 63.5

1.36 3.27

75

130 160

25 37

1.5 2.1

96.0 183 169 294

9,750 17,200

18,600 30,000

3,800 3,400

5,000 4,500

QJ215 QJ315

83.5 87

121.5 148

1.5 2

59 68

1.53 3.9

80

140 170

26 39

2 2.1

112 183

217 330

11,400 18,600

22,100 33,500

3,500 3,200

4,700 4,200

QJ216 QJ316

90 92

130 158

2 2

63.5 72

1.83 4.64

85

150 180

28 41

2 3

126 197

252 370

12,800 20,100

25,700 37,500

3,300 3,000

4,400 4,000

QJ217 QJ317

95 99

140 166

2 2.5

68 76.5

2.3 5.43

90

160 190

30 43

2 3

148 212

293 410

15,100 21,600

29,900 41,500

3,100 2,800

4,200 3,800

QJ218 100 QJ318 104

150 176

2 2.5

72 81

2.76 6.31

1 Smallest allowable dimension for chamfer dimension r. Note: 1. These bearings are also manufactured with a slot in the chamfer section of the outer ring to stop whirling. 2. This bearing is widely used in applications where the only type of load is axial. When considering it for use where radial loads are applied, consult NTN Engineering.

B-70

●Four-Point Contact Ball Bearings QJ type B ra

r r

ra

D

d

da

Da

Equivalent bearing load dynamic Pa=Fa static Poa= Fa

a

d 95∼120mm Boundary dimensions

Basic load ratings dynamic static dynamic static kN kgf

mm d

D

1

Limiting speeds rpm

B

rs min

Ca

Coa

Ca

Coa

grease

oil

Bearing numbers

Abutment and fillet dimensions mm da Da ras min

max

Load center mm

max

a

Mass kg (approx.)

95

170 200

32 45

2.1 3

168 227

335 450

17,200 23,100

34,000 46,000

3,000 2,700

3,900 3,500

QJ219 107 QJ319 109

158 186

2 2.5

76.5 85

3.35 7.41

100

180 215

34 47

2.1 3

181 273

355 585

18,400 27,800

36,000 59,500

2,800 2,500

3,700 3,400

QJ220 112 QJ320 114

168 201

2 2.5

81 91

4.02 9.14

105

190 225

36 49

2.1 3

197 273

400 585

20,100 27,900

41,000 59,500

2,700 2,400

3,600 3,200

QJ221 117 QJ321 119

178 211

2 2.5

85 4.75 95.5 10.4

110

200 240

38 50

2.1 3

213 305

450 680

21,700 31,000

45,500 69,500

2,500 2,300

3,400 3,100

QJ222 122 QJ322 124

188 226

2 89.5 5.62 2.5 101 12

120

215 260

40 55

2.1 3

240 325

540 765

24,500 33,000

55,000 78,000

2,300 2,100

3,100 2,800

QJ224 132 QJ324 134

203 246

2 96.5 6.75 2.5 110 15.9

1 Smallest allowable dimension for chamfer dimension r. Note: 1. These bearings are also manufactured with a slot in the chamfer section of the outer ring to stop whirling. 2. This bearing is widely used in applications where the only type of load is axial. When considering it for use where radial loads are applied, consult NTN Engineering.

B-71

●Double Row Angular Contact Ball Bearings

B ra

r

ra

r D

d

Da

Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa Fr ≦e Fr >e e X Y X Y 0.80 1 0.78 0.63 1.24 static Por=Fr+0.66Fa

da

a

d 10∼65mm Boundary dimensions dynamic mm 1

Basic load ratings static dynamic kN kgf

Limiting speeds static

Bearing numbers

rpm grease

oil

385

14,000

19,000

930

515

13,000

6.05 10.1

1,020 1,760

615 1,030

12.8 20.4

7.90 12.1

1,300 2,080

1 1.1

19.0 20.6

12.1 12.7

20.6 25.4

1 1.1

20.6 30.5

62 72

23.8 30.2

1 1.1

35

72 80

27 34.9

40

80 90

45

d

D

B

rs min

Cr

Cor

Cr

Cor

10

30

14.3

0.6

6.95

3.80

710

12

32

15.9

0.6

9.15

5.05

15

35 42

15.9 19

0.6 1

10.0 17.2

17

40 47

17.5 22.2

0.6 1

20

47 52

20.6 22.2

25

52 62

30

Abutment and fillet dimensions mm da Da ras

Load center mm

Mass kg

min

max

max

a

(approx.)

5200

14.5

25.5

0.6

17.5

0.049

17,000

5201

16.5

27.5

0.6

19

0.057

11,000 9,900

15,000 13,000

5202 5302

19.5 20.5

30.5 36.5

0.6 1

21 26

0.064 0.132

805 1,230

9,900 9,000

13,000 12,000

5203 5303

21.5 22.5

35.5 41.5

0.6 1

24 28.5

0.096 0.181

1,940 2,110

1,230 1,290

8,800 8,000

12,000 11,000

5204 5304

25.5 27

41.5 45

1 1

28 30.5

0.153 0.217

14.3 20.5

2,100 3,100

1,450 2,090

7,300 6,700

9,800 8,900

5205 5305

30.5 32

46.5 55

1 1

31.5 36.5

0.175 0.362

28.6 39.5

20.4 27.5

2,920 4,050

2,080 2,800

6,300 5,700

8,400 7,600

5206 5306

35.5 37

56.5 65

1 1

36.5 43

0.286 0.553

1.1 1.5

38.0 49.5

27.8 35.0

3,850 5,050

2,830 3,550

5,500 5,000

7,400 6,600

5207 5307

42 43.5

65 71.5

1 1.5

42.5 48.5

0.436 0.766

30.2 36.5

1.1 1.5

42.5 60.5

32.5 44.0

4,350 6,150

3,300 4,500

4,900 4,400

6,600 5,900

5208 5308

47 48.5

73 81.5

1 1.5

47.5 53.5

0.59 1.01

85 100

30.2 39.7

1.1 1.5

48.0 72.5

37.0 54.0

4,900 7,400

3,750 5,500

4,400 4,000

5,900 5,300

5209 5309

52 53.5

78 91.5

1 1.5

50.5 60

0.64 1.34

50

90 110

30.2 44.4

1.1 2

51.0 85.5

42.0 64.5

5,200 8,700

4,250 6,600

4,000 3,600

5,300 4,800

5210 5310

57 60

1 2

54 65.5

0.689 1.81

55

100 120

33.3 49.2

1.5 2

63.0 106

53.0 82.0

6,450 10,800

5,400 8,400

3,600 3,300

4,900 4,400

5211 5311

63.5 91.5 65 110

1.5 2

60.5 73

0.986 2.32

60

110 130

36.5 54

1.5 2.1

71.5 122

58.5 95.5

7,300 12,400

5,950 9,750

3,400 3,000

4,500 4,000

5212 5312

68.5 101.5 72 118

1.5 2

65.5 79.5

1.27 3.05

65

120 140

38.1 58.7

1.5 2.1

83.5 138

72.5 109

8,500 14,000

7,400 11,200

3,100 2,800

4,200 3,700

5213 5313

73.5 111.5 77 128

1.5 2

71 84.5

1.57 3.96

1 Smallest allowable dimension for chamfer dimension r.

B-72

83 100

●Double Row Angular Contact Ball Bearings

B ra

r

ra

r D

d

Da

Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa Fr ≦e Fr >e e X Y X Y 0.80 1 0.78 0.63 1.24 static Por=Fr+0.66Fa

da

a

d 70∼100mm Boundary dimensions dynamic mm 1

Basic load ratings static dynamic kN kgf

Limiting speeds static

Bearing numbers

rpm

Abutment and fillet dimensions mm da Da ras

Load center mm

Mass

max

a

(approx.)

kg

Cr

Cor

grease

oil

79.5 125

9,250 15,800

8,100 12,700

2,900 2,600

3,900 3,500

5214 5314

78.5 116.5 82 138

1.5 2

74.5 93

1.8 4.74

80.5 141

9,200 17,200

8,200 14,400

2,700 2,400

3,600 3,200

5215 5315

83.5 121.5 87 148

1.5 2

78 98

1.9 5.65

95.5

10,800

9,700

2,500

3,400

5216

90

130

2

83.5

2.39

106

11,400

10,900

2,400

3,200

5217

95

140

2

91

3.06

140

129

14,300

13,100

2,200

3,000

5218 100

150

2

95.5

3.73

2.1

159

148

16,200

15,000

2,100

2,800

5219 107

158

2

101

4.86

2.1

178

167

18,200

17,100

2,000

2,700

5220 112

168

2

108

5.94

d

D

B

rs min

Cr

70

125 150

39.7 63.5

1.5 2.1

90.5 155

75

130 160

41.3 68.3

1.5 2.1

90.0 168

80

140

44.4

2

106

85

150

49.2

2

112

90

160

52.4

2

95

170

55.6

100

180

60.3

Cor

1 Smallest allowable dimension for chamfer dimension r.

B-73

min

max

●Double Row Angular Contact Ball Bearings

B r r D

d

a Shielded type (ZZ)

Non-contact sealed type (LLB)

Contact sealed type (LLU)

d 10∼40mm Boundary dimensions

Basic load ratings static dynamic

dynamic mm

kN

d

D

B

rs min

10

30

14.3

12

32

15

1

Limiting speeds

2

Bearing numbers

static kgf

rpm Cor

grease

oil

ZZ,LLB,LLU

Z,LB

sealed

non-contact contact type type

Cr

Cor

Cr

0.6

6.95

3.80

710

385

14,000

19,000

5200AZZ

LLB

LLU

15.9

0.6

7.60

4.50

775

455

13,000

17,000

5201AZZ

LLB

LLU

35 42

15.9 19

0.6 1

8.20 14.2

5.25 8.85

835 1,450

535 900

11,000 9,900

15,000 13,000

5202BZZ 5302AZZ

LLB LLB

LLU LLU

17

40 47

17.5 22.2

0.6 1

10.8 17.4

7.10 10.4

1,100 1,770

720 1,060

9,900 9,000

13,000 12,000

5203BZZ 5303CZZ

LLB LLB

LLU LLU

20

47 52

20.6 22.2

1 1.1

15.8 19.1

10.1 12.4

1,610 1,940

1,030 1,260

8,800 8,000

12,000 11,000

5204BZZ 5304BZZ

LLB LLB

LLU LLU

25

52 62

20.6 25.4

1 1.1

18.2 26.5

13.2 17.9

1,850 2,700

1,350 1,830

7,300 6,700

9,800 8,900

5205BZZ 5305CZZ

LLB LLB

LLU LLU

30

62 72

23.8 30.2

1 1.1

26.1 33.0

19.7 24.3

2,660 3,350

2,010 2,480

6,300 5,700

8,400 7,600

5206CZZ 5306AZZ

LLB LLB

LLU LLU

35

72 80

27 34.9

1.1 1.5

33.0 49.5

24.5 35.0

3,350 5,050

2,500 3,550

5,500 5,000

7,400 6,600

5207AZZ 5307AZZ

LLB LLB

LLU LLU

40

80 90

30.2 36.5

1.1 1.5

40.5 55.0

32.0 40.0

4,100 5,600

3,250 4,100

4,900 4,400

6,600 5,900

5208AZZ 5308AZZ

LLB LLB

LLU LLU

1 Smallest allowable dimension for chamfer dimension r. 2 This bearing number is for double sealed and double shielded type bearings, but single sealed and single shielded type are also available.

B-74

●Double Row Angular Contact Ball Bearings

ra Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa ≦e Fr Fr >e e X Y X Y 0.80 1 0.78 0.63 1.24

ra

Da

da

static Por=Fr+0.66Fa

Abutment and fillet dimensions mm da min

max

Da

ras

max

max

Load center mm

Mass

a

(approx.)

kg

14.5

16

25.5

0.6

16.5

0.049

16.5

17

27.5

0.6

18.5

0.057

19.5 20.5

20 23

30.5 36.5

0.6 1

20.5 24

0.064 0.132

21.5 22.5

23 25

35.5 41.5

0.6 1

23 27

0.096 0.181

25.5 27

27 28.5

41.5 45

1 1

27.5 29.5

0.153 0.217

30.5 32

32 35

46.5 55

1 1

30.5 35.5

0.175 0.362

35.5 37

39 43

56.5 65

1 1

36.5 41

0.286 0.553

42 43.5

45 47

65 71.5

1 1.5

42 47.5

0.436 0.766

47 48.5

51 54

73 81.5

1 1.5

46 52.5

0.59 1.01

B-75

●Self-Aligning Ball Bearings

1. Design features and characteristics

2. Standard cage types

The outer ring raceway of self-aligning ball bearings forms a spherical surface whose center is common to the bearing center. The inner ring of the bearing has two raceways. The balls, cage, and inner ring of these bearings are capable of a shifting in order to compensate for a certain degree of misalignment with the outer rings. As a result, the bearing is able to align itself and compensate for shaft / housing finishing unevenness, bearing fitting error, and other sources of misalignment as shown in Diagram 1. However, since axial load capacity is limited, self-aligning bearings are not suitable for applications with heavy axial loads. Furthermore, if an adapter is used on the tapered bore of the inner diameter, installation and disassembly are much simpler and for this reason adapters are often used on equipment with drive shafts.

Self aligning ball bearings use pressed cages with the exception of the 1200-1206 series which use molded resin cages. The material characteristics of the resin cages make them unsuitable for use in applications where temperatures exceed 120˚C.

3. Ball protrusion Bearings with part numbers listed in Diagram 2 below have balls which protrude slightly from the bearing face. Their degree of protrusion is listed in Diagram 2.

B1 B

Units mm

Allowable misalignment

Bearing number 1318(K) 1319(K) 1320(K) 1321 1322(K)

Width dimension B 43 45 47 49 50

Total width dimension B1 45 48 52 54 55

Diagram 2.

Diagram 1.

4. Allowable misalignment angle Listed below are the allowable misalignment angles for bearings with self-aligning characteristics when placed under normal load conditions. This degree of allowable misalignment may be limited by the design of structures around the bearing. Allowable misalignment under normal loads (loads equivalent to 0.09 Cr): 0.07 rad (4˚)

B-77

●Self-Aligning Ball Bearings

B ra

r

ra

r d

d

D

Cylindrical bore

Da

da

Tapered bore taper 1:12

d 10∼35mm Boundary dimensions mm

Basic load ratings dynamic static dynamic static kN kgf

Limiting speeds

Bearing numbers

rpm

2

Abutment and fillet dimensions mm da Da ras

Cor

grease

oil

cylindrical bore

tapered bore

560 745 740 1,030

122 162 165 219

21,000 19,000 18,000 17,000

24,000 23,000 21,000 20,000

1200 2200 1300 2300

― ― ― ―

14 14 14 14

26 26 31 31

0.6 0.6 0.6 0.6

1.27 1.73 2.16 2.71

570 775 965 1,200

130 177 221 277

18,000 17,000 16,000 15,000

22,000 20,000 18,000 17,000

1201 2201 1301 2301

― ― ― ―

16 16 17 17

28 28 32 32

0.6 0.6 1 1

7.45 7.70 9.55 12.0

1.75 1.85 2.30 2.90

760 785 975 1,230

178 188 234 295

16,000 15,000 13,000 13,000

19,000 18,000 16,000 15,000

1202 2202 1302 2302

― ― ― ―

19 19 20 20

31 31 37 37

0.6 0.6 1 1

0.6 0.6 1 1

7.90 9.80 12.5 14.4

2.01 2.41 3.20 3.55

805 995 1,280 1,470

205 246 325 365

14,000 13,000 12,000 11,000

17,000 16,000 14,000 14,000

1203 2203 1303 2303

― ― ― ―

21 21 22 22

36 36 42 42

0.6 0.6 1 1

14 18 15 21

1 1 1.1 1.1

9.90 12.6 12.4 18.1

2.61 3.30 3.35 4.70

1,010 1,280 1,270 1,850

266 335 340 480

13,000 12,000 11,000 10,000

15,000 14,000 13,000 12,000

1204 2204 1304 2304

1204K 2204K 1304K 2304K

25 25 26.5 26.5

42 42 45.5 45.5

1 1 1 1

25

52 52 62 62

15 18 17 24

1 1 1.1 1.1

12.1 12.3 18.0 24.4

3.30 3.45 5.00 6.60

1,230 1,250 1,830 2,490

335 350 510 670

11,000 10,000 9,100 8,500

13,000 12,000 11,000 10,000

1205 2205 1305 2305

1205K 2205K 1305K 2305K

30 30 31.5 31.5

47 47 55.5 55.5

1 1 1 1

30

62 62 72 72

16 20 19 27

1 1 1.1 1.1

15.6 15.2 21.3 31.5

4.65 4.50 6.30 8.75

1,590 1,550 2,170 3,200

475 460 645 895

9,200 8,600 7,700 7,200

11,000 10,000 9,100 8,500

1206 2206 1306 2306

1206K 2206K 1306K 2306K

35 35 36.5 36.5

57 57 65.5 65.5

1 1 1 1

35

72 72 80 80

17 23 21 31

1.1 1.1 1.5 1.5

15.8 21.5 25.1 39.5

5.10 6.60 7.85 11.3

1,610 2,190 2,560 4,000

520 670 800 1,150

8,000 7,500 6,800 6,300

9,400 8,800 8,000 7,400

1207 2207 1307 2307

1207K 2207K 1307K 2307K

41.5 41.5 43 43

65.5 65.5 72 72

1 1 1.5 1.5

d

D

B

rs min

10

30 30 35 35

9 14 11 17

12

32 32 37 37

1

Cr

Cor

Cr

0.6 0.6 0.6 0.6

5.50 7.30 7.25 10.1

1.19 1.59 1.62 2.15

10 14 12 17

0.6 0.6 1 1

5.60 7.60 9.45 11.8

15

35 35 42 42

11 14 13 17

0.6 0.6 1 1

17

40 40 47 47

12 16 14 19

20

47 47 52 52

min

1 Smallest allowable dimension for chamfer dimension r. 2 "K" indicates bearings have tapered bore with a taper ratio of 1: 12.

B-78

max

max

●Self-Aligning Ball Bearings

Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa ≦e Fr Fr >e X Y X Y 1 Y1 0.65 Y2 static Por=Fr+Yo Fa For values of e, Y1, Y2 and Yo see the table below.

Constant

Axial load factors

Mass kg cylindrical bore tapered bore

e

Y1

Y2

Yo

0.32 0.64 0.34 0.67

2 0.98 1.85 0.95

3.09 1.52 2.87 1.46

2.09 1.03 1.94 0.99

0.033 0.047 0.058 0.083

― ― ― ―

0.36 0.58 0.33 0.61

1.76 1.09 1.91 1.03

2.73 1.69 2.95 1.59

1.85 1.14 2 1.08

0.04 0.051 0.066 0.091

― ― ― ―

0.33 0.50 0.34 0.52

1.91 1.25 1.86 1.22

2.95 1.94 2.88 1.88

2 1.31 1.95 1.27

0.049 0.06 0.092 0.114

― ― ― ―

0.31 0.51 0.32 0.52

2.03 1.23 1.97 1.22

3.14 1.90 3.06 1.88

2.12 1.29 2.07 1.28

0.072 0.088 0.128 0.156

― ― ― ―

0.29 0.49 0.29 0.51

2.2 1.3 2.16 1.23

3.4 2.01 3.34 1.9

2.3 1.36 2.26 1.29

0.116 0.14 0.16 0.206

0.114 0.137 0.158 0.201

0.28 0.41 0.28 0.48

2.28 1.55 2.28 1.32

3.53 2.39 3.53 2.05

2.39 1.62 2.39 1.39

0.138 0.157 0.255 0.334

0.135 0.153 0.251 0.326

0.25 0.38 0.26 0.44

2.55 1.64 2.40 1.42

3.94 2.53 3.72 2.2

2.67 1.72 2.52 1.49

0.217 0.256 0.383 0.496

0.213 0.25 0.377 0.485

0.23 0.37 0.25 0.46

2.71 1.69 2.48 1.37

4.2 2.61 3.84 2.13

2.84 1.77 2.60 1.44

0.317 0.392 0.5 0.671

0.312 0.382 0.492 0.653

(approx.)

B-79

●Self-Aligning Ball Bearings

B ra

r

ra

r d

d

D

Cylindrical bore

Da

da

Tapered bore taper 1:12

d 40∼75mm Boundary dimensions mm

Basic load ratings dynamic static dynamic static kN kgf

Limiting speeds

Bearing numbers

rpm

2

Abutment and fillet dimensions mm da Da ras

Cor

Cr

Cor

grease

oil

cylindrical bore

tapered bore

min

max

max

19.3 22.3 29.6 45.0

6.55 7.35 9.70 13.5

1,970 2,270 3,000 4,600

665 750 990 1,380

7,100 6,700 6,000 5,600

8,400 7,900 7,000 6,600

1208 2208 1308 2308

1208K 2208K 1308K 2308K

46.5 46.5 48 48

73.5 73.5 82 82

1 1 1.5 1.5

1.1 1.1 1.5 1.5

21.9 23.2 38.0 54.0

7.35 8.15 12.7 16.7

2,230 2,360 3,900 5,500

750 830 1,300 1,700

6,400 6,000 5,400 5,000

7,500 7,100 6,300 5,900

1209 2209 1309 2309

1209K 2209K 1309K 2309K

51.5 51.5 53 53

78.5 78.5 92 92

1 1 1.5 1.5

20 23 27 40

1.1 1.1 2 2

22.7 23.2 43.5 64.5

8.10 8.45 14.1 20.2

2,320 2,370 4,400 6,550

830 865 1,440 2,060

5,800 5,500 4,900 4,600

6,800 6,400 5,800 5,400

1210 2210 1310 2310

1210K 2210K 1310K 2310K

56.5 83.5 56.5 83.5 59 101 59 101

1 1 2 2

55

100 100 120 120

21 25 29 43

1.5 1.5 2 2

26.8 26.5 51.5 75.5

10.0 9.90 17.9 24.0

2,730 2,700 5,250 7,700

1,020 1,010 1,820 2,450

5,300 5,000 4,500 4,200

6,200 5,800 5,200 4,900

1211 2211 1311 2311

1211K 2211K 1311K 2311K

63 63 64 64

92 92 111 111

1.5 1.5 2 2

60

110 110 130 130

22 28 31 46

1.5 1.5 2.1 2.1

30.0 34.0 57.0 87.0

11.5 12.6 20.8 28.2

3,100 3,450 5,850 8,850

1,180 1,290 2,130 2,880

4,900 4,600 4,100 3,800

5,800 5,400 4,800 4,500

1212 2212 1312 2312

1212K 2212K 1312K 2312K

68 68 71 71

102 102 119 119

1.5 1.5 2 2

65

120 120 140 140

23 31 33 48

1.5 1.5 2.1 2.1

31.0 43.5 62.0 96.0

12.5 16.4 22.9 32.5

3,150 4,450 6,350 9,800

1,280 1,670 2,330 3,300

4,500 4,200 3,800 3,600

5,300 5,000 4,500 4,200

1213 2213 1313 2313

1213K 2213K 1313K 2313K

73 73 76 76

112 112 129 129

1.5 1.5 2 2

70

125 125 150 150

24 31 35 51

1.5 1.5 2.1 2.1

34.5 44.0 74.5 109

13.8 17.1 27.7 37.5

3,550 4,500 7,600 11,100

1,410 1,740 2,830 3,850

4,200 3,900 3,500 3,300

4,900 4,600 4,200 3,900

1214 2214 1314 2314

― ― ― ―

78 78 81 81

117 117 139 139

1.5 1.5 2 2

75

130 130 160 160

25 31 37 55

1.5 1.5 2.1 2.1

39.0 44.5 79.5 123

15.7 17.8 30.0 43.0

3,950 4,500 8,100 12,500

1,600 1,820 3,050 4,350

3,900 3,700 3,300 3,100

4,600 4,300 3,900 3,600

1215 2215 1315 2315

1215K 2215K 1315K 2315K

83 83 86 86

122 122 149 149

1.5 1.5 2 2

1

d

D

B

rs min

40

80 80 90 90

18 23 23 33

1.1 1.1 1.5 1.5

45

85 85 100 100

19 23 25 36

50

90 90 110 110

Cr

1 Smallest allowable dimension for chamfer dimension r. 2 "K" indicates bearings have tapered bore with a taper ratio of 1: 12.

B-80

●Self-Aligning Ball Bearings

Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa ≦e Fr Fr >e X Y X Y 1 Y1 0.65 Y2 static Por=Fr+Yo Fa For values of e, Y1, Y2 and Yo see the table below.

Constant

Axial load factors

Mass kg cylindrical bore tapered bore

e

Y1

Y2

Yo

0.22 0.33 0.25 0.43

2.81 1.91 2.57 1.45

4.35 2.95 3.98 2.25

2.95 2.00 2.69 1.52

0.414 0.493 0.709 0.918

0.407 0.482 0.698 0.895

0.21 0.30 0.25 0.41

2.99 2.07 2.56 1.53

4.63 3.20 3.95 2.36

3.13 2.17 2.68 1.60

0.457 0.54 0.953 1.23

0.448 0.528 0.938 1.2

0.21 0.28 0.23 0.42

3.07 2.23 2.7 1.49

4.75 3.45 4.19 2.3

3.21 2.33 2.83 1.56

0.515 0.583 1.2 1.63

0.504 0.569 1.18 1.59

0.20 0.28 0.23 0.41

3.19 2.24 2.71 1.53

4.94 3.47 4.20 2.37

3.34 2.35 2.84 1.6

0.692 0.787 1.58 2.1

0.679 0.769 1.56 2.05

0.18 0.28 0.22 0.40

3.41 2.26 2.85 1.56

5.27 3.5 4.42 2.41

3.57 2.37 2.99 1.63

0.879 1.08 1.96 2.59

0.864 1.06 1.93 2.52

0.17 0.28 0.23 0.38

3.70 2.26 2.74 1.64

5.73 3.5 4.25 2.54

3.88 2.37 2.87 1.72

1.13 1.44 2.42 3.2

1.11 1.41 2.38 3.12

0.18 0.26 0.22 0.38

3.48 2.38 2.83 1.67

5.38 3.68 4.37 2.59

3.64 2.49 2.96 1.75

1.24 1.52 2.99 3.92

0.17 0.25 0.22 0.38

3.61 2.52 2.81 1.65

5.58 3.89 4.35 2.55

3.78 2.63 2.95 1.72

1.33 1.58 3.55 4.78

(approx.)

― ― ― ― 1.31 1.54 3.5 4.66 B-81

●Self-Aligning Ball Bearings

B ra

r

ra

r d

d

D

Cylindrical bore

Da

da

Tapered bore taper 1:12

d 80∼110mm Boundary dimensions mm

Basic load ratings dynamic static dynamic static kN kgf

Limiting speeds

Bearing numbers

rpm

2

Abutment and fillet dimensions mm da Da ras

Cor

grease

oil

cylindrical bore

tapered bore

4,050 4,950 9,000 13,100

1,730 2,030 3,400 4,600

3,700 3,400 3,100 2,900

4,300 4,000 3,600 3,400

1216 2216 1316 2316

1216K 2216K 1316K 2316K

89 89 91 91

131 131 159 159

2 2 2 2

20.8 23.6 38.0 51.5

5,000 5,950 9,950 14,300

2,120 2,400 3,850 5,250

3,500 3,200 2,900 2,700

4,100 3,800 3,400 3,200

1217 2217 1317 2317

1217K 2217K 1317K 2317K

94 94 98 98

141 141 167 167

2 2 2.5 2.5

57.0 70.0 116 152

23.5 28.7 44.5 57.5

5,800 7,150 11,900 15,500

2,390 2,930 4,550 5,850

3,300 3,100 2,700 2,600

3,800 3,600 3,200 3,000

1218 2218 1318 2318

1218K 2218K 1318K 2318K

99 99 103 103

151 151 177 177

2 2 2.5 2.5

2.1 2.1 3 3

64.0 83.5 132 165

27.1 34.5 51.0 64.5

6,500 8,500 13,400 16,800

2,770 3,500 5,200 6,550

3,100 2,900 2,600 2,400

3,600 3,400 3,000 2,800

1219 2219 1319 2319

1219K 2219K 1319K 2319K

106 106 108 108

159 159 187 187

2 2 2.5 2.5

34 46 47 73

2.1 2.1 3 3

69.0 94.0 143 192

29.7 38.5 57.5 79.0

7,050 9,600 14,600 19,600

3,050 3,900 5,850 8,100

2,900 2,700 2,400 2,300

3,400 3,200 2,900 2,700

1220 2220 1320 2320

1220K 2220K 1320K 2320K

111 111 113 113

169 169 202 202

2 2 2.5 2.5

105

190 190 225 225

36 50 49 77

2.1 2.1 3 3

74.5 109 156 205

32.5 45.0 64.5 87.0

7,600 11,100 15,900 20,900

3,300 4,550 6,600 8,850

2,800 2,600 2,300 2,200

3,300 3,100 2,700 2,600

1221 2221 1321 2321

― ― ― ―

116 116 118 118

179 179 212 212

2 2 2.5 2.5

110

200 200 240 240

38 53 50 80

2.1 2.1 3 3

80.5 124 164 217

35.5 51.5 71.5 94.5

8,200 12,700 16,700 22,100

3,600 5,250 7,300 9,650

2,600 2,500 2,200 2,100

3,100 2,900 2,600 2,400

1222 2222 1322 2322

1222K 2222K 1322K 2322K

121 121 123 123

189 189 227 227

2 2 2.5 2.5

d

D

B

rs min

80

140 140 170 170

26 33 39 58

85

150 150 180 180

1

Cr

Cor

2 2 2.1 2.1

40.0 48.5 88.5 128

17.0 19.9 33.0 45.0

28 36 41 60

2 2 3 3

49.0 58.0 97.5 140

90

160 160 190 190

30 40 43 64

2 2 3 3

95

170 170 200 200

32 43 45 67

100

180 180 215 215

Cr

min

1 Smallest allowable dimension for chamfer dimension r. 2 "K" indicates bearings have tapered bore with a taper ratio of 1: 12.

B-82

max

max

●Self-Aligning Ball Bearings

Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa ≦e Fr Fr >e X Y X Y 1 Y1 0.65 Y2 static Por=Fr+Yo Fa For values of e, Y1, Y2 and Yo see the table below.

Constant

Axial load factors

Mass kg cylindrical bore tapered bore

e

Y1

Y2

Yo

0.16 0.25 0.22 0.39

3.9 2.52 2.92 1.63

6.04 3.9 4.52 2.52

4.09 2.64 3.06 1.71

1.65 1.99 4.17 5.65

1.62 1.95 4.11 5.51

0.17 0.25 0.21 0.37

3.67 2.49 2.94 1.71

5.68 3.86 4.55 2.64

3.85 2.61 3.08 1.79

2.06 2.54 4.96 6.55

2.03 2.49 4.89 6.39

0.17 0.27 0.22 0.38

3.76 2.35 2.8 1.67

5.82 3.64 4.34 2.58

3.94 2.47 2.94 1.75

2.51 3.19 5.78 7.75

2.47 3.12 5.69 7.56

0.17 0.27 0.23 0.38

3.74 2.36 2.76 1.67

5.79 3.65 4.27 2.59

3.92 2.47 2.89 1.75

3.1 3.89 6.69 9.05

3.05 3.8 6.59 8.83

0.17 0.27 0.24 0.37

3.64 2.35 2.65 1.69

5.64 3.64 4.11 2.61

3.82 2.46 2.78 1.77

3.7 4.65 8.3 11.5

3.64 4.54 8.19 11.2

0.18 0.28 0.23 0.38

3.56 2.25 2.73 1.67

5.52 3.49 4.22 2.58

3.73 2.36 2.86 1.75

4.34 6.07 10 13.2

― ― ― ―

0.18 0.28 0.22 0.37

3.44 2.24 2.85 1.71

5.33 3.47 4.4 2.65

3.61 2.35 2.98 1.79

5.15 7.1 11.8 15.8

5.07 6.94 11.7 15.4

(approx.)

B-83

●Adapters (for self-aligning ball bearings) B2 ra

S1

B1 d1 d2

db da

Da

d 17∼50mm Boundary dimensions

Bearing numbers

1

Abutment and fillet dimensions

mm

Mass

mm db

S1

Da

ras

min

max

min

max

max

(approx.)

d1

B1

d2

17

24 28 28 31

32 32 32 32

7 7 7 7

1204K;H 204 2204K;H 304 1304K;H 304 2304K;H2304

23 24 24 24

27 28 31 28

5 5 8 5

41 41 45 45

1 1 1 1

0.041 0.045 0.045 0.049

20

26 29 29 35

38 38 38 38

8 8 8 8

1205K;H 205X 2205K;H 305X 1305K;H 305X 2305K;H2305X

28 29 29 29

33 33 37 34

5 5 6 5

46 46 55 55

1 1 1 1

0.07 0.075 0.075 0.087

25

27 31 31 38

45 45 45 45

8 8 8 8

1206K;H 206X 2206K;H 306X 1306K;H 306X 2306K;H2306X

33 34 34 35

39 39 44 40

5 5 6 5

56 56 65 65

1 1 1 1

0.099 0.109 0.109 0.126

30

29 35 35 43

52 52 52 52

9 9 9 9

1207K;H 207X 2207K;H 307X 1307K;H 307X 2307K;H2307X

38 39 39 40

46 45 50 46

5 5 7 5

65 65 71.5 71.5

1 1 1.5 1.5

0.125 0.142 0.142 0.165

35

31 36 36 46

58 58 58 58

10 10 10 10

1208K;H 208X 2208K;H 308X 1308K;H 308X 2308K;H2308X

44 44 44 45

52 50 56 52

5 5 5 5

73 73 81.5 81.5

1 1 1.5 1.5

0.174 0.189 0.189 0.224

40

33 39 39 50

65 65 65 65

11 11 11 11

1209K;H 209X 2209K;H 309X 1309K;H 309X 2309K;H2309X

49 49 49 50

57 57 61 58

5 8 5 5

78 78 91.5 91.5

1 1 1.5 1.5

0.227 0.248 0.248 0.28

45

35 42 42 55

70 70 70 70

12 12 12 12

1210K;H 210X 2210K;H 310X 1310K;H 310X 2310K;H2310X

53 54 54 56

62 63 67 65

5 10 5 5

1 1 2 2

0.274 0.303 0.303 0.362

37

75

12

1211K;H 211X

60

70

6

1.5

0.308

50

B2

kg

da

83 83 100 100 91.5

1 Refers to adapter mass. Note: 1. For bearing dimensions, basic rated loads, allowable rotations, and mass, refer to pages B-80 to B-82. 2. Adapters for series 12 bearings can also be used with H2 and H3 series bearings. Caution: the B1 dimension of H3 series bearings is longer than that of H2 series bearings. 3. Adapter numbers which are appended with the code "X" indicate narrow slit type adapters which use washer with straight inner tabs. 4. For adapter locknut and washer dimensions, please refer to pages D-2 to D-7, and D-12 to D-14.

B-84

●Adapters (for self-aligning ball bearings) B2 ra

S1

B1 d1 d2

db da

Da

d 50∼85mm Boundary dimensions

Bearing numbers

1

Abutment and fillet dimensions

mm

Mass

mm

kg

da

db

S1

Da

ras

min

max

min

max

max

(approx.)

d1

B1

d2

B2

50

45 45 59

75 75 75

12 12 12

2211K;H 311X 1311K;H 311X 2311K;H2311X

60 60 61

69 73 71

11 6 6

91.5 110 110

1.5 2 2

0.345 0.345 0.42

55

38 47 47 62

80 80 80 80

13 13 13 13

1212K;H 212X 2212K;H 312X 1312K;H 312X 2312K;H2312X

64 65 65 66

76 75 79 77

5 9 5 5

101.5 101.5 118 118

1.5 1.5 2 2

0.346 0.394 0.394 0.481

60

40 50 50 65

85 85 85 85

14 14 14 14

1213K;H 213X 2213K;H 313X 1313K;H 313X 2313K;H2313X

70 70 70 72

83 81 85 84

5 8 5 5

111.5 111.5 128 128

1.5 1.5 2 2

0.401 0.458 0.458 0.557

65

43 55 55 73

98 98 98 98

15 15 15 15

1215K;H 215X 2215K;H 315X 1315K;H 315X 2315K;H2315X

80 80 80 82

93 93 97 96

5 12 5 5

121.5 121.5 148 148

1.5 1.5 2 2

0.707 0.831 0.831 1.05

70

46 59 59 78

105 105 105 105

17 17 17 17

1216K;H 216X 2216K;H 316X 1316K;H 316X 2316K;H2316X

85 86 86 87

100 98 103 103

5 12 5 5

130 130 158 158

2 2 2 2

0.882 1.03 1.03 1.28

75

50 63 63 82

110 110 110 110

18 18 18 18

1217K;H 217X 2217K;H 317X 1317K;H 317X 2317K;H2317X

90 91 91 94

106 104 110 110

6 12 6 6

140 140 166 166

2 2 2.5 2.5

1.02 1.18 1.18 1.45

80

52 65 65 86

120 120 120 120

18 18 18 18

1218K;H 218X 2218K;H 318X 1318K;H 318X 2318K;H2318X

95 96 96 99

111 112 116 117

6 10 6 6

150 150 176 176

2 2 2.5 2.5

1.19 1.37 1.37 1.69

85

55 68

125 125

19 19

1219K;H 219X 2219K;H 319X

101 102

118 117

7 9

158 158

2 2

1.37 1.56

1 Refers to adapter mass. Note: 1. For bearing dimensions, basic rated loads, allowable rotations, and mass, refer to pages B-80 to B-82. 2. Adapters for series 12 bearings can also be used with H2 and H3 series bearings. Caution: the B1 dimension of H3 series bearings is longer than that of H2 series bearings. 3. Adapter numbers which are appended with the code "X" indicate narrow slit type adapters which use washer with straight inner tabs. 4. For adapter locknut and washer dimensions, please refer to pages D-2 to D-7, and D-12 to D-14.

B-85

●Adapters (for self-aligning ball bearings) B2 ra

S1

B1 d1 d2

db da

Da

d 85∼100mm Boundary dimensions

Bearing numbers

1

Abutment and fillet dimensions

mm

Mass

mm

kg

da

db

S1

Da

ras

min

max

min

max

max

(approx.)

d1

B1

d2

B2

85

68 90

125 125

19 19

1319K;H 319X 2319K;H2319X

102 105

123 123

7 7

186 186

2.5 2.5

1.56 1.92

90

58 71 71 97

130 130 130 130

20 20 20 20

1220K;H 220X 2220K;H 320X 1320K;H 320X 2320K;H2320X

106 107 107 110

125 123 130 129

7 8 7 7

168 168 201 201

2 2 2.5 2.5

1.49 1.69 1.69 2.15

100

63 77 77 105

145 145 145 145

21 21 21 21

1222K;H 222X 2222K;H 322X 1322K;H 322X 2322K;H2322X

116 117 117 121

138 137 150 142

7 6 9 7

188 188 226 226

2 2 2.5 2.5

1.93 2.18 2.18 2.74

1 Refers to adapter mass. Note: 1. For bearing dimensions, basic rated loads, allowable rotations, and mass, refer to pages B-80 to B-82. 2. Adapters for series 12 bearings can also be used with H2 and H3 series bearings. Caution: the B1 dimension of H3 series bearings is longer than that of H2 series bearings. 3. Adapter numbers which are appended with the code "X" indicate narrow slit type adapters which use washer with straight inner tabs. 4. For adapter locknut and washer dimensions, please refer to pages D-2 to D-7, and D-12 to D-14.

B-86

●Adapters

B-87

●Cylindrical Roller Bearings

Cylindrical roller bearing

E Type cylindrical roller bearing

Double row cylindrical roller bearing

Four row cylindrical roller bearing

1. Types, design features, and characteristics dimensions are identical to standard type. HT type has a large axial load capacity, and HL type provides extended wear life in conditions where the development of a lubricating film inside the bearing is difficult. Double and multiple row bearing arrangements are also available. For extremely heavy load applications, the non-separable full complement SL type bearing offers special advantages. Table 1 shows the various types and characteristics of single row cylindrical roller bearings. Table 2 shows the characteristics of non-standard type cylindrical roller bearings.

Since the rolling elements in cylindrical roller bearings make line contact with raceways, these bearings can accommodate heavy radial loads. The rollers are guided by ribs on either the inner or outer ring, therefore these bearings are also suitable for high speed applications. Furthermore, cylindrical roller bearings are separable, and relatively easy to install and disassemble even when interference fits are required. Among the various types of cylindrical roller bearings, Type E has a high load capacity and its boundary

Table 1 Cylindrical roller bearing types and characteristics Type code

NU type

Design

Characteristics

NU type

¡NU type outer rings have double ribs; outer ring and roller as well as cage can be separated from inner ring. N type inner ring have double ribs; inner ring and roller as well as cage can be separated from outer ring. ¡Unable to accommodate even the slightest axial loads. ¡This type is extremely suitable for, and widely used as, the floating side bearing.

N type

N type

NJ type

NJ type

NF type

¡NJ type has double ribs on outer ring, single rib on inner ring; NF type has single rib on outer ring, and double rib on inner ring. ¡Can receive single direction axial loads. ¡When there is no distinction between the fixed side and floating side bearing, can be used as a pair in close proximity.

NF type

NUP type NUP type

NH type (NJ + HJ)

¡NUP type has a collar ring attached to the ribless side of the inner ring; NH type is NJ type with an L type collar ring attached. All of these collar rings are separable, and therefore it is necessary to fix the inner ring axially. ¡Can accommodate axial loads in either direction. ¡Widely used as the shaft's fixed-side bearing.

NH type

B-89

●Cylindrical Roller Bearings

Table 2 Non-standard type cylindrical roller bearing characteristics Bearing type

Characteristics ¡Boundary dimensions identical to standard type; load capacity can be increased by increasing roller diameter, roller length, or roller number. ¡Identified by addition of "E" to end of basic roller number. ¡Enables compact design due to its high load rating. ¡Rollers' inscribed circle diameter differs from standard type rollers and therefore cannot be interchanged.

E Type cylindrical roller bearing

180mm

100mm

NU2220E E type Standard type

215mm

NU320

Cr=335kN Cr=315kN E type bearing Standard type bearing

120mm

NU224E Cr=335kN E type bearing

Remarks: In the dimension tables, both E type and standard type are listed, but in the future JIS will change to E type.

Large axial load use cylindrical roller bearings (HT type)

Double row cylindrical roller bearings

Four row cylindrical roller bearings

SL type cylindrical roller bearings

¡Can accommodate larger axial loads than standard type thanks to improved geometry of the rib roller end surface. ¡Please consult NTN Engineering concerning the many factors which require consideration, such as load, lubricant, and installation conditions.

¡NN type and NNU type available. ¡Widely used for applications requiring thin-walled bearings, such the main shafts of machine tools, rolling machine rollers, and in printing equipment.

¡Used mainly in the necks of rolling machine rollers; designed for maximum rated load to accommodate the severely limited space in the roller neck section of such equipment. ¡Many varieties exist, including sealed types, which have been specially designed for high speed use, to prevent creeping, provide dust and water proofing properties, etc. Contact NTN Engineering.

¡Full complement roller bearing capable of handling heavy loads. ¡Consult NTN Engineering regarding special application designs for SL type cylindrical roller bearings.

B-90

●Cylindrical Roller Bearings

2. Standard cage types

3. Allowable misalignment

Table 3 shows the standard varieties for cylindrical roller bearings. The basic rated loads listed in the dimension charts correspond to values achieved with the standard cages listed in Table 3. Furthermore, please note that even for the identical bearing, in cases where the number of rolling elements or the cage type differs, the basic rated load will also differ from the values listed in the dimension charts.

Although values vary somewhat depending on bearing type and internal specifications, under general load conditions, to avoid the occurrence of edge loading, allowable misalignments have been set as follows: Bearing width series 0 or 1: ………………0.001 rad (3.5') Bearing width series 2: ……………………0.0005 rad (1.5') Double row cylindrical roller bearings 1 : ……0.0005 rad (1.5') 1 Does not include high precision bearings for machine tool main shaft applications.

Table 3 Standard cage types Bearing series

Molded resin cage

Pressed cage

Machined cage

NU10





1005∼10/500

NU 2 NU2E

― 204E∼218E

208∼230 ―

232∼264 219E∼240E

NU22 NU22E

― 2204E∼2218E

2208∼2230 ―

2232∼2264 2219E∼2240E

NU3 NU3E

304E∼314E

308∼324 ―

326∼356 315E∼332E

NU23 NU23E

― 2304E∼2311E

2308∼2320 ―

2322∼2356 2312E∼2332E

NU4





405∼416



Note: 1) Within the same bearing series, cage type is identical even if the type code (NJ, NUP, N, NF) differs. 2) For high speed and other special applications, machined cages can be manufactured when necessary. Consult NTN Engineering. 3) Among E type bearings (those using molded resin cages), certain varieties may also use pressed cages. Consult NTN Engineering. 4) Although machined cages are standard for two row and four row cylindrical roller bearings, molded resin cages may also be used in some of these bearings for machine tool applications. 5) Due to their material properties, molded resin cages cannot be used in applications where temperatures exceed 120℃.

B-91

●Cylindrical Roller Bearings

B

B r

r1 r

r1

D

d FW

r1

r1

Type NJ

r1

r

J

J

Type NU

r

r

D EW

Type NUP

d J

Type N

Type NF

d 20∼35mm Boundary dimensions mm

kN 2

2

NU204E NU2204E NU304E NU2304E

NJ NJ NJ NJ

NUP NUP NUP NUP

N N N N

1,540 2,990 3,550 4,250 5,800 4,750

1,430 2,830 3,550 3,800 5,700 4,050

16,000 13,000 11,000 11,000 9,700 8,500

19,000 15,000 13,000 13,000 11,000 10,000

NU1005 NU205E NU2205E NU305E NU2305E NU405

NJ NJ NJ NJ NJ NJ

NUP NUP NUP NUP NUP NUP

N N N N N N

19.6 37.5 50.0 50.0 77.5 55.0

2,000 4,000 5,000 5,400 7,600 6,400

2,000 3,800 5,100 5,100 7,900 5,600

14,000 11,000 9,700 9,300 8,300 7,300

16,000 13,000 11,000 11,000 9,700 8,500

NU1006 NU206E NU2206E NU306E NU2306E NU406

NJ NJ NJ NJ NJ NJ

NUP NUP NUP NUP NUP NUP

N N N N N N

22.6 50.5 61.5 71.0 99.0 75.5

23.2 50.0 65.5 71.0 109 69.0

2,310 5,150 6,300 7,200 10,100 7,700

2,360 5,100 6,650 7,200 11,100 7,050

12,000 9,500 8,500 8,100 7,200 6,400

15,000 11,000 10,000 9,600 8,500 7,500

NU1007 NU207E NU2207E NU307E NU2307E NU407

NJ NJ NJ NJ NJ NJ

NUP NUP NUP NUP NUP NUP

N N N N N N

27.3 43.5 55.5 58.0 72.5 58.5 83.0 82.5 114 95.5

29.0 43.0 55.5 62.0 77.5 57.0 81.5 88.0 122 89.0

2,780 4,450 5,700 5,950 7,400 6,000 8,500 8,400 11,600 9,750

2,950 4,350 5,650 6,300 7,900 5,800 8,300 8,950 12,500 9,100

11,000 9,400 8,500 8,500 7,600 8,000 7,200 7,000 6,400 5,700

13,000 11,000 10,000 10,000 8,900 9,400 8,500 8,200 7,500 6,700

NU1008 NU208 NU208E NU2208 NU2208E NU308 NU308E NU2308 NU2308E NU408

NJ NJ NJ NJ NJ NJ NJ NJ NJ NJ

NUP NUP NUP NUP NUP NUP NUP NUP NUP NUP

N N ― N ― N ― N ― N

25.7 30.5 31.5 42.0

22.6 28.3 26.9 39.0

2,620 3,100 3,200 4,300

12 15 18 17 24 21

0.6 1 1 1.1 1.1 1.5

0.3 0.6 0.6 1.1 1.1 1.5

15.1 29.3 35.0 41.5 57.0 46.5

14.1 27.7 34.5 37.5 56.0 40.0

30

55 62 62 72 72 90

13 16 20 19 27 23

1 1 1 1.1 1.1 1.5

0.6 0.6 0.6 1.1 1.1 1.5

19.7 39.0 49.0 53.0 74.5 62.5

35

62 72 72 80 80 100

14 17 23 21 31 25

1 1.1 1.1 1.5 1.5 1.5

0.6 0.6 0.6 1.1 1.1 1.5

40

68 80 80 80 80 90 90 90 90 110

15 18 18 23 23 23 23 33 33 27

1 1.1 1.1 1.1 1.1 1.5 1.5 1.5 1.5 2

0.6 1.1 1.1 1.1 1.1 1.5 1.5 1.5 1.5 2

20

25

47 52 52 62 62 80

type type NUP N

18,000 16,000 15,000 14,000

0.6 0.6 0.6 0.6

14 18 15 21

type NJ

15,000 14,000 13,000 12,000

1 1 1.1 1.1

47 47 52 52

type NU

2,310 2,890 2,740 3,950

Cr

rs min

rpm oil

Cor

B

Bearing numbers

static

grease

Cr

D

Limiting speeds

kgf

r1s min

d

1

Basic load ratings dynamic static dynamic

Cor

1 This value achieved with machined cages; when pressed cages are used, 80% of this value is acceptable. 2 Minimal allowable dimension for chamfer dimension r or r1.

B-92

●Cylindrical Roller Bearings

ra

r 1a

r 1a

ra da

Da dc

dd

de

dc

db Db

Db

Equivalent bearing load dynamic Pr=Fr static Por=Fr

Dimensions

Abutment and fillet dimensions

mm type NF

Fw

Ew

Mass

mm J

da

db

dc

dd

de

Da

min

min

max

min

min

max

Db max

min

4

ras

r1as

max

max

kg type NU

type N

(approx.)

― ― ― ―

26.5 26.5 27.5 27.5

― ― ― ―

29.5 29.5 31.1 31.1

24 24 24 24

― ― ― ―

26 26 27 27

29 29 30 30

32 32 33 33

42 42 45.5 45.5

― ― ― ―

― ― ― ―

1 1 1 1

0.6 0.6 0.6 0.6

0.122 0.158 0.176 0.242

― ― ― ―

― ― ― ― ― NF

30.5 31.5 31.5 34 34 38.8

41.5 ― ― ― ― 62.8

32.7 34.5 34.5 38 38 43.6

27 29 29 31.5 31.5 33

29 ― ― ― ― 33

30 31 31 33 33 38

32 34 34 37 37 41

33 37 37 40 40 46

43 47 47 55.5 55.5 72

45 ― ― ― ― 72

42.5 ― ― ― ― 64

0.6 1 1 1 1 1.5

0.3 0.6 0.6 1 1 1.5

0.092 0.151 0.186 0.275 0.386 0.55

0.091 ― ― ― ― 0.536

― ― ― ― ― NF

36.5 37.5 37.5 40.5 40.5 45

48.5 ― ― ― ― 73

38.9 41.1 41.1 44.9 44.9 50.5

34 34 34 36.5 36.5 38

35 ― ― ― ― 38

35 37 37 40 40 44

38 40 40 44 44 47

39.5 44 44 48 48 52

50 57 57 65.5 65.5 82

51 ― ― ― ― 82

49.5 ― ― ― ― 74

1 1 1 1 1 1.5

0.6 0.6 0.6 1 1 1.5

0.13 0.226 0.297 0.398 0.58 0.751

0.128 ― ― ― ― 0.732

― ― ― ― ― NF

42 44 44 46.2 46.2 53

55 ― ― ― ― 83

44.6 48 48 51 51 59

39 39 39 41.5 41.5 43

40 ― ― ― ― 43

41 43 43 45 45 52

44 46 46 48 48 55

45 50 50 53 53 61

57 65.5 65.5 72 72 92

58 ― ― ― ― 92

56 ― ― ― ― 84

1 1 1 1.5 1.5 1.5

0.6 0.6 0.6 1 1 1.5

0.179 0.327 0.455 0.545 0.78 0.99

0.176 ― ― ― ― 0.965

― NF ― ― ― NF ― ― ― NF

47 50 49.5 50 49.5 53.5 52 53.5 52 58

61 70 ― 70 ― 77.5 ― 77.5 ― 92

49.8 54.2 53.9 54.2 53.9 58.4 57.6 58.4 57.6 64.8

44 46.5 46.5 46.5 46.5 48 48 48 48 49

45 46.5 ― 46.5 ― 48 ― 48 ― 49

46 49 49 49 49 51 51 51 51 57

49 52 52 52 52 55 55 55 55 60

50.5 56 56 56 56 60 60 60 60 67

63 73.5 73.5 73.5 73.5 82 82 82 82 101

64 73.5 ― 73.5 ― 82 ― 82 ― 101

62 72 ― 72 ― 80 ― 80 ― 93

1 1 1 1 1 1.5 1.5 1.5 1.5 2

0.6 1 1 1 1 1.5 1.5 1.5 1.5 2

0.22 0.378 0.426 0.49 0.552 0.658 0.754 0.951 1.06 1.3

0.217 0.37 ― 0.48 ― 0.643 ― 0.932 ― 1.27

4 Does not apply to side of the outer ring rib of type NF bearings.

B-93

●Cylindrical Roller Bearings

B

B r

r1 r

r1

D

d FW

r1

r1

Type NJ

r1

r

J

J

Type NU

r

r

D EW

Type NUP

d J

Type N

Type NF

d 35∼55mm Boundary dimensions mm

kN 2

1

Basic load ratings dynamic static dynamic 2

Limiting speeds

Bearing numbers

static

kgf

rpm

type NU

type NJ

type type NUP N

r1s min

Cr

Cor

Cr

Cor

grease

oil

1 1.1 1.1 1.1 1.1 1.5 1.5 1.5 1.5 2

0.6 1.1 1.1 1.1 1.1 1.5 1.5 1.5 1.5 2

31.0 46.0 63.0 61.5 76.0 74.0 97.5 99.0 137 107

34.0 47.0 66.5 68.0 84.5 71.0 98.5 104 153 102

3,200 4,700 6,450 6,250 7,750 7,550 9,950 10,100 14,000 10,900

3,450 4,800 6,800 6,900 8,600 7,250 10,000 10,600 15,600 10,400

9,900 8,400 7,600 7,600 6,800 7,200 6,500 6,300 5,700 5,100

12,000 9,900 9,000 9,000 8,000 8,400 7,600 7,400 6,800 6,000

NU1009 NU209 NU209E NU2209 NU2209E NU309 NU309E NU2309 NU2309E NU409

NJ NJ NJ NJ NJ NJ NJ NJ NJ NJ

NUP NUP NUP NUP NUP NUP NUP NUP NUP NUP

N N ― N ― N ― N ― N

16 20 20 23 23 27 27 40 40 31

1 1.1 1.1 1.1 1.1 2 2 2 2 2.1

0.6 1.1 1.1 1.1 1.1 2 2 2 2 2.1

32.0 48.0 66.0 64.0 79.5 87.0 110 121 163 129

36.0 51.0 72.0 73.5 91.5 86.0 113 131 187 124

3,300 4,900 6,750 6,550 8,100 8,850 11,200 12,300 16,600 13,200

3,700 5,200 7,350 7,500 9,350 8,800 11,500 13,400 19,000 12,600

8,900 7,600 6,900 6,900 6,200 6,500 5,900 5,700 5,200 4,700

11,000 9,000 8,100 8,100 7,300 7,700 6,900 6,700 6,100 5,500

NU1010 NU210 NU210E NU2210 NU2210E NU310 NU310E NU2310 NU2310E NU410

NJ NJ NJ NJ NJ NJ NJ NJ NJ NJ

NUP NUP NUP NUP NUP NUP NUP NUP NUP NUP

N N ― N ― N ― N ― N

55

90 100 100 100 100 120 120 120 120 140

18 21 21 25 25 29 29 43 43 33

1.1 1.5 1.5 1.5 1.5 2 2 2 2 2.1

1 1.1 1.1 1.1 1.1 2 2 2 2 2.1

37.5 58.0 82.5 75.5 97.0 111 137 148 201 139

44.0 62.5 93.0 87.0 114 111 143 162 233 138

3,850 5,900 8,400 7,700 9,900 11,300 14,000 15,100 20,500 14,200

4,450 6,350 9,500 8,900 11,700 11,400 14,600 16,500 23,800 14,100

8,200 6,900 6,300 6,300 5,600 5,900 5,300 5,200 4,700 4,300

9,700 8,200 7,400 7,400 6,600 7,000 6,300 6,100 5,600 5,000

NU1011 NU211 NU211E NU2211 NU2211E NU311 NU311E NU2311 NU2311E NU411

NJ NJ NJ NJ NJ NJ NJ NJ NJ NJ

NUP NUP NUP NUP NUP NUP NUP NUP NUP NUP

N N ― N ― N ― N ― N

60

95 110 110 110

18 22 22 28

1.1 1.5 1.5 1.5

1 1.5 1.5 1.5

40.0 68.5 97.5 96.0

48.5 75.0 107 116

4,100 7,000 9,950 9,800

4,950 7,650 10,900 11,800

7,500 6,400 5,800 5,800

8,800 7,600 6,800 6,800

NU1012 NU212 NU212E NU2212

NJ NJ NJ NJ

NUP NUP NUP NUP

N N ― N

d

D

B

45

75 85 85 85 85 100 100 100 100 120

16 19 19 23 23 25 25 36 36 29

50

80 90 90 90 90 110 110 110 110 130

rs min

1 This value achieved with machined cages; when pressed cages are used, 80% of this value is acceptable. 2 Minimal allowable dimension for chamfer dimension r or r1.

B-94

●Cylindrical Roller Bearings

ra

r 1a

r 1a

ra da

Da dc

dd

de

dc

db Db

Db

Equivalent bearing load dynamic Pr=Fr static Por=Fr

Dimensions

Abutment and fillet dimensions

mm type NF

Fw

Ew

Mass

mm J

da

db

dc

dd

de

Da

min

min

max

min

min

max

Db max

min

4

ras

r1as

max

max

kg type NU

type N

(approx.)

― NF ― ― ― NF ― ― ― NF

52.5 55 54.5 55 54.5 58.5 58.5 58.5 58.5 64.5

67.5 75 ― 75 ― 86.5 ― 86.5 ― 100.5

55.5 59 58.9 59 58.9 64 64.5 64 64.5 71.8

49 51.5 51.5 51.5 51.5 53 53 53 53 54

50 51.5 ― 51.5 ― 53 ― 53 ― 54

52 54 54 54 54 57 57 57 57 63

54 57 57 57 57 60 60 60 60 66

56 61 61 61 61 66 66 66 66 74

70 78.5 78.5 78.5 78.5 92 92 92 92 111

71 68.5 78.5 77 ― ― 78.5 77 ― ― 92 89 ― ― 92 89 ― ― 111 102

1 1 1 1 1 1.5 1.5 1.5 1.5 2

0.6 1 1 1 1 1.5 1.5 1.5 1.5 2

0.28 0.432 0.495 0.53 0.6 0.877 0.996 1.27 1.41 1.62

0.276 0.423 ― 0.52 ― 0.857 ― 1.24 ― 1.58

― NF ― ― ― NF ― ― ― NF

57.5 60.4 59.5 60.4 59.5 65 65 65 65 70.8

72.5 80.4 ― 80.4 ― 95 ― 95 ― 110.8

60.5 64.6 63.9 64.6 63.9 71 71.4 71 71.4 78.8

54 56.5 56.5 56.5 56.5 59 59 59 59 61

55 56.5 ― 56.5 ― 59 ― 59 ― 61

57 58 58 58 58 63 63 63 63 69

59 62 62 62 62 67 67 67 67 73

61 67 67 67 67 73 73 73 73 81

75 83.5 83.5 83.5 83.5 101 101 101 101 119

76 73.5 83.5 83 ― ― 83.5 83 ― ― 101 98 ― ― 101 98 ― ― 119 112

1 1 1 1 1 2 2 2 2 2

0.6 1 1 1 1 2 2 2 2 2

0.295 0.47 0.54 0.571 0.652 1.14 1.3 1.7 1.9 2.02

0.291 0.46 ― 0.56 ― 1.11 ― 1.67 ― 1.97

― NF ― ― ― NF ― ― ― NF

64.5 66.5 66 66.5 66 70.5 70.5 70.5 70.5 77.2

80.5 88.5 ― 88.5 ― 104.5 ― 104.5 ― 117.2

67.7 70.8 70.8 70.8 70.8 77.2 77.7 77.2 77.7 85.2

60 61.5 61.5 61.5 61.5 64 64 64 64 66

61.5 63 ― 63 ― 64 ― 64 ― 66

63 65 65 65 65 69 69 69 69 76

66 68 68 68 68 72 72 72 72 79

68.5 73 73 73 73 80 80 80 80 87

83.5 92 92 92 92 111 111 111 111 129

85 81.5 93.5 91 ― ― 93.5 91 ― ― 111 107 ― ― 111 107 ― ― 129 119

1 1.5 1.5 1.5 1.5 2 2 2 2 2

1 1 1 1 1 2 2 2 2 2

0.442 0.638 0.718 0.773 0.968 1.45 1.65 2.17 2.37 2.48

0.435 0.626 ― 0.758 ― 1.42 ― 2.13 ― 2.42

― NF ― ―

69.5 73.5 72 73.5

85.5 97.5 ― 97.5

72.7 78.4 77.6 78.4

65 68 68 68

66.5 68 ― 68

68 71 71 71

71 75 75 75

73.5 80 80 80

88.5 102 102 102

90 102 ― 102

1 1.5 1.5 1.5

1 1.5 1.5 1.5

0.474 0.818 0.923 1.06

0.467 0.802 ― 1.04

4 Does not apply to side of the outer ring rib of type NF bearings.

B-95

86.5 100 ― 100

●Cylindrical Roller Bearings

B

B r

r1 r

r1

D

d FW

r1

r1

Type NJ

r1

r

J

J

Type NU

r

r

D EW

Type NUP

d J

Type N

Type NF

d 55∼70mm Boundary dimensions mm B

kN rs min

2

1

Basic load ratings dynamic static dynamic 2

Limiting speeds

Bearing numbers

static

kgf

rpm

type NU

type NJ

type type NUP N

Cr

Cor

grease

oil

157 126 157 188 262 168

13,400 12,600 15,200 17,200 22,700 17,100

16,000 12,900 16,000 19,200 26,700 17,200

5,200 5,500 4,900 4,800 4,400 3,900

6,100 6,500 5,800 5,700 5,200 4,600

NU2212E NU312 NU312E NU2312 NU2312E NU412

NJ NJ NJ NJ NJ NJ

NUP NUP NUP NUP NUP NUP

― N ― N ― N

41.0 84.0 108 120 149 135 181 188 248 182

51.0 94.5 119 149 181 139 191 212 287 186

4,200 8,550 11,000 12,200 15,200 13,800 18,400 19,100 25,200 18,600

5,200 9,650 12,100 15,200 18,400 14,200 19,500 21,700 29,300 19,000

7,000 5,900 5,400 5,400 4,800 5,100 4,600 4,400 4,100 3,600

8,200 7,000 6,300 6,300 5,600 6,000 5,400 5,200 4,800 4,300

NU1013 NU213 NU213E NU2213 NU2213E NU313 NU313E NU2313 NU2313E NU413

NJ NJ NJ NJ NJ NJ NJ NJ NJ NJ

NUP NUP NUP NUP NUP NUP NUP NUP NUP NUP

N N ― N ― N ― N ― N

1 1.5 1.5 1.5 1.5 2.1 2.1 2.1 2.1 3

58.5 83.5 119 119 156 158 205 223 274 228

70.5 95.0 137 151 194 168 222 262 325 236

5,950 8,500 12,100 12,200 15,900 16,100 20,900 22,700 27,900 23,200

7,200 9,700 14,000 15,400 19,800 17,200 22,600 26,700 33,000 24,000

6,500 5,500 5,000 5,000 4,500 4,700 4,200 4,100 3,800 3,400

7,600 6,500 5,900 5,900 5,200 5,500 5,000 4,800 4,400 4,000

NU1014 NU214 NU214E NU2214 NU2214E NU314 NU314E NU2314 NU2314E NU414

NJ NJ NJ NJ NJ NJ NJ NJ NJ NJ

NUP NUP NUP NUP NUP NUP NUP NUP NUP NUP

N N ― N ― N ― N ― N

1 1.5 1.5 1.5 1.5 2.1 2.1 2.1

60.0 96.5 130 130 162 190 240 258

74.5 111 156 162 207 205 263 300

6,100 9,850 13,300 13,200 16,500 19,400 24,500 26,300

7,600 11,300 16,000 16,500 21,100 20,900 26,800 31,000

6,100 5,100 4,700 4,700 4,200 4,400 4,000 3,800

7,100 6,000 5,500 5,500 4,900 5,200 4,700 4,500

NU1015 NU215 NU215E NU2215 NU2215E NU315 NU315E NU2315

NJ NJ NJ NJ NJ NJ NJ NJ

NUP NUP NUP NUP NUP NUP NUP NUP

N N ― N ― N ― N

r1s min

Cr

d

D

60

110 130 130 130 130 150

28 31 31 46 46 35

1.5 2.1 2.1 2.1 2.1 2.1

1.5 2.1 2.1 2.1 2.1 2.1

131 124 150 169 222 167

65

100 120 120 120 120 140 140 140 140 160

18 23 23 31 31 33 33 48 48 37

1.1 1.5 1.5 1.5 1.5 2.1 2.1 2.1 2.1 2.1

1 1.5 1.5 1.5 1.5 2.1 2.1 2.1 2.1 2.1

70

110 125 125 125 125 150 150 150 150 180

20 24 24 31 31 35 35 51 51 42

1.1 1.5 1.5 1.5 1.5 2.1 2.1 2.1 2.1 3

75

115 130 130 130 130 160 160 160

20 25 25 31 31 37 37 55

1.1 1.5 1.5 1.5 1.5 2.1 2.1 2.1

Cor

1 This value achieved with machined cages; when pressed cages are used, 80% of this value is acceptable. 2 Minimal allowable dimension for chamfer dimension r or r1.

B-96

●Cylindrical Roller Bearings

ra

r 1a

r 1a

ra da

Da dc

dd

de

dc

db Db

Db

Equivalent bearing load dynamic Pr=Fr static Por=Fr

Dimensions

Abutment and fillet dimensions

mm type NF

Fw

Ew

Mass

mm J

Db

dc

dd

de

Da

min

min

max

min

min

max

102 119 119 119 119 139

― 119 ― 119 ― 139

― 116 ― 116 ― 128

1.5 2 2 2 2 2

1.5 2 2 2 2 2

1.21 1.8 2.05 2.71 2.96 3

― 1.76 ― 2.66 ― 2.93

min

4

r1as

max

max

type N

db

max

ras

kg type NU

da

(approx.)

― NF ― ― ― NF

72 77 77 77 77 83

― 113 ― 113 ― 127

77.6 84.2 84.6 84.2 84.6 91.8

68 71 71 71 71 71

― 71 ― 71 ― 71

71 75 75 75 75 82

75 79 79 79 79 85

80 86 86 86 86 94

― NF ― ― ― NF ― ― ― NF

74.5 79.6 78.5 79.6 78.5 83.5 82.5 83.5 82.5 89.3

90.5 105.6 ― 105.6 ― 121.5 ― 121.5 ― 135.3

77.7 84.8 84.5 84.8 84.5 91 91 91 91 98.5

70 73 73 73 73 76 76 76 76 76

71.5 73 ― 73 ― 76 ― 76 ― 76

73 77 77 77 77 81 81 81 81 88

76 81 81 81 81 85 85 85 85 91

78.5 87 87 87 87 93 93 93 93 100

93.5 112 112 112 112 129 129 129 129 149

95 112 ― 112 ― 129 ― 129 ― 149

91.5 108 ― 108 ― 125 ― 125 ― 137

1 1.5 1.5 1.5 1.5 2 2 2 2 2

1 1.5 1.5 1.5 1.5 2 2 2 2 2

0.485 1.02 1.21 1.4 1.6 2.23 2.54 3.27 3.48 3.6

0.477 1 ― 1.37 ― 2.18 ― 3.2 ― 3.5

― NF ― ― ― NF ― ― ― NF

80 84.5 83.5 84.5 83.5 90 89 90 89 100

100 110.5 ― 110.5 ― 130 ― 130 ― 152

84 89.6 89.5 89.6 89.5 98 98 98 98 110.5

75 78 78 78 78 81 81 81 81 83

76.5 78 ― 78 ― 81 ― 81 ― 83

78 82 82 82 82 87 87 87 87 99

82 86 86 86 86 92 92 92 92 102

85 92 92 92 92 100 100 100 100 112

103.5 117 117 117 117 139 139 139 139 167

105 117 ― 117 ― 139 ― 139 ― 167

101 114 ― 114 ― 134 ― 134 ― 153

1 1.5 1.5 1.5 1.5 2 2 2 2 2.5

1 1.5 1.5 1.5 1.5 2 2 2 2 2.5

0.699 1.12 1.3 1.47 1.7 2.71 3.1 3.98 4.25 5.24

0.689 1.1 ― 1.44 ― 2.65 ― 3.9 ― 5.1

― NF ― ― ― NF ― ―

85 88.5 88.5 88.5 88.5 95.5 95 95.5

105 116.5 ― 116.5 ― 139.5 ― 139.5

89 94 94.5 94 94.5 104.2 104.6 104.2

80 83 83 83 83 86 86 86

81.5 83 ― 83 ― 86 ― 86

83 87 87 87 87 93 93 93

87 90 90 90 90 97 97 97

90 96 96 96 96 106 106 106

108.5 122 122 122 122 149 149 149

110 122 ― 122 ― 149 ― 149

106 120 ― 120 ― 143 ― 143

1 1.5 1.5 1.5 1.5 2 2 2

1 1.5 1.5 1.5 1.5 2 2 2

0.738 1.23 1.41 1.55 1.79 3.28 3.74 4.87

0.727 1.21 ― 1.52 ― 3.21 ― 4.77

4 Does not apply to side of the outer ring rib of type NF bearings.

B-97

●Cylindrical Roller Bearings

B

B r

r1 r

r1

D

d FW

r1

r1

Type NJ

r1

r

J

J

Type NU

r

r

D EW

Type NUP

d J

Type N

Type NF

d 70∼90mm Boundary dimensions mm B

kN 2

1

Basic load ratings dynamic static dynamic 2

Limiting speeds

Bearing numbers

static

kgf

rpm

type NU

type NJ

type type NUP N

Cr

Cor

grease

oil

395 274

33,500 26,800

40,000 27,900

3,500 3,200

4,100 3,700

NU2315E NU415

NJ NJ

NUP NUP

― N

72.5 106 139 147 186 190 256 274 355 299

90.5 122 167 186 243 207 282 330 430 315

7,400 10,800 14,200 15,000 19,000 19,400 26,100 27,900 36,500 30,500

9,250 12,500 17,000 19,000 24,800 21,100 28,800 34,000 44,000 32,000

5,700 4,800 4,400 4,400 3,900 4,100 3,700 3,600 3,300 3,000

6,700 5,700 5,100 5,100 4,600 4,800 4,400 4,200 3,900 3,500

NU1016 NU216 NU216E NU2216 NU2216E NU316 NU316E NU2316 NU2316E NU416

NJ NJ NJ NJ NJ NJ NJ NJ NJ NJ

NUP NUP NUP NUP NUP NUP NUP NUP NUP NUP

N N ― N ― N ― N ― N

1 2 2 2 2 3 3 3 3

74.5 120 167 170 217 212 291 315 395

95.5 140 199 218 279 228 330 380 485

7,600 12,300 17,000 17,300 22,200 21,600 29,700 32,000 40,000

9,750 14,300 20,300 22,200 28,400 23,300 33,500 39,000 49,500

5,400 4,500 4,100 4,100 3,700 3,900 3,500 3,400 3,100

6,300 5,300 4,800 4,800 4,300 4,600 4,100 4,000 3,700

NU1017 NU217 NU217E NU2217 NU2217E NU317 NU317E NU2317 NU2317E

NJ NJ NJ NJ NJ NJ NJ NJ NJ

NUP NUP NUP NUP NUP NUP NUP NUP NUP

N N ― N ― N ― N ―

1.5 2 2 2 2 3 3 3 3

1.1 2 2 2 2 3 3 3 3

88.0 152 182 197 242 240 315 325 435

114 178 217 248 315 265 355 395 535

9,000 15,500 18,500 20,100 24,700 24,500 32,000 33,500 44,500

11,700 18,100 22,200 25,300 32,000 27,100 36,000 40,000 54,500

5,100 4,300 3,900 3,900 3,500 3,700 3,300 3,200 2,900

5,900 5,000 4,600 4,600 4,100 4,300 3,900 3,800 3,400

NU1018 NU218 NU218E NU2218 NU2218E NU318 NU318E NU2318 NU2318E

NJ NJ NJ NJ NJ NJ NJ NJ NJ

NUP NUP NUP NUP NUP NUP NUP NUP NUP

N N ― N ― N ― N ―

1.5 2.1 2.1

1.1 2.1 2.1

90.5 166 220

120 195 265

9,250 16,900 22,500

12,300 19,900 27,000

4,800 4,000 3,600

5,600 4,700 4,300

NU1019 NU219 NU219E

NJ NJ NJ

NUP NUP NUP

N N ―

rs min

r1s min

Cr

d

D

75

160 190

55 45

2.1 3

2.1 3

330 262

80

125 140 140 140 140 170 170 170 170 200

22 26 26 33 33 39 39 58 58 48

1.1 2 2 2 2 2.1 2.1 2.1 2.1 3

1 2 2 2 2 2.1 2.1 2.1 2.1 3

85

130 150 150 150 150 180 180 180 180

22 28 28 36 36 41 41 60 60

1.1 2 2 2 2 3 3 3 3

90

140 160 160 160 160 190 190 190 190

24 30 30 40 40 43 43 64 64

95

145 170 170

24 32 32

Cor

1 This value achieved with machined cages; when pressed cages are used, 80% of this value is acceptable. 2 Minimal allowable dimension for chamfer dimension r or r1.

B-98

●Cylindrical Roller Bearings

Dimensions

Abutment and fillet dimensions

mm

kgss

Mass

●Cylindrical Roller Bearings

B

B r

r1 r

r1

D

d FW

r1

r1

D EW

Type NJ

r1

r

J

J

Type NU

r

r

Type NUP

d J

Type N

Type NF

d 90∼110mm Boundary dimensions

Basic load ratings dynamic static dynamic

mm B

kN 2

2

1

Limiting speeds

Bearing numbers

static

kgf

rpm

type NU

type NJ

type type NUP N

Cr

Cor

grease

oil

298 370 285 385 460 585

23,500 29,200 26,400 34,000 38,000 47,000

30,500 38,000 29,500 39,500 47,000 59,500

3,600 3,300 3,400 3,100 3,000 2,700

4,300 3,800 4,000 3,600 3,500 3,200

NU2219 NU2219E NU319 NU319E NU2319 NU2319E

NJ NJ NJ NJ NJ NJ

NUP NUP NUP NUP NUP NUP

N ― N ― N ―

93.0 183 249 258 335 299 380 410 570

126 217 305 340 445 335 425 505 715

9,500 18,600 25,400 26,300 34,000 30,500 38,500 42,000 58,000

12,800 22,200 31,000 34,500 45,500 34,500 43,500 51,500 73,000

4,600 3,800 3,500 3,500 3,100 3,300 2,900 2,900 2,600

5,400 4,500 4,100 4,100 3,600 3,800 3,500 3,400 3,100

NU1020 NU220 NU220E NU2220 NU2220E NU320 NU320E NU2320 NU2320E

NJ NJ NJ NJ NJ NJ NJ NJ NJ

NUP NUP NUP NUP NUP NUP NUP NUP NUP

N N ― N ― N ― N ―

1.1 2.1 3

105 201 320

142 241 360

10,700 20,500 32,500

14,500 24,600 36,500

4,300 3,600 3,100

5,100 4,300 3,700

NU1021 NU221 NU321

NJ NJ NJ

NUP NUP NUP

N N N

2 2.1 2.1 2.1 2.1 3 3 3 3

1.1 2.1 2.1 2.1 2.1 3 3 3 3

131 240 293 320 385 360 450 605 675

174 290 365 415 515 400 525 790 880

13,400 24,500 29,800 32,500 39,000 36,500 46,000 61,500 69,000

17,700 29,500 37,000 42,000 52,500 41,000 53,500 80,500 89,500

4,100 3,400 3,100 3,100 2,800 3,000 2,700 2,600 2,400

4,800 4,000 3,700 3,700 3,300 3,500 3,100 3,100 2,800

NU1022 NU222 NU222E NU2222 NU2222E NU322 NU322E NU2322 NU2322E

NJ NJ NJ NJ NJ NJ NJ NJ NJ

NUP NUP NUP NUP NUP NUP NUP NUP NUP

N N ― N ― N ― N ―

2 2.1 2.1 2.1 2.1 3

1.1 2.1 2.1 2.1 2.1 3

139 260 335 350 450 450

191 320 420 460 620 510

14,100 26,500 34,000 35,500 46,000 46,000

19,500 32,500 43,000 47,000 63,000 52,000

3,800 3,200 2,900 2,900 2,600 2,700

4,400 3,700 3,400 3,400 3,000 3,200

NU1024 NU224 NU224E NU2224 NU2224E NU324

NJ NJ NJ NJ NJ NJ

NUP NUP NUP NUP NUP NUP

N N ― N ― N

rs min

r1s min

Cr

d

D

95

170 170 200 200 200 200

43 43 45 45 67 67

2.1 2.1 3 3 3 3

2.1 2.1 3 3 3 3

230 286 259 335 370 460

100

150 180 180 180 180 215 215 215 215

24 34 34 46 46 47 47 73 73

1.5 2.1 2.1 2.1 2.1 3 3 3 3

1.1 2.1 2.1 2.1 2.1 3 3 3 3

105

160 190 225

26 36 49

2 2.1 3

110

170 200 200 200 200 240 240 240 240

28 38 38 53 53 50 50 80 80

120

180 215 215 215 215 260

28 40 40 58 58 55

Cor

1 This value achieved with machined cages; when pressed cages are used, 80% of this value is acceptable. 2 Minimal allowable dimension for chamfer dimension r or r1.

B-100

●Cylindrical Roller Bearings

ra

r 1a

r 1a

ra da

Da dc

dd

de

dc

db Db

Db

Equivalent bearing load dynamic Pr=Fr static Por=Fr

Dimensions

Abutment and fillet dimensions

mm type NF

Fw

― ― NF ― ― ―

113.5 112.5 121.5 121.5 121.5 121.5

151.5 ― 173.5 ― 173.5 ―

― NF ― ― ― NF ― ― ―

113 120 119 120 119 129.5 127.5 129.5 127.5

― NF NF

Mass

mm dc

dd

de

Da

min

min

max

min

min

max

121 121 132 132.7 132 132.7

106 106 108 108 108 108

106 ― 108 ― 108 ―

111 111 119 119 119 119

116 116 124 124 124 124

123 123 134 134 134 134

159 159 187 187 187 187

159 ― 187 ― 187 ―

155 ― 178 ― 178 ―

2 2 2.5 2.5 2.5 2.5

2 2 2.5 2.5 2.5 2.5

3.79 4.14 6.13 6.62 9.2 9.8

3.71 ― 5.99 ― 9.02 ―

137 160 ― 160 ― 185.5 ― 185.5 ―

117.8 128 128 128 128 140.5 140.3 140.5 140.3

106.5 111 111 111 111 113 113 113 113

108 111 ― 111 ― 113 ― 113 ―

111 117 117 117 117 125 125 125 125

116 122 122 122 122 132 132 132 132

119 130 130 130 130 143 143 143 143

142 169 169 169 169 202 202 202 202

143.5 169 ― 169 ― 202 ― 202 ―

139 164 ― 164 ― 190 ― 190 ―

1.5 2 2 2 2 2.5 2.5 2.5 2.5

1 2 2 2 2 2.5 2.5 2.5 2.5

1.45 3.33 3.66 4.57 5.01 7.49 8.57 11.7 12.8

1.43 3.26 ― 4.48 ― 7.32 ― 11.5 ―

119.5 126.8 135

145.5 168.8 195

124.7 135 147

111.5 116 118

114 116 118

118 124 132

122 129 137

126 137 149

151 179 212

153.5 147.5 179 173 212 199

2 2 2.5

1 2 2.5

1.84 3.95 8.53

1.81 3.87 8.33

― NF ― ― ― NF ― ― ―

125 132.5 132.5 132.5 132.5 143 143 143 143

155 178.5 ― 178.5 ― 207 ― 207 ―

131 141.5 142.1 141.5 142.1 155.5 156.6 155.5 156.6

116.5 121 121 121 121 123 123 123 123

119 121 ― 121 ― 123 ― 123 ―

124 130 130 130 130 140 140 140 140

128 135 135 135 135 145 145 145 145

132 144 144 144 144 158 158 158 158

161 189 189 189 189 227 227 227 227

163.5 189 ― 189 ― 227 ― 227 ―

157 182 ― 182 ― 211 ― 211 ―

2 2 2 2 2 2.5 2.5 2.5 2.5

1 2 2 2 2 2.5 2.5 2.5 2.5

2.33 4.63 4.27 6.56 7.4 10 11.1 17.1 19.4

2.3 4.54 ― 6.43 ― 9.77 ― 16.8 ―

― NF ― ― ― NF

135 143.5 143.5 143.5 143.5 154

165 191.5 ― 191.5 ― 226

141 153 153.9 153 153.9 168.5

126.5 131 131 131 131 133

129 131 ― 131 ― 133

134 141 141 141 141 151

138 146 146 146 146 156

142 156 156 156 156 171

171 204 204 204 204 247

173.5 204 ― 204 ― 247

167 196 ― 196 ― 230

2 2 2 2 2 2.5

1 2 2 2 2 2.5

2.44 5.57 5.97 8.19 9.18 12.8

2.4 5.46 ― 8.03 ― 12.5

J

4 Does not apply to side of the outer ring rib of type NF bearings.

B-101

max

min

4

ras

r1as

max

max

type N

db

Ew

Db

kg type NU

da

(approx.)

●Cylindrical Roller Bearings

B

B r

r1

r1

r d FW

D

r1

J

Type NU

r

r d J

J

Type NJ

Type NUP

d 120∼150mm Boundary dimensions

Basic load ratings dynamic static dynamic

mm d

D

B

kN rs min

2

2

r1s min

Cr

1

Limiting speeds

kgf Cor

Cr

Bearing numbers

static rpm Cor

grease

oil

type NU

type NJ

type type NUP N

260 260 260

55 86 86

3 3 3

3 3 3

530 710 795

610 920 1,030

54,000 62,000 72,500 93,500 81,000 105,000

2,400 2,400 2,200

2,800 2,800 2,500

NU324E NU2324 NU2324E

NJ NJ NJ

NUP NUP NUP

― N ―

200 230 230 230 230 280 280 280 280

33 40 40 64 64 58 58 93 93

2 3 3 3 3 4 4 4 4

1.1 3 3 3 3 4 4 4 4

172 270 365 380 530 560 615 840 920

238 340 455 530 735 665 735 1,130 1,230

17,500 24,200 27,600 35,000 37,000 46,000 38,500 54,000 54,000 75,000 57,000 68,000 63,000 75,000 85,500 115,000 94,000 126,000

3,400 2,900 2,600 2,600 2,300 2,500 2,200 2,200 2,000

4,000 3,400 3,100 3,100 2,700 2,900 2,600 2,600 2,300

NU1026 NU226 NU226E NU2226 NU2226E NU326 NU326E NU2326 NU2326E

NJ NJ NJ NJ NJ NJ NJ NJ NJ

NUP NUP NUP NUP NUP NUP NUP NUP NUP

N N ― N ― N ― N ―

210 250 250 250 250 300 300 300 300

33 42 42 68 68 62 62 102 102

2 3 3 3 3 4 4 4 4

1.1 3 3 3 3 4 4 4 4

176 310 395 445 575 615 665 920 1,020

250 400 515 635 835 745 795 1,250 1,380

17,900 25,500 31,500 40,500 40,000 52,500 45,500 64,500 58,500 85,000 63,000 76,000 67,500 81,500 94,000 127,000 104,000 141,000

3,200 2,700 2,400 2,400 2,100 2,300 2,100 2,000 1,800

3,800 3,100 2,800 2,800 2,500 2,700 2,400 2,300 2,100

NU1028 NU228 NU228E NU2228 NU2228E NU328 NU328E NU2328 NU2328E

NJ NJ NJ NJ NJ NJ NJ NJ NJ

NUP NUP NUP NUP NUP NUP NUP NUP NUP

N N ― N ― N ― N ―

225 270 270 270 270 320 320 320 320

35 45 45 73 73 65 65 108 108

2.1 3 3 3 3 4 4 4 4

1.5 3 3 3 3 4 4 4 4

202 345 450 500 660 665 760 1,020 1,160

294 435 595 710 980 805 920 1,400 1,600

20,600 29,900 35,000 44,500 45,500 60,500 51,000 72,500 67,500 100,000 67,500 82,500 77,500 94,000 104,000 143,000 118,000 163,000

3,000 2,500 2,200 2,200 2,000 2,100 1,900 1,900 1,700

3,500 2,900 2,600 2,600 2,400 2,500 2,300 2,200 2,000

NU1030 NU230 NU230E NU2230 NU2230E NU330 NU330E NU2330 NU2330E

NJ NJ NJ NJ NJ NJ NJ NJ NJ

NUP NUP NUP NUP NUP NUP NUP NUP NUP

N N ― N ― N ― N ―

240 290 290

38 48 48

2.1 3 3

1.5 3 3

238 430 500

340 570 665

2,800 2,300 2,100

3,300 2,700 2,400

NU1032 NU232 NU232E

NJ NJ NJ

NUP NUP NUP

N N ―

24,200 43,500 51,000

35,000 58,000 68,000

1 This value achieved with machined cages; when pressed cages are used, 80% of this value is acceptable. 2 Minimal allowable dimension for chamfer dimension r or r1.

B-102

●Cylindrical Roller Bearings

ra

r1a

r1a

ra da

Da dc

dd

de

dc

db Db

Db

Equivalent bearing load dynamic Pr=Fr static Por=Fr

Dimensions

Abutment and fillet dimensions

mm type NF

Fw

Ew

― ― ―

154 154 154

― 226 ―

― NF ― ― ― NF ― ― ―

148 156 153.5 156 153.5 167 167 167 167

― NF ― ― ― NF ― ― ―

Mass

mm dc

dd

de

Da

min

min

max

min

min

max

169.2 168.5 169.2

133 133 133

― 133 ―

151 151 151

156 156 156

171 171 171

247 247 247

― 247 ―

― 230 ―

2.5 2.5 2.5

2.5 2.5 2.5

13.9 21.5 26.1

― 21.1 ―

182 204 ― 204 ― 243 ― 243 ―

154.8 165.5 164.7 165.5 164.7 182 183 182 183

136.5 143 143 143 143 146 146 146 146

139 143 ― 143 ― 146 ― 146 ―

146 151 151 151 151 164 164 164 164

151 158 158 158 158 169 169 169 169

156 168 168 168 168 184 184 184 184

191 217 217 217 217 264 264 264 264

193.5 217 ― 217 ― 264 ― 264 ―

184 208 ― 208 ― 247 ― 247 ―

2 2.5 2.5 2.5 2.5 3 3 3 3

1 2.5 2.5 2.5 2.5 3 3 3 3

3.69 6.3 6.9 10.2 11.8 17.4 19.4 26.9 30.9

3.63 6.17 ― 10 ― 17 ― 26.4 ―

158 169 169 169 169 180 180 180 180

192 221 ― 221 ― 260 ― 260 ―

164.8 179.5 180.2 179.5 180.2 196 196.8 196 196.8

146.5 153 153 153 153 156 156 156 156

149 153 ― 153 ― 156 ― 156 ―

156 166 166 166 166 176 176 176 176

161 171 171 171 171 182 182 182 182

166 182 182 182 182 198 198 198 198

201 237 237 237 237 284 284 284 284

203.5 237 ― 237 ― 284 ― 284 ―

194 225 ― 225 ― 265 ― 265 ―

2 2.5 2.5 2.5 2.5 3 3 3 3

1 2.5 2.5 2.5 2.5 3 3 3 3

4.05 7.88 8.73 12.9 15.8 21.2 23.2 33.8 38.7

3.98 7.72 ― 12.6 ― 20.7 ― 33.1 ―

― NF ― ― ― NF ― ― ―

169.5 182 182 182 182 193 193 193 193

205.5 238 ― 238 ― 277 ― 277 ―

176.7 193 194 193 194 210 211 210 211

158 163 163 163 163 166 166 166 166

161 163 ― 163 ― 166 ― 166 ―

167 179 179 179 179 190 190 190 190

173 184 184 184 184 195 195 195 195

178 196 196 196 196 213 213 213 213

214 257 257 257 257 304 304 304 304

217 257 ― 257 ― 304 ― 304 ―

207.5 242 ― 242 ― 282 ― 282 ―

2 2.5 2.5 2.5 2.5 3 3 3 3

1.5 2.5 2.5 2.5 2.5 3 3 3 3

4.77 9.92 11 16.3 19.7 25.3 28.4 40.6 47.2

4.7 9.72 ― 16 ― 24.7 ― 39.8 ―

― NF ―

180 195 195

220 255 ―

188 207 207.8

168 173 173

171 173 ―

178 192 192

184 197 197

189 210 210

229 277 277

232 277 ―

222 259 ―

2 2.5 2.5

1.5 2.5 2.5

5.9 13.7 15.6

5.81 13.4 ―

4 Does not apply to side of the outer ring rib of type NF bearings.

B-103

max

min

4

ras

r1as

max

max

type N

db

J

Db

kg type NU

da

(approx.)

●Cylindrical Roller Bearings

B

B r r1

r d FW

D

r

r1 r1

r1

J

Type NU

r

r D EW

J

Type NJ

r1

d J

Type N

Type NUP

Type NF

d 160∼200mm Boundary dimensions mm

kN 2

1

Basic load ratings dynamic static dynamic 2

Limiting speeds

Bearing numbers

static

kgf

rpm

type NU

type NJ

type type NUP N

Cor

grease

oil

64,500 82,500 71,000 87,500 109,000 134,000

96,000 121,000 89,500 107,000 155,000 186,000

2,100 1,900 2,000 1,800 1,700 1,600

2,400 2,200 2,300 2,100 2,000 1,900

NU2232 NU2232E NU332 NU332E NU2332 NU2332E

NJ NJ NJ NJ NJ NJ

NUP NUP NUP NUP NUP NUP

N ― N ― N ―

400 635 800 1,080 1,410 1,010 1,750

28,300 48,500 61,500 73,000 98,500 81,500 125,000

41,000 65,000 81,500 110,000 144,000 103,000 179,000

2,600 2,200 2,000 2,000 1,800 1,800 1,600

3,000 2,500 2,300 2,300 2,100 2,200 1,900

NU1034 NU234 NU234E NU2234 NU2234E NU334 NU2334

NJ NJ NJ NJ NJ NJ NJ

NUP NUP NUP NUP NUP NUP NUP

N N ― N ― N N

340 495 625 745 1,010 905 1,380

485 675 850 1,140 1,510 1,150 1,990

35,000 50,500 64,000 76,000 103,000 92,000 141,000

49,500 69,000 87,000 117,000 154,000 118,000 203,000

2,400 2,000 1,800 1,800 1,600 1,700 1,500

2,900 2,400 2,200 2,200 1,900 2,000 1,800

NU1036 NU236 NU236E NU2236 NU2236E NU336 NU2336

NJ NJ NJ NJ NJ NJ NJ

NUP NUP NUP NUP NUP NUP NUP

N N ― N ― N N

2.1 4 4 4 4 5 5

350 555 695 830 1,100 975 1,520

510 770 955 1,290 1,670 1,260 2,220

36,000 56,500 71,000 84,500 113,000 99,500 155,000

52,000 78,500 97,500 131,000 170,000 129,000 226,000

2,300 1,900 1,700 1,700 1,500 1,600 1,400

2,700 2,200 2,000 2,000 1,800 1,900 1,700

NU1038 NU238 NU238E NU2238 NU2238E NU338 NU2338

NJ NJ NJ NJ NJ NJ NJ

NUP NUP NUP NUP NUP NUP NUP

N N ― N ― N N

2.1 4 4 4 4 5

390 620 765 925 1,220 975

580 865 1,060 1,440 1,870 1,270

40,000 63,500 78,000 94,000 125,000 99,500

59,500 88,500 108,000 147,000 191,000 130,000

2,200 1,800 1,600 1,600 1,500 1,500

2,600 2,100 1,900 1,900 1,700 1,800

NU1040 NU240 NU240E NU2240 NU2240E NU340

NJ NJ NJ NJ NJ NJ

NUP NUP NUP NUP NUP NUP

N N ― N ― N

r1s min

Cr

Cor

d

D

B

rs min

160

290 290 340 340 340 340

80 80 68 68 114 114

3 3 4 4 4 4

3 3 4 4 4 4

630 810 700 860 1,070 1,310

940 1,190 875 1,050 1,520 1,820

170

260 310 310 310 310 360 360

42 52 52 86 86 72 120

2.1 4 4 4 4 4 4

2.1 4 4 4 4 4 4

278 475 605 715 965 795 1,220

180

280 320 320 320 320 380 380

46 52 52 86 86 75 126

2.1 4 4 4 4 4 4

2.1 4 4 4 4 4 4

190

290 340 340 340 340 400 400

46 55 55 92 92 78 132

2.1 4 4 4 4 5 5

200

310 360 360 360 360 420

51 58 58 98 98 80

2.1 4 4 4 4 5

Cr

1 This value achieved with machined cages; when pressed cages are used, 80% of this value is acceptable. 2 Minimal allowable dimension for chamfer dimension r or r1.

B-104

●Cylindrical Roller Bearings

ra

r1a

r1a

ra da

Da dc

dd

de

dc

db Db

Db

Equivalent bearing load dynamic Pr=Fr static Por=Fr

Dimensions

Abutment and fillet dimensions

mm type NF

Fw

Ew

― ― NF ― ― ―

195 193 208 204 208 204

255 ― 292 ― 292 ―

― NF ― ― ― NF ―

193 208 207 208 205 220 220

― NF ― ― ― NF ―

Mass

mm dc

dd

de

Da

min

min

max

min

min

max

207 206.6 225 223.2 225 223.2

173 173 176 176 176 176

173 ― 176 ― 176 ―

192 192 200 200 200 200

197 197 211 211 211 211

210 210 228 228 228 228

277 277 324 324 324 324

277 ― 324 ― 324 ―

259 ― 297 ― 297 ―

2.5 2.5 3 3 3 3

2.5 2.5 3 3 3 3

22 25.1 31.3 34 50.5 56

21.6 ― 30.6 ― 49.5 ―

237 272 ― 272 ― 310 310

201.8 220.5 221.4 220.5 220.2 238 238

181 186 186 186 186 186 186

181 186 ― 186 ― 186 186

190 204 204 204 204 216 216

197 211 211 211 211 223 223

203 223 223 223 223 241 241

249 294 294 294 294 344 344

249 294 ― 294 ― 344 344

239 277 ― 277 ― 315 315

2 3 3 3 3 3 3

2 3 3 3 3 3 3

7.88 17 19.6 27.2 31 37 59.5

7.76 16.7 ― 26.7 ― 36.1 58.3

205 218 217 218 215 232 232

255 282 ― 282 ― 328 328

215 230.5 231.4 230.5 230.2 252 252

191 196 196 196 196 196 196

191 196 ― 196 ― 196 196

203 214 214 214 214 227 227

209 221 221 221 221 235 235

216 233 233 233 233 255 255

269 304 304 304 304 364 364

269 304 ― 304 ― 364 364

257 287 ― 287 ― 333 333

2 3 3 3 3 3 3

2 3 3 3 3 3 3

10.3 17.7 20.4 28.4 31.9 44.2 69.5

10.1 17.3 ― 27.8 ― 43.2 68.1

― NF ― ― ― NF ―

215 231 230 231 228 245 245

265 299 ― 299 ― 345 345

225 244.5 245.2 244.5 244 265 265

201 206 206 206 206 210 210

201 206 ― 206 ― 210 210

213 227 227 227 227 240 240

219 234 234 234 234 248 248

226 247 247 247 247 268 268

279 324 324 324 324 380 380

279 324 ― 324 ― 380 380

267 304 ― 304 ― 351 351

2 3 3 3 3 4 4

2 3 3 3 3 4 4

10.7 21.3 24.2 34.4 39.5 49.4 80.5

10.5 20.8 ― 33.7 ― 48.3 78.9

― NF ― ― ― NF

229 244 243 244 241 260

281 316 ― 316 ― 360

239.4 258 259 258 257.8 280

211 216 216 216 216 220

211 216 ― 216 ― 220

226 240 240 240 240 254

233 247 247 247 247 263

241 261 261 261 261 283

299 344 344 344 344 400

299 344 ― 344 ― 400

283 321 ― 321 ― 366

2 3 3 3 3 4

2 3 3 3 3 4

13.9 25.3 28.1 41.3 47.8 55.8

13.7 24.8 ― 40.5

4 Does not apply to side of the outer ring rib of type NF bearings.

B-105

max

4 min

ras

r1as

max

max

type N

db

J

Db

kg type NU

da

(approx.)

54.5

●Cylindrical Roller Bearings

B

B r

r1

r1

r d FW

D

r1

J

Type NU

r

r d J

J

Type NJ

Type NUP

d 200∼360mm Boundary dimensions mm d

1

Basic load ratings dynamic static dynamic kN

Limiting speeds

Bearing numbers

static

kgf

rpm grease

oil

type NU

type NJ

154,000 229,000

1,400

1,600

NU2340

NJ

NUP

N

750 1,080 1,810 1,570 2,620

51,000 77,500 116,000 122,000 181,000

76,500 110,000 184,000 161,000 268,000

2,000 1,600 1,500 1,400 1,200

2,300 1,900 1,700 1,600 1,400

NU1044 NU244 NU2244 NU344 NU2344

NJ NJ NJ NJ NJ

NUP NUP NUP NUP NUP

N N N N N

530 935 1,440 1,430 2,100

820 1,340 2,320 1,950 3,200

54,000 95,500 146,000 146,000 214,000

83,500 136,000 236,000 198,000 325,000

1,800 1,500 1,300 1,300 1,100

2,100 1,700 1,600 1,500 1,300

NU1048 NU248 NU2248 NU348 NU2348

NJ NJ NJ NJ NJ

NUP NUP NUP NUP NUP

N N N N N

4 5 5 6 6

645 1,150 1,780 1,620 2,340

1,000 1,660 2,930 2,230 3,600

65,500 117,000 182,000 165,000 239,000

102,000 170,000 299,000 228,000 365,000

1,600 1,300 1,200 1,200 1,000

1,900 1,600 1,400 1,400 1,200

NU1052 NU252 NU2252 NU352 NU2352

NJ NJ NJ NJ NJ

NUP NUP NUP NUP NUP

N N N N N

4 5 5 6 6

4 5 5 6 6

660 1,190 1,840 1,820 2,700

1,050 1,760 3,100 2,540 4,250

67,000 121,000 188,000 185,000 275,000

107,000 180,000 315,000 259,000 430,000

1,500 1,200 1,100 1,100 920

1,800 1,400 1,300 1,200 1,100

NU1056 NU256 NU2256 NU356 NU2356

NJ NJ NJ NJ NJ

NUP NUP NUP NUP NUP

N N N N N

74 85 140

4 5 5

4 5 5

855 1,400 2,180

1,340 2,070 3,650

87,000 137,000 143,000 211,000 223,000 370,000

1,400 1,100 1,000

1,600 1,300 1,200

NU1060 NU260 NU2260

NJ NJ NJ

NUP NUP NUP

N N N

480 580 580

74 92 150

4 5 5

4 5 5

875 1,600 2,550

1,410 2,390 4,350

89,500 143,000 164,000 244,000 260,000 445,000

1,300 1,000 950

1,500 1,200 1,100

NU1064 NU264 NU2264

NJ NJ NJ

NUP NUP NUP

N N N

520

82

5

5

1,050

1,670

107,000 170,000

1,200

1,400

NU1068

NJ

NUP

N

540

82

5

5

1,080

1,750

110,000 179,000

1,100

1,300

NU1072

NJ

NUP

N

2

2

r1s min

Cr

Cor

D

B

rs min

420

138

5

5

1,510

2,240

340 400 400 460 460

56 65 108 88 145

3 4 4 5 5

3 4 4 5 5

500 760 1,140 1,190 1,780

360 440 440 500 500

56 72 120 95 155

3 4 4 5 5

3 4 4 5 5

400 480 480 540 540

65 80 130 102 165

4 5 5 6 6

420 500 500 580 580

65 80 130 108 175

460 540 540

Cr

Cor

1 This value achieved with machined cages; when pressed cages are used, 80% of this value is acceptable. 2 Minimal allowable dimension for chamfer dimension r or r1.

B-106

type type NUP N

●Cylindrical Roller Bearings

ra

r1a

r1a

ra da

Da dc

dd

de

dc

db Db

Db

Equivalent bearing load dynamic Pr=Fr static Por=Fr

Dimensions

Abutment and fillet dimensions

mm type NF

Fw

Ew



260

― NF ― NF ―

Mass

mm da

db

dc

dd

de

Da

J

min

min

max

min

min

max

360

280

220

220

254

263

283

400

400

250 270 270 284 284

310 350 350 396 396

262 286 286 307 307

233 236 236 240 240

233 236 236 240 240

248 266 266 279 279

254 273 273 287 287

264 289 289 307 307

327 384 384 440 440

― NF ― NF ―

270 295 295 310 310

330 385 385 430 430

282 313 313 335 335

253 256 256 260 260

253 256 256 260 260

268 293 293 305 305

275 298 298 313 313

284 316 316 333 333

― NF ― NF ―

296 320 320 336 336

364 420 420 464 464

309.6 340 340 362 362

276 280 280 284 284

276 280 280 284 284

292 318 318 331 331

300 323 323 339 339

― NF ― NF ―

316 340 340 362 362

384 440 440 498 498

329.6 360 360 390 390

296 300 300 304 304

296 300 300 304 304

312 336 336 356 356

― NF ―

340 364 364

420 476 476

356 387 387

316 320 320

316 320 320

― NF ―

360 390 390

440 510 510

376 415 415

336 340 340



385

475

403



405

495

423

kg type NU

type N

ras

r1as

max

max

366

4

4

92.6

90.7

327 384 384 440 440

313 355 355 402 402

2.5 3 3 4 4

2.5 18.2 3 37.7 3 59 4 73.4 4 116

17.9 37 57.8 71.7 114

347 424 424 480 480

347 424 424 480 480

333 390 390 436 436

2.5 3 3 4 4

2.5 19.6 3 50.2 3 80 4 93.4 4 147

19.3 49.2 78.4 91.3 144

312 343 343 359 359

384 460 460 516 516

384 460 460 516 516

367 426 426 471 471

3 4 4 5 5

3 4 4 5 5

29.1 66.9 104 117 182

28.7 65.6 102 114 178

320 343 343 366 366

332 365 365 386 386

404 480 480 556 556

404 480 480 556 556

387 446 446 505 505

3 4 4 5 5

3 4 4 5 5

30.9 70.8 109 142 222

30.4 69.4 107 139 218

336 361 361

344 368 368

358 392 392

444 520 520

444 520 520

423 482 482

3 4 4

3 4 4

43.6 88.2 138

42.9 86.4 135

336 340 340

356 386 386

364 393 393

378 419 419

464 560 560

464 560 560

443 516 516

3 4 4

3 4 4

46 111 172

45.3 109 168

360

360

381

390

405

500

500

479

4

4

61.8

60.8

380

380

401

410

425

520

520

499

4

4

64.7

63.7

4 Does not apply to side of the outer ring rib of type NF bearings.

B-107

Db max

4 min

(approx.)

●Cylindrical Roller Bearings

B

B r r1

r d FW

D

r

r1 r1

r1

J

Type NU

r

r D EW

J

Type NJ

r1

d J

Type N

Type NUP

Type NF

d 380∼500mm Boundary dimensions

Basic load ratings dynamic static dynamic

mm

kN

1

Limiting speeds

Bearing numbers

static

kgf

rpm grease

oil

type NU

type NJ

112,000 187,000

1,100

1,200

NU1076

NJ

NUP

N

2,190

134,000 223,000

990

1,200

NU1080

NJ

NUP

N

1,350

2,290

138,000 233,000

950

1,100

NU1084

NJ

NUP

N

6

1,430

2,430

146,000 248,000

900

1,100

NU1088

NJ

NUP

N

6

6

1,540

2,630

157,000 269,000

850

1,000

NU1092

NJ

NUP

N

100

6

6

1,580

2,750

161,000 280,000

810

960

NU1096

NJ

NUP

N

100

6

6

1,610

2,870

164,000 292,000

770

910

NU10/500

NJ

NUP

N

B

rs min

2

2

r1s min

Cr

Cor

d

D

380

560

82

5

5

1,100

1,840

400

600

90

5

5

1,320

420

620

90

5

5

440

650

94

6

460

680

100

480

700

500

720

Cr

Cor

1 This value achieved with machined cages; when pressed cages are used, 80% of this value is acceptable. 2 Minimal allowable dimension for chamfer dimension r or r1.

B-108

type type NUP N

●Cylindrical Roller Bearings

ra

r1a

r1a

ra da

Da dc

dd

de

dc

db Db

Db

Equivalent bearing load dynamic Pr=Fr static Por=Fr

Dimensions

Abutment and fillet dimensions

mm type NF

Fw

Ew



425



Mass

mm da

db

dc

dd

de

Da

J

min

min

max

min

min

max

515

443

400

400

421

430

445

540

540

450

550

470

420

420

446

455

473

580



470

570

490

440

440

466

475

493



493

597

513.8

464

464

488

499



516

624

537.6

484

484

511



536

644

557.6

504

504



556

664

577.6

524

524

kg type NU

type N

ras

r1as

max

max

519

4

4

67.5

66.5

580

554

4

4

87.6

86.3

600

600

574

4

4

91

89.6

517

626

626

602

5

5

105

103

522

541

656

656

629

5

5

122

120

531

542

561

676

676

649

5

5

126

124

551

562

581

696

696

669

5

5

130

128

4 Does not apply to side of the outer ring rib of type NF bearings.

B-109

Db max

4 min

(approx.)

●L Type Loose Rib L type collar ring B2

B2

r1

r1

B1

B1 d d1

d d1

NH=NJ+HJ

NUJ=NU+HJ

d 20∼60mm Dimensions

Bearing numbers

mm 1

Mass

Dimensions

kg

mm

d

d1

B1

B2

r1s min

20

29.9 29.5 29.9 29.5 31.8 31.1 31.8 31.1

3 3 3 3 4 4 4 4

6.75 5.5 7.5 6.5 7.5 6.5 8.5 7.5

0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

HJ204 HJ204E HJ2204 HJ2204E HJ304 HJ304E HJ2304 HJ2304E

0.012 0.009 0.013 0.01 0.017 0.014 0.018 0.015

34.8 34.5 34.8 34.5 39 38 39 38 43.6

3 3 3 3 4 4 4 4 6

7.25 6. 7.5 6.5 8 7 9 8 10.5

0.6 0.6 0.6 0.6 1.1 1.1 1.1 1.1 1.5

HJ205 HJ205E HJ2205 HJ2205E HJ305 HJ305E HJ2305 HJ2305E HJ405

0.015 0.012 0.015 0.013 0.025 0.021 0.027 0.024 0.057

30

41.7 41.1 41.7 41.1 45.9 44.9 45.9 44.9 50.5

4 4 4 4 5 5 5 5 7

8.25 7 8.5 7.5 9.5 8.5 11.5 9.5 11.5

0.6 0.6 0.6 0.6 1.1 1.1 1.1 1.1 1.5

HJ206 HJ206E HJ2206 HJ2206E HJ306 HJ306E HJ2306 HJ2306E HJ406

0.025 0.017 0.025 0.02 0.039 0.035 0.043 0.035 0.08

35

47.6 48 47.6 48 50.8 51 50.8 51 59

4 4 4 4 6 6 6 6 8

8 7 8.5 8.5 11 9.5 14 11 13

0.6 0.6 0.6 0.6 1.1 1.1 1.1 1.1 1.5

HJ207 HJ207E HJ2207 HJ2207E HJ307 HJ307E HJ2307 HJ2307E HJ407

0.03 0.027 0.031 0.031 0.056 0.048 0.064 0.055 0.12

25

Bearing numbers

Mass kg

1

d

d1

B1

B2

r1s min

40

54.2 53.9 54.2 53.9 58.4 57.6 58.4 57.6 64.8

5 5 5 5 7 7 7 7 8

9 8.5 9.5 9 12.5 11 14.5 12.5 13.

1.1 1.1 1.1 1.1 1.5 1.5 1.5 1.5 2

HJ208 HJ208E HJ2208 HJ2208E HJ308 HJ308E HJ2308 HJ2308E HJ408

0.046 0.042 0.047 0.045 0.083 0.07 0.09 0.08 0.14

45

59 58.9 58.9 64 64.5 64 64.5 71.8

5 5 5 7 7 7 7 8

9.5 8.5 9 12.5 11.5 15 13 13.5

1.1 1.1 1.1 1.5 1.5 1.5 1.5 2

*HJ209 HJ209E HJ2209E HJ309 HJ309E HJ2309 HJ2309E HJ409

0.053 0.047 0.05 0.099 0.093 0.109 0.103 0.175

50

64.6 63.9 64.6 71 71.4 71 71.4 78.8

5 5 5 8 8 8 8 9

10 9 9.5 14 13 17 14.5 14.5

1.1 1.1 1.1 2 2 2 2 2.1

HJ210 *HJ210E HJ2210 HJ310 HJ310E HJ2310 HJ2310E HJ410

0.063 0.055 0.061 0.142 0.134 0.157 0.15 0.23

55

70.8 70.8 70.8 77.2 77.7 77.2 77.7 85.2

6 6 6 9 9 9 9 10

11 9.5 10 15 14 18.5 15.5 16.5

1.1 1.1 1.1 2 2 2 2 2.1

*HJ211 HJ211E HJ2211E HJ311 HJ311E HJ2311 HJ2311E HJ411

0.084 0.072 0.076 0.182 0.168 0.203 0.185 0.29

60

78.4 77.6

6 6

11 10

1.5 1.5

*HJ212 *HJ212E

0.108 0.094

(approx.)

(approx.)

1 Maximum allowable dimension for chamfer dimension r. Note: 1. This L type collar ring is used with NU type cylindrical roller bearings; in duplex arrangements with NJ or NU type bearing numbers, they become NH type and NUJ type respectively. For bearing dimensions, allowable rotations, and mass, please refer to pages B-94 to B-99. 2. "*" indicates L type collar rings that can also be used with dimension series 22 bearings.

B-110

●L Type Loose Rib

B2

B2

r1

r1

B1

B1 d d1

d d1

NH=NJ+HJ

NUJ=NU+HJ

d 60∼105mm Dimensions

Bearing numbers

mm 1

Mass

Dimensions

kg

mm

d

d1

B1

B2

r1s min

60

84.2 84.6 84.2 84.6 91.8

9 9 9 9 10

15.5 14.5 19 16 16.5

2.1 2.1 2.1 2.1 2.1

HJ312 HJ312E HJ2312 HJ2312E HJ412

0.22 0.205 0.245 0.23 0.34

65

84.8 84.5 84.8 84.5 91 91 91 91 98.5

6 6 6 6 10 10 10 10 11

11 10 11.5 10.5 17 15.5 20 18 18

1.5 1.5 1.5 1.5 2.1 2.1 2.1 2.1 2.1

HJ213 HJ213E HJ2213 HJ2213E HJ313 HJ313E HJ2313 HJ2313E HJ413

0.123 0.111 0.126 0.118 0.28 0.25 0.304 0.29 0.42

70

89.6 89.5 89.5 98 98 98 98 110.5

7 7 7 10 10 10 10 12

12.5 11 11.5 17.5 15.5 20.5 18.5 20

1.5 1.5 1.5 2.1 2.1 2.1 2.1 3

*HJ214 HJ214E HJ2214E HJ314 HJ314E HJ2314 HJ2314E HJ414

0.15 0.13 0.138 0.33 0.293 0.358 0.35 0.605

75

94 94.5 94.5 104.2 104.6 104.2 104.6 116.0

7 7 7 11 11 11 11 13

12.5 11 11.5 18.5 16.5 21.5 19.5 21.5

1.5 1.5 1.5 2.1 2.1 2.1 2.1 3

*HJ215 HJ215E HJ2215E HJ315 HJ315E HJ2315 HJ2315E HJ415

0.156 0.141 0.164 0.4 0.35 0.432 0.41 0.71

101.2 101.7 111.8 111 111.8

8 8 11 11 11

13.5 12.5 19.5 17 23

2 2 2.1 2.1 2.1

*HJ216 *HJ216E HJ316 HJ316E HJ2316

0.207 0.193 0.47 0.405 0.511

80

Bearing numbers

Mass kg

B2

1

d1

B1

80

111 122

11 13

20 22

2.1 3

85

108.2 107.7 107.7 117.5 118.4 117.5 118.4

8 8 8 12 12 12 12

14 12.5 13 20.5 18.5 24 22

2 2 2 3 3 3 3

*HJ217 HJ217E HJ2217E HJ317 HJ317E HJ2317 HJ2317E

0.25 0.21 0.216 0.56 0.505 0.606 0.55

90

114.2 114.6 114.2 114.6 125 124.7 125 124.7

9 9 9 9 12 12 12 12

15 14 16 15 21 18.5 26 22

2 2 2 2 3 3 3 3

HJ218 HJ218E HJ2218 HJ2218E HJ318 HJ318E HJ2318 HJ2318E

0.305 0.272 0.315 0.308 0.63 0.548 0.704 0.69

95

121 121 121 121 132 132.7 132 132.7

9 9 9 9 13 13 13 13

15.5 14.0 16.5 15.5 22.5 20.5 26.5 24.5

2.1 2.1 2.1 2.1 3 3 3 3

HJ219 HJ219E HJ2219 HJ2219E HJ319 HJ319E HJ2319 HJ2319E

0.352 0.304 0.363 0.335 0.76 0.7 0.826 0.8

100

128 128 128 128 140.5 140.3 140.5 140.3

10 10 10 10 13 13 13 13

17 15 18 16 22.5 20.5 27.5 23.5

2.1 2.1 2.1 2.1 3 3 3 3

HJ220 HJ220E HJ2220 HJ2220E HJ320 HJ320E HJ2320 HJ2320E

0.444 0.38 0.456 0.385 0.895 0.8 0.986 0.92

105 135.0

10

17.5

2.1

HJ221

0.505

d

(approx.)

r1s min

(approx.)

HJ2316E HJ416

0.45 0.78

1 Maximum allowable dimension for chamfer dimension r. Note: 1. This L type collar ring is used with NU type cylindrical roller bearings; in duplex arrangements with NJ or NU type bearing numbers, they become NH type and NUJ type respectively. For bearing dimensions, allowable rotations, and mass, please refer to pages B-98to B-103. 2. "*" indicates L type collar rings that can also be used with dimension series 22 bearings.

B-111

●L Type Loose Rib L type collar ring B2

B2

r1

r1

B1

B1 d d1

d d1

NH=NJ+HJ

NUJ=NU+HJ

d 105∼200mm Dimensions

Bearing numbers

mm 1

Dimensions

kg

mm

B1

B2

105 147.0

13

22.5

3

HJ321

0.97

141.5 142.1 141.5 142.1 155.5 156.6 155.5 156.6

11 11 11 11 14 14 14 14

18.5 17 20.5 19.5 23 22 28 26.5

2.1 2.1 2.1 2.1 3 3 3 3

HJ222 HJ222E HJ2222 HJ2222E HJ322 HJ322E HJ2322 HJ2322E

0.615 0.553 0.645 0.605 1.17 1.09 1.28 1.25

153 153.9 153 153.9 168.5 169.2 168.5 169.2

11 11 11 11 14 14 14 14

19 17 22 20 23.5 22.5 28 26

2.1 2.1 2.1 2.1 3 3 3 3

HJ224 HJ224E HJ2224 HJ2224E HJ324 HJ324E HJ2324 HJ2324E

0.715 0.634 0.767 0.705 1.4 1.28 1.53 1.42

165.5 164.7 165.5 164.7 182 183 182 183

11 11 11 11 14 14 14 14

19 17 25 21 24 23 29.5 28

3 3 3 3 4 4 4 4

HJ226 HJ226E HJ2226 HJ2226E HJ326 HJ326E HJ2326 HJ2326E

0.84 0.684 0.953 0.831 1.62 1.53 1.8 1.75

179.5 180.2 179.5 180.2 196 196.8 196 196.8

11 11 11 11 15 15 15 15

19 18 25 23 26 25 33.5 31

3 3 3 3 4 4 4 4

HJ228 HJ228E HJ2228 HJ2228E HJ328 HJ328E HJ2328 HJ2328E

1 0.929 1.14 1.11 1.93 1.91 2.21 2.3

12

20.5

3

HJ230

1.24

d

110

120

130

140

d1

150 193

r1s min

Mass

Bearing numbers

Mass kg

B1

B2

150

194 193 194 210 211 210 211

12 12 12 15 15 15 15

19.5 26.5 24.5 26.5 25 34 31.5

3 3 3 4 4 4 4

HJ230E HJ2230 HJ2230E HJ330 HJ330E HJ2330 HJ2330E

1.18 1.39 1.42 2.37 2.25 2.69 2.6

160

207 207.8 207 206.6 225 223.2 225 223.2

12 12 12 12 15 15 15 15

21 20 28 24.5 28 25 37 32

3 3 3 3 4 4 4 4

HJ232 HJ232E HJ2232 HJ2232E HJ332 HJ332E HJ2332 HJ2332E

1.48 1.34 1.69 1.61 2.75 2.4 3.16 2.85

170

220.5 221.4 220.5 220.2 238 238

12 12 12 12 16 16

22 20 29 24 29.5 38.5

4 4 4 4 4 4

HJ234 HJ234E HJ2234 HJ2234E HJ334 HJ2334

1.7 1.51 1.93 1.82 3.25 3.71

180

230.5 231.4 230.5 230.2 252 252

12 12 12 12 17 17

22 20 29 24 30.5 40

4 4 4 4 4 4

HJ236 HJ236E HJ2236 HJ2236E HJ336 HJ2336

1.8 1.7 2.04 1.91 3.85 4.42

190

244.5 245.2 244.5 244 265 265

13 13 13 13 18 18

23.5 21.5 31.5 26.5 32 41.5

4 4 4 4 5 5

HJ238 HJ238E HJ2238 HJ2238E HJ338 HJ2338

2.2 1.94 2.52 2.38 4.45 5.05

14

25

4

HJ240

2.6

200 258

r1s min

1

d1

d

(approx.)

(approx.)

1 Maximum allowable dimension for chamfer dimension r. Note: 1. This L type collar ring is used with NU type cylindrical roller bearings; in duplex arrangements with NJ or NU type bearing numbers, they become NH type and NUJ type respectively. For bearing dimensions, allowable rotations, and mass, please refer to pages B-102 to B-109. 2. "*" indicates L type collar rings that can also be used with dimension series 22 bearings.

B-112

●L Type Loose Rib

B2

B2

r1

r1

B1

B1 d d1

d d1

NH=NJ+HJ

NUJ=NU+HJ

d 200∼320mm Dimensions

Bearing numbers

mm

Mass kg

1

d

d1

B1

B2

r1s min

200

259 258 257.8 280 280

14 14 14 18 18

23 34 28 33 44.5

4 4 4 5 5

HJ240E HJ2240 HJ2240E HJ340 HJ2340

2.35 2.99 2.86 5 5.76

220

286 307

15 20

27.5 36

4 5

HJ244 HJ344

3.55 7.05

240

313 335

16 22

29.5 39.5

4 5

HJ248 HJ348

4.65 8.2

260

340 362

18 24

33 43

5 6

HJ252 HJ352

6.2 11.4

280

360 390

18 26

33 46

5 6

HJ256 HJ356

7.39 13.9

300

387

20

34.5

5

HJ260

9.14

320

415

21

37

5

HJ264

(approx.)

11.3

1 Maximum allowable dimension for chamfer dimension r. Note: 1. This L type collar ring is used with NU type cylindrical roller bearings; in duplex arrangements with NJ or NU type bearing numbers, they become NH type and NUJ type respectively. For bearing dimensions, allowable rotations, and mass, please refer to pages B-108 to B-109. 2. "*" indicates L type collar rings that can also be used with dimension series 22 bearings.

B-113

●Multi-Row Cylindrical Roller Bearings B

B r

r r

r

d

d FW

D

D Ew

d

Type NNU Cylindrical bore

d

Type NN

Tapered bore taper 1:12

Cylindrical bore

Tapered bore taper 1:12

d 25∼110mm Boundary dimensions

Basic load ratings static dynamic

dynamic mm

kN 2

Limiting speeds

Bearing

static kgf

rpm cylindrical bore

type NNU 1 tapered bore

Cr

Cor

grease

oil

30.0

2,630

3,050

14,000

17,000





31.0

37.0

3,150

3,800

12,000

15,000





1

38.0

47.5

3,850

4,850

11,000

13,000





21

1

43.5

55.5

4,400

5,650

9,700

11,000





75

23

1

52.0

68.5

5,300

7,000

8,800

10,000





50

80

23

1

53.0

72.5

5,400

7,400

8,000

9,400





55

90

26

1.1

69.5

96.5

7,050

9,850

7,300

8,600





60

95

26

1.1

71.0

102

7,250

10,400

6,700

7,900





65

100

26

1.1

75.0

111

7,650

11,400

6,200

7,300





70

110

30

1.1

94.5

143

9,650

14,600

5,800

6,800





75

115

30

1.1

96.5

149

9,850

15,200

5,400

6,300





80

125

34

1.1

116

179

11,800

18,200

5,100

5,900





85

130

34

1.1

122

194

12,400

19,800

4,800

5,600





90

140

37

1.5

143

228

14,600

23,200

4,500

5,300





95

145

37

1.5

146

238

14,900

24,200

4,300

5,000





100

140 150

40 37

1.1 1.5

131 153

260 256

13,300 15,600

26,500 26,100

4,300 4,000

5,100 4,800

NNU4920 ―

NNU4920K ―

105

145 160

40 41

1.1 2

133 198

268 320

13,500 20,200

27,400 33,000

4,100 3,800

4,800 4,500

NNU4921 ―

NNU4921K ―

110

150 170

40 45

1.1 2

137 229

284 375

14,000 23,300

28,900 38,000

3,900 3,600

4,600 4,300

NNU4922 ―

NNU4922K ―

d

D

B

rs min

Cr

25

47

16

0.6

25.8

30

55

19

1

35

62

20

40

68

45

Cor

1 "K" indicates bearings have tapered bore with a taper ratio of 1: 12. 2 Smallest allowable dimension for chamfer dimension r.

B-114

●Multi-Row Cylindrical Roller Bearings

ra

ra

ra

ra

da dd

Da dc

ra

da Db

Db

db

Db da

Equivalent bearing load dynamic Pr=Fr static Por=Fr

numbers

Dimensions

Abutment and fillet dimensions

Mass (approx.) kg

type NN 1 cylindrical tapered bore bore

mm Fw

NN3005

NN3005K

NN3006

mm

type NNU

da

db

dc

dd

Da

Db

ras

Ew

min

min

max

min

max

max

min



41.3

29

30







43

NN3006K



48.5

35

36.5







NN3007

NN3007K



55

40

41.5





NN3008

NN3008K



61

45

47



NN3009

NN3009K



67.5

50

52

NN3010

NN3010K



72.5

55

NN3011

NN3011K



81

NN3012

NN3012K



NN3013

NN3013K

NN3014

type NN

max

cylindrical bore

tapered bore

42

0.6





0.124 0.121

50

49

1





0.199 0.193



57

56

1





0.242 0.235





63

62

1





0.312 0.303







70

69

1





0.405 0.393

57







75

74

1





0.433 0.419

61.5

63.5







83.5

82

1





0.651 0.631

86.1

66.5

68.5







88.5

87

1





0.704 0.683



91

71.5

73.5







93.5

92

1





0.758 0.735

NN3014K



100

76.5

79







103.5 101

1





1.04

1.01

NN3015

NN3015K



105

81.5

84







108.5 106

1





1.14

1.11

NN3016

NN3016K



113

86.5

89.5







118.5 114

1





1.52

1.47

NN3017

NN3017K



118

91.5

94.5







123.5 119

1





1.61

1.56

NN3018

NN3018K



127

98

101







132

129

1.5





2.07

2.01

NN3019

NN3019K



132

103

106







137

134

1.5





2.17

2.1

NN4920 NN3020

NN4920K 113 NN3020K ―

129 137

106.5 110 108 111

111 ―

115 ―

133.5 ―

133.5 131 142 139

1 1.83 1.5 ―

1.75 ―

1.75 2.26

1.67 2.19

NN4921 NN3021

NN4921K 118 NN3021K ―

134 146

111.5 115 114 117

116 ―

120 ―

138.5 ―

138.5 136 151 148

1 2

1.91 ―

1.82 ―

1.82 2.89

1.73 2.8

NN4922 NN3022

NN4922K 123 NN3022K ―

139 155

116.5 120 119 123

121 ―

125 ―

143.5 ―

143.5 141 161 157

1 2

1.99 ―

1.9 ―

1.9 3.69

1.81 3.56

B-115

cylindrical bore

tapered bore

●Multi-Row Cylindrical Roller Bearings B

B r

r r

r

d

d FW

D

D Ew

d

Type NNU Cylindrical bore

d

Type NN

Tapered bore taper 1:12

Cylindrical bore

Tapered bore taper 1:12

d 120∼280mm Boundary dimensions

Basic load ratings static dynamic

dynamic mm

kN

d

D

B

rs min

120

165 180

45 46

130

180 200

140

2

Limiting speeds

Bearing

static kgf

rpm grease

oil

cylindrical bore

type NNU 1 tapered bore

Cr

Cor

Cr

Cor

1.1 2

183 233

360 390

18,700 23,700

37,000 40,000

3,600 3,300

4,200 3,900

NNU4924 ―

NNU4924K ―

50 52

1.5 2

220 284

440 475

22,400 29,000

45,000 48,500

3,300 3,100

3,900 3,600

NNU4926 ―

NNU4926K ―

190 210

50 53

1.5 2

227 298

470 515

23,100 30,500

48,000 52,500

3,000 2,800

3,600 3,300

NNU4928 ―

NNU4928K ―

150

210 225

60 56

2 2.1

345 335

690 585

35,000 34,000

70,500 60,000

2,800 2,600

3,300 3,100

NNU4930 ―

NNU4930K ―

160

220 240

60 60

2 2.1

355 375

740 660

36,500 38,000

75,500 67,500

2,600 2,500

3,100 2,900

NNU4932 ―

NNU4932K ―

170

230 260

60 67

2 2.1

360 440

765 775

37,000 45,000

78,000 79,000

2,500 2,300

2,900 2,700

NNU4934 ―

NNU4934K ―

180

250 280

69 74

2 2.1

460 565

965 995

46,500 57,500

98,500 102,000

2,300 2,200

2,700 2,600

NNU4936 ―

NNU4936K ―

190

260 290

69 75

2 2.1

475 580

1,030 1,040

48,500 59,000

105,000 106,000

2,200 2,000

2,600 2,400

NNU4938 ―

NNU4938K ―

200

280 310

80 82

2.1 2.1

555 655

1,180 1,170

56,500 66,500

120,000 119,000

2,100 1,900

2,400 2,300

NNU4940 ―

NNU4940K ―

220

300 340

80 90

2.1 3

585 815

1,300 1,480

59,500 83,000

132,000 151,000

1,900 1,700

2,200 2,100

NNU4944 ―

NNU4944K ―

240

320 360

80 92

2.1 3

610 855

1,410 1,600

62,500 87,000

144,000 163,000

1,700 1,600

2,000 1,900

NNU4948 ―

NNU4948K ―

260

360 400

100 104

2.1 4

900 1,060

2,070 1,990

92,000 108,000

211,000 203,000

1,600 1,500

1,800 1,700

NNU4952 ―

NNU4952K ―

280

380 420

100 106

2.1 4

925 1,080

2,200 2,080

94,500 110,000

224,000 212,000

1,400 1,300

1,700 1,600

NNU4956 ―

NNU4956K ―

1 "K" indicates bearings have tapered bore with a taper ratio of 1: 12. 2 Smallest allowable dimension for chamfer dimension r.

B-116

●Multi-Row Cylindrical Roller Bearings

ra

ra

ra

ra

da dd

Da dc

ra

da Db

Db

db

Db da

Equivalent bearing load dynamic Pr=Fr static Por=Fr

numbers

Dimensions

Abutment and fillet dimensions

Mass (approx.) kg

type NN 1 cylindrical tapered bore bore

mm Fw

Ew

da

db

dc

dd

mm Da

min

min

max

min

max

type NNU Db max

ras min

max

type NN

cylindrical bore

tapered bore

cylindrical bore

tapered bore

NN4924 NN3024

NN4924K 134.5 154.5 126.5 130 NN3024K 165 129 133 ―

133 ―

137 ―

158.5 ―

158.5 156.5 171 167

1 2

2.75 ―

2.63 ―

2.63 3.98

2.51 3.83

NN4926 NN3026

NN4926K 146 NN3026K ―

168 182

138 139

142 143

144 ―

148 ―

172 ―

172 191

170 183

1.5 2

3.69 ―

3.52 ―

3.52 5.92

3.35 5.71

NN4928 NN3028

NN4928K 156 NN3028K ―

178 192

148 149

152 153

154 ―

158 ―

182 ―

182 201

180 194

1.5 2

3.94 ―

3.76 ―

3.76 6.44

3.58 6.21

NN4930 NN3030

NN4930K 168.5 196.5 159 NN3030K 206 161 ―

164 166

166 ―

171 ―

201 ―

201 214

198.5 208

2 2

6.18 ―

5.9 ―

5.9 7.81

5.62 7.53

NN4932 NN3032

NN4932K 178.5 206.5 169 NN3032K 219 171 ―

174 176

176 ―

182 ―

211 ―

211 229

208.5 221

2 2

6.53 ―

6.23 ―

6.24 8.92

5.94 8.59

NN4934 NN3034

NN4934K 188.5 216.5 179 NN3034K 236 181 ―

184 187

186 ―

192 ―

221 ―

221 249

218.5 238

2 2

6.87 ―

6.55 6.56 6.24 ― 12.6 12.2

NN4936 NN3036

NN4936K 202 NN3036K ―

234 255

189 191

195 197

199 ―

205 ―

241 ―

241 269

236 257

2 2

9.9 ―

9.46 9.45 9.01 ― 16.6 16

NN4938 NN3038

NN4938K 212 NN3038K ―

244 265

199 201

205 207

209 ―

215 ―

251 ―

251 279

246 267

2 2

10.4 ―

9.94 9.93 9.47 17.4 ― 18

NN4940 NN3040

NN4940K 225 NN3040K ―

261 282

211 211

218 218

222 ―

228 ―

269 ―

269 299

264 285

2 2

14.7 ―

14 ―

14 21.6

13.3 20.8

NN4944 NN3044

NN4944K 245 NN3044K ―

281 310

231 233

238 240

242 ―

248 ―

289 ―

289 327

284 313

2 2.5

15.9 ―

15.2 ―

15.2 29.3

14.5 28.2

NN4948 NN3048

NN4948K 265 NN3048K ―

301 330

251 253

258 261

262 ―

269 ―

309 ―

309 347

304 333

2 2.5

17.2 ―

16.4 ―

16.4 32.8

15.6 31.6

NN4952 NN3052

NN4952K 292 NN3052K ―

336 364

271 276

279 285

288 ―

296 ―

349 ―

349 384

339 367

2 3

29.6 ―

28.3 ―

28.3 47.4

27 45.8

NN4956 NN3056

NN4956K 312 NN3056K ―

356 384

291 296

299 305

308 ―

316 ―

369 ―

369 404

359 387

2 3

31.6 ―

30.2 ―

30.2 51.1

28.8 49.3

B-117

●Multi-Row Cylindrical Roller Bearings B

B r

r r

r

d

d FW

D

D Ew

d

Type NNU Cylindrical bore

d

Type NN

Tapered bore taper 1:12

Cylindrical bore

Tapered bore taper 1:12

d 300∼500mm Boundary dimensions

Basic load ratings static dynamic

dynamic mm

kN

d

D

B

rs min

300

420 460

118 118

3 4

320

440 480

118 121

340

460 520

360

2

Cr

Limiting speeds

Bearing

static kgf

rpm grease

oil

cylindrical bore

type NNU 1 tapered bore

Cor

Cr

Cor

1,200 1,330

2,800 2,560

122,000 135,000

285,000 261,000

1,300 1,200

1,500 1,500

NNU4960 ―

NNU4960K ―

3 4

1,240 1,350

2,970 2,670

126,000 138,000

305,000 272,000

1,200 1,100

1,400 1,300

NNU4964 ―

NNU4964K ―

118 133

3 5

1,280 1,620

3,150 3,200

131,000 165,000

320,000 325,000

1,100 1,100

1,300 1,300

NNU4968 ―

NNU4968K ―

480 540

118 134

3 5

1,290 1,650

3,250 3,300

131,000 169,000

330,000 340,000

1,100 1,000

1,300 1,200

NNU4972 ―

NNU4972K ―

380

520 560

140 135

4 5

1,630 1,690

4,050 3,450

167,000 172,000

415,000 355,000

1,000 940

1,200 1,100

NNU4976 ―

NNU4976K ―

400

540 600

140 148

4 5

1,690 2,040

4,300 4,150

172,000 208,000

435,000 420,000

940 880

1,100 1,000

NNU4980 ―

NNU4980K ―

420

560 620

140 150

4 5

1,740 2,080

4,500 4,300

177,000 212,000

460,000 440,000

900 840

1,100 990

NNU4984 ―

NNU4984K ―

440

600 650

160 157

4 6

2,150 2,420

5,550 5,100

219,000 247,000

565,000 520,000

850 800

1,000 940

NNU4988 ―

NNU4988K ―

460

620 680

160 163

4 6

2,220 2,550

5,850 5,350

226,000 260,000

595,000 545,000

800 750

950 890

NNU4992 ―

NNU4992K ―

480

650

170

5

2,280

5,900

233,000

600,000

770

910

NNU4996

NNU4996K

500

670

170

5

2,360

6,200

240,000

635,000

730

860

NNU49/500

NNU49/500K

1 "K" indicates bearings have tapered bore with a taper ratio of 1: 12. 2 Smallest allowable dimension for chamfer dimension r.

B-118

●Multi-Row Cylindrical Roller Bearings

ra

ra

ra

ra

da dd

Da dc

ra

da Db

Db

db

Db da

Equivalent bearing load dynamic Pr=Fr static Por=Fr

numbers

Dimensions

Abutment and fillet dimensions

Mass (approx.) kg

type NN 1 cylindrical tapered bore bore

mm Fw

da

db

dc

dd

mm Da

Ew

min

min

max

min

max

max

min

type NNU Db

ras

type NN

max

cylindrical bore

tapered bore

cylindrical bore

tapered bore

NN4960 NN3060

NN4960K 339 NN3060K ―

391 418

313 316

323 326

335 ―

343 ―

407 ―

407 444

394 421

2.5 3

48.6 ―

46.4 ―

46.4 70.8

44.2 68.6

NN4964 NN3064

NN4964K 359 NN3064K ―

411 438

333 336

343 346

355 ―

363 ―

427 ―

427 464

414 441

2.5 3

51.4 ―

49.1 ―

49 76.2

46.7 73.5

― NN3068

379 ― NN3068K ―

― 473

353 360

363 371

375 ―

383 ―

447 ―

― 500

― 477

2.5 4

54.2 ―

51.7 ―

― 102

― NN3072

398 ― NN3072K ―

― 493

373 380

383 391

394 ―

402 ―

467 ―

― 520

― 497

2.5 4

57 ―

54.4 ―

― 107

― 103

― NN3076

425 ― NN3076K ―

― 512

396 400

408 411

420 ―

430 ―

504 ―

― 540

― 516

3 4

84.5 ―

80.6 ―

― 113

― 109

― NN3080

445 ― NN3080K ―

― 547

416 420

428 432

440 ―

450 ―

524 ―

― 580

― 551

3 4

88.2 ―

84.1 ―

― 146

― 141

― NN3084

465 ― NN3084K ―

― 567

436 440

448 452

460 ―

470 ―

544 ―

― 600

― 571

3 4

92 ―

87.7 ―

― 154

― 148

― NN3088

492 ― NN3088K ―

― 596

456 464

469 477

487 ―

497 ―

584 ―

― 626

― 601

3 5

127 ―

121 ―

― 178

― 172

― NN3092

512 ― NN3092K ―

― 622

476 484

489 498

507 ―

517 ―

604 ―

― 656

― 627

3 5

132 ―

126 ―

― 202

― 195

― 98.5





534



500

514

531

541

630





4

156

149









556



520

534

551

561

650





4

162

155





B-119

●Four-Row Cylindrical Roller Bearings

d 120∼200mm Boundary dimensions dynamic mm d

D

B1

Basic load ratings static dynamic

kN C1

rs min

1

r1s min

1

Cr

kgf Cor

120 130 140 145

150

160

170

180

190

200 1 Minimal allowable dimension for chamfer dimension r or r1. 2 Oil groove and oil inlet are in center of outer ring.

B-120

static

Cr

Cor

●Four-Row Cylindrical Roller Bearings

Bearing numbers

Dimensions Drawing no.

Mass kg

Fw

(approx.)

4R2437 4R2438

137 135

1 1

8.2 9.3

4R2628

150

1

12.1

4R2823

160

1

13.9

4R2906 4R2908

166 169

1 1

18 23.4

4R3031 4R3029 4R3040 4R3039

168 174 174 177

1 1 1 1

19.4 20 24.5 29.6

4R3224 4R3226 4R3232 4R3225

177 180 179 183

1 1 1 1

20.2 16.6 23.4 27.8

4R3426 4R3429 4R3423 4R3432 4R3425 4R3433 4R3431

187 189 190 193 193 192 196

1 1 1 1 1 1 1

14.2 22.2 22.8 28.2 19.3 29.5 44

4R3625 4R3628 4R3618

200 202 204

1 1 1

23.2 29.4 34.2

4R3820 4R3818 4R3821 4R3823

212 213 212 214

1 1 1 2 1

26.9 31.7 37.5 41.5

4R4039 4R4026 4R4037

222 223 222

1 1 1

28.5 36.7 40.5

Note: Drawing 1 represents a bearing with solid rollers and machined cage.

B-121

●Four-Row Cylindrical Roller Bearings

C1

C1 r1

r1

r

r B1

B1

D

d FW

d FW

D

Drawing 1

Drawing 2

d 200∼300mm Boundary dimensions dynamic mm

Basic load ratings static dynamic

kN 1

rs min

192 216

192 216

2.5 3

2.5 3

1,290 1,750

3,150 3,650

132,000 179,000

320,000 375,000

290

192

192

2.5

2.5

1,230

3,350

126,000

340,000

220

290 300 310 310 310 310 310 320 320

192 160 192 204 215 225 265 160 210

192 160 192 204 215 225 265 160 210

2.5 2.5 2.5 2.5 2.5 2.5 2.5 3 2.5

2.5 2.5 2.5 2.5 2.5 2.5 2.5 3 2.5

1,190 1,000 1,390 1,420 1,530 1,480 1,630 1,190 1,550

3,350 2,590 3,400 3,750 3,750 3,950 4,500 2,550 3,650

122,000 102,000 141,000 144,000 156,000 151,000 167,000 121,000 158,000

340,000 264,000 350,000 385,000 380,000 405,000 460,000 260,000 370,000

230

330 340

206 260

206 260

2.5 3

2.5 3

1,520 2,050

3,800 5,100

155,000 209,000

385,000 520,000

240

330 340 360

220 220 220

220 220 220

3 3 2.5

3 3 2.5

1,490 1,670 1,760

4,150 4,200 4,050

152,000 170,000 179,000

420,000 425,000 415,000

250

350

220

220

3

3

1,730

4,300

176,000

440,000

260

370 380

220 280

220 280

3 3

3 3

1,760 2,420

4,450 6,250

179,000 247,000

455,000 635,000

270

380

280

280

2.5

2.5

2,580

6,850

263,000

700,000

280

390 390 420

220 275 280

220 275 280

3 2.5 4

3 2.5 4

1,780 2,290 2,430

4,650 6,250 6,150

181,000 233,000 248,000

475,000 635,000 630,000

290

410 420

240 300

240 300

3 3

3 3

2,240 2,830

5,550 7,500

228,000 288,000

565,000 765,000

300

400 420 420 420

300 240 300 300

300 240 300 300

3 3 3 3

3 3 3 3

2,480 2,020 2,720 2,900

7,500 5,450 7,600 7,850

253,000 206,000 278,000 295,000

765,000 555,000 775,000 800,000

D

200

290 320

210

B1

Cr

kgf

C1

d

r1s min

1

static

Cor

Cr

1 Minimal allowable dimension for chamfer dimension r or r1. 2 Oil groove and oil inlet are in center of outer ring. 3 Oil groove and oil inlet not on outer ring spacer. B-122

Cor

●Four-Row Cylindrical Roller Bearings

Bearing numbers

Dimensions Drawing no.

Mass kg

Fw

(approx.)

4R4041 4R4028

226 231

1 1

42.5 67

4R4206

236

1

39.5

4R4413 4R4419 4R4426 4R4425 4R4420 4R4416 4R4430 4R4428 4R4429

239 245 246 247 242 245 245 245 248

1 1 1 1 1 1 1 1 1

33.8 32.8 46.9 49.8 51.5 54.9 63.5 46.5 60.5

4R4614 4R4611

258 261

1 1

58.6 82.6

4R4811 4R4806 4R4807

270 268 274

1 1 1

56.8 63.6 79.6

4R5008

278

1

66

4R5217 4R5213

292 294

1 1

76.5 109

4R5405

299.7

2

105

4R5611 4R5612 4R5605

312 312 323

1 1 1

81.3 105 139

4R5806 4R5805

320 327

1 1

103 141

E-4R6014 E-4R6017 E-4R6015 E-4R6020

328 334 334 332

1 1 1 2

104 106 125 130

2

3

Note: Drawing 1 represents a bearing with solid rollers and machined cage; Drawing 2 represents a bearing with hollow rollers and pin type cage.

B-123

●Four-Row Cylindrical Roller Bearings

C1

C1 r1

r1

r

r B1

B1

D

d FW

d FW

D

Drawing 1

Drawing 2

d 300∼460mm Boundary dimensions

Basic load ratings static dynamic

dynamic mm

kN 1

1

kgf

C1

rs min

r1s min

320 270

300 270

3 3

3 3

2,900 2,510

7,850 5,350

295,000 256,000

800,000 545,000

430

240

240

3

3

2,240

5,950

228,000

605,000

320

440 450 460 470

240 240 340 350

230 240 340 350

3 3 3 3

3 3 3 3

2,290 2,370 3,400 4,150

6,050 6,150 9,450 10,900

234,000 242,000 345,000 425,000

615,000 630,000 960,000 1,110,000

330

440 460

200 340

200 340

3 4

3 4

1,820 3,250

4,850 8,850

186,000 330,000

495,000 905,000

340

480 490

370 300

350 300

5 4

5 4

3,450 3,350

9,650 8,300

350,000 340,000

985,000 845,000

360

510

400

400

5

5

4,250

11,500

435,000

1,170,000

370

480 520

230 400

230 400

5 5

5 5

2,100 4,650

6,250 13,500

214,000 475,000

635,000 1,370,000

380

520 520 540

280 300 400

280 300 400

4 4 4

4 4 4

3,400 3,550 5,200

9,150 9,600 15,200

350,000 360,000 530,000

935,000 980,000 1,550,000

400

560 560

400 410

400 410

5 4

5 4

4,250 5,750

11,800 17,000

430,000 585,000

1,210,000 1,730,000

410

546

400

400

5

5

4,200

12,700

430,000

1,290,000

420

560 580 620

280 230 400

280 230 400

4 4 5

4 4 5

3,150 2,430 5,000

8,750 6,250 13,400

320,000 248,000 510,000

895,000 635,000 1,360,000

440

620

450

450

5

5

6,450

18,700

660,000

1,910,000

460

620 620 650

400 400 470

400 400 470

4 4 5

4 4 5

5,350 4,950 7,150

16,700 15,000 20,600

545,000 505,000 730,000

1,700,000 1,530,000 2,100,000

d

D

300

420 460

310

B1

Cr

static

Cor

Cr

Cor

1 Minimal allowable dimension for chamfer dimension r or r1. 2 Oil inlet and oil groove are in center of the outer ring; no oil groove on the side. 3 Oil inlet in space of outer ring; no oil groove. 4 One-piece inner ring.

B-124

●Four-Row Cylindrical Roller Bearings

Bearing numbers

Dimensions Drawing no.

Mass kg

Fw

(approx.)

E-4R6018 E-4R6019

332 344

2 1

136 162

E-4R6202

344.5

1

108

E-4R6414 E-4R6411 E-4R6412 E-4R6406

351 358 360 361.7

1 1 1 2

106 125 178 212

E-4R6603 E-4R6605

360 365

1 1

83.6 181

E-4R6811 E-4R6804

378 377

1 1

198 187

E-4R7203

397

1

262

E-4R7405 E-4R7404

400 409

1 1

106 273

E-4R7605 E-4R7607 E-4R7604

417 416 422

1 3 2 3 2

174 210 325

E-4R8007 E-4R8010

446 445

1 2

303 349

E-4R8201

444

1

256

E-4R8403 E-4R8404 E-4R8401

457 466 478

1 1 1

189 181 410

E-4R8801

487

2

437

E-4R9211 E-4R9209 E-4R9216

502 502 509

2 1 2

2

2

2

34

383 341 540

Note: Drawing 1 represents a bearing with solid rollers and machined cage; Drawing 2 represents a bearing with hollow rollers and pin type cage.

B-125

●Four-Row Cylindrical Roller Bearings

C1

C1 r1

r1

r

r B1

B1

D

d FW

d FW

D

Drawing 1

Drawing 2

d 480∼690mm Boundary dimensions

Basic load ratings static dynamic

dynamic mm

kN Cr

Cor

5 5 9.5X20° 5 6 6

5,950 7,100 7,950

18,100 21,600 24,000

605,000 720,000 810,000

1,840,000 2,200,000 2,450,000

405 470 510 515 480 530

5 5 5 5 6 5

5 5 5 5 6 5

7,100 7,650 7,750 7,900 8,650 8,250

22,900 22,500 24,600 24,100 24,700 25,000

725,000 780,000 790,000 805,000 880,000 840,000

2,340,000 2,290,000 2,500,000 2,450,000 2,520,000 2,550,000

320 540

320 540

5 6

5 6

4,550 8,300

13,500 25,000

465,000 845,000

1,380,000 2,550,000

700 735

540 535

540 535

6 5

6 5

8,200 9,000

25,500 26,600

835,000 915,000

2,600,000 2,710,000

530

700 760 780

540 520 570

540 520 570

6 6 6

6 6 6

7,850 9,150 10,300

25,400 26,700 29,100

800,000 935,000 1,050,000

2,590,000 2,730,000 2,970,000

550

800

520

520

6

6

9,450

27,000

965,000

2,750,000

560

680

360

360

3

3

4,650

16,500

475,000

1,680,000

570

815

594

594

6

6

11,800

34,500

1,200,000

3,500,000

600

820 870 870

575 540 640

575 540 640

6 7.5 7.5

10,000 10,600 13,600

31,500 29,600 40,500

1,020,000 1,090,000 1,390,000

3,200,000 3,000,000 4,150,000

610

870

660

660

9.5

7.5

12,600

40,000

1,280,000

4,100,000

650

920 920

670 690

670 690

7.5 7.5

4 7.5

14,600 14,300

46,000 46,500

1,490,000 1,460,000

4,700,000 4,750,000

660

820

440

440

5

4

7,300

27,800

745,000

2,840,000

690

980

715

715

7.5

7.5

16,800

54,500

1,720,000

5,550,000

D

480

650 650 680

420 450 500

420 450 500

500

680 690 690 700 710 720

420 470 510 515 480 530

510

670 700

520

12X20° 7.5 7.5

r1s min

kgf Cor

d

rs min

1

Cr

B1

C1

1

static

1 Minimal allowable dimension for chamfer dimension r or r1. 2 Oil inlet and oil groove are in center of the outer ring; no oil groove on the side. 3 Oil inlet in space of outer ring; no oil groove. B-126

●Four-Row Cylindrical Roller Bearings

Bearing numbers

Dimensions Drawing no.

Mass kg

Fw

(approx.) 4

E-4R9607 E-4R9609 E-4R9604

523 525 532

2 4 2 2

E-4R10010 E-4R10016 E-4R10006 E-4R10011 E-4R10008 E-4R10015

550 547 552 554 556 568

2 2 2 2 2 2

E-4R10201 E-4R10202

554 558

2 2

335 689

E-4R10403 E-4R10402

564 574.5

2 2

658 740

E-4R10603 E-4R10601 E-4R10602

574 590 601

2 2 2

626 800 1 010

E-4R11001

622

2

965

E-4R11202

590

1

265

E-4R11402

628

2

1 040

E-4R12003 E-4R12002 E-4R12001

655 672 672

2 2 2

980 1 150 1 330

E-4R12202

680

2

1 400

E-4R13005 E-4R13003

723 723

2 2

1 500 1 550

E-4R13201

702

2

580

E-4R13802

767.5

2

1 850

3

4

2

369 395 640 495 590 640 680 675 780

4 One-piece inner ring. Note: Drawing 1 represents a bearing with solid rollers and machined cage; Drawing 2 represents a bearing with hollow rollers and pin type cage. B-127

●Four-Row Cylindrical Roller Bearings

C1

C1 r1

r1

r

r B1

B1

D

d FW

d FW

D

Drawing 1

Drawing 2

d 700∼1 200mm Boundary dimensions

Basic load ratings static dynamic

dynamic mm

kN Cr

Cor

6

12,900

43,000

1,320,000

4,400,000

9.5

6

16,800

54,500

1,710,000

5,550,000

700

6

6

15,900

53,500

1,620,000

5,450,000

745 745

720 720

7.5 7.5

7.5 7.5

17,600 19,100

58,000 60,500

1,790,000 1,950,000

5,900,000 6,150,000

1,030 1,080 1,100

750 805 745

750 790 720

7.5 6 7.5

7.5 6 7.5

17,300 18,700 19,100

59,500 61,000 60,500

1,760,000 1,900,000 1,950,000

6,050,000 6,250,000 6,150,000

800

1,080 1,080

700 750

700 750

7.5 6

7.5 6

16,500 17,300

55,000 59,000

1,680,000 1,760,000

5,600,000 6,000,000

820

1,130 1,130 1,160

800 825 840

800 800 840

7.5 7.5 7.5

7.5 7.5 7.5

19,600 19,600 21,600

66,500 66,500 71,000

2,000,000 2,000,000 2,200,000

6,800,000 6,800,000 7,250,000

840

1,160

840

840

5

7.5

21,600

71,000

2,200,000

7,250,000

850

1,150 1,150 1,180 1,180

650 800 650 850

650 800 650 850

9.5 6 7.5 9.5

9.5 6 7.5 9.5

15,700 19,700 16,400 24,100

51,000 71,000 51,500 78,500

1,610,000 2,010,000 1,670,000 2,460,000

5,200,000 7,250,000 5,250,000 8,000,000

860

1,160

735

710

6

6

17,800

62,500

1,810,000

6,400,000

900

1,230

895

870

7.5

7.5

24,700

88,000

2,520,000

9,000,000

920

1,280

865

850

7.5

7.5

26,200

88,500

2,670,000

9,000,000

1000

1,310 1,360

880 800

880 800

9.5 7.5

9.5 7.5

23,400 25,000

88,500 85,000

2,380,000 2,550,000

9,000,000 8,650,000

1030

1,380

850

850

7.5

7.5

24,400

89,000

2,490,000

9,100,000

1200

1,590

1,050

1,050

7.5

7.5

36,000

133,000

3,650,000

13,600,000

D

700

930

620

620

710

1,000

715

715

725

1,000

700

750

1,050 1,090

760

15X20°

r1s min

kgf Cor

d

rs min

1

Cr

B1

C1

1

static

1 Minimal allowable dimension for chamfer dimension r or r1. 2 Inner ring is divided into four. 3 Oil mist nozzles are attached. 4 Oil inlet in space of outer ring; no oil groove. B-128

●Four-Row Cylindrical Roller Bearings

Bearing numbers

Dimensions Drawing no.

Mass kg

Fw

(approx.)

E-4R14003

763

2

E-4R14205

787.5

2

1 900

E-4R14501

796

2

1 730

E-4R15001 E-4R15002

830 845

2 3 2

E-4R15204 E-4R15207 E-4R15203

828 845 855

2 3 2 3 2

2 000 2 550 2 560

E-4R16004 E-4R16005

870 880

2 2

1 950 2 090

E-4R16406 E-4R16405 E-4R16403

903 903 910

2 2 2

2 450 2 520 2 930

E-4R16801

920

2

2 840

E-4R17001 E-4R17003 E-4R17004 E-4R17002

941 930 945 928

2 2 2 2

1 980 2 430 2 270 2 970

E-4R17201

940

2

2 310

E-4R18001

985

2

3 250

E-4R18401

1 015

2

3 560

E-4R20001 E-4R20002

1 080 1 090

2 2

3 260 3 530

E-4R20601

1 124

2

3 800

E-4R24002

1 295

2

2

3

3

3

3

2

1 200

2 180 2 530

6 220

Note: Drawing 2 represents a bearing with hollow rollers and pin type cage.

B-129

●Tapered Roller Bearings

1. Types, design features, and characteristics Tapered roller bearings are designed so that the center lines of the raceways and rollers all converge at a single point as shown in Diagram 1. Due to this design feature, rollers move along the center of the raceway surfaces. The tapered rollers are guided by the compound force of the inner and outer raceway surfaces which keep them pressed up against the large rib on the inner ring. A large variety of these bearings, including single, double, and four row arrangements, are in use both in metric and inch system sizes. Table 1 lists the various types of tapered roller bearings and their characteristics.

Diagram 1.

Table 1 Tapered roller bearing types and characteristics Type

Characteristics (1) There are both metric and inch system dimension series, and they have been standardized as shown in the   following table. Dimension series Metric system Regulations Basic number

Inch system

¡JIS B 1512 ¡ISO 355 

¡ABMA (includes metric J-series)

Example, 30210     *T2EE040

Inner ring no. / outer ring no. ("J" appears at the beginning of the basic number in the case of J-series.)

*Dimension series previously not covered by 3XX are regulated under JIS B 1512;  dimensions previously missing from 3XX will henceforth use the bearing number.

(2) In addition to level type, there are also medium contact angle and large contact angle types, and the contact angle code C and D, respectively, is appended to the basic numbers of the latter two types. Single row tapered roller bearings

(3) Subunits Tapered roller bearings can be disassembled into parts ― the inner ring, rollers, and cage (collectively known as the "cone") ― and the outer ring (known as the "cup"). These are the bearing’s "subunits". Subunit dimensions are standardized under ISO or ABMA standards, and unified subunits are interchangeable within each dimensional standard. However, high precision grade bearings are generally not interchangeable, and these subunits must be used by assembling only subunits with identical manufacturing numbers. Aside from any cautionary notes that may appear, the single row tapered roller bearings listed in the dimension tables have subunits standardized for both metric and inch systems (including J series). (Refer to Diagram 2) Subunit dimensions



E

E : Outer ring (cup) nominal small-end diameter α : Nominal contact angle Diagram 2.

B-131

●Tapered Roller Bearings

Table 1 (continued) Type

Characteristics (4) Concerning ET and 4T Types ET and 4T tapered roller bearings are made of high-purity case hardened steel and are manufactured with a special heat treatment developed by NTN. As a result, wear life and reliability have been improved to where life coefficient, a2, values can be applied as follows:              4T tapered roller bearings:    a2 =1.4              ET tapered roller bearings:    a2 =1.9 Furthermore, although not listed in the dimension tables, ET type bearings are also manufactured for some extra small bearing sizes. For details, consult NTN Engineering.

Single row tapered roller bearings

(5) These bearings are constructed to have a high capacity for radial loads, axial loads, and combined loads. The larger the contact angle, the greater the axial load capacity becomes. When a pure radial load is placed on the bearings, an induced load in the axial direction is also generated, and so these bearings are generally used in pairs arranged face to face. (6) When used in pairs, proper internal clearances and preload can be set by adjusting the distance between the two bearings' inner and outer rings. (7) Inner and outer rings are separable, enabling them to be installed individually with the desired interference fit. (8) Tapered roller bearings are also manufactured with flanges attached to the outer rings. For more details, contact NTN Engineering. (Refer to Diagram 3)

Diagram 3.

(1) Outward facing types (using double row outer rings) and inward facing types (using double row inner rings) are both available, and they have been adjusted so that each type's internal clearance values are fixed. Therefore, only parts with identical manufacturing numbers can be used and they must be assembled according to their code numbers. (Refer to Diagram 4) Double row tapered roller bearings

(2) The axial internal clearances for double and duplex bearings are listed in Table 8 on pages A-58, 59. (3) Pairs of duplex single row tapered roller bearings are also manufactured. For more details, contact NTN Engineering.

Inward facing Outward facing Diagram 4.

(1) As shown in Diagram 5, four row tapered roller bearings are constructed of two double row inner rings and two double row outer rings. Four row tapered roller bearings

(2) Bearings wear life is greatly improved through the use of induction hardening and, for large-sized bearings, hollow rollers and pin type cages. (3) Used primarily where heavy load capacity is important, and in the roller necks of rolling mills. Diagram 5.

B-132

●Tapered Roller Bearings

2. Standard cage type In general, pressed cages are used in tapered roller bearings. However, for large sized bearings, machined or pin type cages are also used; and for small sized bearings, molded resin cages are also used.

3. Allowable misalignment Single row and back-to-back arrangement: ………0.0005rad(1.5') Face-to-face: …………………………0.001rad (3.5') In situations where large displacement is necessary, please consult NTN Engineering.

B-133

●Tapered Roller Bearings Inch Tapered Roller Bearings index

Series number

Cone or cup number is between

Page of bearing dimension table

Series number

Cone or cup number is between

Page of bearing dimension table

335

4T-332∼4T-344

B-165,167,169

2700

4T-2720∼4T-2793

B-163,165,167

355

4T-350A∼4T-359S

B-167,169,171

2800

4T-2820∼4T-2879

B-163

365

4T-362∼4T-370A

B-171,173,175

2900

4T-2924∼4T-2984

B-171

385

4T-382A∼4T-389A

B-171,173,175,177

3100

4T-3120∼4T-3196

B-161,163

395

4T-390∼4T-399A

B-173,177,179,181

3300

4T-3320∼4T-3386

B-165,167

415

4T-414∼4T-420

B-167

3400

4T-3420∼4T-3490

B-163,165,167

435

4T-432∼4T-438

B-169,171

3500

4T-3520∼4T-3586

B-167,169,171

455

4T-453A∼4T-469

B-169,171,175,177

4T-JS3510∼4T-JS3549A

B-165

475

4T-472∼4T-484

B-179,181,183

3700

4T-3720∼4T-3782

B-169,171,173,175

495

4T-492A∼4T-498

B-183,185,187

3800

4T-3820∼4T-3880

B-165,167,169

525

4T-522∼4T-529

B-169,171,175

3900

4T-3920∼4T-3994

B-175,177,179,181

535

4T-532A∼4T-543

B-167,175

4T-A4050∼4T-A4138

B-157

555

4T-522∼4T-560S

B-175,177,179,181

4300

4T-4335∼4T-4395

B-169

565

4T-563∼4T-568

B-179,181

5300

4T-5335∼4T-5395

B-173

575

4T-572∼4T-582

B-183,185

5500

4T-5535∼4T-5584

B-175,179

595

4T-592A∼4T-598A

B-185,187,189

5700

4T-5735∼4T-5760

B-183

615

4T-612∼4T-623

B-175,177

4T-A6075∼4T-A6157

B-157

635

4T-632∼4T-644

B-179,181,183

6200

4T-6220∼4T-6277

B-171

655

4T-652∼4T-665

B-181,183,185,187

6300

4T-6320∼4T-6386

B-181

675

4T-672∼4T-687

B-187,189

6400

4T-6420∼4T-6461A

B-183,185

745

4T-740∼4T-749A

B-181,183,185,187

6500

4T-6535∼4T-6580

B-185,187

755

4T-752∼4T-760

B-185,187

02400

4T-02420∼4T-02476

B-161,163

775

4T-772∼4T-782

B-189

02800

4T-02820∼4T-02878

B-161,163

795

4T-792∼4T-799A

B-191

03000

4T-03062∼4T-03162

B-157

835

4T-832∼4T-850

B-181,185,187

05000

4T-05062∼4T-05185

B-157

855

4T-854∼4T-861

B-189

07000

4T-07079∼4T-07204

B-157,159

895

4T-892∼4T-898

B-193

09000

4T-09062∼4T-09196

B-157

935

4T-932∼4T-941

B-189

11000

4T-11162∼4T-11315

B-167

1200

4T-1220∼4T-1280

B-159

11500

4T-11520∼4T-11590

B-157

1300

4T-1328∼4T-1380

B-157

LM11700

4T-LM11710∼4T-LM11749 B-157

1700

4T-1729∼4T-1780

B-157,159

LM11900

4T-LM11910∼4T-LM11949 B-157

1900

4T-1930∼4T-1985

B-159,161

12000

4T-12175∼4T-12303

B-169

2400

4T-2420∼4T-2474

B-161

12500

4T-12520∼4T-12580

B-157

2500

4T-2520∼4T-2585

B-161,163

M12600

4T-M12610∼4T-M12649

B-157

2600

4T-2631∼4T-2690

B-159,161

LM12700

JS3500

A4000

A6000

B-134

4T-LM12711∼4T-LM12749 B-157

●Tapered Roller Bearings Inch Tapered Roller Bearings index

Series number

Cone or cup number is between

13000

4T-13621∼4T-13687

13800

Series number

Cone or cup number is between

B-165

39500

4T-39520∼4T-39590

B-175,177,179,181

4T-13830∼4T-13889

B-165

41000

4T-41125∼4T-41286

B-161

14000

4T-14116∼4T-14276

B-161,163,165

42000

4T-42346∼4T-42584

B-187,189

15000

4T-15100∼4T-15245

B-159,161,163

42600

4T-42620∼4T-42690

B-183,185

15500

4T-15520∼4T-15590

B-159,161

43000

4T-43131∼4T-43312

B-163

16000

4T-16137∼4T-16284

B-163,165

44000

4T-44143∼4T-44348

B-165,167

17000

4T-17118∼4T-17244

B-161

L44600

4T-L44610∼4T-L44649

B-159

17500

4T-17520∼4T-17580

B-157

45200

4T-45220∼4T-45289

B-171,173,175,177

18500

4T-18520∼4T-18590

B-167

L45400

4T-L45410∼4T-L45449

B-161

18600

4T-18620∼4T-18690

B-169,171

46000

4T-46162∼4T-46368

B-169

18700

4T-18720∼4T-18790

B-173

46700

4T-46720∼4T-46790

B-193

19000

4T-19150∼4T-19281

B-165

47400

4T-47420∼4T-47490

B-181

21000

4T-21075∼4T-21212

B-157

47600

4T-47620∼4T-47686

B-183,185

22700

4T-22720∼4T-22780

B-169

47800

4T-47820∼4T-47896

B-187,189

23000

4T-23100∼4T-23256

B-159

48200

4T-48220∼4T-48290

B-191

24700

4T-24720∼4T-24780

B-167

48300

4T-48320∼4T-48393

B-193

25500

4T-25519∼4T-25592

B-167,169,171

4T-LM48510∼4T-LM48548A

B-163

25800

4T-25820∼4T-25880

B-163,165

48600

4T-48620∼4T-48685

B-193

26800

4T-26820∼4T-26885

B-165,167,169

49500

4T-49520∼4T-49585

B-175

27600

4T-27620∼4T-27691

B-185

52000

4T-52375∼4T-52400

B-189

27800

4T-27820∼4T-27880

B-167

53000

4T-53162∼4T-53377

B-169

28000

4T-28150∼4T-28315

B-167

55000C

4T-55175C∼4T-55443

B-171,173,175

28500

4T-28521∼4T-28584

B-173,175

56000

4T-56425∼4T-56650

B-189

28600

4T-28622∼4T-28682

B-173,177

59000

4T-59200∼4T-59412

B-175

28900

4T-28920∼4T-28995

B-179

64000

4T-64433∼4T-64700

B-191

29500

4T-29520∼4T-29590

B-177,179,181

65000

4T-65237∼4T-65500

B-179

29600

4T-29620∼4T-29688

B-181,183

63500

4T-65320∼4T-65390

B-173

4T-LM29710∼4T-LM29748

B-165

66000

4T-66200∼4T-66462

B-175,177

31500

4T-31520∼4T-31597

B-165

66500

4T-66520∼4T-66589

B-175,177

33000

4T-33225∼4T-33462

B-177,181,183

LM67000

4T-LM67010∼4T-LM67048

B-161

33800

4T-33821∼4T-33895

B-169,173,175

67300

4T-67332∼4T-67391

B-191,193

34000

4T-34274∼4T-34478

B-181,183,185

67700

4T-67720∼4T-67790

B-193

36600

4T-36620∼4T-36691

B-193

68000

4T-68450∼4T-68712

B-191

36900

4T-36920∼4T-36990

B-193

L68100

4T-L68111∼4T-L68149

B-165

37000

4T-37425∼4T-37625

B-189

L69300

4T-JL69310∼4T-JL69349

B-165

LM29700

Page of bearing dimension table

LM48500

B-135

Page of bearing dimension table

●Tapered Roller Bearings Inch Tapered Roller Bearings index

Series number 71000

Cone or cup number is between

Page of bearing dimension table

Series number

Cone or cup number is between

Page of bearing dimension table

4T-71453∼4T-71750

B-191

H414200

4T-H414210∼4T-H414249

B-181,183

4T-72188C∼4T-72487

B-173,175,177

H415600

4T-JH415610∼4T-JH415647

B-183

4T-LM72810∼4T-LM72849

B-159

L432300

4T-L402310∼4T-L432349

B-193

74000

4T-74500∼4T-74850

B-191,193

LM501300

4T-LM501310∼4T-LM501349

B-167

78000

4T-78225∼4T-78551

B-177,179

LM503300

4T-LM503310∼4T-LM503349A

B-171

4T-78214C∼4T-78551

B-175

HH506300

4T-HH506310∼4T-HH506349

B-173

4T-LM78310A∼4T-LM78349A

B-165

LM506800

4T-JLM506810∼4T-JLM506849

B-175

M84500

4T-M84510∼4T-M84548

B-159

LM508700

4T-JLM508710∼4T-JLM508748

B-177

M86600

4T-M86610∼4T-M86649

B-159,161

M511900

4T-JM511910∼4T-JM511946

B-179

M88000

4T-M88010∼4T-M88048

B-163

M515600

4T-JM515610∼4T-JM515649

B-185

HM88500

4T-HM88510∼4T-HM88547

B-161,163

HM516400

4T-HM516410∼4T-HM516448

B-183,185

HM88600

4T-HM88610∼4T-HM88649

B-163,165

HM516800

4T-JHM516810∼4T-JHM516849

B-187

HM89200

4T-HM89210∼4T-HM89249

B-165

LM522500

4T-LM522510∼4T-LM522548

B-189

HM89400

4T-HM89410∼4T-HM89499

B-163,165

HM522600

4T-JHM522610∼4T-JHM522649

B-191

90000

4T-J90354∼4T-J90748

B-187,189

HM534100

4T-JHM534110∼4T-JHM534149

B-193

95000

4T-95475∼4T-95925

B-191,193

LM603000

4T-LM603011∼4T-LM603049

B-171

97000

4T-97500∼4T-97900

B-191

L610500

4T-L610510∼4T-L610549

B-179

99000

4T-99100∼4T-99575

B-193

M612900

4T-JM612910∼4T-JM612949

B-181

LM102900

4T-LM102910∼4T-LM102949

B-171

HM61700

4T-HM617010∼4T-HM617049

B-187

LM104900

4T-JLM104910∼4T-LM104949

B-173

L630300

4T-L630310∼4T-L630349

B-193

M205100

4T-JM205110∼4T-JM205149

B-173

LL639200

4T-LL639210∼4T-LL639249

B-193

M207000

4T-JM207010∼4T-JM207049

B-177

LM704600

4T-JLM704610∼4T-JLM704649

B-173

H211700

4T-JH211710∼4T-JH211749

B-181

LM710900

4T-JLM710910∼4T-JLM710949

B-179

HM212000

4T-HM212010∼4T-HM212049

B-179,181

LM714100

4T-JLM714110∼4T-JLM714149

B-183

4T-L217810∼4T-L217849

B-187

M714200

4T-JM714210∼4T-JM714249

B-183

LL217800

4T-LL217810∼4T-LL217849

B-187

H715300

4T-H714311∼4T-H715348

B-179,181,183

HM218200

4T-HM218210∼4T-HM218248

B-187

M716600

4T-JM716610∼4T-JM716648

B-187

HH221400

4T-HH221410∼4T-HH221449A

B-185,189

M718100

4T-JM718110∼4T-JM718149

B-187

HH224300

4T-HH224310∼4T-HH224346

B-189,191

M719100

4T-JM719113∼4T-JM719149

B-187

HH228300

4T-HH228310∼4T-HH228349

B-191

M720200

4T-JM720210∼4T-JM720249

B-189

4T-M231610∼4T-M231648

B-193

L724300

4T-JL724314∼4T-JL724348

B-191

LM300800

4T-LM300811∼4T-LM300849

B-167

M736100

4T-JM736110∼4T-JM736149

B-193

H307700

4T-JH307710∼4T-JH307749

B-177

M738200

4T-JM738210∼4T-JM738249A

B-193

4T-JHM318410∼4T-JHM318448

B-187

HM801300

4T-HM801310∼4T-HM801349

B-167

4T-L327210∼4T-L327249

B-191

M802000

4T-M802011∼4T-M802048

B-169

72000C LM728000

78000C LM78300

L217800

M231600

HM318400 L327200

B-136

●Tapered Roller Bearings Inch Tapered Roller Bearings index

Series number HM803100

Cone or cup number is between

Page of bearing dimension table

4T-HM803110∼4T-HM803149

B-169

4T-M804010∼4T-M804048

B-171

HM804800

4T-HM804810∼4T-HM804849

B-169,173

LM806600

4T-LM806610∼4T-LM806649

B-175

HM807000

4T-HM807010∼4T-HM807049

B-171,173,175

4T-L812111∼4T-L812148

B-181

LM813000

4T-JLM813010∼4T-JLM813049

B-181

HM813800

4T-HM813810∼4T-HM813844

B-177,179,181

4T-L814710∼4T-L814749

B-183

LM814800

4T-LM814810∼4T-LM814849

B-185

M822000

4T-JM822010∼4T-JM822049

B-191

HM903200

4T-HM903210∼4T-HM903249

B-169

4T-M903310∼4T-M903345

B-169

HM907600

4T-HM907614∼4T-HM907643

B-175

HM911200

4T-HM911210∼4T-HM911245

B-175,179

H913800

4T-H913810∼4T-JH913848

B-177,179,183

H917800

4T-H917810∼4T-H917840

B-185

H924000

4T-H924010∼4T-H924045

B-191

4T-HM926710∼4T-HM926747

B-191

M804000

L812100

L814700

M903300

HM926700

How to use the Index For example, when accessing the dimension tables with the bearing numbers 4T-HM911244 and 4THM911216, we see that the inner ring and outer ring bearing numbers are in the range 4T-HM911210∼ 4T-HM911245. Therefore, information about this bearing will be on either page B-175 or B-179.

B-137

●Tapered Roller Bearings Metric system sizes T r1

C

r B d

D

a

d 15∼30mm Boundary dimensions dynamic mm d

D

Basic load ratings static dynamic

kN

T

B

C

rs min

1

r ls min

1

Limiting speeds static

kgf

Bearing numbers

rpm

Cr

Cor

Cr

Cor

grease

oil

15

42

14.25

13

11

1

1

23.2

20.8

2,370

2,120

9,900

13,000

4T-30302

17

40 40 40 47

13.25 17.25 17.25 15.25

12 16 16 14

11 14 14 12

1 1 1 1

1 1 1 1

20.5 27.3 26.2 28.9

20.3 28.3 28.2 26.3

2,090 2,790 2,670 2,940

2,070 2,880 2,870 2,680

9,900 9,900 9,900 9,000

13,000 13,000 13,000 12,000

4T-30203 4T-32203 2 4T-32203R 4T-30303

20

42 47 47 52 52 52

15 15.25 19.25 16.25 16.25 22.25

15 14 18 16 16 21

12 12 15 13 12 18

0.6 1 1 1.5 1.5 1.5

0.6 1 1 1.5 1.5 1.5

24.9 28.2 36.5 35.5 31.0 46.5

27.9 28.7 39.5 34.0 31.0 48.5

2,540 2,870 3,700 3,600 3,150 4,750

2,840 2,930 4,000 3,450 3,150 4,950

9,500 8,800 8,800 8,000 7,600 8,000

13,000 12,000 12,000 11,000 10,000 11,000

4T-32004X 4T-30204 4T-32204 4T-30304A 4T-30304CA 4T-32304

22

44

15

15

11.5

0.6

0.6

27.0

31.5

2,760

3,250

8,900

12,000

4T-320/22X

25

47 47 52 52 52 52 52 52 62 62 62 62

15 17 16.25 19.25 19.25 19.25 19.25 22 18.25 18.25 18.25 25.25

15 17 15 18 18 18 18 22 17 17 17 24

11.5 14 13 16 15 15 15 18 15 14 13 20

0.6 0.6 1 1 1 1 1 1 1.5 1.5 1.5 1.5

0.6 0.6 1 1 1 1 1 1 1.5 1.5 1.5 1.5

27.8 32.5 31.5 42.0 38.0 38.0 34.5 47.5 48.5 41.5 40.5 61.5

33.5 40.5 34.0 47.0 43.0 46.5 42.0 57.5 47.5 41.5 43.5 64.5

2,830 3,300 3,200 4,300 3,850 3,900 3,500 4,850 4,950 4,250 4,150 6,250

3,450 4,150 3,450 4,800 4,400 4,750 4,250 5,850 4,850 4,250 4,450 6,600

7,900 8,000 7,300 7,300 7,300 7,100 7,100 7,300 6,700 6,400 5,900 6,700

11,000 11,000 9,800 9,800 9,800 9,400 9,400 9,800 8,900 8,500 7,800 8,900

4T-32005X 4T-33005 4T-30205 4T-32205 2 4T-32205R 4T-32205C 2 4T-32205CR 4T-33205 4T-30305 4T-30305C 4T-30305D 4T-32305

28

52 58

16 24

16 24

12 19

1 1

1 1

33.0 58.0

40.5 69.5

3,400 5,950

4,150 7,100

7,300 6,700

9,700 8,900

4T-320/28X 4T-332/28

30

55 55 62 62 62 62 72

17 20 17.25 21.25 21.25 25 20.75

17 20 16 20 20 25 19

13 16 14 17 17 19.5 16

1 1 1 1 1 1 1.5

1 1 1 1 1 1 1.5

37.5 42.5 43.5 54.5 50.0 65.0 60.0

46.0 54.0 48.0 64.0 60.0 77.0 61.0

3,800 4,300 4,450 5,600 5,100 6,600 6,100

4,700 5,500 4,900 6,550 6,100 7,850 6,200

6,900 6,900 6,300 6,300 6,100 6,300 5,700

9,200 9,200 8,400 8,400 8,100 8,400 7,600

4T-32006X 4T-33006 4T-30206 4T-32206 4T-32206C 4T-33206 4T-30306

1 Minimal allowable dimension for chamfer dimension r or r1. 2 This bearing does not incorporate the subunit dimensions.

B-138

●Tapered Roller Bearings

Sb

Sa

r 1a Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa Fr ≦e Fr >e X Y X Y 1 0 0.4 Y2 static Por=0.5Fr+YoFa

ra Da db

da Db

When Por<Fr use Por=Fr For values of e, Y2 and Yo see the table below.

Dimensions series to ISO

Abutment and fillet dimensions

Load Constant center mm

mm da

db

min

max

Da

Axial load factors

kg

Db

Sa

Sb

ras

r1as

min

min

max

max

a

e

Y2

Yo

max

min

min

Mass

(approx.)

2FB

20.5

22

36.5

35

38

2

3

1

1

9.5

0.29

2.11

1.16

0.098

2DB 2DD

22.5 22.5 22.5 22.5

23 23 22 24

34.5 34.5 34.5 41.5

33 33 33 40

37 37 36.5 42

2 2 2 3

2 3 3 3.5

1 1 1 1

1 1 1 1

9.5 11.5 11 10.5

0.35 0.31 0.35 0.29

1.74 1.92 1.74 2.11

0.96 1.06 0.96 1.16

0.08 0.102 0.104 0.134

2FD

24.5 25.5 25.5 28.5 28.5 28.5

25 27 26 28 27.5 27

37.5 41.5 41.5 43.5 43.5 43.5

36 40 39 42.5 39.5 43

39 44 43 47.5 48 47

3 2 2 3 3 3

3 3 4 3 4 4

0.6 1 1 1.5 1.5 1.5

0.6 1 1 1.5 1.5 1.5

10.5 11.5 12.5 10.5 13.5 14

0.37 0.35 0.33 0.30 0.55 0.30

1.60 1.74 1.81 2.00 1.10 2.00

0.88 0.96 1.00 1.10 0.60 1.10

0.097 0.127 0.16 0.176 0.17 0.245

3CC

26.5

27

39.5

38

41

3

3.5

0.6

0.6

11

0.40

1.51

0.83

0.106

4CC 2CE 3CC 2CD

7FB 2FD

29.5 29.5 30.5 30.5 30.5 30.5 30.5 30.5 33.5 33.5 33.5 33.5

30 29 31 31 31 30 30 30 34 34 34 32

42.5 42.5 46.5 46.5 46.5 46.5 46.5 46.5 53.5 53.5 53.5 53.5

40 40 44 43 43 42 42 43 52 48 45.5 52

44 43.5 48 48 48 49 49 49 57 58 58.5 57

3 3 2 2 2 2 2 4 3 3 3 3

3.5 3 3 4 4 4 4 4 3 4 5 5

0.6 0.6 1 1 1 1 1 1 1.5 1.5 1.5 1.5

0.6 0.6 1 1 1 1 1 1 1.5 1.5 1.5 1.5

12 11 12.5 14 13.5 16 16 14 13 16 20 16

0.43 0.29 0.37 0.36 0.37 0.58 0.55 0.35 0.30 0.55 0.83 0.30

1.39 2.07 1.60 1.67 1.60 1.03 1.10 1.71 2.00 1.10 0.73 2.00

0.77 1.14 0.88 0.92 0.88 0.57 0.60 0.94 1.10 0.60 0.40 1.10

0.114 0.13 0.154 0.187 0.181 0.19 0.19 0.217 0.272 0.264 0.284 0.381

4CC 2DE

33.5 33.5

33 34

46.5 52.5

45 49

49 55

3 5

4 5

1 1

1 1

12.5 15.5

0.43 0.34

1.39 1.77

0.77 0.97

0.146 0.293

4CC 2CE 3DB 3DC 5DC 2DE 2FB

35.5 35.5 35.5 35.5 35.5 35.5 38.5

35 35.5 37 37 35 36 40

49.5 49.5 56.5 56.5 56.5 56.5 63.5

48 46.5 53 52 49 53 62

52 52 57 58 59.5 59 66

3 3 2 2.5 2 5 3

4 4 3 4 5 5.5 4.5

1 1 1 1 1 1 1.5

1 1 1 1 1 1 1.5

13.5 13 13.5 15.5 18.5 16 15

0.43 0.29 0.37 0.37 0.56 0.34 0.31

1.39 2.06 1.60 1.60 1.07 1.76 1.90

0.77 1.13 0.88 0.88 0.59 0.97 1.05

0.166 0.201 0.241 0.301 0.294 0.344 0.408

2FB 3CC 2DB 2DD 2FB

5CD 2DE 2FB

備考1.ET円すいころ軸受も製作しているのでNTNに御照会ください。

B-139

●Tapered Roller Bearings Metric system sizes T r1

C

r B d

D

a

d 30∼45mm Boundary dimensions dynamic mm d

kN 1

1

Limiting speeds static

kgf

Bearing numbers

rpm

Cr

Cor

Cr

Cor

grease

1.5 1.5 1.5 1.5 1.5

58.5 48.5 81.0 79.0 70.0

58.5 51.5 90.0 94.0 88.5

6,000 4,950 8,250 8,050 7,150

5,950 5,250 9,150 9,550 9,050

5,500 5,000 5,700 5,500 5,500

4T-30306CA 7,300 4T-30306D 6,700 4T-32306 7,600 7,300 *4T-32306C 2 4T-32306CR 7,300

1 1 1.5

1 1 1.5

37.0 70.5 84.0

46.5 85.0 102

3,750 7,200 8,600

4,750 8,650 10,400

6,600 6,000 5,200

8,700 8,000 6,900

4T-320/32X 4T-332/32 4T-323/32C

11.5 14 17 15 19 19 18 22 18 17 15 25 25

0.6 1 1 1.5 1.5 1.5 1.5 1.5 2 2 2 2 2

0.6 1 1 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

27.4 41.5 50.5 55.5 72.5 68.0 62.0 87.5 75.0 66.5 63.5 101 93.0

37.5 52.5 66.5 61.5 87.0 85.5 78.5 109 77.0 68.5 70.0 115 117

2,790 4,250 5,150 5,650 7,400 6,950 6,300 8,900 7,650 6,750 6,450 10,300 9,500

3,850 5,350 6,800 6,250 8,900 8,750 8,000 11,200 7,900 7,000 7,100 11,700 12,000

6,800 6,100 6,100 5,500 5,500 5,300 5,300 5,500 5,000 4,800 4,400 5,000 4,800

9,000 8,100 8,100 7,400 7,400 7,100 7,100 7,400 6,600 6,400 5,800 6,600 6,400

32907XU 4T-32007X 4T-33007 4T-30207 4T-32207 4T-32207C 2 4T-32207CR 4T-33207 4T-30307 4T-30307C 4T-30307D 4T-32307 4T-32307C

15 19 22 26 18 23 32 32.5 23 23 23 33 33

12 14.5 18 20.5 16 19 25 28 20 19 17 27 27

0.6 1 1 1.5 1.5 1.5 1.5 2.5 2 2 2 2 2

0.6 1 1 1.5 1.5 1.5 1.5 2 1.5 1.5 1.5 1.5 1.5

32.5 50.0 59.5 79.5 61.0 79.5 103 118 91.5 83.0 77.0 122 110

48.0 65.5 82.5 103 67.0 93.5 132 144 102 87.0 85.5 150 140

3,350 5,100 6,050 8,100 6,250 8,100 10,500 12,000 9,350 8,450 7,850 12,500 11,300

4,900 6,650 8,400 10,500 6,850 9,550 13,400 14,700 10,400 8,900 8,700 15,300 14,300

5,900 5,300 5,300 5,200 4,900 4,900 4,900 4,600 4,400 4,200 3,900 4,400 4,200

7,800 7,100 7,100 6,900 6,600 6,600 6,600 6,200 5,900 5,600 5,200 5,900 5,600

32908XU 4T-32008X 4T-33008 4T-33108 4T-30208 4T-32208 4T-33208 4T-T2EE040 4T-30308 4T-30308C 4T-30308D 32308U 4T-32308C

15

12

0.6

0.6

33.5

51.5

3,450

5,250

5,300

7,000

*32909XU

T

B

C

rs min

30

72 72 72 72 72

20.75 20.75 28.75 28.75 28.75

19 19 27 27 27

15 14 23 23 23

1.5 1.5 1.5 1.5 1.5

32

58 65 75

17 26 29.75

17 26 28

13 20.5 23

35

55 62 62 72 72 72 72 72 80 80 80 80 80

14 18 21 18.25 24.25 24.25 24.25 28 22.75 22.75 22.75 32.75 32.75

14 18 21 17 23 23 23 28 21 21 21 31 31

40

62 68 68 75 80 80 80 85 90 90 90 90 90

15 19 22 26 19.75 24.75 32 33 25.25 25.25 25.25 35.25 35.25

68

15

45

D

Basic load ratings static dynamic

r ls min

oil

1 Minimal allowable dimension for chamfer dimension r or r1. 2 This bearing does not incorporate the subunit dimensions. Note: When selecting bearings with bearing numbers marked with "*", please consult NTN Engineering.

B-140

●Tapered Roller Bearings

Sb

Sa

r 1a Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa Fr ≦e Fr >e X Y X Y 1 0 0.4 Y2 static Por=0.5Fr+YoFa

ra Da db

da Db

When Por<Fr use Por=Fr For values of e, Y2 and Yo see the table below.

Dimensions series to ISO

Abutment and fillet dimensions mm da

db

min

max

max

7FB 2FD 5FD

38.5 38.5 38.5 38.5 38.5

39.5 39 38 37 37

4CC 2DE 5FD

37.5 37.5 40.5

2BD 4CC 2CE 3DB 3DC 5DC 2DE 2FB 7FB 2FE 5FE 2BC 3CD 2BE 2CE 3DB 3DC 2DE 2EE 2FB 7FB 2FD 5FD 2BC

Load Constant center mm

Da

Axial load factors

Mass kg

Db

Sa

Sb

ras

r1as

min

min

min

min

max

max

a

e

Y2

Yo

63.5 63.5 63.5 63.5 63.5

57 55 59 57 57

67 68 66 68 67.5

3 3 3 2 2

5.5 6.5 5.5 5.5 5.5

1.5 1.5 1.5 1.5 1.5

1.5 1.5 1.5 1.5 1.5

17.5 23.5 18.5 23 23

0.47 0.83 0.31 0.55 0.61

1.27 0.73 1.90 1.10 0.99

0.70 0.40 1.05 0.60 0.54

0.398 0.398 0.583 0.592 0.594

38 38 39

52.5 59.5 66.5

50 55 61

55 62 71

3 5 3

4 5.5 6.5

1 1 1.5

1 1 1.5

14.5 17 23

0.45 0.35 0.55

1.32 1.73 1.10

0.73 0.95 0.60

0.181 0.395 0.659

39.5 40.5 40.5 43.5 43.5 43.5 43.5 43.5 45 45 45 45 45

40 40 40.5 44 43 42 42 42 45 44 44 43 43

50.5 56.5 56.5 63.5 63.5 63.5 63.5 63.5 71.5 71.5 71.5 71.5 71.5

48 54 52 62 61 59 59 61 70 63.5 62 66 66

52.5 59 59 67 67 68 68 68 74 75.5 76.5 74 76

2.5 4 3 3 3 3 3 5 3 3 3 3 3

2.5 4 4 3 5 6 6 6 4.5 5.5 7.5 7.5 7.5

0.6 1 1 1.5 1.5 1.5 1.5 1.5 2 2 2 2 2

0.6 1 1 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

10.5 15.5 14 15 17.5 21.5 20.5 18.5 17 20.5 26 20.5 25

0.29 0.45 0.31 0.37 0.37 0.58 0.55 0.35 0.31 0.55 0.83 0.31 0.55

2.06 1.32 1.97 1.60 1.60 1.03 1.10 1.70 1.90 1.10 0.73 1.90 1.10

1.13 0.73 1.08 0.88 0.88 0.57 0.60 0.93 1.05 0.60 0.40 1.05 0.60

0.121 0.224 0.263 0.344 0.457 0.461 0.461 0.531 0.540 0.517 0.530 0.787 0.797

44.5 45.5 45.5 48.5 48.5 48.5 48.5 52 50 50 50 50 50

45.5 46 46 47 49 48 47 48 52 50 50 50 48

57.5 62.5 62.5 66.5 71.5 71.5 71.5 75 81.5 80 81.5 81.5 81.5

54 60 60 65 69 68 67 70 77 72 71 73 72

58.5 65 64 71 75 75 76 80 82 85.5 86.5 82 84

3 4 2.5 4 3 3 5 5 3 3.5 3 3 3

3 4.5 4 5.5 3.5 5.5 7 5 5 6 8 8 8

0.6 1 1 1.5 1.5 1.5 1.5 2 2 2 2 2 2

0.6 1 1 1.5 1.5 1.5 1.5 2 1.5 1.5 1.5 1.5 1.5

11.5 15 15 18 16.5 19 21 22.5 19.5 23 29.5 23 27.5

0.29 0.38 0.28 0.36 0.37 0.37 0.36 0.34 0.35 0.55 0.83 0.35 0.55

2.07 1.58 2.12 1.69 1.60 1.60 1.68 1.74 1.74 1.10 0.73 1.74 1.10

1.14 0.87 1.17 0.93 0.88 0.88 0.92 0.96 0.96 0.60 0.40 0.96 0.60

0.161 0.273 0.312 0.494 0.435 0.558 0.728 0.907 0.769 0.728 0.738 1.08 1.1

50

50

63.5

59.5

64.5

3

3

0.6

0.6

12

0.32

1.88

1.04

0.188

備考1.ET円すいころ軸受も製作しているのでNTNに御照会ください。

B-141

(approx.)

●Tapered Roller Bearings Metric system sizes T r1

C

r B d

D

a

d 45∼60mm Boundary dimensions dynamic mm d

kN 1

1

grease

57.5 66.0 84.5 67.5 82.0 107 111 96.0 154

76.5 93.5 115 78.5 100 141 126 109 191

5,850 6,750 8,650 6,900 8,350 10,900 11,300 9,800 15,700

7,800 9,550 11,700 8,000 10,200 14,400 12,800 11,100 19,500

4,800 4,800 4,700 4,400 4,400 4,400 4,000 3,500 4,000

6,400 6,400 6,200 5,900 5,900 5,900 5,300 4,600 5,300

4T-32009X 4T-33009 4T-33109 4T-30209 4T-32209 4T-33209 4T-30309 4T-30309D 32309U

0.6 0.6 1 1 1.5 1.5 1.5 1.5 2.5 3 2 2 2

35.5 31.5 62.5 69.5 86.5 77.0 87.5 115 151 107 133 113 184

57.0 50.5 88.0 103 121 93.0 109 158 190 132 152 130 232

3,650 3,200 6,400 7,100 8,850 7,850 8,900 11,700 15,400 10,900 13,500 11,600 18,700

5,800 5,150 9,000 10,500 12,400 9,450 11,100 16,100 19,400 13,500 15,500 13,300 23,600

4,700 4,700 4,400 4,400 4,200 4,000 4,000 4,000 3,800 3,400 3,600 3,200 3,600

6,300 6,300 5,800 5,800 5,600 5,300 5,300 5,300 5,100 4,500 4,800 4,200 4,800

*32910XU 2 32910 4T-32010X 4T-33010 4T-33110 4T-30210 4T-32210 4T-33210 4T-T2ED050 4T-T7FC050 4T-30310 4T-30310D 32310U

1 1.5 1.5 1.5 2 2 2 2.5 2.5 2.5

1 1.5 1.5 1.5 1.5 1.5 1.5 2 2 2

44.5 80.5 91.5 111 93.0 108 138 155 132 215

73.5 118 138 155 111 134 188 179 154 275

4,550 8,200 9,350 11,300 9,500 11,000 14,100 15,800 13,500 21,900

7,500 12,000 14,100 15,800 11,300 13,700 19,100 18,300 15,700 28,000

4,300 4,000 4,000 3,900 3,600 3,600 3,600 3,300 2,900 3,300

5,700 5,400 5,400 5,200 4,900 4,900 4,900 4,400 3,800 4,400

32911XU 4T-32011X 4T-33011 4T-33111 4T-30211 4T-32211 4T-33211 4T-30311 4T-30311D 32311U

1 1.5 1.5 1.5

1 1.5 1.5 1.5

51.0 82.0 93.5 113

83.0 123 145 164

5,200 8,350 9,550 11,600

8,450 12,500 14,700 16,700

4,000 3,700 3,700 3,600

5,300 4,900 4,900 4,700

32912XA 4T-32012X 4T-33012 4T-33112

1 1 1.5 1.5 1.5 1.5 2 2 2

1 1 1.5 1.5 1.5 1.5 1.5 1.5 1.5

15 14 20 24 26 20 23 32 35 29 27 27 40

12 12 15.5 19 20 17 19 24.5 30 22 23 19 33

0.6 0.6 1 1 1.5 1.5 1.5 1.5 2.5 3 2.5 2.5 2.5

17 23 27 30 22.75 26.75 35 31.5 31.5 45.5

17 23 27 30 21 25 35 29 29 43

14 17.5 21 23 18 21 27 25 21 35

17 23 27 30

17 23 27 30

14 17.5 21 23

C

45

75 75 80 85 85 85 100 100 100

20 24 26 20.75 24.75 32 27.25 27.25 38.25

20 24 26 19 23 32 25 25 36

50

72 72 80 80 85 90 90 90 100 105 110 110 110

15 15 20 24 26 21.75 24.75 32 36 32 29.25 29.25 42.25

55

80 90 90 95 100 100 100 120 120 120

60

85 95 95 100

rpm Cor

15.5 19 20.5 16 19 25 22 18 30

B

kgf

Bearing numbers

Cr

r ls min

T

Limiting speeds static

Cor

rs min

D

Basic load ratings static dynamic

1 Minimal allowable dimension for chamfer dimension r or r1. 2 This bearing does not incorporate the subunit dimensions.

Cr

B-142

oil

2

●Tapered Roller Bearings

Sb

Sa

r 1a Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa Fr ≦e Fr >e X Y X Y 1 0 0.4 Y2 static Por=0.5Fr+YoFa

ra Da db

da Db

When Por<Fr use Por=Fr For values of e, Y2 and Yo see the table below.

Dimensions series to ISO

Abutment and fillet dimensions

Load Constant center mm

mm da

db

min

max

Da

Axial load factors

Mass kg

Db

Sa

Sb

ras

r1as

min

min

max

max

a

e

Y2

Yo

(approx.)

max

min

min

67 67 69 74 73 72 86 79 82

72 71 77 80 81 81 93 96 93

4 4 4 3 3 5 3 3 3

4.5 5 5.5 4.5 5.5 7 5 9 8

1 1 1.5 1.5 1.5 1.5 2 2 2

1 1 1.5 1.5 1.5 1.5 1.5 1.5 1.5

16.5 16 19.5 18 20 22 21 32.5 25.5

0.39 0.29 0.38 0.40 0.40 0.39 0.35 0.83 0.35

1.53 2.04 1.57 1.48 1.48 1.56 1.74 0.73 1.74

0.84 1.12 0.86 0.81 0.81 0.86 0.96 0.40 0.96

0.346 0.398 0.542 0.495 0.607 0.783 1.01 0.958 1.46

3CC 2CE 3CE 3DB 3DC 3DE 2FB 7FB 2FD

50.5 50.5 53.5 53.5 53.5 53.5 55 55 55

51 51 52 54 53 52 59 56 56

69.5 69.5 71.5 76.5 76.5 76.5 91.5 91.5 91.5

2BC 3CC 2CE 3CE 3DB 3DC 3DE 2ED 7FC 2FB 7FB 2FD

54.5 54.5 55.5 55.5 58.5 58.5 58.5 58.5 62 64 62 62 62

55 55 56 56 56 58 58 57 59 60 65 62 62

67.5 67.5 74.5 74.5 76.5 81.5 81.5 81.5 88 91 100 100 100

63.5 63.5 72 72 74 79 78 77 84 78 95 87 90

69 69.5 77 76 82 85 85 87 94 100 102 105 102

3 3 4 4 4 3 3 5 6 4 3 3 3

3 3 4.5 5 6 4.5 5.5 7.5 6 10 6 10 9

0.6 0.6 1 1 1.5 1.5 1.5 1.5 2 2.5 2 2 2

0.6 0.6 1 1 1.5 1.5 1.5 1.5 2 2.5 2 2 2

13.5 14.5 17.5 17.5 20.5 19.5 21 23.5 25.5 36.5 23 35 28.5

0.34 0.36 0.42 0.32 0.41 0.42 0.42 0.41 0.34 0.87 0.35 0.83 0.35

1.76 1.67 1.42 1.90 1.46 1.43 1.43 1.45 1.75 0.69 1.74 0.73 1.74

0.97 0.92 0.78 1.04 0.80 0.79 0.79 0.80 0.96 0.38 0.96 0.40 0.96

0.191 0.192 0.366 0.433 0.58 0.563 0.648 0.852 1.31 1.23 1.31 1.25 1.92

2BC 3CC 2CE 3CE 3DB 3DC 3DE 2FB 7FB 2FD

60.5 63.5 63.5 63.5 65 65 65 67 67 67

60.5 63 63 62 64 63 62 71 68 68

74.5 81.5 81.5 86.5 91.5 91.5 91.5 110 110 110

70.5 81 81 83 88 87 85 104 94 99

76.5 86 86 91 94 95 96 111 113 111

3 4 5 5 4 4 6 4 4 4

3 5.5 6 7 4.5 5.5 8 6.5 10.5 10.5

1 1.5 1.5 1.5 2 2 2 2 2 2

1 1.5 1.5 1.5 1.5 1.5 1.5 2 2 2

14.5 20 19.5 22 21 22.5 25.5 24.5 38 30.5

0.31 0.41 0.31 0.37 0.40 0.40 0.40 0.35 0.83 0.35

1.94 1.48 1.92 1.60 1.48 1.48 1.50 1.74 0.73 1.74

1.07 0.81 1.06 0.88 0.81 0.81 0.83 0.96 0.40 0.96

0.274 0.563 0.643 0.846 0.74 0.876 1.15 1.66 1.59 2.44

4CC 2CE 3CE

65.5 68.5 68.5 68.5

65.5 67 67 67

79.5 86.5 86.5 91.5

76.5 85 85 88

82 91 90 96

3 4 5 5

3 5.5 6 7

1 1.5 1.5 1.5

1 1.5 1.5 1.5

15.5 21 20.5 23.5

0.33 0.43 0.33 0.40

1.80 1.39 1.83 1.51

0.99 0.77 1.01 0.83

0.296 0.576 0.684 0.912

Note: When selecting bearings with bearing numbers marked with "*", please consult NTN Engineering.

B-143

●Tapered Roller Bearings Metric system sizes T r1

C

B D

d 60∼75mm Boundary dimensions dynamic mm d

D

T

B

Basic load ratings static dynamic kN

C

rs min

1

1

r ls min

Cr

Limiting speeds static

kgf Cor

1 Minimal allowable dimension for chamfer dimension r or r1.

B-144

Cr

rpm Cor

grease

oil

Bearing numbers

●Tapered Roller Bearings

Sb

Sa

r 1a Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa Fr ≦e Fr >e X Y X Y 1 0 0.4 Y2 static Por=0.5Fr+YoFa

ra Da db

da Db

When Por<Fr use Por=Fr For values of e, Y2 and Yo see the table below.

Dimensions series to ISO

Abutment and fillet dimensions

Load Constant center mm

mm da

db

min

max

Da max

Axial load factors

Mass kg

Db

Sa

Sb

ras

r1as

min

min

min

min

max

max

a

e

Y2

Yo

(approx.)

3EB 3EC 3EE 2EE 7FC 2FB 7FB 2FD

70 70 70 72 74 74 74 74

70 69 69 70 72 77 73 74

101.5 101.5 101.5 103 111 118 118 118

96 95 93 98 94 112 103 107

103 104 105 109 119 120 124 120

4 4 6 6 4 4 4 4

4.5 5.5 9 7 11 7.5 11.5 11.5

2 2 2 2 2.5 2.5 2.5 2.5

1.5 1.5 1.5 2 2.5 2 2 2

22 25 27.5 28.5 42 26.5 40.5 32

0.40 0.40 0.40 0.33 0.82 0.35 0.83 0.35

1.48 1.48 1.48 1.80 0.73 1.74 0.73 1.74

0.81 0.81 0.82 0.99 0.40 0.96 0.40 0.96

0.949 1.18 1.55 1.86 2 2.06 1.97 3.02

2BC 4CC 2CE 3DE 3EB 3EC 3EE 2GB 7GB 2GD

70.5 73.5 73.5 73.5 75 75 75 79 79 79

70 72 72 73 77 75 74 83 79 80

84.5 91.5 91.5 101.5 111.5 111.5 111.5 128 128 128

80 90 89 96 106 104 102 122 111 117

86.5 97 96 106 113 115 115 130 133 130

3 4 5 6 4 4 7 4 4 4

3 5.5 6 7.5 4.5 5.5 9 8 13 12

1 1.5 1.5 1.5 2 2 2 2.5 2.5 2.5

1 1.5 1.5 1.5 1.5 1.5 1.5 2 2 2

16.5 22.5 21.5 26 23.5 27 29.5 28.5 44 34.5

0.35 0.46 0.35 0.39 0.40 0.40 0.39 0.35 0.83 0.35

1.70 1.31 1.72 1.55 1.48 1.48 1.54 1.74 0.73 1.74

0.93 0.72 0.95 0.85 0.81 0.81 0.85 0.96 0.40 0.96

0.315 0.63 0.732 1.28 1.18 1.58 1.98 2.55 2.42 3.66

2BC 4CC 2CE 3EB 3EC 3EE 7FC 2GB 7GB 2GD

75.5 78.5 78.5 80 80 80 84 84 84 84

75 78 79 81 80 79 82 89 84 86

94.5 101.5 101.5 116.5 116.5 116.5 126 138 138 138

90 98 99 110 108 107 106 130 118 125

96 105 105 118 119 120 135 140 142 140

4 5 5 4 4 7 5 4 4 4

4 6 5.5 5 6 9 12 8 13 12

1 1.5 1.5 2 2 2 2.5 2.5 2.5 2.5

1 1.5 1.5 1.5 1.5 1.5 2.5 2 2 2

18 24 22.5 25.5 28.5 31 47.5 30 47 36.5

0.32 0.43 0.28 0.42 0.42 0.41 0.87 0.35 0.83 0.35

1.90 1.38 2.11 1.43 1.43 1.47 0.69 1.74 0.73 1.74

1.05 0.76 1.16 0.79 0.79 0.81 0.38 0.96 0.40 0.96

0.487 0.848 1.07 1.26 1.68 2.1 2.61 3.06 2.92 4.46

2BC 4CC 2CE 4DB 4DC 3EE 2GB 7GB

80.5 83.5 83.5 85 85 85 89 89

80 83 85 85 85 83 95 91

99.5 106.5 106.5 121.5 121.5 121.5 148 148

94 103 101 115 114 111 139 127

101.5 110 110.5 124 125 125 149 151

4 5 6 4 4 7 4 6

4 6 5.5 5 6 10 9 14

1 1.5 1.5 2 2 2 2.5 2.5

1 1.5 1.5 1.5 1.5 1.5 2 2

19 25.5 23 27 30 32 32 50

0.33 0.46 0.30 0.44 0.44 0.43 0.35 0.83

1.80 1.31 2.01 1.38 1.38 1.40 1.74 0.73

0.99 0.72 1.11 0.76 0.76 0.77 0.96 0.40

0.511 0.909 1.11 1.41 1.74 2.2 3.57 3.47

備考1.ET-4T円すいころ軸受の寿命補正係数a2の値はB-000ページを参照ください。 2.ET円すいころ軸受も製作しているのでNTNに御照会ください。

B-145

●Tapered Roller Bearings Metric system sizes T r1

C

r B d

D

a

d 75∼95mm Boundary dimensions dynamic mm d

D

T

Basic load ratings static dynamic kN

B

C

rs min

1

1

Limiting speeds static

kgf

Bearing numbers

rpm

r ls min

Cr

Cor

Cr

Cor

grease

oil

75

160

58

55

45

3

2.5

355

470

36,000

47,500

2,400

3,200

32315U

80

110 125 125 140 140 140 170 170 170

20 29 36 28.25 35.25 46 42.5 42.5 61.5

20 29 36 26 33 46 39 39 58

16 22 29.5 22 28 35 33 27 48

1 1.5 1.5 2.5 2.5 2.5 3 3 3

1 1.5 1.5 2 2 2 2.5 2.5 2.5

72.0 139 173 160 199 250 291 236 395

121 216 284 200 265 365 350 283 525

7,350 14,200 17,600 16,300 20,300 25,500 29,700 24,100 40,500

12,400 22,000 29,000 20,400 27,000 37,500 36,000 28,900 53,500

3,000 2,800 2,800 2,500 2,500 2,500 2,300 2,000 2,300

4,000 3,700 3,700 3,400 3,400 3,400 3,000 2,700 3,000

32916XU 32016XU 33016U 30216U 32216U 33216U 30316U 30316DU 32316U

85

120 130 130 150 150 150 180 180 180

23 29 36 30.5 38.5 49 44.5 44.5 63.5

23 29 36 28 36 49 41 41 60

18 22 29.5 24 30 37 34 28 49

1.5 1.5 1.5 2.5 2.5 2.5 4 4 4

1.5 1.5 1.5 2 2 2 3 3 3

94.0 142 176 183 224 284 305 247 405

157 224 296 232 300 420 365 293 525

9,600 14,400 18,000 18,600 22,900 29,000 31,000 25,200 41,000

16,100 22,900 30,000 23,600 30,500 43,000 37,000 29,900 53,500

2,800 2,600 2,600 2,400 2,400 2,400 2,100 1,900 2,100

3,800 3,500 3,500 3,200 3,200 3,200 2,900 2,500 2,900

32917XU 32017XU 33017U 30217U 32217U 33217U 30317U 30317DU 32317U

90

125 140 140 160 160 190 190 190

23 32 39 32.5 42.5 46.5 46.5 67.5

23 32 39 30 40 43 43 64

18 24 32.5 26 34 36 30 53

1.5 2 2 2.5 2.5 4 4 4

1.5 1.5 1.5 2 2 3 3 3

97.5 168 215 208 262 335 270 450

168 270 360 267 360 405 320 595

9,950 17,200 21,900 21,200 26,700 34,500 27,600 46,000

17,100 27,600 36,500 27,200 36,500 41,500 33,000 60,500

2,700 2,500 2,500 2,200 2,200 2,000 1,800 2,000

3,600 3,300 3,300 3,000 3,000 2,700 2,400 2,700

32918XU 32018XU 33018U 30218U 32218U 30318U 30318DU 32318U

95

130 145 145 170 170 200 200 200

23 32 39 34.5 45.5 49.5 49.5 49.5

23 32 39 32 43 45 45 45

18 24 32.5 27 37 38 38 32

1.5 2 2 3 3 4 3 4

1.5 1.5 1.5 2.5 2.5 3 3 3

101 171 219 226 299 365 315 296

178 280 375 290 415 445 365 355

10,300 17,500 22,400 23,000 30,500 37,500 32,500 30,000

18,200 28,600 38,000 29,600 42,500 45,500 37,500 36,500

2,500 2,300 2,300 2,100 2,100 1,900 1,900 1,700

32919XU 3,400 32019XU 3,100 3,100 33019U 2,800 30219U 2,800 32219U 2,500 *30319U 2 2,500 30319 2,200 30319DU

1 Minimal allowable dimension for chamfer dimension r or r1. 2 This bearing does not incorporate the subunit dimensions.

B-146

●Tapered Roller Bearings

Sb

Sa

r 1a Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa Fr ≦e Fr >e X Y X Y 1 0 0.4 Y2 static Por=0.5Fr+YoFa

ra Da db

da Db

When Por<Fr use Por=Fr For values of e, Y2 and Yo see the table below.

Dimensions series to ISO

Abutment and fillet dimensions

Load Constant center mm

mm da

db

min

max

Db

Sa

Sb

ras

r1as

min

min

min

min

max

max

148

133

149

4

13

2.5

2

max

a

Mass kg

e

Y2

Yo

39

0.35

1.74

0.96

5.35

(approx.)

2GD

89

2BC 3CC 2CE 3EB 3EC 3EE 2GB 7GB 2GD

85.5 88.5 88.5 92 92 92 94 94 94

85 89 89 91 90 89 102 97 98

104.5 116.5 116.5 130 130 130 158 158 158

99 112 112 124 122 119 148 134 142

106.5 120 119 132 134 135 159 159 159

4 6 6 4 4 7 4 6 4

4 7 6.5 6 7 11 9.5 15.5 13.5

1 1.5 1.5 2 2 2 2.5 2.5 2.5

1 1.5 1.5 2 2 2 2 2 2

20 27 25 27.5 31 35 34 53.5 41.5

0.35 0.42 0.28 0.42 0.42 0.43 0.35 0.83 0.35

1.71 1.42 2.16 1.43 1.43 1.41 1.74 0.73 1.74

0.94 0.78 1.19 0.79 0.79 0.78 0.96 0.40 0.96

0.54 1.28 1.6 1.72 2.18 2.92 4.41 4.11 6.41

2BC 4CC 2CE 3EB 3EC 3EE 2GB 7GB 2GD

93.5 93.5 93.5 97 97 97 103 103 103

92 94 94 97 96 95 107 103 102

111.5 121.5 121.5 140 140 140 166 166 166

111 117 118 132 130 128 156 143 150

115 125 125 141 142 144 167 169 167

4 6 6 5 5 7 5 6 5

5 7 6.5 6.5 8.5 12 10.5 16.5 14.5

1.5 1.5 1.5 2 2 2 3 3 3

1.5 1.5 1.5 2 2 2 2.5 2.5 2.5

21 28.5 26 30 33.5 37.5 35.5 56 43

0.33 0.44 0.29 0.42 0.42 0.42 0.35 0.83 0.35

1.83 1.36 2.06 1.43 1.43 1.43 1.74 0.73 1.74

1.01 0.75 1.13 0.79 0.79 0.79 0.96 0.40 0.96

0.773 1.35 1.7 2.14 2.75 3.58 5.2 4.85 7.15

2BC 3CC 2CE 3FB 3FC 2GB 7GB 2GD

98.5 100 100 102 102 108 108 108

96 100 100 103 102 113 109 108

116.5 131.5 131.5 150 150 176 176 176

112.5 125 127 140 138 165 151 157

120.5 134 135 150 152 177 179 177

4 6 7 5 5 5 6 5

5 8 6.5 6.5 8.5 10.5 16.5 14.5

1.5 2 2 2 2 3 3 3

1.5 1.5 1.5 2 2 2.5 2.5 2.5

22 30 28 32 36 37.5 59 45.5

0.34 0.42 0.27 0.42 0.42 0.35 0.83 0.35

1.75 1.42 2.23 1.43 1.43 1.74 0.73 1.74

0.96 0.78 1.23 0.79 0.79 0.96 0.40 0.96

0.817 1.79 2.18 2.66 3.49 6.03 5.66 8.57

2BC 4CC 2CE 3FB 3FC 2GB

103.5 105 105 109 109 113 113 113

101 105 104 110 108 118 118 114

121.5 136.5 136.5 158 158 186 186 186

117 130 131 149 145 172 172 154

125.5 140 139 159 161 186 186 187

4 6 7 5 5 5 5 6

5 8 6.5 7.5 8.5 11.5 11.5 17.5

1.5 2 2 2.5 2.5 3 3 3

1.5 1.5 1.5 2 2 2.5 2.5 2.5

23.5 31.5 28.5 34 39 40 40 62.5

0.36 0.44 0.28 0.42 0.42 0.35 0.35 0.83

1.68 1.36 2.16 1.43 1.43 1.74 1.73 0.73

0.92 0.75 1.19 0.79 0.79 0.96 0.95 0.40

0.851 1.83 2.27 3.07 4.3 6.98 6.58 6.47

7GB

91

Da

Axial load factors

Note: When selecting bearings with bearing numbers marked with "*", please consult NTN Engineering.

B-147

●Tapered Roller Bearings Metric system sizes T r1

C

B D

d 95∼120mm Boundary dimensions dynamic mm d

D

T

B

Basic load ratings static dynamic kN

C

rs min

1

1

r ls min

1 Minimal allowable dimension for chamfer dimension r or r1. 2 ThIS bearing does not incorporate the subunit dimensions.

Cr

Limiting speeds static

kgf Cor

B-148

Cr

rpm Cor

grease

oil

Bearing numbers

●Tapered Roller Bearings

Sb

Sa

r 1a Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa Fr ≦e Fr >e X Y X Y 1 0 0.4 Y2 static Por=0.5Fr+YoFa

ra Da db

da Db

When Por<Fr use Por=Fr For values of e, Y2 and Yo see the table below.

Dimensions series to ISO

Abutment and fillet dimensions

Load Constant center mm

mm da

db

min

max

Da max

Db

Sa

Sb

ras

r1as

min

min

min

min

max

max

a

Axial load factors

Mass kg

e

Y2

Yo

(approx.)

2GD

113

113

186

166

186

5

16.5

3

2.5

49

0.35

1.74

0.96

10.1

2CC

108.5 108.5 114 110 110 114 114 118 118 118 118

107.5 107.5 109 109 108 116 114 127 127 121 121

131.5 131.5 131 141.5 141.5 168 168 201 201 201 201

127.5 127.5 130 134 135 157 154 184 184 168 177

135.5 135.5 140 144 143 168 171 200 200 202 200

4 4 4 6 7 5 5 5 5 7 5

5 5 6.5 8 6.5 8 10 12.5 12.5 21.5 17.5

1.5 1.5 2.5 2 2 2.5 2.5 3 3 3 3

1.5 1.5 2.5 1.5 1.5 2 2 2.5 2.5 2.5 2.5

24.5 25 30 32.5 29.5 36 41.5 41.5 42 69 53

0.33 0.35 0.47 0.46 0.29 0.42 0.42 0.35 0.35 0.83 0.35

1.82 1.73 1.27 1.31 2.09 1.43 1.43 1.74 1.73 0.73 1.74

1.00 0.95 0.70 0.72 1.15 0.79 0.79 0.96 0.95 0.40 0.96

1.14 1.08 1.15 1.91 2.37 3.78 5.12 8.56 7.72 8.67 12.7

113.5 117 117 119 119 123 123 123 123

113.5 116 116 122 119 132 132 126 128

136.5 150 150 178 178 211 211 211 211

131.5 143 145 165 161 193 193 176 185

140.5 154 153 178 180 209 209 211 209

5 6 7 6 6 6 6 7 6

5 9 9 9 10 12.5 12.5 22 18.5

1.5 2 2 2.5 2.5 3 3 3 3

1.5 2 2 2 2 2.5 2.5 2.5 2.5

25 34.5 31 38 44 43.5 43.5 71.5 55

0.34 0.44 0.28 0.42 0.42 0.35 0.35 0.83 0.35

1.76 1.35 2.12 1.43 1.43 1.74 1.73 0.73 1.74

0.97 0.74 1.17 0.79 0.79 0.96 0.95 0.40 0.96

1.20 2.42 3.00 4.39 6.25 9.79 8.93 9.68 14.5

118.5 122 122 124 124 128 128 128 128 128

117.5 122 121 129 126 141 141 135 135 135

141.5 160 160 188 188 226 226 226 226 226

137 152 152 174 170 206 206 188 198 198

145.5 163 161 188 190 222 222 224 222 222

5 7 7 6 6 6 6 7 6 6.5

5 9 10 9 10 12.5 12.5 25 19.5 19.5

1.5 2 2 2.5 2.5 3 3 3 3 3

1.5 2 2 2 2 2.5 2.5 2.5 2.5 2.5

26.5 36.5 33.5 40 47 45.5 44 76 57.5 56

0.36 0.43 0.29 0.42 0.42 0.35 0.35 0.83 0.35 0.35

1.69 1.39 2.09 1.43 1.43 1.74 1.73 0.73 1.74 1.73

0.93 0.77 1.15 0.79 0.79 0.96 0.95 0.40 0.96 0.95

1.23 3.07 3.80 5.18 7.43 11.4 10.5 11.9 18.0 16.9

128.5 128.5 132 134

128.5 130.5 131 140

156.5 156.5 170 203

150 147.5 161 187

160 159.5 173 203

6 6 7 6

6 6 9 9.5

1.5 1.5 2 2.5

1.5 1.5 2 2

29.5 31 39 44

0.35 0.37 0.46 0.44

1.72 1.60 1.31 1.38

0.95 0.88 0.72 0.76

1.77 1.63 3.25 6.23

4CB 4CC 2CE 3FB 3FC 2GB 7GB 2GD

4DC 2DE 3FB 3FC 2GB 7GB 2GD

4DC 2DE 3FB 3FC 2GB 7GB 2GD

2CC 4DC 4FB

Note: When selecting bearings with bearing numbers marked with "*", please consult NTN Engineering.

B-149

●Tapered Roller Bearings Metric system sizes T r1

C

r B d

D

a

d 120∼170mm Boundary dimensions

Basic load ratings static dynamic

dynamic mm d

kN 1

kgf

47,000 69,500 57,000 71,000 47,500 56,000 52,500 67,000 83,000 116,000

1,700 1,500 1,500 1,500 1,500

2,200 2,000 2,000 2,000 2,000

350 252 545 505 815 830 780

19,800 14,500 32,500 38,000 54,000 66,000 61,500

36,000 25,700 55,500 51,500 83,000 84,500 79,500

1,800 1,800 1,700 1,500 1,500 1,400 1,400

2,400 *32926XU 2 2,400 32926 2,200 32026XU 2,000 30226U 2,000 32226U 1,800 30326U 1,800 31326XU

200 330 420 375 610 735 640 685

375 580 570 485 920 950 780 905

20,400 33,500 43,000 38,000 62,500 75,000 65,000 70,000

38,000 59,500 58,500 49,500 94,000 97,000 80,000 92,500

1,700 1,600 1,400 1,400 1,400 1,300 1,300 1,300

2,200 32928XU 2,100 32028XU 1,900 *30228U 2 1,900 30228 1,900 32228U 1,700 *30328U 2 1,700 30328 1,700 31328XU

2 2.5 3 3 4 4 4

268 370 450 700 825 680 775

490 655 605 1 070 1 070 875 1,030

27,300 50,000 37,500 67,000 46,000 61,500 71,500 109,000 84,000 109,000 69,500 89,000 79,000 105,000

1,600 1,400 1,300 1,300 1,200 1,200 1,200

2,100 32930XU 1,900 32030XU 1,700 30230U 1,700 32230U 1,600 *30330U 2 1,600 30330 1,600 31330XU

2.5 3 4 4 5 4

2 2.5 3 3 4 4

276 435 525 890 915 755

520 790 720 1,420 1,200 975

28,200 53,000 44,500 80,500 53,500 73,500 90,500 145,000 93,500 122,000 77,000 99,500

1,500 1,400 1,200 1,200 1,100 1,100

1,900 32932XU 1,800 32032XU 1,600 30232U 1,600 32232U 1,500 *30332U 2 1,500 30332

2.5

2

286

560

29,200

1,400

1,800

3 4 3 4 4

2.5 3 3 3 3

460 560 465 515 815

680 695 550 655 1,130

25 26 34 34 54 49 44

2 2 2.5 4 4 5 5

1.5 2 2 3 3 4 4

194 142 320 375 530 650 600

32 45 42 42 68 62 62 70

25 34 36 36 58 53 53 47

2 2.5 4 3 4 5 4 5

1.5 2 3 3 3 4 4 4

38 48 49 77 72 72 82

38 48 45 73 65 65 75

30 36 38 60 55 55 50

2.5 3 4 4 5 4 5

220 240 290 290 340 340

38 51 52 84 75 75

38 51 48 80 68 68

30 38 40 67 58 58

230

38

38

30

B

C

120

215 260 260 260 260

61.5 59.5 59.5 68 90.5

58 55 55 62 86

50 46 46 42 69

130

180 180 200 230 230 280 280

32 32 45 43.75 67.75 63.75 72

32 30 45 40 64 58 66

140

190 210 250 250 250 300 300 300

32 45 45.75 45.75 71.75 67.75 67.75 77

150

210 225 270 270 320 320 320

160

rpm oil

Cr

T

Bearing numbers

grease

r ls min

D

170

1

Limiting speeds static

rs min

1 Minimal allowable dimension for chamfer dimension r or r1. 2 This bearing does not incorporate the subunit dimensions.

Cor

B-150

Cr

Cor

57,000

32224U 30324U 2 30324 31324XU 32324U

32934XU

●Tapered Roller Bearings

Sb

Sa

r 1a Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa Fr ≦e Fr >e X Y X Y 1 0 0.4 Y2 static Por=0.5Fr+YoFa

ra Da db

da Db

When Por<Fr use Por=Fr For values of e, Y2 and Yo see the table below.

Dimensions series to ISO

4FD 2GB

Abutment and fillet dimensions

Load Constant center mm

mm da

db

min

max

Da max

Axial load factors

Mass kg

Db

Sa

Sb

ras

r1as

min

min

min

min

max

max

a

e

Y2

Yo

(approx.)

134 138 138 138 138

136 152 152 145 145

203 246 246 246 246

181 221 221 203 213

204 239 239 244 239

6 6 6 9 6

11.5 13.5 13.5 26 21.5

2.5 3 3 3 3

2 2.5 2.5 2.5 2.5

51.5 49 48.5 82.5 61.5

0.44 0.35 0.35 0.83 0.35

1.38 1.74 1.73 0.73 1.74

0.76 0.96 0.95 0.40 0.96

9.08 14.2 13.2 15.4 22.4

140 140 142 148 148 152 152

139 139 144 152 146 164 152

171.5 170 190 216 216 262 262

163.5 163.5 178 203 193 239 218

174 174 192 218 219 255 261

6 6 8 7 7 8 9

7 6 11 9.5 13.5 14.5 28

2 2 2 3 3 4 4

1.5 2 2 2.5 2.5 3 3

31.5 34 43.5 45.5 57 53.5 87.5

0.34 0.37 0.43 0.44 0.44 0.35 0.83

1.77 1.60 1.38 1.38 1.38 1.74 0.73

0.97 0.88 0.76 0.76 0.76 0.96 0.40

2.36 2.22 4.96 7.25 11.2 17.4 19

150 152 158 158 158 162 162 162

150 153 163 163 158 179 179 165

181.5 200 236 236 236 282 282 282

177 187 219 219 210 251 252 234

184 202 237 237 238 273 273 280

6 8 7 7 9 9 9 9

6 11 9.5 9.5 13.5 14.5 14.5 30

2 2 3 2.5 3 4 4 4

1.5 2 2.5 2.5 2.5 3 3 3

34 46 48.5 47.5 61 56.5 57 94

0.36 0.46 0.44 0.43 0.44 0.35 0.35 0.83

1.67 1.31 1.38 1.39 1.38 1.74 1.73 0.73

0.92 0.72 0.76 0.77 0.76 0.96 0.95 0.40

2.51 5.28 9.26 8.37 14.1 21.2 20.4 23

2DC 4EC 4GB 4GD 2GB

162 164 168 168 172 172 172

162 164 175 170 193 193 176

200 213 256 256 302 302 302

192 200 234 226 269 269 250

202 216 255 254 292 292 302

7 8 7 8 8 8 9

8 12 11 17 17 17 32

2 2.5 3 3 4 4 4

2 2 2.5 2.5 3 3 3

36.5 49.5 51.5 64.5 61 62.5 100.5

0.33 0.46 0.44 0.44 0.35 0.37 0.83

1.83 1.31 1.38 1.38 1.74 1.60 0.73

1.01 0.72 0.76 0.76 0.96 0.88 0.40

3.92 6.37 11.2 18.2 25.5 24.7 27.7

2DC 4EC 4GB 4GD 2GB

172 174 178 178 182 182

170.5 175 189 182 205 205

210 228 276 276 322 322

199 213 252 242 286 286

213.5 231 272 275 310 311

7 8 8 10 10 10

8 13 12 17 17 17

2 2.5 3 3 4 4

2 2 2.5 2.5 3 3

38.5 52.5 55.5 70 64 65.5

0.35 0.46 0.44 0.44 0.35 0.37

1.73 1.31 1.38 1.38 1.74 1.60

0.95 0.72 0.76 0.76 0.96 0.88

4.15 7.8 12.9 23.5 29.9 29.2

3DC

182

183

220

213

222

7

8

2

2

42.5

0.38

1.57

0.86

4.4

7GB 2GD 2CC 4EC 4FB 4FD 2GB 7GB 2CC 4DC 4FB 4FD 2GB 7GB

Note: When selecting bearings with bearing numbers marked with "*", please consult NTN Engineering.

B-151

●Tapered Roller Bearings Metric system sizes T r1

C

r B d

D

a

d 170∼300mm Boundary dimensions

Basic load ratings static dynamic

dynamic mm d

D

T

kN

B

C

rs min

1

1

r ls min

Cr

Limiting speeds static

kgf Cor

Cr

Bearing numbers

rpm Cor

grease

oil

170

260 310 310 360 360

57 57 91 80 80

57 52 86 72 72

43 43 71 62 62

3 5 5 5 4

2.5 4 4 4 4

500 610 1,000 1,010 845

895 845 1,600 1,320 1,100

51,000 91,000 62,000 86,500 102,000 163,000 103,000 135,000 86,000 113,000

1,300 1,100 1,100 1,000 1,000

1,700 32034XU 1,500 30234U 1,500 32234U 1,400 *30334U 2 1,400 30334

180

250 280 320 320

45 64 57 91

45 64 52 86

34 48 43 71

2.5 3 5 5

2 2.5 4 4

350 645 630 1,030

700 1,170 890 1,690

36,000 71,500 66,000 119,000 64,000 91,000 105,000 172,000

1,300 1,200 1,100 1,100

1,700 1,600 1,400 1,400

190

260 260 290 340 340 340

45 45 64 60 97 97

45 42 64 55 92 92

34 36 48 46 75 75

2.5 2.5 3 5 5 4

2 2.5 2.5 4 4 4

355 280 655 715 1,150 1,000

710 525 1,210 1,000 1,850 1,670

36,000 28,600 67,000 73,000 117,000 102,000

72,000 53,500 124,000 102,000 189,000 171,000

1,200 1,200 1,100 1,000 1,000 1,000

1,600 *32938XU 2 1,600 32938 1,500 32038XUE1 1,300 30238U 1,300 *32238U 2 1,300 32238

200

280 310 360 360 360

51 70 64 104 104

51 70 58 98 98

39 53 48 82 82

3 3 5 5 4

2.5 2.5 4 4 4

485 800 785 1,320 1,150

895 1,470 1,110 2,130 1,970

49,000 81,500 80,000 134,000 118,000

91,000 149,000 113,000 217,000 201,000

1,100 1,100 950 950 950

1,500 32940XUE1 1,400 32040XUE1 1,300 30240U 1,300 *32240U 2 1,300 32240

220

300 300 340

51 51 76

51 48 76

39 41 57

3 2.5 4

2.5 2.5 3

480 345 920

950 670 1,690

49,000 97,000 35,500 68,500 94,000 173,000

1,000 1,000 960

1,400 *32944XUE1 2 1,400 32944E1 1,300 32044XU

240

320 360

51 76

51 76

39 57

3 4

2.5 3

490 930

1,000 1,760

50,000 102,000 95,000 179,000

940 870

1,200 1,200

32948XUE1 32048XU

260

360 400

63.5 87

63.5 87

48 65

3 5

2.5 4

705 1,200

1,430 2,270

72,000 146,000 123,000 231,000

860 800

1,100 1,100

32952XUE1 32052XU

280

380 420

63.5 87

63.5 87

48 65

3 5

2.5 4

725 1,220

1,520 2,350

74,000 155,000 125,000 240,000

790 740

1,100 980

32956XUE1 32056XU

300

420 460

57 74

4 5

3 4

1,010 1,490

2,090 2,830

103,000 213,000 152,000 289,000

720 680

970 910

32960XUE1 32060XU

76 100

76 100

1 Minimal allowable dimension for chamfer dimension r or r1. 2 This bearing does not incorporate the subunit dimensions.

B-152

32936XU 32036XUE1 30236U 32236U

●Tapered Roller Bearings

Sb

Sa

r 1a Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa Fr ≦e Fr >e X Y X Y 1 0 0.4 Y2 static Por=0.5Fr+YoFa

ra Da db

da Db

When Por<Fr use Por=Fr For values of e, Y2 and Yo see the table below.

Dimensions series to ISO

Abutment and fillet dimensions

Load Constant center mm

mm da

db

min

max

Da max

Db

Sa

Sb

ras

r1as

min

min

min

min

max

max

Axial load factors

Mass kg

a

e

Y2

Yo

(approx.)

4EC 4GB 4GD 2GB

184 192 192 192 192

187 203 201 221 215.5

248 292 292 342 342

230 266 258 303 297

249 288 293 329 327

10 8 10 10 10

14 14 20 18 18

2.5 4 4 4 4

2 3 3 3 3

56 60.5 75 68 69.5

0.44 0.44 0.44 0.35 0.37

1.35 1.38 1.38 1.74 1.60

0.74 0.76 0.76 0.96 0.88

10.5 17 28.7 35.3 34.8

4DC 3FD 4GB 4GD

192 194 202 202

193 197.5 211 204

240 268 302 302

225 243 274 267

241 269 297 305

8 10 9 10

11 16 14 20

2 2.5 4 4

2 2 3 3

54 59.5 63 77.5

0.48 0.42 0.45 0.45

1.25 1.42 1.33 1.33

0.69 0.78 0.73 0.73

6.54 14.5 17.7 30.7

4DC

202 202 204 212 212 212

204 204 209 228 216 216

250 248 278 322 322 322

235 235 257 295 282 286

251 251 279 316 323 323

8 8 10 9 11 11

11 9 16 14 22 22

2 2 2.5 4 4 4

2 2 2 3 3 3

55 48.5 62.5 64 82 87.5

0.48 0.37 0.44 0.44 0.44 0.49

1.26 1.60 1.36 1.38 1.38 1.23

0.69 0.88 0.75 0.76 0.76 0.68

6.77 6.43 15.1 20.8 36.1 33.3

3EC 4FD 4GB 3GD

214 214 222 222 222

214 221 242 230 230

268 298 342 342 342

254 273 311 298 302

271 297 336 340 344

9 11 10 11 11

12 17 16 22 22

2.5 2.5 4 4 4

2 2 3 3 3

53.5 66.5 70 85 91.5

0.39 0.43 0.44 0.41 0.49

1.52 1.39 1.38 1.48 1.23

0.84 0.77 0.76 0.81 0.68

8.88 19.3 25.4 43.6 43.6

3EC 4FD

234 234 238

234 235 243

288 288 326

271 274 300

290 290 326

10 10 12

12 10 19

2.5 2.5 3

2 2 2.5

59.5 57 72.5

0.43 0.39 0.43

1.41 1.55 1.39

0.78 0.85 0.77

10.2 9.63 25

4EC 4FD

254 258

254 261

308 346

290 318

311 346

10 12

12 19

2.5 3

2 2.5

65.5 78

0.46 0.46

1.31 1.31

0.72 0.72

10.9 26.8

3EC 4FC

274 282

279 287

348 382

325 352

347 383

11 14

15 22

2.5 4

2 3

69.5 85.5

0.41 0.43

1.48 1.38

0.81 0.76

18.8 39.4

4EC 4FC

294 302

298 305

368 402

344 370

368 402

11 14

15 22

2.5 4

2 3

75 90.5

0.43 0.46

1.39 1.31

0.76 0.72

20 41.8

3FD 4GD

318 322

324 329

406 442

379 404

405 439

13 15

19 26

3 4

2.5 3

80 98

0.39 0.43

1.52 1.38

0.84 0.76

31.4 59.6

4FD 4GB 4GD

Note: When selecting bearings with bearing numbers marked with "*", please consult NTN Engineering.

B-153

●Tapered Roller Bearings Metric system sizes T r1

C

B D

d 320∼360mm Boundary dimensions

Basic load ratings static dynamic

dynamic mm d

D

T

B

kN C

rs min

1

1

r ls min

1 Minimal allowable dimension for chamfer dimension r or r1. 2 This bearing does not incorporate the subunit dimensions.

Cr

Limiting speeds static

kgf Cor

B-154

Cr

rpm Cor

grease

oil

Bearing numbers

●Tapered Roller Bearings

Sb

Sa

r 1a Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa Fr ≦e Fr >e X Y X Y 1 0 0.4 Y2 static Por=0.5Fr+YoFa

ra Da db

da Db

When Por<Fr use Por=Fr For values of e, Y2 and Yo see the table below.

Dimensions series to ISO

3FD

Abutment and fillet dimensions

Load Constant center mm

mm da

db

min

max

Da max

min

Db

Sa

Sb

ras

r1as

min

min

min

max

max

a

85 85 104

Axial load factors

Mass kg

e

Y2

Yo

0.42 0.39 0.46

1.44 1.55 1.31

0.79 0.85 0.72

33.1 31.7 60.2

(approx.)

338 338 342

344 344 344.5

426 426 462

398 398 418.5

426 425 463

13 13 15

19 13 26

3 3 4

2.5 2.5 3

4FD

358 358

362 362

446 446

417 414

446 445.5

13 13

19 13

3 3

2.5 2.5

90.5 87

0.44 0.39

1.37 1.55

0.75 0.85

34.9 36.0

4FD

378

381

466

436

466

13

19

3

2.5

96.5

0.46

1.31

0.72

36.6

4GD

Note: When selecting bearings with bearing numbers marked with "*", please consult NTN Engineering.

B-155

●Tapered Roller Bearings Inch system sizes T r1

C

r B d

D

a

d 12.700∼22.225mm Boundary dimensions

Basic load ratings static dynamic

dynamic mm d

D

T

kN B

C

Limiting speeds static kgf

rpm

Cr

Cor

Cr

Cor

grease

oil

12.700

34.988

10.998

10.988

8.730

12.3

11.6

1,260

1,180

12,000

16,000

14.989

34.988

10.998

10.988

8.730

12.3

11.6

1,260

1,180

12,000

16,000

15.875

41.275 42.862 42.862 47.000 49.225

14.288 14.288 16.670 14.381 19.845

14.681 14.288 16.670 14.381 21.539

11.112 9.525 13.495 11.112 14.288

20.3 17.6 26.7 24.0 38.5

18.7 17.5 26.0 24.2 39.0

2,070 1,800 2,720 2,440 3,900

1,910 1,790 2,650 2,460 3,950

10,000 8,700 9,800 8,600 8,500

13,000 12,000 13,000 11,000 11,000

16.993

47.000

14.381

14.381

11.112

24.0

24.2

2,440

2,460

8,600

11,000

17.462

39.878

13.843

14.605

10.668

23.8

24.2

2,420

2,470

10,000

13,000

19.050

39.992 45.237 47.000 49.225 49.225 49.225 53.975 56.896

12.014 15.494 14.381 18.034 19.845 21.209 22.225 19.368

11.153 16.637 14.381 19.050 21.539 19.050 21.839 19.837

9.525 12.065 11.112 14.288 14.288 17.462 15.875 15.875

12.8 28.3 24.0 38.5 38.5 38.5 40.0 42.5

12.8 28.6 24.2 39.0 39.0 39.0 39.0 46.5

1,310 2,880 2,440 3,900 3,900 3,900 4,100 4,350

1,300 2,920 2,460 3,950 3,950 3,950 3,950 4,750

10,000 8,900 8,600 8,500 8,500 8,500 8,000 7,200

13,000 12,000 11,000 11,000 11,000 11,000 11,000 9,600

19.987

47.000

14.381

14.381

11.112

24.0

24.2

2,440

2,460

8,600

11,000

20.000

50.005

13.495

14.260

9.525

26.0

27.9

2,650

2,850

7,500

10,000

20.625

49.225

19.845

21.539

14.288

38.5

39.0

3,900

3,950

8,500

11,000

20.638

49.225

19.845

19.845

15.875

37.5

39.0

3,800

3,950

8,200

11,000

21.430

50.005

17.526

18.288

13.970

38.0

39.0

3,850

3,950

8,000

11,000

21.986

45.974

15.494

16.637

12.065

29.6

34.0

3,000

3,450

8,400

11,000

22.225

50.005 50.005 52.388 53.975

13.495 17.526 19.368 19.368

14.260 18.288 20.168 20.168

9.525 13.970 14.288 14.288

26.0 38.0 40.5 40.5

27.9 39.0 43.0 43.0

2,650 3,850 4,150 4,150

2,850 3,950 4,350 4,350

7,500 8,000 7,600 7,600

10,000 11,000 10,000 10,000

Note: 1. With regard to the chamfer dimensions on the back face of the inner and outer rings, installation dimensions ras and r1as are larger than the maximum value. 2. For the inner bore diameter of bearings with bearing numbers marked "†" (inner ring) or "††" (outer ring), this value applies only to high precision class types, Class 4 and 2. B-156

●Tapered Roller Bearings

r1a

Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa Fr ≦e Fr >e X Y X Y 1 0 0.4 Y2 static Por=0.5Fr+YoFa

ra Da db

da Db

When Por<Fr use Por=Fr

For values of e, Y2 and Yo see the table below.

Bearing numbers

Abutment and fillet dimensions

Load Constant Axial center load factors mm

mm ras

r1as

da

db

Da

Db

max

max

a

4T-A4050/A4138

18.5

17

29

32

1.3

1.3

4T-A4059†/A4138

19.5

19

29

32

0.8

4T-03062/03162 4T-11590/11520 4T-17580/17520 4T-05062/05185 4T-09062/09195

21.5 24.5 23 23.5 22

20 22.5 21 21 21.5

34 34.5 36.5 40.5 42

37.5 39.5 39 42.5 44.5

4T-05066/05185

24.5

22

40.5

4T-LM11749/LM11710

23

21.5

4T-A6075/A6157 4T-LM11949/LM11910 4T-05075/05185 4T-09067/09195 4T-09078/09195 4T-09067/09196 4T-21075/21212†† 4T-1775/1729

24 28 25 25.5 25.5 25.5 31.5 27

4T-05079†/05185

Mass kg

e

Y2

Yo

(approx.)

2.5

0.45

1.32

0.73

0.053

1.3

2.5

0.45

1.32

0.73

0.049

1.3 1.5 1.5 1.5 0.8

2 1.5 1.5 1.3 1.3

5.4 1.2 5.8 4.2 9.4

0.31 0.70 0.33 0.36 0.27

1.93 0.85 1.81 1.68 2.26

1.06 0.47 1.00 0.92 1.24

0.092 0.103 0.122 0.131 0.203

42.5

1.5

1.3

4.2

0.36

1.68

0.92

0.127

34

37

1.3

1.3

5.3

0.29

2.10

1.15

0.084

23 23.5 23.5 24 24 24 26 25

34 39.5 40.5 42 42 41.5 43 49

37 41.5 42.5 44.5 44.5 44.5 50 51

1 1.3 1.3 1.3 1.3 1.3 1.5 1.5

1.3 1.3 1.3 1.3 1.3 1.5 2.3 1.3

1.5 5.6 4.2 7.6 9.4 7.6 5.6 6.5

0.53 0.30 0.36 0.27 0.27 0.27 0.59 0.31

1.14 2.00 1.68 2.26 2.26 2.26 1.02 1.95

0.63 1.10 0.92 1.24 1.24 1.24 0.56 1.07

0.065 0.122 0.121 0.179 0.188 0.198 0.248 0.272

26.5

24

40.5

42.5

1.5

1.3

4.2

0.36

1.68

0.92

0.117

4T-07079/07196

27.5

26

44.5

47

1.5

1

3.0

0.40

1.49

0.82

0.138

4T-09081/09195

27.5

25.5

42

44.5

1.5

1.3

9.4

0.27

2.26

1.24

0.179

4T-12580/12520

28.5

26

42.5

45.5

1.5

1.5

7.1

0.32

1.86

1.02

0.182

4T-M12649/M12610

29

25.5

44

46

1.3

1.3

6.4

0.28

2.16

1.19

0.169

4T-LM12749†/LM12711††

27.5

26

40

42.5

1.3

1.3

5.4

0.31

1.96

1.08

0.123

4T-07087/07196 4T-M12648/M12610 4T-1380/1328 4T-1380/1329††

28.5 28.5 29.5 29.5

27 26.5 27 27

44.5 44 45 46

47 46 48.5 49

1.3 1.3 1.5 1.5

1 1.3 1.5 1.5

3.0 6.4 7.4 7.4

0.40 0.28 0.29 0.29

1.49 2.16 2.05 2.05

0.82 1.19 1.13 1.13

0.13 0.165 0.2 0.215

備考3.ET円すいころ軸受も製作しております。NTNにご照会ください。

B-157

●Tapered Roller Bearings Inch system sizes T r1

C

r B d

D

a

d 22.225∼28.575mm Boundary dimensions

Basic load ratings static dynamic

dynamic mm d

D

T

kN

Limiting speeds static kgf

rpm

B

C

Cr

Cor

Cr

Cor

grease

oil

22.225

56.896 57.150

19.368 22.225

19.837 22.225

15.875 17.462

42.5 47.0

46.5 49.5

4,350 4,800

4,750 5,050

7,200 7,100

9,600 9,500

22.606

47.000

15.500

15.500

12.000

27.5

32.5

2,800

3,300

8,200

11,000

23.812

50.005 50.292 56.896

13.495 14.224 19.368

14.260 14.732 19.837

9.525 10.668 15.875

26.0 28.8 42.5

27.9 34.0 46.5

2,650 2,940 4,350

2,850 3,450 4,750

7,500 7,400 7,200

10,000 9,900 9,600

24.981

50.005

13.495

14.260

9.525

26.0

27.9

2,650

2,850

7,500

10,000

25.000

50.005

13.495

14.260

9.525

26.0

27.9

2,650

2,850

7,500

10,000

25.159

50.005

13.495

14.260

9.525

26.0

27.9

2,650

2,850

7,500

10,000

25.400

50.005 50.005 50.292 51.994 56.896 57.150 61.912 62.000 62.000 64.292 65.088 66.421

13.495 13.495 14.224 15.011 19.368 19.431 19.050 19.050 19.050 21.433 22.225 23.812

14.260 14.260 14.732 14.260 19.837 19.431 20.638 20.638 20.638 21.433 21.463 25.433

9.525 9.525 10.668 12.700 15.875 14.732 14.288 14.288 14.288 16.670 15.875 19.050

26.0 26.0 28.8 26.0 42.5 42.0 46.5 46.5 46.5 51.5 47.0 64.5

27.9 27.9 34.0 27.9 46.5 48.5 54.0 54.0 54.0 64.5 50.5 72.5

2,650 2,650 2,940 2,650 4,350 4,300 4,750 4,750 4,750 5,250 4,800 6,550

2,850 2,850 3,450 2,850 4,750 4,950 5,500 5,500 5,500 6,600 5,150 7,400

7,500 7,500 7,400 7,500 7,200 6,900 6,100 6,100 6,100 6,100 5,700 6,200

10,000 10,000 9,900 10,000 9,600 9,200 8,200 8,200 8,200 8,100 7,600 8,200

26.157

62.000

19.050

20.638

14.288

46.5

54.0

4,750

5,500

6,100

8,200

26.162

66.421

23.812

25.433

19.050

64.5

72.5

6,550

7,400

6,200

8,200

26.988

50.292 60.325 62.000 66.421

14.224 19.842 19.050 23.812

14.732 17.462 20.638 25.433

10.668 15.875 14.288 19.050

28.8 39.5 46.5 64.5

34.0 45.5 54.0 72.5

2,940 4,050 4,750 6,550

3,450 4,650 5,500 7,400

7,400 6,700 6,100 6,200

9,900 8,900 8,200 8,200

28.575

56.896 57.150

19.845 17.462

19.355 17.462

15.875 13.495

40.5 39.5

44.5 45.5

4,150 4,050

4,550 4,650

6,700 6,700

8,900 8,900

Note: 1. With regard to the chamfer dimensions on the back face of the inner and outer rings, installation dimensions ras and r1as are larger than the maximum value. 2. For the inner bore diameter of bearings with bearing numbers marked "†" (inner ring), this value applies only to high precision class types, Class 4 and 2.

B-158

●Tapered Roller Bearings

Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa Fr ≦e Fr >e X Y X Y 1 0 0.4 Y2 static Por=0.5Fr+YoFa When Por<Fr use Por=Fr

For values of e, Y2 and Yo see the table below.

Bearing numbers

Abutment and fillet dimensions

Load Constant Axial center load factors mm

mm ras

r1as

da

db

Da

Db

max

max

a

4T-1755/1729 4T-1280/1220

29 29.5

27.5 29

49 49

51 52

1.3 0.8

1.3 1.5

4T-LM72849/LM72810

30

28

40.5

44

1.5

4T-07093/07196 4T-L44640/L44610 4T-1779/1729

30.5 30.5 29.5

28.5 28.5 28.5

44.5 44.5 49

47 47 51

4T-07098/07196

31

29

44.5

4T-07097/07196

31

29

4T-07096/07196

31.5

4T-07100/07196 4T-07100S/07196 4T-L44643/L44610 4T-07100/07204 4T-1780/1729 4T-M84548/M84510 4T-15101/15243 4T-15100/15245 4T-15102/15245 4T-M86643/M86610 4T-23100/23256 4T-2687/2631

Mass kg

e

Y2

Yo

(approx.)

6.5 7.1

0.31 0.35

1.95 1.73

1.07 0.95

0.256 0.286

1

3.0

0.47

1.27

0.70

0.125

1.5 1.5 0.8

1 1.3 1.3

3.0 3.4 6.5

0.40 0.37 0.31

1.49 1.60 1.95

0.82 0.88 1.07

0.123 0.137 0.247

47

1.5

1

3.0

0.40

1.49

0.82

0.118

44.5

47

1.5

1

3.0

0.40

1.49

0.82

0.118

29.5

44.5

47

1.5

1

3.0

0.40

1.49

0.82

0.117

30.5 31.5 31.5 30.5 30.5 36 32.5 38 34 38 39 33.5

29.5 29.5 29.5 29.5 30 33 31.5 31.5 31.5 36.5 34.5 31.5

44.5 44.5 44.5 45 49 48.5 54 55 55 54 53 58

47 47 47 48 51 54 58 58 58 61 63 60

1 1.5 1.3 1 0.8 1.5 0.8 3.5 1.5 1.5 1.5 1.3

1 1 1.3 1.3 1.3 1.5 2 1.3 1.3 1.5 1.5 1.3

3.0 3.0 3.4 3.0 6.5 3.4 6.0 6.0 6.0 3.3 2.0 9.3

0.40 0.40 0.37 0.40 0.31 0.55 0.35 0.35 0.35 0.55 0.73 0.25

1.49 1.49 1.60 1.49 1.95 1.10 1.71 1.71 1.71 1.10 0.82 2.36

0.82 0.82 0.88 0.82 1.07 0.60 0.94 0.94 0.94 0.60 0.45 1.30

0.117 0.116 0.13 0.144 0.238 0.241 0.3 0.299 0.301 0.371 0.36 0.442

4T-15103/15245

33

32.5

55

58

0.8

1.3

6.0

0.35

1.71

0.94

0.296

4T-2682/2631

34.5

32

58

60

1.5

1.3

9.3

0.25

2.36

1.30

0.436

4T-L44649†/L44610 4T-15580†/15523 4T-15106†/15245 4T-2688†/2631

37.5 38.5 33.5 35

31 32 33 33

44.5 51 55 58

47 54 58 60

3.5 3.5 0.8 1.5

1.3 1.5 1.3 1.3

3.4 5.0 6.0 9.3

0.37 0.35 0.35 0.25

1.60 1.73 1.71 2.36

0.88 0.95 0.94 1.30

0.12 0.26 0.291 0.429

4T-1985/1930 4T-15590/15520

34 39.5

33.5 33.5

51 51

54 53

0.8 3.5

0.8 1.5

6.7 5.0

0.33 0.35

1.82 1.73

1.00 0.95

0.217 0.196

備考3.ET円すいころ軸受も製作しております。NTNにご照会ください。

B-159

●Tapered Roller Bearings Inch system sizes J system series T r1

C

r B d

D

a

d 28.575∼31.750mm Boundary dimensions

Basic load ratings static dynamic

dynamic mm d

D

T

kN

Limiting speeds static kgf

rpm

B

C

Cr

Cor

Cr

Cor

grease

oil

28.575

58.738 60.325 60.325 62.000 64.292 66.421 68.262 68.262 69.850 72.626 73.025

19.050 19.842 19.845 19.050 21.433 23.812 22.225 22.225 23.812 24.608 22.225

19.355 17.462 19.355 20.638 21.433 25.433 22.225 23.812 25.357 24.257 22.225

15.080 15.875 15.875 14.288 16.670 19.050 17.462 17.462 19.050 17.462 17.462

40.5 39.5 40.5 46.5 51.5 64.5 57.0 57.5 69.0 58.0 56.5

44.5 45.5 44.5 54.0 64.5 72.5 67.0 65.5 81.5 55.5 68.0

4,150 4,050 4,150 4,750 5,250 6,550 5,800 5,850 7,050 5,900 5,750

4,550 4,650 4,550 5,500 6,600 7,400 6,850 6,700 8,300 5,700 6,900

6,700 6,700 6,700 6,100 6,100 6,200 5,800 5,700 5,700 5,800 5,300

8,900 8,900 8,900 8,200 8,100 8,200 7,700 7,700 7,600 7,700 7,000

29.000

50.292

14.224

14.732

10.668

28.0

35.5

2,860

3,600

7,200

9,600

29.367

66.421

23.812

25.433

19.050

64.5

72.5

6,550

7,400

6,200

8,200

29.987

62.000 62.000

16.002 19.050

16.566 20.638

14.288 14.288

39.0 46.5

42.0 54.0

3,950 4,750

4,300 5,500

6,300 6,100

8,400 8,200

30.000

69.012 72.000

19.845 29.370

19.583 27.783

15.875 23.020

48.5 72.0

58.0 97.0

4,900 7,350

5,900 9,850

5,600 5,400

7,400 7,100

30.112

62.000

19.050

20.638

14.288

46.5

54.0

4,750

5,500

6,100

8,200

30.162

62.000 64.292 69.850 72.626

16.002 21.433 23.812 30.162

16.566 21.433 25.357 29.997

14.288 16.670 19.050 23.812

39.0 51.5 69.0 84.5

42.0 64.5 81.5 98.0

3,950 5,250 7,050 8,600

4,300 6,600 8,300 9,950

6,300 6,100 5,700 5,500

8,400 8,100 7,600 7,300

30.213

62.000 62.000 62.000

19.050 19.050 19.050

20.638 20.638 20.638

14.288 14.288 14.288

46.5 46.5 46.5

54.0 54.0 54.0

4,750 4,750 4,750

5,500 5,500 5,500

6,100 6,100 6,100

8,200 8,200 8,200

30.226

69.012 69.012

19.845 19.845

19.583 19.583

15.875 15.875

48.5 48.5

58.0 58.0

4,900 4,900

5,900 5,900

5,600 5,600

7,400 7,400

31.750

59.131 62.000 62.000

15.875 18.161 19.050

16.764 19.050 20.638

11.811 14.288 14.288

34.5 46.5 46.5

41.0 54.0 54.0

3,500 4,750 4,750

4,150 5,500 5,500

6,300 6,100 6,100

8,400 8,200 8,200

Note: 1. With regard to the chamfer dimensions on the back face of the inner and outer rings, installation dimensions ras and r1as are larger than the maximum value. 2. For the inner bore diameter of bearings with bearing numbers marked "†" (inner ring), this value applies only to high precision class types, Class 4 and 2.

B-160

●Tapered Roller Bearings

r1a Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa ≦e Fr Fr >e X Y X Y 1 0 0.4 Y2 static Por=0.5Fr+YoFa

ra *

Da db

da Db

ras 2.3 ras 5.6 min 3.56

15° min 4.75

Bearing numbers

When Por<Fr use Por=Fr

For values of e, Y2 and Yo see the table below.

Abutment and fillet dimensions

Load Constant Axial center load factors mm

mm ras

r1as

da

db

Da

Db

max

max

a

4T-1985/1932 4T-15590/15523 4T-1985/1931 4T-15112/15245 4T-M86647/M86610 4T-2689/2631 4T-02474/02420 4T-2474/2420 4T-2578/2523 4T-41125/41286 4T-02872/02820

34 39.5 34 40 40 36 36.5 36 39 48 37.5

33.5 33.5 33.5 34 38 34 36 35 35 36.5 37

52 51 52 55 54 58 59 60 61 61 62

54 54 55 58 61 60 63 63 64 68 68

0.8 3.5 0.8 3.5 1.5 1.3 0.8 0.8 2.3 4.8 0.8

1.3 1.5 1.3 1.3 1.5 1.3 1.5 1.5 1.3 1.5 3.3

4T-L45449/L45410

39.5

33

44.5

48

3.5

4T-2690/2631

41

35

58

60

4T-17118†/17244 4T-15117†/15245

37 36.5

34.5 35

54 55

42.5 44.5

39.5 42.5

4T-15116/15245

36

4T-17119/17244 4T-M86649/M86610 4T-2558/2523 4T-3187/3120

Mass kg

e

Y2

Yo

(approx.)

5.9 5.0 5.9 6.0 3.3 9.3 5.2 6.5 9.1 3.7 3.9

0.33 0.35 0.33 0.35 0.55 0.25 0.42 0.34 0.27 0.60 0.45

1.82 1.73 1.82 1.71 1.10 2.36 1.44 1.77 2.19 1.00 1.32

1.00 0.95 1.00 0.94 0.60 1.30 0.79 0.97 1.21 0.55 0.73

0.23 0.25 0.255 0.277 0.348 0.416 0.409 0.41 0.483 0.477 0.48

1.3

3.5

0.37

1.62

0.89

0.113

3.5

1.3

9.3

0.25

2.36

1.30

0.406

57 58

1.5 1.3

1.5 1.3

3.3 6.0

0.38 0.35

1.57 1.71

0.86 0.94

0.228 0.269

60 58

63 69

3.5 1.3

1.3 3.3

4.1 6.0

0.38 0.55

1.57 1.10

0.86 0.60

0.369 0.619

35.5

55

58

0.8

1.3

6.0

0.35

1.71

0.94

0.268

37 41 40 39

34.5 38 36.5 38.5

54 54 61 61

57 61 64 67

1.5 1.5 2.3 0.8

1.5 1.5 1.3 3.3

3.3 3.3 9.1 9.9

0.38 0.55 0.27 0.33

1.57 1.10 2.19 1.80

0.86 0.60 1.21 0.99

0.226 0.336 0.468 0.621

4T-15118/15245 4T-15119/15245 4T-15120/15245

41.5 37.5 36

35.5 35.5 35.5

55 55 55

58 58 58

3.5 1.5 0.8

1.3 1.3 1.3

6.0 6.0 6.0

0.35 0.35 0.35

1.71 1.71 1.71

0.94 0.94 0.94

0.265 0.267 0.267

4T-14116/14274 4T-14116/14276

37 37

36.5 36.5

59 60

63 63

0.8 0.8

3.3 1.3

4.1 4.1

0.38 0.38

1.57 1.57

0.86 0.86

0.366 0.37

4T-LM67048/LM67010 4T-15123/15245 4T-15125/15245

42.5 42.5 42.5

36 36.5 36.5

52 55 55

56 58 58

* * 3.5

1.3 1.3 1.3

2.8 5.1 6.0

0.41 0.35 0.35

1.46 1.71 1.71

0.80 0.94 0.94

0.182 0.244 0.253

4T-14117A/14276 #4T-JHM88540/JHM88513

Note: 3. Bearing numbers marked "#" designate J-series bearings. The tolerances of these bearings is listed in Table 6.6 on page A-40. 4. Chamfer dimensions of bearings marked "*" are shown in drawings.

B-161

●Tapered Roller Bearings Inch system sizes J system series T r1

C

r B d

D

d 31.750∼34.925mm Boundary dimensions

Basic load ratings static dynamic

dynamic mm d

D

T

kN

Limiting speeds static kgf

rpm

B

C

Cr

Cor

Cr

Cor

grease

oil

31.750

62.000 66.421 68.262 68.262 69.012 69.012 69.850 69.850 72.626 72.626 73.025 73.025 73.025 73.812 76.200 79.375

19.050 25.400 22.225 22.225 19.845 19.845 23.812 23.812 30.162 30.162 22.225 22.225 29.370 29.370 29.370 29.370

20.638 25.357 22.225 22.225 19.583 19.583 25.357 25.357 29.997 29.997 22.225 23.812 27.783 27.783 28.575 29.771

14.288 20.638 17.462 17.462 15.875 15.875 19.050 19.050 23.812 23.812 17.462 17.462 23.020 23.020 23.020 23.812

46.5 69.0 57.0 57.0 48.5 48.5 69.0 69.0 84.5 84.5 56.5 62.5 72.0 72.0 78.0 93.0

54.0 81.5 67.0 67.0 58.0 58.0 81.5 81.5 98.0 98.0 68.0 75.5 97.0 97.0 105 114

4,750 7,050 5,800 5,800 4,900 4,900 7,050 7,050 8,600 8,600 5,750 6,400 7,350 7,350 7,950 9,450

5,500 8,300 6,850 6,850 5,900 5,900 8,300 8,300 9,950 9,950 6,900 7,700 9,850 9,850 10,700 11,600

6,100 5,700 5,800 5,800 5,600 5,600 5,700 5,700 5,500 5,500 5,300 5,200 5,400 5,400 5,100 4,900

8,200 7,600 7,700 7,700 7,400 7,400 7,600 7,600 7,300 7,300 7,000 7,000 7,100 7,100 6,800 6,600

33.338

68.262 69.012 69.850 72.626 73.025 76.200 76.200 76.200 79.375

22.225 19.845 23.812 30.162 29.370 23.812 29.370 29.370 25.400

22.225 19.583 25.357 29.997 27.783 25.654 28.575 28.575 24.074

17.462 15.875 19.050 23.812 23.020 19.050 23.020 23.020 17.462

56.5 48.5 69.0 84.5 72.0 73.0 78.0 78.0 65.5

71.0 58.0 81.5 98.0 97.0 90.5 105 105 67.0

5,750 4,900 7,050 8,600 7,350 7,450 7,950 7,950 6,650

7,250 5,900 8,300 9,950 9,850 9,200 10,700 10,700 6,800

5,700 5,600 5,700 5,500 5,400 5,100 5,100 5,100 5,200

7,500 7,400 7,600 7,300 7,100 6,800 6,800 6,800 6,900

34.925

65.088 65.088 69.012 72.233 72.238 73.025 73.025 73.025 73.025 73.025 73.025 76.200

18.034 18.034 19.845 25.400 20.638 22.225 22.225 22.225 23.812 23.812 23.812 23.812

18.288 18.288 19.583 25.400 20.638 22.225 22.225 23.812 24.608 24.608 25.654 25.654

13.970 13.970 15.875 19.842 15.875 17.462 17.462 17.462 19.050 19.050 19.050 19.050

46.5 46.5 48.5 65.0 48.0 56.5 56.5 62.5 71.0 71.0 73.0 73.0

56.0 56.0 58.0 84.5 58.5 68.0 68.0 75.5 85.0 85.0 90.5 90.5

4,750 4,750 4,900 6,600 4,900 5,750 5,750 6,400 7,200 7,200 7,450 7,450

5,700 5,700 5,900 8,600 5,950 6,900 6,900 7,700 8,700 8,700 9,200 9,200

5,700 5,700 5,600 5,400 5,300 5,300 5,300 5,200 5,300 5,300 5,100 5,100

7,600 7,600 7,400 7,200 7,000 7,000 7,000 7,000 7,100 7,100 6,800 6,800

Note: 1. With regard to the chamfer dimensions on the back face of the inner and outer rings, installation dimensions ras and r1as are larger than the maximum value. 2. Chamfer dimensions of bearings marked "*" are shown in drawings.

B-162

●Tapered Roller Bearings

r1a Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa ≦e Fr Fr >e X Y X Y 1 0 0.4 Y2 static Por=0.5Fr+YoFa

ra *

Da db

da Db

ras 2.3 ras 5.6 min 3.56

15° min 4.75

Bearing numbers

When Por<Fr use Por=Fr

For values of e, Y2 and Yo see the table below.

Abutment and fillet dimensions

Load Constant Axial center load factors mm

mm ras

r1as

da

db

Da

Db

max

max

a

4T-15126/15245 4T-2580/2520 4T-02475/02420 4T-02476/02420 4T-14124/14276 4T-14125A/14276 4T-2580/2523 4T-2582/2523 4T-3188/3120 4T-3193/3120 4T-02875/02820 4T-2879/2820 4T-HM88542/HM88510 4T-HM88542/HM88512 4T-HM89440/HM89410 4T-3476/3420

37 38.5 44.5 39 38.5 44 38.5 44 40 45.5 45.5 39.5 45.5 45.5 45.5 43

36.5 37.5 38.5 38.5 37.5 37.5 37.5 37.5 39.5 39.5 39.5 38.5 42.5 42.5 44.5 41

55 57 59 59 60 60 61 61 61 61 62 63 59 60 62 67

58 62 63 63 63 63 64 64 67 67 68 68 70 70 73 74

0.8 0.8 3.5 0.8 0.8 3.5 0.8 3.5 0.8 3.5 3.5 0.8 1.3 1.3 0.8 1.3

1.3 3.3 1.5 1.5 1.3 1.3 1.3 1.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3

4T-M88048/M88010 4T-14130/14276 4T-2585/2523 4T-3196/3120 4T-HM88547/HM88510 4T-2785/2720 4T-HM89443/HM89410 4T-HM89444/HM89410 4T-43131/43312

42.5 45 45 47 45.5 46 46.5 53 51

41 38.5 39 40.5 42.5 40 44.5 44.5 42

58 60 61 61 59 66 62 62 67

65 63 64 67 70 70 73 73 74

0.8 3.5 3.5 3.5 0.8 3.5 0.8 3.8 3.5

4T-LM48548/LM48510 4T-LM48548A/LM48510 4T-14137A/14276 4T-HM88649/HM88610 4T-16137/16284 4T-02877/02820 4T-02878/02820 4T-2878/2820 4T-25877/25820 4T-25877/25821 4T-2793/2735X 4T-2793/2720

46 40.5 42 48.5 47 48.5 42.5 42 43 43 42 42

40 42 40 42.5 40.5 42 42 41 40.5 40.5 41 41

58 58 60 60 63 62 62 63 64 65 66 66

61 61 63 69 67 68 68 68 68 68 69 70

* 0.8 1.5 2.3 3.5 3.5 0.8 0.8 1.5 1.5 0.8 0.8

備考3.ET円すいころ軸受も製作しております。NTNにご照会ください。

B-163

Mass kg

e

Y2

Yo

(approx.)

6.0 9.1 5.2 5.2 4.1 4.1 9.1 9.1 9.9 9.9 3.9 5.5 6.0 6.0 5.8 8.7

0.35 0.27 0.42 0.42 0.38 0.38 0.27 0.27 0.33 0.33 0.45 0.37 0.55 0.55 0.55 0.37

1.71 2.19 1.44 1.44 1.57 1.57 2.19 2.19 1.80 1.80 1.32 1.63 1.10 1.10 1.10 1.64

0.94 1.21 0.79 0.79 0.86 0.86 1.21 1.21 0.99 0.99 0.73 0.90 0.60 0.60 0.60 0.90

0.255 0.409 0.38 0.383 0.359 0.356 0.454 0.451 0.603 0.601 0.451 0.465 0.622 0.638 0.686 0.767

1.5 1.3 1.3 3.3 3.3 3.3 3.3 3.3 1.5

2.9 4.1 9.1 9.9 6.0 7.8 5.8 5.8 1.4

0.55 0.38 0.27 0.33 0.55 0.30 0.55 0.55 0.67

1.10 1.57 2.19 1.80 1.10 1.98 1.10 1.10 0.90

0.60 0.86 1.21 0.99 0.60 1.09 0.60 0.60 0.49

0.378 0.344 0.435 0.581 0.604 0.551 0.668 0.665 0.568

1.3 1.3 1.3 2.3 1.3 3.3 3.3 3.3 2.3 0.8 0.8 3.3

3.7 3.7 4.1 4.6 4.2 3.9 3.9 5.5 8.1 8.1 7.8 7.8

0.38 0.38 0.38 0.55 0.40 0.45 0.45 0.37 0.29 0.29 0.30 0.30

1.59 1.59 1.57 1.10 1.49 1.32 1.32 1.63 2.07 2.07 1.98 1.98

0.88 0.88 0.86 0.60 0.82 0.73 0.73 0.90 1.14 1.14 1.09 1.09

0.249 0.252 0.333 0.489 0.385 0.422 0.425 0.434 0.471 0.474 0.485 0.536

●Tapered Roller Bearings Inch system sizes J system series T r1

C

r B d

D

a

d 34.925∼38.100mm Boundary dimensions

Basic load ratings static dynamic

dynamic mm d

D

T

kN B

C

Cr

Limiting speeds static kgf

rpm

Cor

Cr

Cor

grease

oil

34.925

76.200 76.200 76.200 76.200 79.375 80.167 85.725

23.812 29.370 29.370 29.370 29.370 29.370 30.162

25.654 28.575 28.575 28.575 29.771 30.391 30.162

19.050 23.020 23.812 23.812 23.812 23.812 23.812

73.0 78.0 80.5 80.5 93.0 95.0 105

90.5 105 97.0 97.0 114 112 132

7,450 7,950 8,200 8,200 9,450 9,700 10,700

9,200 10,700 9,900 9,900 11,600 11,400 13,400

5,100 5,100 5,100 5,100 4,900 4,800 4,500

6,800 6,800 6,800 6,800 6,600 6,400 6,000

34.976

69.012

19.845

19.583

15.875

48.5

58.0

4,900

5,900

5,600

7,400

34.988

59.974 61.973 61.973

15.875 16.700 18.000

16.764 17.000 17.000

11.938 13.600 15.000

35.5 37.0 37.0

47.5 48.0 48.0

3,600 3,800 3,800

4,850 4,900 4,900

6,100 5,900 5,900

8,100 7,900 7,900

35.000

70.000 79.375 80.000

24.000 23.812 21.000

23.500 25.400 22.403

19.000 19.050 17.826

62.0 76.5 68.0

78.0 97.5 75.0

6,350 7,800 6,950

7,950 9,950 7,650

5,500 4,800 4,700

7,300 6,400 6,300

35.717

72.233 72.626

25.400 25.400

25.400 25.400

19.842 19.842

65.0 65.0

84.5 84.5

6,600 6,600

8,600 8,600

5,400 5,400

7,200 7,200

36.487

73.025 76.200

23.812 23.812

24.608 25.654

19.050 19.050

71.0 73.0

85.0 90.5

7,200 7,450

8,700 9,200

5,300 5,100

7,100 6,800

36.512

76.200 76.200 76.200 79.375 79.375 88.500

29.370 29.370 29.370 29.370 29.370 25.400

28.575 28.575 28.575 28.829 29.771 23.698

23.020 23.020 23.812 22.664 23.812 17.462

78.0 78.0 80.5 86.5 93.0 70.5

105 105 97.0 104 114 78.0

7,950 7,950 8,200 8,800 9,450 7,200

10,700 10,700 9,900 10,600 11,600 7,950

5,100 5,100 5,100 5,000 4,900 4,000

6,800 6,800 6,800 6,600 6,600 5,300

38.000

63.000

17.000

17.000

13.500

38.5

52.5

3,950

5,350

5,700

7,600

38.100

63.500 65.088 69.012 69.012 71.438 72.000

12.700 18.034 19.050 19.050 15.875 19.000

11.908 18.288 19.050 19.050 16.520 20.638

9.525 13.970 15.083 15.083 11.908 14.237

25.9 43.5 47.5 47.5 43.5 48.0

33.5 57.0 59.5 59.5 51.0 58.5

2,640 4,400 4,850 4,850 4,400 4,900

3,400 5,800 6,050 6,050 5,200 5,950

5,500 5,500 5,300 5,300 5,400 5,300

7,300 7,400 7,100 7,100 7,200 7,000

Note: 1. With regard to the chamfer dimensions on the back face of the inner and outer rings, installation dimensions ras and r1as are larger than the maximum value. 2. For the inner bore diameter of bearings with bearing numbers marked "†" (inner ring) or "††" (outer ring), this value applies only to high precision class types, Class 4 and 2. B-164

●Tapered Roller Bearings

r1a Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa ≦e Fr Fr >e X Y X Y 1 0 0.4 Y2 static Por=0.5Fr+YoFa

ra *

Da db

da Db

ras 2.3 ras 5.6 min 3.56

15° min 4.75

Bearing numbers

When Por<Fr use Por=Fr

For values of e, Y2 and Yo see the table below.

Abutment and fillet dimensions

Load Constant Axial center load factors mm

mm ras

r1as

Mass kg

da

db

Da

Db

max

max

a

e

Y2

Yo

(approx.)

4T-2793/2729 4T-HM89446/HM89410 4T-31593/31520 4T-31594/31520 4T-3478/3420 4T-3379/3320 4T-3872/3820

42 53 50 46 50 48 53

41 44.5 43.5 43.5 43.5 41.5 46

68 62 64 64 67 70 73

70 73 72 72 74 75 81

0.8 3.5 3.5 1.5 3.5 3.5 3.5

0.8 3.3 3.3 3.3 3.3 3.3 3.3

7.8 5.8 7.8 7.8 8.7 11.2 8.1

0.30 0.55 0.40 0.40 0.37 0.27 0.40

1.98 1.10 1.49 1.49 1.64 2.20 1.49

1.09 0.60 0.82 0.82 0.90 1.21 0.82

0.541 0.646 0.625 0.627 0.725 0.732 0.897

4T-14139/14276

41.5

40

60

63

1.3

1.3

4.1

0.38

1.57

0.86

0.333

4T-L68149†/L68111†† 4T-LM78349A†/LM78310A†† 4T-LM78349†/LM78310C††

45.5 42 46

39 39.5 40

53 54 56

56 59 59

* 1.5 *

1.3 1.5 1.5

2.5 2.4 2.4

0.42 0.44 0.44

1.44 1.35 1.35

0.79 0.74 0.74

0.179 0.209 0.218

47 42.5 42.5

42 42 41.5

60 71 73

67 74 75

2 0.8 0.8

1.5 0.8 1.3

3.6 7.4 6.6

0.55 0.32 0.27

1.10 1.88 2.20

0.60 1.04 1.21

0.42 0.61 0.534

4T-HM88648/HM88610 4T-HM88648/HM88611AS

52 52

43 43

60 59

69 69

3.5 3.5

2.3 3.3

4.6 3.0

0.55 0.55

1.10 1.10

0.60 0.60

0.478 0.482

4T-25880/25821 4T-2780/2720

44 44.5

42 42.5

65 66

68 70

1.5 1.5

0.8 3.3

8.1 7.8

0.29 0.30

2.07 1.98

1.14 1.09

0.457 0.518

4T-HM89448/HM89410 4T-HM89449/HM89411 4T-31597/31520 4T-HM89249/HM89210 4T-3479/3420 4T-44143/44348

48.5 54 51 55 45.5 54

44.5 44.5 44.5 44 44.5 50

62 65 64 66 67 75

73 73 72 75 74 84

0.8 3.5 3.5 3.5 0.8 2.3

3.3 0.8 3.3 3.3 3.3 1.5

5.8 5.8 7.8 5.8 8.7 –2.9

0.55 0.55 0.40 0.55 0.37 0.78

1.10 1.10 1.49 1.10 1.64 0.77

0.60 0.60 0.82 0.60 0.90 0.42

0.629 0.631 0.605 0.686 0.707 0.729

49

42.5

56

60



1.3

2.3

0.42

1.44

0.79

0.198

45 49 49.5 46.5 45 49.5

42.5 42.5 43 43 43 43

59 59 61 61 63 63

60 62 65 65 66 67

1.5 * 3.5 2 1.5 3.5

0.8 1.3 2.3 2.3 1 1.5

0.8 4.3 3.0 3.0 1.4 4.2

0.35 0.33 0.40 0.40 0.44 0.40

1.73 1.80 1.49 1.49 1.35 1.49

0.95 0.99 0.82 0.82 0.74 0.82

0.147 0.233 0.293 0.296 0.273 0.331

#4T-JS3549A/JS3510 4T-26883/26822 4T-339/332

#4T-JL69349/JL69310 4T-13889/13830 4T-LM29748/LM29710 4T-13685/13621 4T-13687/13621 4T-19150/19281 4T-16150/16282

Note: 3. Bearing numbers marked "#" designate J-series bearings. The tolerances of these bearings is listed in Table 6.6 on page A-40. 4. Chamfer dimensions of bearings marked "*" are shown in drawings.

B-165

●Tapered Roller Bearings Inch system sizes T r1

C

r B d

D

a

d 38.100∼41.275mm Boundary dimensions

Basic load ratings static dynamic

dynamic mm d

D

T

kN B

C

Cr

Limiting speeds static kgf

rpm

Cor

Cr

Cor

grease

oil

38.100

76.200 76.200 76.200 79.375 79.375 80.000 80.035 82.550 82.931 85.725 87.312 88.500 88.500

20.638 23.812 23.812 23.812 29.370 21.006 24.608 29.370 23.812 30.162 30.162 25.400 26.988

20.940 25.654 25.654 25.400 29.771 20.940 23.698 28.575 25.400 30.162 30.886 23.698 29.083

15.507 19.050 19.050 19.050 23.812 15.875 18.512 23.020 19.050 23.812 23.812 17.462 22.225

55.5 73.0 73.0 76.5 93.0 55.5 67.0 87.0 76.0 105 94.0 70.5 95.5

63.0 90.5 90.5 97.5 114 63.0 82.5 117 98.0 132 117 78.0 107

5,650 7,450 7,450 7,800 9,450 5,650 6,850 8,850 7,750 10,700 9,600 7,200 9,750

6,450 9,200 9,200 9,950 11,600 6,450 8,400 11,900 10,000 13,400 12,000 7,950 10,900

5,000 5,100 5,100 4,800 4,900 5,000 4,800 4,700 4,500 4,500 4,400 4,000 4,600

6,700 6,800 6,800 6,400 6,600 6,700 6,400 6,200 6,000 6,000 5,900 5,300 6,100

39.688

76.200 77.534 79.375 80.035 80.167 88.500

23.812 29.370 23.812 29.370 29.370 25.400

25.654 30.391 25.400 30.391 30.391 23.698

19.050 23.812 19.050 23.812 23.812 17.462

73.0 95.0 76.5 95.0 95.0 70.5

90.5 112 97.5 112 112 78.0

7,450 9,700 7,800 9,700 9,700 7,200

9,200 11,400 9,950 11,400 11,400 7,950

5,100 4,800 4,800 4,800 4,800 4,000

6,800 6,400 6,400 6,400 6,400 5,300

40.000

76.200 80.000 85.000 88.500 107.950

20.638 21.000 20.638 26.988 36.512

20.940 22.403 21.692 29.083 36.957

15.507 17.826 17.462 22.225 28.575

55.5 68.0 69.5 95.5 141

63.0 75.0 79.5 107 177

5,650 6,950 7,100 9,750 14,400

6,450 7,650 8,100 10,900 18,100

5,000 4,700 4,400 4,600 3,600

6,700 6,300 5,800 6,100 4,800

40.483

82.550

29.370

28.575

23.020

87.0

8,850

11,900

4,700

6,200

40.988

67.975

17.500

18.000

13.500

46.0

62.5

4,700

6,400

5,300

7,000

41.275

73.025 73.431 73.431 76.200 76.200 76.200 79.375 80.000

16.667 19.558 21.430 18.009 22.225 25.400 23.812 18.009

17.462 19.812 19.812 17.384 23.020 25.400 25.400 17.384

12.700 14.732 16.604 14.288 17.462 20.638 19.050 14.288

46.0 56.0 56.0 42.5 65.0 76.5 76.5 42.5

55.5 69.5 69.5 51.5 80.5 97.5 97.5 51.5

4,700 5,700 5,700 4,350 6,600 7,800 7,800 4,350

5,700 7,100 7,100 5,250 8,200 9,950 9,950 5,250

5,000 5,000 5,000 4,900 4,900 4,800 4,800 4,900

6,600 6,600 6,600 6,500 6,500 6,400 6,400 6,500

117

Note: 1. With regard to the chamfer dimensions on the back face of the inner and outer rings, installation dimensions ras and r1as are larger than the maximum value. 2. For the inner bore diameter of bearings with bearing numbers marked "†" (inner ring) or "††" (outer ring), this value applies only to high precision class types, Class 4 and 2. B-166

●Tapered Roller Bearings

r1a Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa ≦e Fr Fr >e X Y X Y 1 0 0.4 Y2 static Por=0.5Fr+YoFa

ra *

Da db

da Db

ras 2.3 ras 5.6 min 3.56

15° min 4.75

Bearing numbers

When Por<Fr use Por=Fr

For values of e, Y2 and Yo see the table below.

Abutment and fillet dimensions

Load Constant Axial center load factors mm

mm ras

r1as

da

db

Da

Db

max

max

4T-28150/28300 4T-2776/2720 4T-2788/2720 4T-26878/26822 4T-3490/3420 4T-28150/28315 4T-27880/27820 4T-HM801346/HM801310 4T-25572/25520 4T-3875/3820 4T-3580/3525 4T-44150/44348 4T-418/414

45.5 52 50 45 52 45.5 48 51 46 49.5 48 55 51

43.5 43.5 43.5 44.5 45.5 43.5 47 49 46 48.5 45.5 51 44.5

68 66 66 71 67 69 68 68 74 73 75 75 77

71 70 70 74 74 73 75 78 77 81 81 84 80

1.5 4.3 3.5 0.8 3.5 1.5 0.8 0.8 0.8 0.8 1.5 2.3 3.5

1.3 3.3 3.3 0.8 3.3 1.5 1.5 3.3 0.8 3.3 3.3 1.5 1.5

4T-2789/2720 4T-3382/3321 4T-26880/26822 4T-3382/3339 4T-3386/3320 4T-44158/44348

52 52 48 52 46.5 58

45 45.5 45.5 45.5 45.5 51

66 68 71 71 70 75

70 75 74 75 75 84

3.5 3.5 1.5 3.5 0.8 3.5

4T-28158/28300 4T-344/332 4T-350A/354A 4T-420/414 4T-543/532X

47.5 52 47.5 52 57

45 45.5 46.5 46 50

68 73 77 77 94

71 75 80 80 100

4T-HM801349/HM801310

58

49

68

4T-LM300849†/LM300811††

52

45

4T-18590/18520 4T-LM501349/LM501310 4T-LM501349/LM501314 4T-11162/11300 4T-24780/24720 4T-26882/26823 4T-26885/26822 4T-11162/11315

53 53 53 49 54 54 48 49

46 46.5 46.5 46.5 47 47 47 46.5

kg

e

Y2

Yo

(approx.)

4.8 7.8 7.8 7.4 8.7 4.8 2.5 4.7 6.2 8.1 10.0 –2.91 9.1

0.40 0.30 0.30 0.32 0.37 0.40 0.56 0.55 0.33 0.40 0.31 0.78 0.26

1.49 1.98 1.98 1.88 1.64 1.49 1.07 1.10 1.79 1.49 1.96 0.77 2.28

0.82 1.09 1.09 1.04 0.90 0.82 0.59 0.60 0.99 0.82 1.08 0.42 1.25

0.405 0.495 0.497 0.574 0.683 0.467 0.562 0.767 0.645 0.857 0.881 0.711 0.84

3.3 3.3 0.8 1.5 3.3 1.5

7.8 11.2 7.4 11.2 11.2 –2.91

0.30 0.27 0.32 0.27 0.27 0.78

1.98 2.20 1.88 2.20 2.20 0.77

1.09 1.21 1.04 1.21 1.21 0.42

0.477 0.669 0.554 0.666 0.668 0.691

1.5 3.5 0.8 3.5 3.5

1.3 1.3 1.3 1.5 3.3

4.8 6.6 5.1 9.1 12.3

0.40 0.27 0.31 0.26 0.30

1.49 2.20 1.96 2.28 2.02

0.82 1.21 1.08 1.25 1.11

0.386 0.479 0.562 0.813 1.77

78

3.5

3.3

4.7

0.55

1.10

0.60

0.731

61

65



1.5

3.6

0.35

1.72

0.95

0.239

66 67 66 67 68 69 71 69

69 70 70 71 72 73 74 73

3.5 3.5 3.5 1.5 3.5 3.5 0.8 1.5

1.5 0.8 0.8 1.5 0.8 1.5 0.8 1.5

2.9 3.3 3.3 0.7 4.5 7.4 7.4 0.7

0.35 0.40 0.40 0.49 0.39 0.32 0.32 0.49

1.71 1.50 1.50 1.23 1.53 1.88 1.88 1.23

0.94 0.83 0.83 0.68 0.84 1.04 1.04 0.68

0.281 0.335 0.355 0.337 0.432 0.488 0.535 0.389

Note: 3. Chamfer dimensions of bearings marked "*" are shown in drawings. 1 "−" means that load center at outside on end of inner ring.

B-167

a

Mass

●Tapered Roller Bearings Inch system sizes T r1

C

r B d

D

a

d 41.275∼44.450mm Boundary dimensions

Basic load ratings static dynamic

dynamic mm d

D

T

kN B

C

Cr

Limiting speeds static kgf

rpm

Cor

Cr

Cor

grease

oil

41.275

80.000 80.000 82.550 85.725 87.312 88.900 90.488 92.075 93.662 95.250 95.250 95.250

21.000 23.812 26.543 30.162 30.162 30.162 39.688 26.195 31.750 30.162 30.958 30.958

22.403 25.400 25.654 30.162 30.886 29.370 40.386 23.812 31.750 29.370 28.300 28.575

17.826 19.050 20.193 23.812 23.812 23.020 33.338 16.670 26.195 23.020 20.638 22.225

68.0 76.5 80.5 105 94.0 93.5 136 72.5 104 109 82.5 96.0

75.0 97.5 104 132 117 125 175 81.5 131 147 92.0 116

6,950 7,800 8,200 10,700 9,600 9,550 13,900 7,400 10,600 11,100 8,400 9,800

7,650 9,950 10,600 13,400 12,000 12,700 17,900 8,300 13,400 15,000 9,350 11,800

4,700 4,800 4,600 4,500 4,400 4,300 4,300 3,800 4,100 4,000 3,700 3,700

6,300 6,400 6,100 6,000 5,900 5,800 5,800 5,000 5,500 5,300 5,000 4,900

42.070

90.488

39.688

40.386

33.338

136

175

13,900

17,900

4,300

5,800

42.862

82.550 82.931 87.312

26.195 23.812 30.162

26.988 25.400 30.886

20.638 19.050 23.812

75.5 76.0 94.0

97.0 98.0 117

7,700 7,750 9,600

9,900 10,000 12,000

4,600 4,500 4,400

6,100 6,000 5,900

42.875

79.375 82.931

23.812 23.812

25.400 25.400

19.050 19.050

76.5 76.0

97.5 98.0

7,800 7,750

9,950 10,000

4,800 4,500

6,400 6,000

44.450

76.992 79.375 82.931 82.931 84.138 85.000 87.312 88.900 93.264 93.662 95.250 95.250 95.250 95.250 95.250 101.600 104.775

17.462 17.462 23.812 23.812 30.162 20.638 30.162 30.162 30.162 31.750 27.783 27.783 30.162 30.958 30.958 34.925 30.162

17.145 17.462 25.400 25.400 30.886 21.692 30.886 29.370 30.302 31.750 28.575 29.900 29.370 28.300 28.575 36.068 29.317

11.908 13.495 19.050 19.050 23.812 17.462 23.812 23.020 23.812 26.195 22.225 22.225 23.020 20.638 22.225 26.988 24.605

44.0 45.5 76.0 76.0 94.0 69.5 94.0 93.5 102 103 107 108 109 82.5 96.0 135 115

54.0 56.0 98.0 98.0 117 79.5 117 125 134 131 139 129 147 92.0 116 165 148

4,450 4,600 7,750 7,750 9,600 7,100 9,600 9,550 10,400 10,600 10,900 11,000 11,100 8,400 9,800 13,800 11,700

5,550 5,700 10,000 10,000 12,000 8,100 12,000 12,700 13,700 13,400 14,200 13,200 15,000 9,350 11,800 16,800 15,000

4,700 4,600 4,500 4,500 4,400 4,400 4,400 4,300 4,000 4,100 3,900 4,200 4,000 3,700 3,700 3,800 3,500

6,300 6,200 6,000 6,000 5,900 5,800 5,900 5,800 5,300 5,500 5,200 5,600 5,300 5,000 4,900 5,000 4,700

Note: 1. With regard to the chamfer dimensions on the back face of the inner and outer rings, installation dimensions ras and r1as are larger than the maximum value.

B-168

●Tapered Roller Bearings

r1a Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa Fr ≦e Fr >e X Y X Y 1 0 0.4 Y2 static Por=0.5Fr+YoFa

ra *

Da db

da Db

ras 2.3 ras 5.6 min 3.56

15° min 4.75

Bearing numbers

When Por<Fr use Por=Fr

For values of e, Y2 and Yo see the table below.

Abutment and fillet dimensions

Load Constant Axial center load factors mm

mm ras

r1as

da

db

Da

Db

max

max

4T-336/332 4T-26882/26824 4T-M802048/M802011 4T-3880/3820 4T-3576/3525 4T-HM803145/HM803110 4T-4388/4335 4T-M903345/M903310 4T-46162/46368 4T-HM804840/HM804810 4T-53162/53375 4T-HM903245/HM903210

47 54 57 52 49 54 57 60 52 61 57 63

46 47 51 50 48 53 51 54 51 54 53 54

73 70 70 73 75 74 77 78 79 81 81 81

75 74 79 81 81 85 85 88 87 91 89 91

0.8 3.5 3.5 0.8 0.8 0.8 3.5 3.5 0.8 3.5 1.5 3.5

1.3 1.3 3.3 3.3 3.3 3.3 3.3 1.5 3.3 3.3 0.8 0.8

4T-4395/4335

58

51

77

85

3.5

4T-22780/22720 4T-25578/25520 4T-3579/3525

56 53 56

50 49.5 49.5

71 74 75

77 77 81

4T-26884/26822 4T-25577/25520

55 55

48.5 49

71 74

4T-12175/12303 4T-18685/18620 4T-25580/25520 4T-25582/25520 4T-3578/3520 4T-355/354A 4T-3578/3525 4T-HM803149/HM803110 4T-3782/3720 4T-46175/46368 4T-33885/33821 4T-438/432 4T-HM804842/HM804810 4T-53177/53375 4T-HM903249/HM903210 4T-527/522 4T-460/453X

52 54 57 60 57 54 57 62 58 55 53 57 57 63 65 59 60

49.5 49.5 50 50 51 50 51 53 52 54 53 51 57 53 54 53 54

68 71 74 74 74 77 75 74 82 79 85 83 81 81 81 89 92

kg

e

Y2

Yo

(approx.)

6.6 7.4 3.2 8.1 10.0 4.6 15.0 – 3.61 7.1 3.7 0.5 – 0.41

0.27 0.32 0.55 0.40 0.31 0.55 0.28 0.83 0.40 0.55 0.74 0.74

2.20 1.88 1.10 1.49 1.96 1.10 2.11 0.72 1.49 1.10 0.81 0.81

1.21 1.04 0.60 0.82 1.08 0.60 1.16 0.40 0.82 0.60 0.45 0.45

0.468 0.542 0.642 0.81 0.834 0.901 1.25 0.758 1.09 1.08 0.975 1.05

3.3

15.0

0.28

2.11

1.16

1.24

3.5 2.3 3.5

3.3 0.8 3.3

6.4 6.2 10.0

0.40 0.33 0.31

1.49 1.79 1.96

0.82 0.99 1.08

0.617 0.584 0.805

74 77

3.5 3.5

0.8 0.8

7.4 6.2

0.32 0.33

1.88 1.79

1.04 0.99

0.51 0.581

73 74 77 77 80 80 81 85 88 87 90 87 91 89 91 95 98

1.5 2.8 3.5 5 3.5 2.3 3.5 3.5 3.5 0.8 0.8 3.5 0.8 3.5 3.5 3.5 3.5

1.5 1.5 0.8 0.8 3.3 1.3 3.3 3.3 3.3 3.3 2.3 2.3 3.3 0.8 0.8 3.3 3.3

– 0.21 2.2 6.2 6.2 10.0 5.1 10.0 4.6 8.3 7.1 8.0 9.2 3.7 0.5 – 0.41 12.9 7.1

0.51 0.37 0.33 0.33 0.31 0.31 0.31 0.55 0.34 0.40 0.33 0.28 0.55 0.74 0.74 0.29 0.34

1.19 1.60 1.79 1.79 1.96 1.96 1.96 1.10 1.77 1.49 1.82 2.11 1.10 0.81 0.81 2.10 1.79

0.65 0.88 0.99 0.99 1.08 1.08 1.08 0.60 0.97 0.82 1.00 1.16 0.60 0.45 0.45 1.16 0.98

0.308 0.345 0.56 0.556 0.699 0.511 0.779 0.849 0.961 1.04 0.987 0.953 1.04 0.925 1 1.37 1.29

1 "−" means that load center at outside on end of inner ring.

B-169

a

Mass

●Tapered Roller Bearings Inch system sizes T r1

C

r B d

D

a

d 44.450∼47.625mm Boundary dimensions

Basic load ratings static dynamic

dynamic mm d

D

T

kN B

C

Cr

Limiting speeds static kgf

Cor

rpm

Cr

Cor

grease

oil

44.450

104.775 104.775 111.125 111.125 127.000

30.162 36.512 30.162 30.162 50.800

30.958 36.512 26.909 26.909 52.388

23.812 28.575 20.638 20.638 41.275

130 138 104 104 250

169 189 136 136 320

13,200 14,000 10,600 10,600 25,500

17,300 19,300 13,900 13,900 33,000

3,500 3,600 3,200 3,200 3,200

4,700 4,800 4,200 4,200 4,300

44.983

82.931 93.264

23.812 30.162

25.400 30.302

19.050 23.812

76.0 102

98.0 134

7,750 10,400

10,000 13,700

4,500 4,000

6,000 5,300

45.000

85.000 88.900

20.638 20.638

21.692 22.225

17.462 16.513

69.5 76.5

79.5 90.5

7,100 7,800

8,100 9,250

4,400 4,100

5,800 5,500

45.237

87.312

30.162

30.886

23.812

94.0

9,600

12,000

4,400

5,900

45.242

73.431 77.788

19.558 19.842

19.812 19.842

15.748 15.080

54.0 57.5

76.0 73.5

5,550 5,850

7,750 7,500

4,800 4,600

6,400 6,200

45.618

82.550 82.931 83.058 85.000

23.812 23.812 23.876 23.812

25.400 25.400 25.400 25.400

19.050 19.050 19.114 19.050

76.0 76.0 76.0 76.0

98.0 98.0 98.0 98.0

7,750 7,750 7,750 7,750

10,000 10,000 10,000 10,000

4,500 4,500 4,500 4,500

6,000 6,000 6,000 6,000

45.987

74.976

18.000

18.000

14.000

51.0

71.0

5,200

7,250

4,700

6,300

46.038

79.375 82.931 85.000 85.000 90.119 93.264 95.250

17.462 23.812 20.638 25.400 23.000 30.162 27.783

17.462 25.400 21.692 25.608 21.692 30.302 29.900

13.495 19.050 17.462 20.638 21.808 23.812 22.225

45.5 76.0 69.5 79.0 69.5 102 108

56.0 98.0 79.5 104 79.5 134 129

4,600 7,750 7,100 8,050 7,100 10,400 11,000

5,700 10,000 8,100 10,600 8,100 13,700 13,200

4,600 4,500 4,400 4,400 4,400 4,000 4,200

6,200 6,000 5,800 5,800 5,800 5,300 5,600

47.625

88.900 88.900 93.264 95.250 96.838 101.600 104.775

20.638 25.400 30.162 30.162 21.000 34.925 30.162

22.225 25.400 30.302 29.370 21.946 36.068 29.317

16.513 19.050 23.812 23.020 15.875 26.988 24.605

76.5 82.0 102 109 78.0 135 115

90.5 101 134 147 96.5 165 148

7,800 8,350 10,400 11,100 7,950 13,800 11,700

9,250 10,300 13,700 15,000 9,850 16,800 15,000

4,100 4,200 4,000 4,000 3,700 3,800 3,500

5,500 5,600 5,300 5,300 5,000 5,000 4,700

117

Note: 1. With regard to the chamfer dimensions on the back face of the inner and outer rings, installation dimensions ras and r1as are larger than the maximum value. 2. For the inner bore diameter of bearings with bearing numbers marked "†" (inner ring) or "††" (outer ring), this value applies only to high precision class types, Class 4 and 2. B-170

●Tapered Roller Bearings

r1a Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa Fr ≦e Fr >e X Y X Y 1 0 0.4 Y2 static Por=0.5Fr+YoFa

ra *

Da db

da Db

ras 2.3 ras 5.6 min 3.56

15° min 4.75

Bearing numbers

When Por<Fr use Por=Fr

For values of e, Y2 and Yo see the table below.

Abutment and fillet dimensions

Load Constant Axial center load factors mm

mm ras

r1as

max

max

da

db

Da

Db

4T-45280/45220 4T-HM807040/HM807010 4T-55175C/55437 4T-55176C/55437 4T-6277/6220

55 66 70 65 67

54 59 64 65 60

93 89 92 92 108

99 100 105 105 117

0.8 3.5 3.5 0.8 3.5

3.3 3.3 3.3 3.3 3.3

4T-25584/25520 4T-3776/3720

53 59

51 53

74 82

77 88

1.5 3.5

4T-358/354A 4T-367/362A

53 55

50 51

77 81

80 84

4T-3586/3525

58

52

75

4T-LM102949/LM102910 4T-LM603049/LM603011

56 57

50 50

4T-25590/25519 4T-25590/25520 4T-25590/25522 4T-25590/25526

58 58 58 58

4T-LM503349A†/LM503310††

kg

e

Y2

Yo

7.9 7.4 –7.41 –7.41 19.5

0.33 0.49 0.88 0.88 0.30

1.80 1.23 0.68 0.68 2.01

0.99 0.68 0.37 0.37 1.11

1.35 1.62 1.45 1.09 3.58

0.8 3.3

6.2 8.3

0.33 0.34

1.79 1.77

0.99 0.97

0.555 0.952

1.5 2

1.3 1.3

5.1 4.0

0.31 0.32

1.96 1.88

1.08 1.03

0.505 0.595

81

3.5

3.3

10.0

0.31

1.96

1.08

0.765

68 71

70 74

3.5 3.5

0.8 0.8

4.7 2.2

0.31 0.43

1.97 1.41

1.08 0.77

0.307 0.372

51 51 51 51

73 74 73 74

77 77 77 78

3.5 3.5 3.5 3.5

2 0.8 2 2.3

6.2 6.2 6.2 6.2

0.33 0.33 0.33 0.33

1.79 1.79 1.79 1.79

0.99 0.99 0.99 0.99

0.534 0.543 0.545 0.581

57

51

67

71



1.5

1.9

0.40

1.49

0.82

0.296

4T-18690/18620 4T-25592/25520 4T-359A/354A 4T-2984/2924 4T-359S/352 4T-3777/3720 4T-436/432

56 58 57 58 55 60 59

51 52 51 52 51 53 52

71 74 77 76 78 82 83

74 77 80 80 82 88 87

2.8 3.5 3.5 3.5 2.3 3.5 3.5

1.5 0.8 1.3 1.3 2.3 3.3 2.3

2.2 6.2 5.1 6.4 5.1 8.3 9.2

0.37 0.33 0.31 0.35 0.31 0.34 0.28

1.60 1.79 1.96 1.73 1.96 1.77 2.11

0.88 0.99 1.08 0.95 1.08 0.97 1.16

0.329 0.538 0.489 0.615 0.651 0.934 0.927

4T-369A/362A 4T-M804048/M804010 4T-3778/3720 4T-HM804846/HM804810 4T-386A/382A 4T-528/522 4T-463/453X

60 57 67 66 56 62 65

53 56 55 57 55 55 56

81 77 82 81 89 89 92

84 85 88 91 92 95 98

3.5 0.8 6.4 3.5 0.8 3.5 4.8

1.3 3.3 3.3 3.3 0.8 3.3 3.3

4.0 1.7 8.3 3.7 3.1 12.9 7.1

0.32 0.55 0.34 0.55 0.35 0.29 0.34

1.88 1.10 1.77 1.10 1.69 2.10 1.79

1.03 0.60 0.97 0.60 0.93 1.16 0.98

0.559 0.662 0.898 0.978 0.72 1.3 1.24

Note: 3. Chamfer dimensions of bearings marked "*" are shown in drawings. 1 "−" means that load center at outside on end of inner ring.

B-171

a

Mass

(approx.)

●Tapered Roller Bearings Inch system sizes J system series T r1

C

r B d

D

a

d 47.625∼50.800mm Boundary dimensions

Basic load ratings static dynamic

dynamic mm d

D

T

kN B

C

Limiting speeds static kgf

Cr

Cor

rpm

Cr

Cor

grease

oil

47.625

104.775 111.125 123.825

30.162 30.162 36.512

30.958 26.909 32.791

23.812 20.638 25.400

130 104 154

169 136 188

13,200 10,600 15,700

17,300 13,900 19,200

3,500 3,200 2,900

4,700 4,200 3,900

48.412

95.250 95.250

30.162 30.162

29.370 29.370

23.020 23.020

109 109

147 147

11,100 11,100

15,000 15,000

4,000 4,000

5,300 5,300

49.212

93.264 103.188 104.775 114.300 114.300

30.162 43.658 36.512 44.450 44.450

30.302 44.475 36.512 44.450 44.450

23.812 36.512 28.575 34.925 36.068

102 174 138 186 203

134 232 189 225 261

10,400 17,700 14,000 19,000 20,700

13,700 23,600 19,300 23,000 26,600

4,000 3,800 3,600 3,600 3,500

5,300 5,000 4,800 4,800 4,700

49.987

82.550 92.075 114.300

21.590 24.608 44.450

22.225 25.400 44.450

16.510 19.845 36.068

69.5 83.5 203

94.0 116 261

7,100 8,550 20,700

9,600 11,800 26,600

4,300 4,000 3,500

5,700 5,300 4,700

50.000

82.000 84.000 88.900 88.900 90.000 105.000 110.000

21.500 22.000 20.638 20.638 28.000 37.000 22.000

21.500 22.000 22.225 22.225 28.000 36.000 21.996

17.000 17.500 16.513 16.513 23.000 29.000 18.824

69.5 69.5 76.5 76.5 106 138 89.5

94.0 94.5 90.5 90.5 141 189 120

7,100 7,100 7,800 7,800 10,800 14,000 9,150

9,600 9,600 9,250 9,250 14,400 19,300 12,300

4,300 4,300 4,100 4,100 4,100 3,600 3,200

5,700 5,700 5,500 5,500 5,400 4,800 4,300

50.800

82.550 85.000 88.900 88.900 88.900 90.000 92.075 93.264 93.264 95.250 95.250 96.838 97.630 98.425

21.590 17.462 17.462 20.638 20.638 20.000 24.608 30.162 30.162 27.783 30.162 21.000 24.608 30.162

22.225 17.462 17.462 22.225 22.225 22.225 25.400 30.302 30.302 28.575 30.302 21.946 24.608 30.302

16.510 13.495 13.495 16.513 16.513 15.875 19.845 23.812 23.812 22.225 23.812 15.875 19.446 23.812

69.5 49.5 49.5 76.5 76.5 76.5 83.5 102 102 107 102 78.0 88.5 102

94.0 65.0 65.0 90.5 90.5 90.5 116 134 134 139 134 96.5 128 134

7,100 5,050 5,050 7,800 7,800 7,800 8,550 10,400 10,400 10,900 10,400 7,950 9,000 10,400

9,600 6,600 6,600 9,250 9,250 9,250 11,800 13,700 13,700 14,200 13,700 9,850 13,000 13,700

4,300 4,200 4,200 4,100 4,100 4,100 4,000 4,000 4,000 3,900 4,000 3,700 3,700 4,000

5,700 5,600 5,600 5,500 5,500 5,500 5,300 5,300 5,300 5,200 5,300 5,000 4,900 5,300

Note: 1. With regard to the chamfer dimensions on the back face of the inner and outer rings, installation dimensions ras and r1as are larger than the maximum value. 2. For the inner bore diameter of bearings with bearing numbers marked "†" (inner ring), this value applies only to high precision class types, Class 4 and 2.

B-172

●Tapered Roller Bearings

r1a

Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa Fr ≦e Fr >e X Y X Y 1 0 0.4 Y2 static Por=0.5Fr+YoFa

ra Da db

da Db

When Por<Fr use Por=Fr

For values of e, Y2 and Yo see the table below.

Bearing numbers

Abutment and fillet dimensions

Load Constant Axial center load factors mm

mm ras

r1as

max

max

da

db

Da

Db

4T-45282/45220 4T-55187C/55437 4T-72188C/72487

63 69 69

57 62 67

93 92 102

99 105 116

3.5 3.5 0.8

3.3 3.3 3.3

4T-HM804848/HM804810 4T-HM804849/HM804810

63 66

57 57

81 81

91 91

2.3 3.5

4T-3781/3720 4T-5395/5335 4T-HM807044/HM807010 4T-65390/65320 4T-HH506348/HH506310

62 66 69 70 71

56 60 63 60 61

82 89 89 97 97

88 97 100 107 107

4T-LM104947A†/LM104911 4T-28579†/28521 4T-HH506349†/HH506310

55 60 72

55 56 61

75 83 97

#4T-JLM104948/JLM104910 #4T-JLM704649/JLM704610 4T-365/362A 4T-366/362A #4T-JM205149/JM205110 #4T-JHM807045/JHM807012 4T-396/394A

60 62 58 59 62 69 61

55 56 55 55 57 63 60

4T-LM104949/LM104911 4T-18790/18720 4T-18790/18724 4T-368/362A 4T-370A/362A 4T-368A/362 4T-28580/28521 4T-3775/3720 4T-3780/3720 4T-33889/33821 4T-3780/3726 4T-385A/382A 4T-28678/28622 4T-3780/3732

62 62 62 58 65 62 63 58 64 64 64 61 65 64

55 56 56 56 56 56 57 58 58 58 58 60 58 58

a

Mass kg

e

Y2

Yo

7.9 –7.41 –1.51

0.33 0.88 0.74

1.80 0.68 0.81

0.99 0.37 0.45

1.29 1.4 2.16

3.3 3.3

3.7 3.7

0.55 0.55

1.10 1.10

0.60 0.60

0.967 0.964

3.5 3.5 3.5 3.5 3.5

3.3 3.3 3.3 3.3 3.3

8.3 16.1 7.4 12.5 13.3

0.34 0.30 0.49 0.43 0.40

1.77 2.02 1.23 1.39 1.49

0.97 1.11 0.68 0.77 0.82

0.877 1.75 1.52 2.23 2.33

78 87 107

0.5 2.3 3.5

1.3 0.8 3.3

5.8 4.6 13.3

0.31 0.38 0.40

1.97 1.59 1.49

1.08 0.87 0.82

0.434 0.718 2.27

76 76 81 81 80 90 101

78 80 84 84 85 100 104

3 3.5 2 2.3 3 3 0.8

0.5 1.5 1.3 1.3 2.5 2.5 1.3

5.4 2.3 4.0 4.0 7.4 7.5 0.7

0.31 0.44 0.32 0.32 0.33 0.49 0.40

1.97 1.37 1.88 1.88 1.82 1.23 1.49

1.08 0.75 1.03 1.03 1.00 0.68 0.82

0.42 0.466 0.53 0.529 0.752 1.52 1.06

75 77 78 81 81 81 83 82 82 85 83 89 88 84

78 80 82 84 84 84 87 88 88 90 89 92 92 90

3.5 3.5 3.5 1.5 5 3.5 3.5 0.8 3.5 3.5 3.5 2.3 3.5 3.5

1.3 1.5 1.3 1.3 1.3 2 0.8 3.3 3.3 2.3 3.3 0.8 0.8 3.3

5.8 0.8 0.8 4.0 4.0 4.0 4.6 8.3 8.3 8.0 8.3 3.1 3.3 8.3

0.31 0.41 0.41 0.32 0.32 0.32 0.38 0.34 0.34 0.33 0.34 0.35 0.40 0.34

1.97 1.48 1.48 1.88 1.88 1.88 1.59 1.77 1.77 1.82 1.77 1.69 1.49 1.77

1.08 0.81 0.81 1.03 1.03 1.03 0.87 0.97 0.97 1.00 0.97 0.93 0.82 0.97

0.419 0.374 0.431 0.519 0.511 0.525 0.703 0.852 0.848 0.876 0.903 0.676 0.852 0.993

Note: 3. Bearing numbers marked "#" designate J-series bearings. The tolerances of these bearings is listed in Table 6.6 on page A-40. 1 "−" means that load center at outside on end of inner ring.

B-173

(approx.)

●Tapered Roller Bearings Inch system sizes J system series T r1

C

r B d

D

a

d 50.800∼55.000mm Boundary dimensions

Basic load ratings static dynamic

dynamic mm d

D

T

kN B

C

Limiting speeds static kgf

Cr

Cor

110 135 115 130 138 143 141 104 104 119 138 130 172 154 158

136 165 148 169 189 178 177 136 136 174 195 153 213 188 216

rpm

Cr

Cor

grease

oil

11,200 13,800 11,700 13,200 14,000 14,500 14,400 10,600 10,600 12,200 14,100 13,200 17,500 15,700 16,100

13,900 16,800 15,000 17,300 19,300 18,100 18,100 13,900 13,900 17,800 19,800 15,600 21,700 19,200 22,000

3,700 3,800 3,500 3,500 3,600 3,700 3,600 3,200 3,200 3,200 3,200 3,300 3,300 2,900 3,000

5,000 5,000 4,700 4,700 4,800 4,900 4,800 4,200 4,200 4,300 4,200 4,400 4,400 3,900 4,100

7,800

9,250

4,100

5,500

50.800

101.600 101.600 104.775 104.775 104.775 104.775 107.950 111.125 112.712 112.712 112.712 117.475 120.650 123.825 123.825

31.750 34.925 30.162 30.162 36.512 36.512 36.512 30.162 30.162 30.162 30.162 33.338 41.275 36.512 38.100

31.750 36.068 29.317 30.958 36.512 36.512 36.957 28.575 26.909 30.048 30.162 31.750 41.275 32.791 36.678

25.400 26.988 24.605 23.812 28.575 28.575 28.575 20.638 20.638 23.812 23.812 23.812 31.750 25.400 30.162

51.592

88.900

20.638

22.225

16.513

76.5

52.388

92.075 93.264 95.250

24.608 30.162 27.783

25.400 30.302 28.575

19.845 23.812 22.225

83.5 102 107

116 134 139

8,550 10,400 10,900

11,800 13,700 14,200

4,000 4,000 3,900

5,300 5,300 5,200

53.975

88.900 95.250 96.838 104.775 104.775 107.950 120.650 122.238 122.238 123.825 123.825 130.175 140.030

19.050 27.783 21.000 30.162 36.512 36.512 41.275 33.338 43.658 36.512 38.100 36.512 36.512

19.050 28.575 21.946 30.958 36.512 36.957 41.275 31.750 43.764 32.791 36.678 33.338 33.236

13.492 22.225 15.875 23.812 28.575 28.575 31.750 23.812 36.512 25.400 30.162 23.812 23.520

61.0 107 78.0 130 138 141 172 134 194 154 158 156 171

82.5 139 96.5 169 189 177 213 163 283 188 216 186 212

6,200 10,900 7,950 13,200 14,000 14,400 17,500 13,700 19,700 15,700 16,100 15,900 17,400

8,450 14,200 9,850 17,300 19,300 18,100 21,700 16,600 28,900 19,200 22,000 19,000 21,600

4,000 3,900 3,700 3,500 3,600 3,600 3,300 3,100 3,100 2,900 3,000 2,700 2,600

5,300 5,200 5,000 4,700 4,800 4,800 4,400 4,200 4,100 3,900 4,100 3,600 3,400

54.488

104.775

36.512

36.512

28.575

138

189

14,000

19,300

3,600

4,800

55.000

90.000

23.000

23.000

18.500

109

7,900

11,100

3,900

5,300

77.5

90.5

Note: 1. With regard to the chamfer dimensions on the back face of the inner and outer rings, installation dimensions ras and r1as are larger than the maximum value. 2. Bearing numbers marked "#" designate J-series bearings. The tolerances of these bearings is listed in Table 6.6 on page A-40.

B-174

●Tapered Roller Bearings

r1a

Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa Fr ≦e Fr >e X Y X Y 1 0 0.4 Y2 static Por=0.5Fr+YoFa

ra Da db

da Db

When Por<Fr use Por=Fr

For values of e, Y2 and Yo see the table below.

Bearing numbers

Abutment and fillet dimensions

Load Constant Axial center load factors mm

mm ras

r1as

max

max

3.5 0.8 0.8 6.4 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 2.3

3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3

da

db

Da

Db

4T-49585/49520 4T-529/522 4T-455/453X 4T-45284/45220 4T-HM807046/HM807010 4T-59200/59412 4T-537/532X 4T-HM907643/HM907614 4T-55200C/55443 4T-3975/3920 4T-39575/39520 4T-66200/66462 4T-619/612 4T-72200C/72487 4T-555/552A

66 59 60 71 70 68 65 74 71 68 68 71 67 77 66

59 58 59 59 63 61 59 65 65 61 61 65 61 67 62

88 89 92 93 89 92 94 91 92 99 101 100 105 102 109

96 95 98 99 100 99 100 105 106 106 107 111 110 116 116

4T-368S/362A

59

56

81

84

2

4T-28584/28521 4T-3767/3720 4T-33890/33821

65 63 61

58 59 59

83 82 85

87 88 90

4T-LM806649/LM806610 4T-33895/33822 4T-389A/382A 4T-45287/45220 4T-HM807049/HM807010 4T-539/532X 4T-621/612 4T-66584/66520 4T-5578/5535 4T-72212C/72487 4T-557S/552A 4T-HM911242/HM911210 4T-78214C/78551

63 63 61 62 73 68 70 75 73 79 71 79 79

60 60 60 62 63 61 63 68 67 67 65 74 77

80 86 89 93 89 94 105 105 106 102 109 109 117

4T-HM807048/HM807010

73

63

#4T-JLM506849/JLM506810

63

61

kg

e

Y2

Yo

7.1 12.9 7.1 7.9 7.4 9.6 12.3 –7.21 –7.41 4.5 6.6 0.4 14.4 –1.51 9.4

0.40 0.29 0.34 0.33 0.49 0.40 0.30 0.88 0.88 0.40 0.34 0.63 0.31 0.74 0.35

1.50 2.10 1.79 1.80 1.23 1.49 2.02 0.68 0.68 1.49 1.77 0.96 1.91 0.81 1.73

0.82 1.16 0.98 0.99 0.68 0.82 1.11 0.37 0.37 0.82 0.97 0.53 1.05 0.45 0.95

1.13 1.24 1.19 1.22 1.49 1.44 1.55 1.36 1.34 1.53 1.54 1.67 2.3 2.1 2.34

1.3

4.0

0.32

1.88

1.03

0.507

3.5 2.3 1.5

0.8 3.3 2.3

4.6 8.3 8.0

0.38 0.34 0.33

1.59 1.77 1.82

0.87 0.97 1.00

0.677 0.819 0.851

85 90 92 99 100 100 110 116 116 116 116 124 132

2.3 1.5 0.8 0.8 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 0.8

2 0.8 0.8 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 2.3

–2.21 8.0 3.1 7.9 7.4 12.3 14.4 –1.81 13.3 –1.51 9.4 –5.21 –8.51

0.55 0.33 0.35 0.33 0.49 0.30 0.31 0.67 0.36 0.74 0.35 0.82 0.87

1.10 1.82 1.69 1.80 1.23 2.02 1.91 0.90 1.67 0.81 1.73 0.73 0.69

0.60 1.00 0.93 0.99 0.68 1.11 1.05 0.50 0.92 0.45 0.95 0.40 0.38

0.437 0.824 0.633 1.17 1.41 1.47 2.21 1.79 2.64 2.03 2.26 2.27 2.77

89

100

3.5

3.3

7.4

0.49

1.23

0.68

1.40

82

86

1.5

0.5

2.8

0.40

1.49

0.82

0.558

1 "−" means that load center at outside on end of inner ring.

B-175

a

Mass

(approx.)

●Tapered Roller Bearings Inch system sizes J system series T r1

C

r B d

D

a

d 55.000∼60.000mm Boundary dimensions

Basic load ratings static dynamic

dynamic mm d

D

T

kN

Limiting speeds static kgf

rpm

B

C

Cr

Cor

Cr

Cor

grease

oil

55.000

95.000 96.838 110.000

29.000 21.000 39.000

29.000 21.946 39.000

23.500 15.875 32.000

107 78.0 173

144 96.5 219

10,900 7,950 17,600

14,700 9,850 22,400

3,800 3,700 3,500

5,100 5,000 4,600

55.562

97.630 123.825 127.000

24.608 36.512 36.512

24.608 32.791 36.512

19.446 25.400 26.988

88.5 154 163

128 188 228

9,000 15,700 16,600

13,000 19,200 23,300

3,700 2,900 2,900

4,900 3,900 3,800

55.575

96.838

21.000

21.946

15.875

78

96.5

7,950

9,850

3,700

5,000

57.150

96.838 96.838 96.838 96.838 97.630 104.775 104.775 104.775 107.950 110.000 110.000 112.712 112.712 112.712 117.475 117.475 120.650 123.825 123.825 140.030

21.000 21.000 21.000 21.000 24.608 30.162 30.162 30.162 27.783 22.000 27.795 30.162 30.162 30.162 30.162 33.338 41.275 36.512 38.100 36.512

21.946 21.946 21.946 21.946 24.608 29.317 29.317 30.958 29.317 21.996 29.317 30.048 30.162 30.162 30.162 31.750 41.275 32.791 36.678 33.236

15.875 15.875 15.875 15.875 19.446 24.605 24.605 23.812 22.225 18.824 27.000 23.812 23.812 23.812 23.812 23.812 31.750 25.400 30.162 23.520

78 78 78 78 88.5 115 115 130 115 89.5 115 119 138 138 117 130 172 154 158 171

96.5 96.5 96.5 96.5 128 148 148 169 148 120 148 174 195 195 175 153 213 188 216 212

7,950 7,950 7,950 7,950 9,000 11,700 11,700 13,200 11,700 9,150 11,700 12,200 14,100 14,100 11,900 13,200 17,500 15,700 16,100 17,400

9,850 9,850 9,850 9,850 13,000 15,000 15,000 17,300 15,000 12,300 15,000 17,800 19,800 19,800 17,900 15,600 21,700 19,200 22,000 21,600

3,700 3,700 3,700 3,700 3,700 3,500 3,500 3,500 3,500 3,200 3,500 3,200 3,200 3,200 3,000 3,300 3,300 2,900 3,000 2,600

5,000 5,000 5,000 5,000 4,900 4,700 4,700 4,700 4,700 4,300 4,700 4,300 4,200 4,200 4,000 4,400 4,400 3,900 4,100 3,400

57.531

96.838

21.000

21.946

15.875

78.0

96.5

7,950

9,850

3,700

5,000

59.972

122.238

33.338

31.750

23.812

134

163

13,700

16,600

3,100

4,200

59.987

146.050

41.275

39.688

25.400

199

234

20,300

23,900

2,400

3,200

60.000

95.000 107.950

24.000 25.400

24.000 25.400

19.000 19.050

122 140

8,500 9,350

12,400 14,200

3,700 3,200

4,900 4,300

83.0 91.5

Note: 1. With regard to the chamfer dimensions on the back face of the inner and outer rings, installation dimensions ras and r1as are larger than the maximum value. 2. For the inner bore diameter of bearings with bearing numbers marked "†" (inner ring), this value applies only to high precision class types, Class 4 and 2.

B-176

●Tapered Roller Bearings

r1a

Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa Fr ≦e Fr >e X Y X Y 1 0 0.4 Y2 static Por=0.5Fr+YoFa

ra Da db

da Db

When Por<Fr use Por=Fr

For values of e, Y2 and Yo see the table below.

Bearing numbers

Abutment and fillet dimensions

Load Constant Axial center load factors mm

mm

Mass kg

ras

r1as

max

max

a

e

Y2

Yo

(approx.)

da

db

Da

Db

64 65 71

62 61 64

85 89 97

91 92 104

1.5 2.3 3

2.5 0.8 2.5

7.6 3.1 11.7

0.33 0.35 0.35

1.79 1.69 1.73

0.99 0.93 0.95

0.82 0.616 1.71

4T-28680/28622 4T-72218C/72487 4T-HM813840/HM813810

68 80 76

62 67 70

88 102 111

92 116 121

3.5 3.5 3.5

0.8 3.3 3.3

3.3 –1.51 3.7

0.40 0.74 0.50

1.49 0.81 1.20

0.82 0.45 0.66

0.774 1.99 2.34

4T-389/382A

65

61

89

92

2.3

0.8

3.1

0.35

1.69

0.93

0.608

4T-387/382A 4T-387A/382A 4T-387AS/382A 4T-387S/382A 4T-28682/28622 4T-462/453X 4T-469/453X 4T-45289/45220 4T-469/453A 4T-390/394A 4T-469/454 4T-3979/3920 4T-39580/39520 4T-39581/39520 4T-33225/33462 4T-66225/66462 4T-623/612 4T-72225C/72487 4T-555S/552A 4T-78225/78551

66 69 72 63 70 67 70 65 70 70 70 72 72 81 74 76 72 81 73 83

62 62 62 62 63 63 63 65 63 66 63 66 66 66 68 69 66 67 67 77

89 89 89 89 88 92 92 93 97 101 96 99 101 101 104 100 105 102 109 117

92 92 92 92 92 98 98 99 100 104 100 106 107 107 112 111 110 116 116 132

2.3 3.5 5 0.8 3.5 2.3 3.5 0.8 3.5 2.3 3.5 3.5 3.5 8 3.5 3.5 3.5 3.5 3.5 3.5

0.8 0.8 0.8 0.8 0.8 3.3 3.3 3.3 0.8 1.3 2 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 2.3

3.1 3.1 3.1 3.1 3.3 7.1 7.1 7.9 7.1 0.7 7.1 4.5 6.6 6.6 2.6 0.4 14.4 –1.51 9.4 –8.51

0.35 0.35 0.35 0.35 0.40 0.34 0.34 0.33 0.34 0.40 0.34 0.40 0.34 0.34 0.44 0.63 0.31 0.74 0.35 0.87

1.69 1.69 1.69 1.69 1.49 1.79 1.79 1.80 1.79 1.49 1.79 1.49 1.77 1.77 1.38 0.96 1.91 0.81 1.73 0.69

0.93 0.93 0.93 0.93 0.82 0.98 0.98 0.99 0.98 0.82 0.98 0.82 0.97 0.97 0.76 0.53 1.05 0.45 0.95 0.38

0.583 0.581 0.576 0.585 0.747 1.06 1.06 1.1 1.11 0.954 1.24 1.4 1.41 1.4 1.58 1.54 2.12 1.96 2.18 2.69

4T-388A/382A

69

63

89

92

3.5

0.8

3.1

0.35

1.69

0.93

0.575

4T-66589/66520

74

73

105

116

0.8

3.3

–1.81

0.67

0.90

0.50

1.66

4T-H913840†/H913810

88

82

124

138

3.5

3.3

–4.31

0.78

0.77

0.42

3.22

75 75

66 68

85 96

91 103

5 3.5

2.5 3.3

3.0 0.6

0.40 0.46

1.49 1.31

0.82 0.72

0.606 0.992

#4T-JM207049/JM207010 4T-385/382A #4T-JH307749/JH307710

#4T-JLM508748/JLM508710 4T-29580/29520

Note: 3. Bearing numbers marked "#" designate J-series bearings. The tolerances of these bearings is listed in Table 6.6 on page A-40. 1 "−" means that load center at outside on end of inner ring.

B-177

●Tapered Roller Bearings Inch system sizes J system series T r1

C

r B d

D

a

d 60.000∼65.000mm Boundary dimensions

Basic load ratings static dynamic

dynamic mm d

D

T

kN B

C

Cr

Limiting speeds static kgf

Cor

rpm

Cr

Cor

grease

oil

60.000

110.000 130.000

22.000 34.100

21.996 30.924

18.824 22.650

89.5 156.0

120 186

9,150 15,900

12,300 19,000

3,200 2,700

4,300 3,600

60.325

100.000 112.712 122.238 122.238 123.825 127.000 127.000 130.175

25.400 30.162 38.100 43.658 38.100 36.512 44.450 36.512

25.400 30.048 38.354 43.764 36.678 36.512 44.450 33.338

19.845 23.812 29.718 36.512 30.162 26.988 34.925 23.812

90.5 119 187 194 158 163 203 156

134 174 244 283 216 228 263 186

9,200 12,200 19,100 19,700 16,100 16,600 20,700 15,900

13,600 17,800 24,900 28,900 22,000 23,300 26,800 19,000

3,500 3,200 3,100 3,100 3,000 2,900 3,100 2,700

4,700 4,300 4,100 4,100 4,100 3,800 4,200 3,600

61.912

110.000 136.525 146.050

22.000 46.038 41.275

21.996 46.038 39.688

18.824 36.512 25.400

89.5 224 199

120 355 234

9,150 22,800 20,300

12,300 36,500 23,900

3,200 2,600 2,400

4,300 3,500 3,200

61.976

101.600

24.608

24.608

19.845

90.5

134

9,200

13,600

3,500

4,700

62.738

101.600

25.400

25.400

19.845

90.5

134

9,200

13,600

3,500

4,700

63.500

94.458 107.950 107.950 110.000 110.000 112.712 112.712 120.000 120.000 122.238 122.238 123.825 127.000 127.000 136.525 140.030

19.050 25.400 25.400 22.000 25.400 30.162 30.162 29.794 29.794 38.100 43.658 38.100 36.512 36.512 41.275 36.512

19.050 25.400 25.400 21.996 25.400 30.048 30.162 29.007 29.007 38.354 43.764 36.678 36.170 36.512 41.275 33.236

15.083 19.050 19.050 18.824 19.050 23.812 23.812 24.237 24.237 29.718 36.512 30.162 28.575 26.988 31.750 23.520

60.5 91.5 91.5 89.5 91.5 119 138 128 128 187 194 158 163 163 194 171

103 140 140 120 140 174 195 177 177 244 283 216 229 228 262 212

6,150 9,350 9,350 9,150 9,350 12,200 14,100 13,000 13,000 19,100 19,700 16,100 16,600 16,600 19,800 17,400

10,500 14,200 14,200 12,300 14,200 17,800 19,800 18,100 18,100 24,900 28,900 22,000 23,300 23,300 26,700 21,600

3,600 3,200 3,200 3,200 3,200 3,200 3,200 3,000 3,000 3,100 3,100 3,000 2,900 2,900 2,800 2,600

4,800 4,300 4,300 4,300 4,300 4,300 4,200 4,000 4,000 4,100 4,100 4,100 3,800 3,800 3,800 3,400

65.000

105.000 110.000

24.000 28.000

23.000 28.000

18.500 22.500

85.0 119

117 174

8,700 12,200

11,900 17,800

3,300 3,200

4,500 4,300

Note: 1. With regard to the chamfer dimensions on the back face of the inner and outer rings, installation dimensions ras and r1as are larger than the maximum value. 2. Bearing numbers marked "#" designate J-series bearings. The accuracy of these bearings is listed in Table 6.6 on page A-40.

B-178

●Tapered Roller Bearings

r1a

Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa Fr ≦e Fr >e X Y X Y 1 0 0.4 Y2 static Por=0.5Fr+YoFa

ra Da db

da Db

When Por<Fr use Por=Fr

For values of e, Y2 and Yo see the table below.

Bearing numbers

Abutment and fillet dimensions

Load Constant Axial center load factors mm

mm ras

r1as

max

max

da

db

Da

Db

4T-397/394A #4T-JHM911244/JHM911211

69 84

68 74

101 109

104 123

0.8 3.5

1.3 3.3

4T-28985/28921 4T-3980/3920 4T-HM212044/HM212011 4T-5583/5535 4T-558/552A 4T-HM813841/HM813810 4T-65237/65500 4T-HM911245/HM911210

73 75 85 78 73 80 82 87

67 68 70 72 69 73 71 74

89 99 108 106 109 111 107 109

96 106 116 116 116 121 119 124

3.5 3.5 8 3.5 2.3 3.5 3.5 5

4T-392/394A 4T-H715334/H715311 4T-H913842/H913810

70 86 90

69 79 82

101 118 124

104 132 138

4T-28990/28920

72

68

90

4T-28995/28920

75

69

4T-L610549/L610510 4T-29585/29520 4T-29586/29520 4T-390A/394A 4T-29585/29521 4T-3982/3920 4T-39585/39520 4T-477/472 4T-483/472 4T-HM212046/HM212011 4T-5584/5535 4T-559/552A 4T-565/563 4T-HM813842/HM813810 4T-639/632 4T-78250/78551

71 77 73 73 77 77 77 73 78 80 81 78 80 82 81 85

#4T-JLM710949/JLM710910 #4T-JM511946/JM511910

77 78

kg

e

Y2

Yo

0.7 –7.61

0.40 0.82

1.49 0.73

0.82 0.40

0.91 2.01

3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3

2.5 4.5 11.1 13.3 9.4 3.7 9.3 –5.21

0.43 0.40 0.34 0.36 0.35 0.50 0.49 0.82

1.41 1.49 1.78 1.67 1.73 1.20 1.23 0.73

0.78 0.82 0.98 0.92 0.95 0.66 0.68 0.40

0.772 1.33 2.02 2.44 2.1 2.21 2.65 2.12

0.8 3.5 3.5

1.3 3.3 3.3

0.7 8.7 –4.31

0.40 0.47 0.78

1.49 1.27 0.77

0.82 0.70 0.42

0.879 3.47 3.17

97

2

3.3

1.7

0.43

1.41

0.78

0.768

90

97

3.5

3.3

2.5

0.43

1.41

0.78

0.764

69 71 71 70 71 71 71 72 72 73 75 72 73 76 74 79

86 96 96 101 99 99 101 107 107 108 106 109 112 111 118 117

91 103 103 104 104 106 107 114 114 116 116 116 120 121 125 132

1.5 3.5 1.5 1.5 3.5 3.5 3.5 0.8 3.5 3.5 3.5 3.5 3.5 3.5 3.5 2.3

1.5 3.3 3.3 1.3 1.3 3.3 3.3 2 2 3.3 3.3 3.3 3.3 3.3 3.3 2.3

–0.61 0.6 0.6 0.7 0.6 4.5 6.6 3.9 3.9 11.1 13.3 9.4 8.3 3.7 11.4 –8.51

0.42 0.46 0.46 0.40 0.46 0.40 0.34 0.38 0.38 0.34 0.36 0.35 0.36 0.50 0.36 0.87

1.41 1.31 1.31 1.49 1.31 1.49 1.77 1.56 1.56 1.78 1.67 1.73 1.65 1.20 1.66 0.69

0.78 0.72 0.72 0.82 0.72 0.82 0.97 0.86 0.86 0.98 0.92 0.95 0.91 0.66 0.91 0.38

0.449 0.924 0.929 0.851 0.982 1.26 1.27 1.49 1.48 1.95 2.34 2.01 2.11 2.12 2.85 2.54

71 72

96 99

101 105

3 3

1 2.5

0.3 3.4

0.45 0.40

1.32 1.49

0.73 0.82

0.742 1.08

1 "−" means that load center at outside on end of inner ring.

B-179

a

Mass

(approx.)

●Tapered Roller Bearings Inch system sizes J system series T r1

C

r B d

D

a

d 65.000∼70.000mm Boundary dimensions

Basic load ratings static dynamic

dynamic mm d

D

T

kN B

C

Cr

Limiting speeds static kgf

Cor

rpm

Cr

Cor

grease

oil

65.000

120.000

39.000

38.500

32.000

185

248

18,800

25,300

3,100

4,100

65.088

135.755

53.975

56.007

44.450

278

380

28,300

38,500

2,900

3,800

66.675

103.213 107.950 110.000 112.712 112.712 112.712 122.238 123.825 127.000 130.175 135.755 136.525 136.525

17.602 25.400 22.000 30.162 30.162 30.162 38.100 38.100 36.512 41.275 53.975 41.275 41.275

17.602 25.400 21.996 30.048 30.048 30.162 38.354 36.678 36.512 41.275 56.007 41.275 41.275

11.989 19.050 18.824 23.812 23.812 23.812 29.718 30.162 26.988 31.750 44.450 31.750 31.750

60.0 91.5 89.5 119 119 138 187 158 163 194 278 194 226

78.0 140 120 174 174 195 244 216 228 262 380 262 293

6,100 9,350 9,150 12,200 12,200 14,100 19,100 16,100 16,600 19,800 28,300 19,800 23,100

8,000 14,200 12,300 17,800 17,800 19,800 24,900 22,000 23,300 26,700 38,500 26,700 29,900

3,300 3,200 3,200 3,200 3,200 3,200 3,100 3,000 2,900 2,800 2,900 2,800 2,700

4,400 4,300 4,300 4,300 4,300 4,200 4,100 4,100 3,800 3,800 3,800 3,800 3,700

68.262

110.000 120.000 123.825 136.525 136.525

22.000 29.794 38.100 41.275 46.038

21.996 29.007 36.678 41.275 46.038

18.824 24.237 30.162 31.750 36.512

89.5 128 158 226 224

120 177 216 293 355

9,150 13,000 16,100 23,100 22,800

12,300 18,100 22,000 29,900 36,500

3,200 3,000 3,000 2,700 2,600

4,300 4,000 4,100 3,700 3,500

69.850

112.712 117.475 120.000 120.000 120.650 127.000 136.525 146.050 150.089 168.275

25.400 30.162 29.794 32.545 25.400 36.512 41.275 41.275 44.450 53.975

25.400 30.162 29.007 32.545 25.400 36.170 41.275 41.275 46.672 56.363

19.050 23.812 24.237 26.195 19.050 28.575 31.750 31.750 36.512 41.275

95.5 117 128 147 95.5 163 194 206 261 340

151 175 177 214 151 229 262 295 360 460

9,750 11,900 13,000 15,000 9,750 16,600 19,800 21,000 26,600 34,500

15,400 17,900 18,100 21,800 15,400 23,300 26,700 30,000 37,000 46,500

3,100 3,000 3,000 3,000 3,100 2,900 2,800 2,500 2,400 2,200

4,100 4,000 4,000 4,000 4,100 3,800 3,800 3,300 3,200 3,000

69.952

121.442

24.608

23.012

17.462

91.0

127

9,300

13,000

2,900

3,800

70.000

110.000 115.000

26.000 29.000

25.000 29.000

20.500 23.000

97.0 124

150 171

9,900 12,700

15,300 17,500

3,200 3,100

4,200 4,100

Note: 1. With regard to the chamfer dimensions on the back face of the inner and outer rings, installation dimensions ras and r1as are larger than the maximum value. 2. Bearing numbers marked "#" designate J-series bearings. The tolerances of these bearings is listed in Table 6.6 on page A-40.

B-180

●Tapered Roller Bearings

r1a

Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa Fr ≦e Fr >e X Y X Y 1 0 0.4 Y2 static Por=0.5Fr+YoFa

ra Da db

da Db

When Por<Fr use Por=Fr

For values of e, Y2 and Yo see the table below.

Bearing numbers

Abutment and fillet dimensions

Load Constant Axial center load factors mm

mm ras

r1as

max

max

a

e

Y2

Yo

Mass kg

da

db

Da

Db

80

74

107

114

3

2.5

10.9

0.34

1.78

0.98

1.90

4T-6379/6320

84

77

117

126

3.5

3.3

18.8

0.32

1.85

1.02

3.71

4T-L812148/L812111 4T-29590/29520 4T-395A/394A 4T-3984/3925 4T-3994/3920 4T-39590/39520 4T-HM212049/HM212010 4T-560/552A 4T-HM813844/HM813810 4T-641/633 4T-6386/6320 4T-641/632 4T-H414242/H414210

74 80 73 80 84 80 82 81 85 83 87 83 85

72 73 73 74 74 74 75 75 78 77 77 77 81

96 96 101 101 99 101 110 109 111 116 117 118 121

99 103 104 106 106 107 116 116 121 124 126 125 129

1.5 3.5 0.8 3.5 5.5 3.5 3.5 3.5 3.5 3.5 4.3 3.5 3.5

0.8 3.3 1.3 0.8 3.3 3.3 1.5 3.3 3.3 3.3 3.3 3.3 3.3

–3.71 0.6 0.7 4.5 4.5 6.6 11.1 9.4 3.7 11.4 18.8 11.4 11.0

0.49 0.46 0.40 0.40 0.40 0.34 0.34 0.35 0.50 0.36 0.32 0.36 0.36

1.23 1.31 1.49 1.49 1.49 1.77 1.78 1.73 1.20 1.66 1.85 1.66 1.67

0.68 0.72 0.82 0.82 0.82 0.97 0.98 0.95 0.66 0.91 1.02 0.91 0.92

0.48 0.86 0.796 1.19 1.18 1.19 1.86 1.92 2.03 2.41 3.64 2.74 2.75

4T-399A/394A 4T-480/472 4T-560S/552A 4T-H414245/H414210 4T-H715343/H715311

78 82 83 86 90

74 75 76 82 84

101 107 109 121 118

104 114 116 129 132

2.3 3.5 3.5 3.5 3.5

1.3 2 3.3 3.3 3.3

0.7 3.9 9.4 11.0 8.7

0.40 0.38 0.35 0.36 0.47

1.49 1.56 1.73 1.67 1.27

0.82 0.86 0.95 0.92 0.70

0.764 1.37 1.87 2.7 3.24

4T-29675/29620 4T-33275/33462 4T-482/472 4T-47487/47420 4T-29675/29630 4T-566/563 4T-643/632 4T-655/653 4T-745A/742 4T-835/832

80 84 83 84 80 85 86 88 88 91

77 77 77 78 77 78 80 82 82 84

101 104 107 107 104 112 118 131 134 149

109 112 114 114 113 120 125 139 142 155

1.5 3.5 3.5 3.5 1.5 3.5 3.5 3.5 3.5 3.5

3.3 3.3 2 3.3 3.3 3.3 3.3 3.3 3.3 3.3

– 0.91 2.6 3.9 6.1 – 0.91 8.3 11.4 8.0 12.0 18.5

0.49 0.44 0.38 0.36 0.49 0.36 0.36 0.41 0.33 0.30

1.23 1.38 1.56 1.67 1.23 1.65 1.66 1.47 1.84 2.00

0.68 0.76 0.86 0.92 0.68 0.91 0.91 0.81 1.01 1.10

0.949 1.28 1.33 1.47 1.17 1.92 2.63 3.28 3.92 6.13

4T-34274/34478

81

78

110

116

2

2

–1.21

0.45

1.33

0.73

1.11

78 83

77 77

98 103

105 110

1 3

2.5 2.5

– 0.31 2.5

0.49 0.43

1.23 1.39

0.68 0.77

0.889 1.13

#4T-JH211749/JH211710

#4T-JLM813049/JLM813010 #4T-JM612949/JM612910

1 "−" means that load center at outside on end of inner ring.

B-181

(approx.)

●Tapered Roller Bearings Inch system sizes J system series T r1

C

r B d

D

a

d 70.000∼76.200mm Boundary dimensions

Basic load ratings static dynamic

dynamic mm d

D

T

kN B

C

Cr

Limiting speeds static kgf

Cor

rpm

Cr

Cor

grease

oil

70.000

120.000 150.000

29.794 41.275

29.007 39.688

24.237 25.400

128 199

177 234

13,000 20,300

18,100 23,900

3,000 2,400

4,000 3,200

71.438

117.475 120.000 127.000 136.525 136.525 136.525

30.162 32.545 36.512 41.275 41.275 46.038

30.162 32.545 36.170 41.275 41.275 46.038

23.812 26.195 28.575 31.750 31.750 36.512

117 147 163 194 226 224

175 214 229 262 293 355

11,900 15,000 16,600 19,800 23,100 22,800

17,900 21,800 23,300 26,700 29,900 36,500

3,000 3,000 2,900 2,800 2,700 2,600

4,000 4,000 3,800 3,800 3,700 3,500

73.025

112.712 117.475 127.000 139.992 149.225 150.089

25.400 30.162 36.512 36.512 53.975 44.450

25.400 30.162 36.170 36.098 54.229 46.672

19.050 23.812 28.575 28.575 44.450 36.512

95.5 117 163 178 287 261

151 175 229 265 410 360

9,750 11,900 16,600 18,100 29,300 26,600

15,400 17,900 23,300 27,100 41,500 37,000

3,100 3,000 2,900 2,600 2,500 2,400

4,100 4,000 3,800 3,400 3,400 3,200

73.817

112.712 127.000

25.400 36.512

25.400 36.170

19.050 28.575

95.5 163

151 229

9,750 16,600

15,400 23,300

3,100 2,900

4,100 3,800

74.612

139.992

36.512

36.098

28.575

178

265

18,100

27,100

2,600

3,400

75.000

115.000 120.000 145.000

25.000 31.000 51.000

25.000 29.500 51.000

19.000 25.000 42.000

94.5 131 287

143 197 410

9,650 13,300 29,300

14,600 20,100 41,500

3,000 2,900 2,500

4,000 3,900 3,400

76.200

109.538 121.442 121.442 127.000 133.350 133.350 135.733 136.525 139.992 139.992 146.050 149.225 150.089

19.050 24.608 24.608 30.162 33.338 39.688 44.450 30.162 36.512 36.512 41.275 53.975 44.450

19.050 23.012 23.012 31.000 33.338 39.688 46.100 29.769 36.098 36.098 41.275 54.229 46.672

15.083 17.462 17.462 22.225 26.195 32.545 34.925 22.225 28.575 28.575 31.750 44.450 36.512

63.0 91.0 91.0 135 153 177 211 129 178 178 206 287 261

115 127 127 194 235 305 330 189 265 265 295 410 360

6,450 9,300 9,300 13,800 15,600 18,000 21,600 13,200 18,100 18,100 21,000 29,300 26,600

11,700 13,000 13,000 19,800 24,000 31,000 34,000 19,300 27,100 27,100 30,000 41,500 37,000

3,100 2,900 2,900 2,800 2,600 2,600 2,700 2,600 2,600 2,600 2,500 2,500 2,400

4,100 3,800 3,800 3,700 3,500 3,500 3,500 3,500 3,400 3,400 3,300 3,400 3,200

Note: 1. With regard to the chamfer dimensions on the back face of the inner and outer rings, installation dimensions ras and r1as are larger than the maximum value. 2. Bearing numbers marked "#" designate J-series bearings. The tolerances of these bearings is listed in Table 6.6 on page A-40.

B-182

●Tapered Roller Bearings

r1a

Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa Fr ≦e Fr >e X Y X Y 1 0 0.4 Y2 static Por=0.5Fr+YoFa

ra Da db

da Db

When Por<Fr use Por=Fr

For values of e, Y2 and Yo see the table below.

Bearing numbers

Abutment and fillet dimensions

Load Constant Axial center load factors mm

mm ras

r1as

max

max

da

db

Da

Db

4T-484/472 #4T-JH913848/JH913811

80 92

77 82

107 126

114 146

2 2

2 3.3

4T-33281/33462 4T-47490/47420 4T-567A/563 4T-644/632 4T-H414249/H414210 4T-H715345/H715311

85 86 86 87 89 93

79 79 80 81 83 87

104 107 112 118 121 118

112 114 120 125 129 132

3.5 3.5 3.5 3.5 3.5 3.5

4T-29685/29620 4T-33287/33462 4T-567/563 4T-576/572 4T-6460/6420 4T-744/742

86 87 88 90 93 91

80 80 81 83 87 85

101 104 112 125 129 134

109 112 120 133 140 142

4T-29688/29620 4T-568/563

83 83

80 82

101 112

4T-577/572

91

85

#4T-JLM714149/JLM714110 #4T-JM714249/JM714210 #4T-JH415647/JH415610

87 88 94

4T-L814749/L814710 4T-34300/34478 4T-34301/34478 4T-42687/42620 4T-47678/47620 4T-HM516442/HM516410 4T-5760/5735 4T-495A/493 4T-575/572 4T-575S/572 4T-659/653 4T-6461A/6420 4T-748S/742

84 86 89 90 97 93 94 92 92 99 93 108 93

kg

e

Y2

Yo

3.9 – 4.31

0.38 0.78

1.56 0.77

0.86 0.42

1.33 3.08

3.3 3.3 3.3 3.3 3.3 3.3

2.6 6.1 8.3 11.4 11.0 8.7

0.44 0.36 0.36 0.36 0.36 0.47

1.38 1.67 1.65 1.66 1.67 1.27

0.76 0.92 0.91 0.91 0.92 0.70

1.24 1.42 1.87 2.57 2.58 3.11

3.5 3.5 3.5 3.5 3.5 3.5

3.3 3.3 3.3 3.3 3.3 3.3

– 0.91 2.6 8.3 5.5 14.8 12.0

0.49 0.44 0.36 0.40 0.36 0.33

1.23 1.38 1.65 1.49 1.66 1.84

0.68 0.76 0.91 0.82 0.91 1.01

0.873 1.19 1.82 2.53 4.42 3.79

109 120

1.5 0.8

3.3 3.3

– 0.91 8.3

0.49 0.36

1.23 1.65

0.68 0.91

0.86 1.80

125

133

3.5

3.3

5.5

0.40

1.49

0.82

2.48

81 83 89

104 108 129

110 115 139

3 3 3

2.5 2.5 2.5

– 0.31 1.9 14.1

0.46 0.44 0.36

1.31 1.35 1.66

0.72 0.74 0.91

0.875 1.29 3.81

82 83 83 84 85 87 88 86 86 86 87 89 87

100 110 110 114 119 118 119 122 125 125 131 129 134

105 116 116 121 128 128 130 130 133 133 139 140 142

1.5 2 3.5 3.5 6.4 3.5 3.5 3.5 3.5 6.8 3.5 9.7 3.5

1.5 2 2 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3

– 5.01 –1.21 –1.21 2.8 3.9 7.5 11.0 0.7 5.5 5.5 8.0 14.8 12.0

0.50 0.45 0.45 0.42 0.40 0.40 0.41 0.44 0.40 0.40 0.41 0.36 0.33

1.20 1.33 1.33 1.43 1.48 1.49 1.48 1.35 1.49 1.49 1.47 1.66 1.84

0.66 0.73 0.73 0.79 0.82 0.82 0.81 0.74 0.82 0.82 0.81 0.91 1.01

0.579 0.982 0.977 1.46 1.92 2.43 2.75 1.83 2.43 2.41 3.04 4.23 3.66

1 "−" means that load center at outside on end of inner ring.

B-183

a

Mass

(approx.)

●Tapered Roller Bearings Inch system sizes J system series T r1

C

r B d

D

a

d 76.200∼83.345mm Boundary dimensions

Basic load ratings static dynamic

dynamic mm d

D

T

kN B

C

Cr

Limiting speeds static kgf

Cor

rpm

Cr

Cor

grease

oil

76.200

149.225 161.925 180.975 190.500

53.975 53.975 53.975 57.150

54.229 55.100 53.183 57.531

44.450 42.862 35.720 46.038

287 310 325 445

410 460 415 610

29,300 31,500 33,000 45,000

41,500 47,000 42,500 62,000

2,500 2,300 1,900 1,900

3,400 3,000 2,600 2,600

77.788

117.475 121.442 127.000 136.525 136.525

25.400 24.608 30.162 30.162 46.038

25.400 23.012 31.000 29.769 46.038

19.050 17.462 22.225 22.225 36.512

99.5 91.0 135 129 224

162 127 194 189 355

10,200 9,300 13,800 13,200 22,800

16,500 13,000 19,800 19,300 36,500

2,900 2,900 2,800 2,600 2,600

3,900 3,800 3,700 3,500 3,500

79.375

146.050 161.925 190.500

41.275 47.625 57.150

41.275 48.260 57.531

31.750 38.100 46.038

206 270 445

295 385 610

21,000 27,500 45,000

30,000 39,000 62,000

2,500 2,300 1,900

3,300 3,100 2,600

80.000

130.000

35.000

34.000

28.500

166

249

16,900

25,400

2,700

3,600

80.962

133.350 136.525 139.992 150.089

33.338 30.162 36.512 44.450

33.338 29.769 36.098 46.672

26.195 22.225 28.575 36.512

153 129 178 261

235 189 265 360

15,600 13,200 18,100 26,600

24,000 19,300 27,100 37,000

2,600 2,600 2,600 2,400

3,500 3,500 3,400 3,200

82.550

125.412 133.350 133.350 136.525 139.992 139.992 146.050 150.089 152.400 152.400 161.925 161.925 168.275

25.400 33.338 39.688 30.162 36.512 36.512 41.275 44.450 39.688 41.275 47.625 53.975 53.975

25.400 33.338 39.688 29.769 36.098 36.098 41.275 46.672 36.322 41.275 48.260 55.100 56.363

19.845 26.195 32.545 22.225 28.575 28.575 31.750 36.512 30.162 31.750 38.100 42.862 41.275

102 153 177 129 178 178 206 261 180 206 270 310 340

163 235 305 189 265 265 295 360 279 295 385 460 460

10,400 15,600 18,000 13,200 18,100 18,100 21,000 26,600 18,300 21,000 27,500 31,500 34,500

16,600 24,000 31,000 19,300 27,100 27,100 30,000 37,000 28,400 30,000 39,000 47,000 46,500

2,700 2,600 2,600 2,600 2,600 2,600 2,500 2,400 2,300 2,500 2,300 2,300 2,200

3,600 3,500 3,500 3,500 3,400 3,400 3,300 3,200 3,100 3,300 3,100 3,000 3,000

83.345

125.412 125.412 125.412

25.400 25.400 25.400

25.400 25.400 25.400

19.845 19.845 19.845

102 102 102

163 163 163

10,400 10,400 10,400

16,600 16,600 16,600

2,700 2,700 2,700

3,600 3,600 3,600

Note: 1. With regard to the chamfer dimensions on the back face of the inner and outer rings, installation dimensions ras and r1as are larger than the maximum value. 2. For the inner bore diameter of bearings with bearing numbers marked "†" (inner ring) or "††" (outer ring), this value applies only to high precision class types, Class 4 and 2. B-184

●Tapered Roller Bearings

r1a

Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa Fr ≦e Fr >e X Y X Y 1 0 0.4 Y2 static Por=0.5Fr+YoFa

ra Da db

da Db

When Por<Fr use Por=Fr

For values of e, Y2 and Yo see the table below.

Bearing numbers

Abutment and fillet dimensions

Load Constant Axial center load factors mm

mm ras

r1as

max

max

da

db

Da

Db

4T-6461/6420 4T-6576/6535 4T-H917840/H917810†† 4T-HH221430/HH221410

96 99 110 101

89 92 100 95

129 141 152 171

140 154 170 179

3.5 3.5 3.5 3.5

3.3 3.3 3.3 3.3

4T-LM814849/LM814810 4T-34306/34478 4T-42690/42620 4T-495AS/493 4T-H715348/H715311

91 90 91 93 98

85 84 85 87 88

105 110 114 122 118

113 116 121 130 132

3.5 3.5 3.5 3.5 3.5

4T-661/653 4T-756A/752 4T-HH221431/HH221410

96 106 103

90 91 97

131 144 171

139 150 179

#4T-JM515649/JM515610

94

88

117

4T-47681/47620 4T-496/493 4T-581/572 4T-740/742

95 95 96 101

89 89 90 91

4T-27687/27620 4T-47686/47620 4T-HM516448/HM516410 4T-495/493 4T-580/572 4T-582/572 4T-663/653 4T-749A/742 4T-595/592A 4T-663/652 4T-757/752 4T-6559C/6535 4T-842/832

96 97 105 97 98 104 99 99 100 99 100 104 101

4T-27689/27620 4T-27690/27620 4T-27691/27620

90 96 102

a

Mass kg

e

Y2

Yo

14.8 12.8 – 0.51 14.4

0.36 0.40 0.73 0.33

1.66 1.50 0.82 1.79

0.91 0.82 0.45 0.99

4.26 5.44 6.57 8.69

3.3 2 3.3 3.3 3.3

–2.31 –1.21 2.8 0.7 8.7

0.51 0.45 0.42 0.44 0.47

1.18 1.33 1.43 1.35 1.27

0.65 0.73 0.79 0.74 0.70

0.932 0.943 1.41 1.78 2.84

3.5 8 3.5

3.3 3.3 3.3

8.0 12.0 14.4

0.41 0.34 0.33

1.47 1.76 1.79

0.81 0.97 0.99

2.91 4.55 8.52

125

3

2.5

4.9

0.39

1.54

0.85

1.73

119 122 125 134

128 130 133 142

3.5 3.5 3.5 5

3.3 3.3 3.3 3.3

3.9 0.7 5.5 12.0

0.40 0.44 0.40 0.33

1.48 1.35 1.49 1.84

0.82 0.74 0.82 1.01

1.78 1.69 2.26 3.43

89 90 92 90 91 91 92 93 93 92 94 98 94

115 119 118 122 125 125 131 134 135 134 144 141 149

120 128 128 130 133 133 139 142 144 141 150 154 155

3.5 3.5 6.8 3.5 3.5 6.8 3.5 3.5 3.5 3.5 3.5 3.5 3.5

1.5 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3

– 0.61 3.9 7.5 0.7 5.5 5.5 8.0 12.0 2.6 8.0 12.0 12.8 18.5

0.42 0.40 0.40 0.44 0.40 0.40 0.41 0.33 0.44 0.41 0.34 0.40 0.30

1.44 1.48 1.49 1.35 1.49 1.49 1.47 1.84 1.36 1.47 1.76 1.50 2.00

0.79 0.82 0.82 0.74 0.82 0.82 0.81 1.01 0.75 0.81 0.97 0.82 1.10

1.07 1.72 2.16 1.64 2.2 2.19 2.78 3.37 3.02 3.15 4.42 5.09 5.46

90 90 90

115 115 115

120 120 120

0.8 3.5 6.4

1.5 1.5 1.5

– 0.61 – 0.61 – 0.61

0.42 0.42 0.42

1.44 1.44 1.44

0.79 0.79 0.79

1.06 1.05 1.04

Note: 3. Bearing numbers marked "#" designate J-series bearings. The tolerances of these bearings is listed in Table 6.6 on page A-40. 1 "−" means that load center at outside on end of inner ring.

B-185

(approx.)

●Tapered Roller Bearings Inch system sizes J system series T r1

C

r B d

D

a

d 84.138∼95.000mm Boundary dimensions

Basic load ratings static dynamic

dynamic mm d

D

T

kN B

C

Cr

Limiting speeds static kgf

Cor

rpm

Cr

Cor

grease

oil

84.138

136.525

30.162

29.769

22.225

129

189

13,200

19,300

2,600

3,500

85.000

130.000 140.000

30.000 39.000

29.000 38.000

24.000 31.500

135 197

214 297

13,700 20,100

21,900 30,500

2,600 2,500

3,500 3,400

85.026

150.089

44.450

46.672

36.512

261

360

26,600

37,000

2,400

3,200

85.725

133.350 142.138 146.050 152.400 161.925

30.162 42.862 41.275 39.688 47.625

29.769 42.862 41.275 36.322 48.260

22.225 34.133 31.750 30.162 38.100

129 216 206 180 270

189 350 295 279 385

13,200 22,000 21,000 18,300 27,500

19,300 35,500 30,000 28,400 39,000

2,600 2,500 2,500 2,300 2,300

3,500 3,300 3,300 3,100 3,100

87.960

148.430

28.575

28.971

21.433

138

215

14,100

21,900

2,300

3,100

88.900

121.442 123.825 148.430 152.400 161.925 161.925 168.275

15.083 20.638 28.575 39.688 47.625 53.975 53.975

15.083 20.638 28.971 36.322 48.260 55.100 56.363

11.112 16.670 21.433 30.162 38.100 42.862 41.275

56.5 80.0 138 180 270 310 340

88.0 141 215 279 385 460 460

5,750 8,150 14,100 18,300 27,500 31,500 34,500

9,000 14,400 21,900 28,400 39,000 47,000 46,500

2,700 2,700 2,300 2,300 2,300 2,300 2,200

3,600 3,500 3,100 3,100 3,100 3,000 3,000

89.974

146.975

40.000

40.000

32.500

227

340

23,200

34,500

2,400

3,200

90.000

145.000 155.000 190.000

35.000 44.000 50.800

34.000 44.000 46.038

27.000 35.500 31.750

189 270 281

279 385 365

19,300 27,500 28,700

28,400 39,000 37,000

2,400 2,300 1,800

3,200 3,100 2,400

90.488

161.925

47.625

48.260

38.100

270

385

27,500

39,000

2,300

3,100

92.075

146.050 152.400 168.275

33.338 39.688 41.275

34.925 36.322 41.275

26.195 30.162 30.162

163 180 222

266 279 340

16,700 18,300 22,700

27,100 28,400 35,000

2,400 2,300 2,100

3,100 3,100 2,800

93.662

148.430

28.575

28.971

21.433

138

215

14,100

21,900

2,300

3,100

95.000

150.000

35.000

34.000

27.000

180

279

18,300

28,400

2,300

3,100

Note: 1. With regard to the chamfer dimensions on the back face of the inner and outer rings, installation dimensions ras and r1as are larger than the maximum value. 2. For the inner bore diameter of bearings with bearing numbers marked "†" (inner ring) or "††" (outer ring), this value applies only to high precision types, Class 4 and 2.

B-186

●Tapered Roller Bearings

r1a

Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa Fr ≦e Fr >e X Y X Y 1 0 0.4 Y2 static Por=0.5Fr+YoFa

ra Da db

da Db

When Por<Fr use Por=Fr

For values of e, Y2 and Yo see the table below.

Bearing numbers

Abutment and fillet dimensions

Load Constant Axial center load factors mm

mm ras

r1as

max

max

a

da

db

Da

Db

98

91

122

130

3.5

3.3

104 100

92 94

117 125

125 134

6 3

4T-749/742

101

95

134

142

4T-497/492A 4T-HM617049/HM617010 4T-665/653 4T-596/592A 4T-758/752

99 106 102 102 103

93 95 95 96 97

120 125 131 135 144

4T-42346/42584

103

98

4T-LL217849/LL217810 4T-L217849/L217810 4T-42350/42584 4T-593/592A 4T-759/752 4T-6580/6535 4T-850/832

97 97 104 104 106 109 106

4T-HM218248†/HM218210††

Mass kg

e

Y2

Yo

0.7

0.44

1.35

0.74

1.6

2.5 2.5

0.2 5.9

0.44 0.41

1.35 1.47

0.74 0.81

1.37 2.3

3.5

3.3

12.0

0.33

1.84

1.01

3.25

128 137 139 144 150

3.5 4.8 3.5 3.5 3.5

3.3 3.3 3.3 3.3 3.3

0.7 6.9 8.0 2.6 12.0

0.44 0.43 0.41 0.44 0.34

1.35 1.39 1.47 1.36 1.76

0.74 0.76 0.81 0.75 0.97

1.43 2.69 2.65 2.9 4.26

134

142

3

3

– 3.01

0.49

1.22

0.67

1.99

94 94 98 98 99 102 100

115 116 134 135 144 141 149

117 119 142 144 150 154 155

1.5 1.5 3 3.5 3.5 3.5 3.5

1.5 1.5 3 3.3 3.3 3.3 3.3

– 2.91 – 0.71 – 3.01 2.6 12.0 12.8 18.5

0.33 0.33 0.49 0.44 0.34 0.40 0.30

1.81 1.82 1.22 1.36 1.76 1.50 2.00

1.00 1.00 0.67 0.75 0.97 0.82 1.10

0.452 0.737 1.96 2.78 4.09 4.73 5.08

112

99

133

141

7

3.5

8.6

0.33

1.80

0.99

2.55

105 106 120

99 100 112

131 140 162

139 148 179

3 3 3.5

2.5 2.5 3.3

2.0 10.1 –12.91

0.44 0.34 0.87

1.35 1.76 0.69

0.74 0.97 0.38

2.14 3.32 6.32

4T-760/752

107

101

144

150

3.5

3.3

12.0

0.34

1.76

0.97

4.01

4T-47890/47820 4T-598A/592A 4T-681/672

107 113 110

101 101 104

131 135 149

140 144 160

3.5 6.4 3.5

3.3 3.3 3.3

0.6 2.6 3.0

0.45 0.44 0.47

1.34 1.36 1.28

0.74 0.75 0.70

2.08 2.63 3.87

4T-42368/42584

107

102

134

142

3

3

– 3.01

0.49

1.22

0.67

1.8

109

104

135

143

3

2.5

1.7

0.44

1.36

0.75

2.19

4T-498/493 #4T-JM716648/JM716610 #4T-JHM516849/JHM516810

#4T-JM718149/JM718110 #4T-JHM318448/JHM318410 #4T-J90354/J90748

#4T-JM719149/JM719113

Note: 3. Bearing numbers marked "#" designate J-series bearings. The tolerances of these bearings is listed in Table 6.6 on page A-40. 1 "−" means that load center at outside on end of inner ring.

B-187

(approx.)

●Tapered Roller Bearings Inch system sizes J system series T r1

C

r B d

D

a

d 95.250∼ 109.538mm Boundary dimensions

Basic load ratings static dynamic

dynamic mm d

D

T

kN B

C

Cr

Limiting speeds static kgf

Cor

rpm

Cr

Cor

grease

oil

95.250

130.175 146.050 147.638 148.430 152.400 157.162 168.275 190.500

20.638 33.338 35.717 28.575 39.688 36.512 41.275 57.150

21.433 34.925 36.322 28.971 36.322 36.116 41.275 57.531

16.670 26.195 26.192 21.433 30.162 26.195 30.162 46.038

81.0 163 180 138 180 188 222 445

147 266 279 215 279 305 340 610

8,300 16,700 18,300 14,100 18,300 19,200 22,700 45,000

15,000 27,100 28,400 21,900 28,400 31,000 35,000 62,000

2,500 2,400 2,300 2,300 2,300 2,200 2,100 1,900

3,300 3,100 3,100 3,100 3,100 2,900 2,800 2,600

96.838

148.430 188.912

28.575 50.800

28.971 46.038

21.433 31.750

138 281

215 365

14,100 28,700

21,900 37,000

2,300 1,800

3,100 2,400

98.425

157.162 168.275

36.512 41.275

36.116 41.275

26.195 30.162

188 222

305 340

19,200 22,700

31,000 35,000

2,200 2,100

2,900 2,800

99.974

212.725

66.675

66.675

53.975

575

810

58,500

82,500

1,700

2,300

100.000

155.000

36.000

35.000

28.000

192

310

19,600

31,500

2,200

2,900

100.012

157.162

36.512

36.116

26.195

188

305

19,200

31,000

2,200

2,900

101.600

157.162 168.275 180.975 190.500 190.500 190.500 212.725 212.725

36.512 41.275 47.625 57.150 57.150 57.150 66.675 66.675

36.116 41.275 48.006 57.531 57.531 57.531 66.675 66.675

26.195 30.162 38.100 44.450 46.038 46.038 53.975 53.975

188 222 285 380 445 445 475 575

305 340 430 555 610 610 695 810

19,200 22,700 29,100 38,500 45,000 45,000 48,500 58,500

31,000 35,000 44,000 56,500 62,000 62,000 71,000 82,500

2,200 2,100 2,000 2,000 1,900 1,900 1,800 1,700

2,900 2,800 2,700 2,600 2,600 2,600 2,300 2,300

104.775

180.975

47.625

48.006

38.100

285

430

29,100

44,000

2,000

2,700

107.950

158.750 159.987 165.100 212.725

23.020 34.925 36.512 66.675

21.438 34.925 36.512 66.675

15.875 26.988 26.988 53.975

102 167 191 475

166 320 315 695

10,400 17,100 19,500 48,500

17,000 33,000 32,000 71,000

2,100 2,100 2,100 1,800

2,800 2,800 2,700 2,300

109.538

158.750

23.020

21.438

15.875

102

166

10,400

17,000

2,100

2,800

Note: 1. With regard to the chamfer dimensions on the back face of the inner and outer rings, installation dimensions ras and r1as are larger than the maximum value. 2. For the inner bore diameter of bearings with bearing numbers marked "†" (inner ring) or "††" (outer ring), this value applies only to high precision class types, Class 4 and 2. B-188

●Tapered Roller Bearings

r1a

Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa Fr ≦e Fr >e X Y X Y 1 0 0.4 Y2 static Por=0.5Fr+YoFa

ra Da db

da Db

When Por<Fr use Por=Fr

For values of e, Y2 and Yo see the table below.

Bearing numbers

Abutment and fillet dimensions

Load Constant Axial center load factors mm

mm ras

r1as

max

max

da

db

Da

Db

4T-L319249/L319210 4T-47896/47820 4T-594A/592XE 4T-42375/42584 4T-594/592A 4T-52375/52618 4T-683/672 4T-HH221440/HH221410

103 110 113 108 110 112 113 125

101 103 104 103 104 105 106 110

122 131 135 134 135 142 149 171

125 140 142 142 144 152 160 179

1.5 3.5 5 3 3.5 3.5 3.5 8

1.5 3.3 0.8 3 3.3 3.3 3.3 3.3

4T-42381/42584 4T-90381/90744

110 125

104 113

134 161

142 179

3.5 3.5

3 3.3

4T-52387/52618 4T-685/672

114 116

108 109

142 149

152 160

3.5 3.5

3.3 3.3

4T-HH224334†/HH224310

124

120

192

202

3.5

115

109

140

149

4T-52393/52618

116

109

142

4T-52400/52618 4T-687/672 4T-780/772†† 4T-861/854 4T-HH221449/HH221410 4T-HH221449A/HH221410 4T-941/932 4T-HH224335/HH224310

117 118 119 129 131 122 130 132

111 112 113 114 116 116 117 121

4T-782/772††

122

4T-37425/37625 4T-LM522546/LM522510 4T-56425/56650 4T-936/932 4T-37431/37625

#4T-JM720249/JM720210

a

Mass kg

e

Y2

Yo

(approx.)

–1.01 0.6 2.6 –3.01 2.6 0.6 3.0 14.4

0.35 0.45 0.44 0.49 0.44 0.47 0.47 0.33

1.72 1.34 1.36 1.22 1.36 1.26 1.28 1.79

0.95 0.74 0.75 0.67 0.75 0.69 0.70 0.99

0.789 1.95 2.09 1.75 2.51 2.76 3.72 7.5

–3.01 –12.91

0.49 0.87

1.22 0.69

0.67 0.38

1.69 5.67

0.6 3.0

0.47 0.47

1.26 1.28

0.69 0.70

2.62 3.56

3.3

18.9

0.33

1.84

1.01

11.5

3

2.5

– 0.31

0.47

1.27

0.70

2.4

152

3.5

3.3

0.6

0.47

1.26

0.69

2.55

142 149 161 170 171 171 187 192

152 160 168 174 179 179 193 202

3.5 3.5 3.5 8 8 3.5 7 7

3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3

0.6 3.0 8.1 15.3 14.4 14.4 19.7 18.9

0.47 0.47 0.39 0.33 0.33 0.33 0.33 0.33

1.26 1.28 1.56 1.79 1.79 1.79 1.84 1.84

0.69 0.70 0.86 0.99 0.99 0.99 1.01 1.01

2.48 3.4 5.11 7 7.06 7.06 11.2 11.3

116

161

168

3.5

3.3

8.1

0.39

1.56

0.86

4.92

122 122 123 137

115 116 117 122

143 146 149 187

152 154 159 193

3.5 3.5 3.5 8

3.3 3.3 3.3 3.3

–14.01 1.4 –2.01 19.7

0.61 0.40 0.50 0.33

0.99 1.49 1.21 1.84

0.54 0.82 0.66 1.01

1.37 2.37 2.69 10.7

123

116

143

152

3.5

3.3

–14.01

0.61

0.99

0.54

1.33

Note: 3. Bearing numbers marked "#" designate J-series bearings. The tolerances of these bearings is listed in Table 6.6 on page A-40. 1 "−" means that load center at outside on end of inner ring.

B-189

●Tapered Roller Bearings Inch system sizes J system series T r1

C

r B d

D

a

d 109.987∼133.350mm Boundary dimensions

Basic load ratings static dynamic

dynamic mm d

D

T

kN B

C

Cr

Limiting speeds static kgf

Cor

rpm

Cr

Cor

grease

oil

109.987

159.987

34.925

34.925

26.988

167

320

17,100

33,000

2,100

2,800

109.992

177.800

41.275

41.275

30.162

232

375

23,600

38,000

1,900

2,600

110.000

165.000 180.000

35.000 47.000

35.000 46.000

26.500 38.000

191 305

315 480

19,500 31,000

32,000 49,000

2,100 1,900

2,700 2,600

111.125

214.312

55.562

52.388

39.688

405

560

41,500

57,000

1,500

2,000

114.300

177.800 180.975 212.725 212.725 228.600

41.275 34.925 66.675 66.675 53.975

41.275 31.750 66.675 66.675 49.428

30.162 25.400 53.975 53.975 38.100

232 169 475 575 430

375 245 695 810 620

23,600 17,200 48,500 58,500 44,000

38,000 25,000 71,000 82,500 63,500

1,900 1,900 1,800 1,700 1,400

2,600 2,500 2,300 2,300 1,900

115.087

190.500

47.625

49.212

34.925

300

475

30,500

48,500

1,800

2,500

117.475

180.975

34.925

31.750

25.400

169

245

17,200

25,000

1,900

2,500

120.000

170.000

25.400

25.400

19.050

127

210

13,000

21,400

2,000

2,600

120.650

234.950

63.500

63.500

49.212

525

825

53,500

84,000

1,500

2,000

123.825

182.562

39.688

38.100

33.338

224

435

22,900

44,000

1,800

2,400

127.000

182.562 196.850 215.900 228.600 228.600 230.000 254.000

39.688 46.038 47.625 53.975 53.975 63.500 77.788

38.100 46.038 47.625 49.428 49.428 63.500 82.550

33.338 38.100 34.925 38.100 38.100 49.212 61.912

224 310 320 320 430 525 740

435 550 540 445 620 825 1,070

22,900 31,500 32,500 32,500 44,000 53,500 75,500

44,000 56,500 55,000 45,000 63,500 84,000 109,000

1,800 1,700 1,600 1,400 1,400 1,500 1,400

2,400 2,200 2,100 1,900 1,900 2,000 1,900

128.588

206.375

47.625

47.625

34.925

315

520

32,000

53,000

1,700

2,200

130.175

196.850 206.375

46.038 47.625

46.038 47.625

38.100 34.925

310 315

550 520

31,500 32,000

56,500 53,000

1,700 1,700

2,200 2,200

133.350

177.008

25.400

26.195

20.638

126

259

12,900

26,400

1,800

2,400

Note: 1. With regard to the chamfer dimensions on the back face of the inner and outer rings, installation dimensions ras and r1as are larger than the maximum value. 2. For the inner bore diameter of bearings with bearing numbers marked "†" (inner ring) or "††" (outer ring), this value applies only to high precision types, Class 4 and 2.

B-190

●Tapered Roller Bearings

r1a

Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa Fr ≦e Fr >e X Y X Y 1 0 0.4 Y2 static Por=0.5Fr+YoFa

ra Da db

da Db

When Por<Fr use Por=Fr

For values of e, Y2 and Yo see the table below.

Bearing numbers

Abutment and fillet dimensions

Load Constant Axial center load factors mm

mm ras

r1as

max

max

a

da

db

Da

Db

4T-LM522548/LM522510

133

118

146

154

8

3.3

4T-64433/64700

128

121

160

172

3.5

124 127

119 122

149 162

159 172

4T-H924045/H924010

139

131

186

4T-64450/64700 4T-68450/68712†† 4T-938/932 4T-HH224346/HH224310 4T-HM926740/HM926710

131 130 141 143 146

125 123 128 131 142

4T-71453/71750

133

4T-68462/68712††

Mass kg

e

Y2

Yo

1.4

0.40

1.49

0.82

2.24

3.3

–1.11

0.52

1.16

0.64

3.77

3 3

2.5 2.5

–3.01 6.0

0.50 0.41

1.21 1.48

0.66 0.81

2.52 4.61

205

3.5

3.3

– 6.81

0.67

0.89

0.49

8.18

160 163 187 192 200

172 172 193 202 219

3.5 3.5 7 7 3.5

3.3 3.3 3.3 3.3 3.3

–1.11 –5.41 19.7 18.9 –13.51

0.52 0.50 0.33 0.33 0.74

1.16 1.21 1.84 1.84 0.81

0.64 0.66 1.01 1.01 0.45

3.52 2.93 10.1 10.2 9.76

126

171

181

3.5

3.3

6.7

0.42

1.44

0.79

5.11

132

125

163

172

3.5

3.3

–5.41

0.50

1.21

0.66

2.78

132

127

156

163

3.3

3.3

–7.91

0.46

1.31

0.72

1.67

4T-95475/95925

149

137

209

217

6.4

3.3

14.0

0.37

1.62

0.89

4T-48286/48220

139

133

168

176

3.5

3.3

5.7

0.31

1.97

1.08

3.52

4T-48290/48220 4T-67388/67322 4T-74500/74850 4T-97500/97900 4T-HM926747/HM926710 4T-95500/95905 4T-HH228349/HH228310

141 144 148 151 156 154 164

135 138 141 144 143 142 148

168 180 196 197 200 207 223

176 189 208 213 219 217 234

3.5 3.5 3.5 3.5 3.5 6.4 9.7

3.3 3.3 3.3 3.3 3.3 3.3 6.4

0.31 0.34 0.49 0.74 0.74 0.37 0.32

1.97 1.74 1.23 0.81 0.81 1.62 1.87

1.08 0.96 0.68 0.45 0.45 0.89 1.03

3.33 5.1 7.05 8.43 8.83 12.9 19.5

4T-799/792

146

140

186

198

3.3

3.3

1.9

0.46

1.31

0.72

5.77

4T-67389/67322 4T-799A/792

146 148

141 142

180 186

189 198

3.5 3.5

3.3 3.3

6.3 1.9

0.34 0.46

1.74 1.31

0.96 0.72

4.87 5.65

4T-L327249/L327210

142

140

167

171

1.5

1.5

–3.71

0.35

1.72

0.95

1.7

#4T-JM822049/JM822010 #4T-JHM522649/JHM522610

#4T-JL724348/JL724314

5.7 6.3 –2.21 –13.41 –13.51 14.0 23.4

Note: 3. Bearing numbers marked "#" designate J-series bearings. The tolerances of these bearings is listed in Table 6.6 on page A-40. 1 "−" means that load center at outside on end of inner ring.

B-191

(approx.)

12.6

●Tapered Roller Bearings Inch system sizes J system series T r1

C

r B d

D

a

d 133.350∼196.850mm Boundary dimensions

Basic load ratings static dynamic

dynamic mm d

D

T

kN B

C

Cr

Limiting speeds static kgf

Cor

rpm

Cr

Cor

grease

oil

133.350

190.500 196.850 196.850 215.900 234.950

39.688 46.038 46.038 47.625 63.500

39.688 46.038 46.038 47.625 63.500

33.338 38.100 38.100 34.925 49.212

236 310 310 320 525

475 550 550 540 825

24,100 31,500 31,500 32,500 53,500

48,500 56,500 56,500 55,000 84,000

1,700 1,700 1,700 1,600 1,500

2,300 2,200 2,200 2,100 2,000

136.525

190.500 228.600

39.688 57.150

39.688 57.150

33.338 44.450

236 445

475 735

24,100 45,500

48,500 75,000

1,700 1,500

2,300 2,000

139.700

215.900 228.600 254.000

47.625 57.150 66.675

47.625 57.150 66.675

34.925 44.450 47.625

320 445 550

540 735 910

32,500 45,500 56,000

55,000 75,000 92,500

1,600 1,500 1,400

2,100 2,000 1,800

142.875

200.025 200.025

41.275 41.275

39.688 39.688

34.130 34.130

239 239

490 490

24,300 24,300

50,000 50,000

1,600 1,600

2,100 2,100

146.050

193.675 254.000

28.575 66.675

28.575 66.675

23.020 47.625

165 550

340 910

16,800 56,000

35,000 92,500

1,600 1,400

2,200 1,800

152.400

192.088 222.250

25.000 46.830

24.000 46.830

19.000 34.925

130 315

261 585

13,200 32,000

26,700 60,000

1,600 1,500

2,100 2,000

158.750

205.583 225.425

23.812 41.275

23.812 39.688

18.258 33.338

126 254

247 555

12,900 25,900

25,200 56,500

1,500 1,400

2,000 1,900

165.100

225.425

41.275

39.688

33.338

254

555

25,900

56,500

1,400

1,900

170.000

230.000

39.000

38.000

31.000

282

520

28,700

53,000

1,400

1,800

177.800

227.012 247.650

30.162 47.625

30.162 47.625

23.020 38.100

181 340

415 690

18,500 35,000

42,000 70,500

1,300 1,300

1,800 1,700

180.000

250.000

47.000

45.000

37.000

370

710

37,500

72,500

1,300

1,700

190.000

260.000

46.000

44.000

36.500

365

720

37,000

73,500

1,200

1,600

196.850

241.300

23.812

23.017

17.462

160

330

16,300

33,500

1,200

1,600

Note: 1. With regard to the chamfer dimensions on the back face of the inner and outer rings, installation dimensions ras and r1as are larger than the maximum value. 2. Bearing numbers marked "#" designate J-series bearings. The tolerances of these bearings is listed in Table 6.6 on page A-40.

B-192

●Tapered Roller Bearings

r1a

Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa Fr ≦e Fr >e X Y X Y 1 0 0.4 Y2 static Por=0.5Fr+YoFa

ra Da db

da Db

When Por<Fr use Por=Fr

For values of e, Y2 and Yo see the table below.

Bearing numbers

Abutment and fillet dimensions

Load Constant Axial center load factors mm

mm ras

r1as

max

max

da

db

Da

Db

4T-48385/48320 4T-67390/67322 4T-67391/67322 4T-74525/74850 4T-95525/95925

148 149 157 152 166

142 143 143 146 148

177 180 180 196 209

184 189 189 208 217

3.5 3.5 8 3.5 9.7

3.3 3.3 3.3 3.3 3.3

4T-48393/48320 4T-896/892

151 156

144 150

177 205

184 216

3.5 3.5

4T-74550/74850 4T-898/892 4T-99550/99100

158 160 170

151 153 156

196 205 227

208 216 238

4T-48684/48620 4T-48685/48620

166 158

151 151

185 185

4T-36690/36620 4T-99575/99100

155 175

153 162

4T-L630349/L630310 4T-M231648/M231610

162 178

4T-L432349/L432310 4T-46780/46720 4T-46790/46720

kg

e

Y2

Yo

4.0 6.3 6.3 –2.21 14.0

0.32 0.34 0.34 0.49 0.37

1.87 1.74 1.74 1.23 1.62

1.03 0.96 0.96 0.68 0.89

3.64 4.63 4.59 6.56 11.3

3.3 3.3

4.0 6.0

0.32 0.42

1.87 1.43

1.03 0.78

3.43 9.07

3.5 3.5 7

3.3 3.3 3.3

–2.21 6.0 12.1

0.49 0.42 0.41

1.23 1.43 1.47

0.68 0.78 0.81

6.05 8.76 14.3

193 193

8 3.5

3.3 3.3

3.1 3.1

0.34 0.34

1.78 1.78

0.98 0.98

3.85 3.89

182 227

188 238

1.5 7

1.5 3.3

– 5.01 12.1

0.37 0.41

1.63 1.47

0.90 0.81

2.27 13.5

158 163

183 207

187 213

2 8

2 1.5

–10.01 5.9

0.42 0.33

1.44 1.8

0.79 0.99

1.53 5.72

168 176

166 169

195 209

199 218

1.5 3.5

1.5 3.3

–9.81 –2.61

0.37 0.38

1.61 1.57

0.88 0.86

1.89 5.2

181

174

209

218

3.5

3.3

–2.61

0.38

1.57

0.86

4.69

184

178

217

224

3

2.5

– 4.71

0.38

1.57

0.86

4.37

188 194

186 188

214 229

221 240

1.5 3.5

1.5 3.3

–12.81 – 4.81

0.44 0.44

1.36 1.36

0.75 0.75

2.92 6.57

#4T-JM736149/JM736110

196

190

232

243

3

2.5

–9.01

0.48

1.25

0.69

6.76

#4T-JM738249/JM738210

206

200

242

252

3

2.5

–10.91

0.48

1.26

0.69

6.85

4T-LL639249/LL639210

205

203

232

236

1.5

1.5

–17.31

0.42

1.44

0.79

2.07

#4T-JHM534149/JHM534110 4T-36990/36920 4T-67790/67720

1 "−" means that load center at outside on end of inner ring.

B-193

a

Mass

(approx.)

●Multi-Row Tapered Roller Bearings Outward facing type B1 C r1 r

D

d

a

d 40∼70mm Boundary dimensions

Basic load ratings static dynamic

dynamic mm

kN 1

1

Limiting speeds static kgf

rpm

r1s min

Cr

Cor

Cr

Cor

grease

oil

1.5 1.5 2 2

0.6 0.6 0.6 0.6

105 136 132 157

134 187 171 204

10,700 13,900 13,500 16,000

13,700 19,100 17,400 20,800

4,100 4,100 3,200 3,700

5,500 5,500 4,200 4,900

37.5 43.5 41.5 49.5

1.5 1.5 2 2

0.6 0.6 0.6 0.6

116 141 165 191

157 200 218 251

11,800 14,300 16,800 19,500

16,000 20,400 22,200 25,600

3,700 3,700 2,800 3,300

4,900 4,900 3,800 4,400

49 55 64 64 90

39.5 43.5 43.5 51.5 71.5

1.5 1.5 2.5 2.5 2.5

0.6 0.6 0.6 0.6 0.6

132 150 194 227 315

186 218 260 305 465

13,500 15,300 19,800 23,200 32,000

18,900 22,200 26,600 31,000 47,500

3,400 3,400 2,600 3,000 3,000

4,500 4,500 3,500 4,000 4,000

55

100 100 120 120 120

51 60 70 70 97

41.5 48.5 49 57 76

2 2 2.5 2.5 2.5

0.6 0.6 0.6 0.6 0.6

160 186 226 266 370

221 269 305 360 550

16,300 18,900 23,100 27,100 37,500

22,600 27,400 31,500 36,500 56,000

3,100 3,100 2,400 2,700 2,700

4,100 4,100 3,100 3,700 3,700

60

110 110 130 130 130

53 66 74 74 104

43.5 54.5 51 59 81

2 2 3 3 3

0.6 0.6 1 1 1

180 223 258 310 420

249 330 350 420 625

18,300 22,700 26,300 31,500 42,500

25,400 33,500 36,000 43,000 64,000

2,800 2,800 2,200 2,500 2,500

3,800 3,800 2,900 3,400 3,400

65

120 120 140 140 140

56 73 79 79 108

46.5 61.5 53 63 84

2 2 3 3 3

0.6 0.6 1 1 1

211 273 297 350 470

295 410 410 475 700

21,500 27,800 30,500 35,500 47,500

30,000 42,000 41,500 48,500 71,500

2,600 2,600 2,000 2,300 2,300

3,500 3,500 2,700 3,100 3,100

70

125 125 150 150 150

59 74 83 83 116

48.5 61.5 57 67 92

2 2 3 3 3

0.6 0.6 1 1 1

225 285 330 395 530

325 440 460 545 805

23,000 29,000 33,500 40,000 54,000

33,000 45,000 46,500 55,500 82,500

2,400 2,400 1,900 2,200 2,200

3,200 3,200 2,500 2,900 2,900

d

D

B1

C

rs min

40

80 80 90 90

45 55 56 56

37.5 43.5 39.5 45.5

45

85 85 100 100

47 55 60 60

50

90 90 110 110 110

1 Minimum allowable dimension for chamfer dimension r or r1.

B-194

●Multi-Row Tapered Roller Bearings

Sb r1a Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa ≦e >e Fr Fr X Y X Y 1 Y1 0.67 Y2 static Por=Fr+YoFa For values of e, Y2 and Yo see the table below.

ra

Db

da

Bearing numbers

Abutment and fillet dimensions

Load center

mm

mm

da

Db

Sb

ras

r1as

min

min

min

max

max

4T-430208X 4T-432208X 4T-430308DX 4T-430308

48.5 48.5 50 50

75 75 86.5 82

3.5 5.5 8 5

1.5 1.5 2 2

0.6 0.6 0.6 0.6

4T-430209 4T-432209 4T-430309DX 4T-430309

53.5 53.5 55 55

80 81 96 93

4.5 5.5 9 5

1.5 1.5 2 2

4T-430210 432210U 4T-430310DX 4T-430310 432310U

58.5 58.5 62 62 62

85 85 105 102 102

4.5 5.5 10 6 9

4T-430211X 432211U 4T-430311DX 430311XU 432311U

65 65 67 67 67

94 95 113 111 111

4T-430212X 432212U 4T-430312DX 430312U 432312U

70 70 74 74 74

4T-430213X 432213U 4T-430313DX 430313XU 432313U 4T-430214 432214U 4T-430314DX 430314XU 432314U

Axial load factors

Mass kg

e

Y1

Y2

Yo

38.5 43 64.5 44.5

0.37 0.37 0.83 0.35

1.80 1.80 0.82 1.96

2.68 2.68 1.22 2.91

1.76 1.76 0.80 1.91

0.929 1.18 1.56 1.61

0.6 0.6 0.6 0.6

42 46 70 47.5

0.40 0.40 0.83 0.35

1.67 1.67 0.82 1.96

2.48 2.48 1.22 2.91

1.63 1.63 0.80 1.91

1.04 1.27 2.11 2.11

1.5 1.5 2 2 2

0.6 0.6 0.6 0.6 0.6

44.5 47.5 75 51 62.5

0.42 0.42 0.83 0.35 0.35

1.61 1.61 0.82 1.96 1.96

2.39 2.39 1.22 2.91 2.91

1.57 1.57 0.80 1.91 1.91

1.18 1.36 2.65 2.72 3.98

4.5 5.5 10.5 6.5 10.5

2 2 2 2 2

0.6 0.6 0.6 0.6 0.6

47 51 83 55.5 66.5

0.40 0.40 0.83 0.35 0.35

1.67 1.67 0.82 1.96 1.96

2.48 2.48 1.22 2.91 2.91

1.63 1.63 0.80 1.91 1.91

1.55 1.85 3.42 3.48 5.05

103 104 124 120 120

4.5 5.5 11.5 7.5 11.5

2 2 2.5 2.5 2.5

0.6 0.6 1 1 1

49.5 56 88.5 59.5 71

0.40 0.40 0.83 0.35 0.35

1.67 1.67 0.82 1.96 1.96

2.48 2.48 1.22 2.91 2.91

1.63 1.63 0.80 1.91 1.91

1.99 2.49 4.22 4.31 6.29

75 75 79 79 79

113 115 133 130 130

4.5 5.5 13 8 12

2 2 2.5 2.5 2.5

0.6 0.6 1 1 1

53.5 61.5 94.5 64 74.5

0.40 0.40 0.83 0.35 0.35

1.67 1.67 0.82 1.96 1.96

2.48 2.48 1.22 2.91 2.91

1.63 1.63 0.80 1.91 1.91

2.49 3.33 5.16 5.32 7.55

80 80 84 84 84

118 119 142 140 140

5 6 13 8 12

2 2 2.5 2.5 2.5

0.6 0.6 1 1 1

57 64.5 101 67 80.5

0.42 0.42 0.83 0.35 0.35

1.61 1.61 0.82 1.96 1.96

2.39 2.39 1.22 2.91 2.91

1.57 1.57 0.80 1.91 1.91

2.67 3.56 6.23 6.37 9.28

B-195

a

Constant

(approx.)

●Multi-Row Tapered Roller Bearings Outward facing type B1 C r1 r

D

d

a

d 75∼105mm Boundary dimensions

Basic load ratings static dynamic

dynamic mm

kN 1

1

Limiting speeds static kgf

rpm

r1s min

Cr

Cor

Cr

Cor

grease

oil

2 2 3 3 3

0.6 0.6 1 1 1

238 288 370 435 610

350 445 510 605 935

24,300 29,300 37,500 44,500 62,000

36,000 45,500 52,000 62,000 95,500

2,300 2,300 1,700 2,000 2,000

3,000 3,000 2,300 2,700 2,700

51.5 63.5 61 73 104

2.5 2.5 3 3 3

0.6 0.6 1 1 1

274 340 405 500 680

400 530 565 700 1,050

27,900 35,000 41,500 51,000 69,000

40,500 54,000 58,000 71,500 107,000

2,100 2,100 1,600 1,900 1,900

2,800 2,800 2,200 2,500 2,500

70 86 98 98 137

57 69 65 77 108

2.5 2.5 4 4 4

0.6 0.6 1 1 1

315 385 425 520 690

465 600 585 725 1,050

32,000 39,000 43,000 53,000 70,500

47,000 61,500 59,500 74,000 107,000

2,000 2,000 1,500 1,800 1,800

2,700 2,700 2,100 2,400 2,400

90

160 160 190 190 190

74 94 102 102 144

61 77 69 81 115

2.5 2.5 4 4 4

0.6 0.6 1 1 1

355 450 465 580 770

535 720 645 815 1,190

36,500 46,000 47,500 59,000 78,500

54,500 73,500 65,500 83,000 121,000

1,900 1,900 1,500 1,700 1,700

2,500 2,500 1,900 2,300 2,300

95

170 170 200 200 200

78 100 108 108 151

63 83 85 85 118

3 3 4 3 4

1 1 1 1 1

385 515 630 540 865

580 835 890 735 1,340

39,500 52,500 64,000 55,500 88,000

59,000 85,000 91,000 75,000 137,000

1,800 1,800 1,600 1,600 1,600

2,400 2,400 2,100 2,100 2,100

100

180 180 215 215 215

83 107 112 112 162

67 87 87 87 127

3 3 4 3 4

1 1 1 1 1

440 565 700 590 980

675 925 995 800 1,540

45,000 58,000 71,500 60,000 100,000

68,500 94,500 102,000 81,500 157,000

1,700 1,700 1,500 1,500 1,500

2,200 2,200 2,000 2,000 2,000

105

190 190 225

88 115 116

70 95 91

3 3 3

1 1 1

490 650 625

760 1,080 845

50,000 66,000 63,500

77,500 111,000 86,000

1,600 1,600 1,400

2,100 2,100 1,900

d

D

B1

C

rs min

75

130 130 160 160 160

62 74 87 87 125

51.5 61.5 59 69 99

80

140 140 170 170 170

64 78 92 92 131

85

150 150 180 180 180

1 Minimum allowable dimension for chamfer dimension r or r1. Note: When incorporating bearings with bearing numbers marked with "*", please consult NTN Engineering.

B-196

●Multi-Row Tapered Roller Bearings

Sb r1a Equivalent bearing load dynamic Pr=XFr+YFa Fa Fa ≦e >e Fr Fr X Y X Y 1 Y1 0.67 Y2 static Por=Fr+YoFa For values of e, Y2 and Yo see the table below.

ra

Db

da

Bearing numbers

Abutment and fillet dimensions

Load center

mm

mm

Constant

Axial load factors

Mass kg

da

Db

Sb

ras

r1as

min

min

min

max

max

a

e

Y1