Azbar, N., Kestioglu, K., and Yonar, T. (2005), Water Pollution: New Research, Nova Publishers, New York, USA

Bibliography Adachi, K., Ohta, K., and Mizuno, T. (1994), “Photocatalytic Reduction of Carbon Dioxide to Hydrocarbon Using Copper-loaded Titanium Dio...
Author: Linda Wilkerson
3 downloads 0 Views 171KB Size
Bibliography

Adachi, K., Ohta, K., and Mizuno, T. (1994), “Photocatalytic Reduction of Carbon Dioxide to Hydrocarbon Using Copper-loaded Titanium Dioxide,” Solar Energy, 53(2), 187–190. Addamo, M., Bellardita, M., Di Paola, A., and Palmisano, L. (2006), “Preparation and Photoactivity of Nanostructured Anatase, Rutile and Brookite TiO2 Thin Films,” Chemical Communications, 4943–4945. Agrios, A. G. and Pichat, P. (2005), “State of the Art and Perspectives on Materials and Applications of Photocatalysis Over TiO2 ,” Journal of Applied Electrochemistry, 35(7-8), 655–663. Ahmed, S., Rasul, M. G., Martens, W. N., Brown, R., and Hashib, M. A. (2010), “Heterogeneous Photocatalytic Degradation of Phenols in Wastewater: A Review on Current Status and Developments,” Desalination, 261(1-2), 3–18. Akpan, U. G. and Hameed, B. H. (2009), “Parameters Affecting the Photocatalytic Degradation of Dyes Using TiO2 -based Photocatalysts: A Review,” Journal of Hazardous Materials, 170(2-3), 520–529. Altin, I. and Sokmen, M. (2014), “Preparation of TiO2 -polystyrene Photocatalyst from Waste Material and its Usability for Removal of Various Pollutants,” Applied Catalysis B: Environmental, 144, 694–701. Ameen, S., Akhtar, M. S., Kim, Y. S., and Shin, H. S. (2011), “Nanocomposites of Poly(1naphthylamine)/SiO2 and Poly(1-naphthylamine)/TiO2 : Comparative Photocatalytic Activity Evaluation Towards Methylene Blue Dye,” Applied Catalysis B: Environmental, 103(1-2), 136–142. Anandan, S., Kumar, P. S., Pugazhenthiran, N., Madhavan, J., and Maruthamuthu, P. (2008), “Effect of Loaded Silver Nanoparticles on TiO2 for Photocatalytic Degradation of Acid Red 88,” Solar Energy Materials and Solar Cells, 92(8), 929–937. 137

Bibliography Andreozzi, R., Caprio, V., Insola, A., and Marotta, R. (1999), “Advanced Oxidation Processes (AOP) for Water Purification and Recovery,” Catalysis Today, 53(1), 51–59. Andronic, L., Manolache, S., and Duta, A. (2008), “Photocatalytic Degradation of Methyl Orange: Influence of H2 O2 in the TiO2 -Based System,” Journal of Nanoscience and Nanotechnology, 8(2), 728–732. Ao, Y., Xu, J., Fu, D., Shen, X., and Yuan, C. (2008), “Low Temperature Preparation of Anatase TiO2 -activated Carbon Composite Film,” Applied Surface Science, 254(13), 4001–4006. Ao, Y., Xu, J., Zhang, S., and Fu, D. (2010), “A One-pot Method to Prepare N-doped Titania Hollow Spheres With High Photocatalytic Activity Under Visible Light,” Applied Surface Science, 256(9), 2754–2758. APHA (1999), Standard Methods for the Examination of Water and Wastewater, 20th edn., American Public Health Association and American Water Works Association and Water Pollution Control Federation. Arslan, I. and Balcioglu, I. A. (1999), “Degradation of Commercial Reactive Dyestuffs by Heterogenous and Homogenous Advanced Oxidation Processes: A Comparative Study,” Dyes and Pigments, 43(2), 95–108. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y. (2001), “Visible-light Photocatalysis in Nitrogen-doped Titanium Oxides,” Science, 293(5528), 269–271. Aysin, B., Ozturk, A., and Park, J. (2013), “Silver-loaded TiO2 Powders Prepared Through Mechanical Ball Milling,” Ceramics International, 39(6), 7119–7126. Azbar, N., Kestioglu, K., and Yonar, T. (2005), Water Pollution: New Research, Nova Publishers, New York, USA. Bafana, A., Devi, S. S., and Chakrabarti, T. (2011), “Azo Dyes: Past, Present and the Future,” Environmental Reviews, 19, 350–371. Bahnemann, D. (2004), “Photocatalytic Water Treatment: Solar Energy Applications,” Solar Energy, 77(5), 445– 459. 138

Bibliography Balkis, N., (ed.) (2012), Water Pollution, InTech, Croatia. Banat, I. M., Nigam, P., Singh, D., and Marchant, R. (1996), “Microbial Decolorization of Textile-dye Containing Effluents: A Review,” Bioresource Technology, 58(3), 217–227. Barakat, N. A., Kanjwal, M. A., Chronakis, I. S., and Kim, H. Y. (2013), “Influence of Temperature on the Photodegradation Process Using Ag-doped TiO2 Nanostructures: Negative Impact with the Nanofibers,” Journal of Molecular Catalysis A: Chemical, 366, 333–340. Bauer, R., Waldner, G., Fallmann, H., Hager, S., Klare, M., Krutzler, T., Malato, S., and Maletzky, P. (1999), “The Photo-fenton Reaction and the TiO2 /UV Process for Waste Water Treatment-novel Developments,” Catalysis Today, 53(1), 131–144. Baughman, G. L. and Weber, E. J. (1994), “Transformation of Dyes and Related Compounds in Anoxic Sediment: Kinetics and Products,” Environmental Science and Technology, 28(2), 267–276. Behnajady, M. A. and Eskandarloo, H. (2013), “Silver and Copper Co-impregnated Onto TiO2 P25 Nanoparticles and its Photocatalytic Activity,” Chemical Engineering Journal, 228, 1207–1213. Bhatkhande, D. S., Kamble, S. P., Sawant, S. B., and Pangarkar, V. G. (2004), “Photocatalytic and Photochemical Degradation of Nitrobenzene Using Artificial Ultraviolet Light,” Chemical Engineering Journal, 102(3), 283–290. Bhatkhande, D. S., Pangarkar, V. G., and Beenackers, A. A. (2002), “Photocatalytic Degradation for Environmental Applications-A Review,” Journal of Chemical Technology and Biotechnology, 77(1), 102–116. Braun, J. H., Baidins, A., and Marganski, R. E. (1992), “TiO2 Pigment Technology: A Review,” Progress in Organic Coatings, 20(2), 105–138. Carneiro, P. A., Umbuzeiro, G. A., Oliveira, D. P., and Zanoni, M. V. B. (2010), “Assessment of Water Contamination Caused by a Mutagenic Textile effluent/Dyehouse Effluent Bearing Disperse Dyes,” Journal of Hazardous Materials, 174(1-3), 694–699. 139

Bibliography Carp, O., Huisman, C. L., and Reller, A. (2004), “Photoinduced Reactivity of Titanium Dioxide,” Progress in Solid State Chemistry, 32(1-2), 33–177. Chao, H. E., Yun, Y. U., Xingfang, H. U., and Larbot, A. (2003), “Effect of Silver Doping on the Phase Transformation and Grain Growth of Sol-gel Titania Powder,” Journal of The European Ceramic Society, 23(9), 1457–1464. Chatterjee, D. and Mahata, A. (2001), “Demineralization of Organic Pollutants on the Dye Modified TiO2 Semiconductor Particulate System Using Visible Light,” Applied Catalysis B: Environmental, 33(2), 119–125. Chen, D. and Ray, A. K. (1998), “Photodegradation Kinetics of 4-Nitrophenol in TiO2 Suspension,” Water Research, 32(11), 3223–3234. Chen, K. T., Lu, C. S., Chang, T. H., Lai, Y. Y., Chang, T. H., Wu, C. W., and Chen, C. C. (2010), “Comparison of Photodegradative Efficiencies and Mechanisms of Victoria Blue R Assisted by Nafion-Coated and Fluorinated TiO2 photocatalysts,” Journal of Hazardous Materials, 144(1-3), 598–609. Chequer, F. M. D., Angeli, J. P. F., Ferraz, E. R. A., Tsuboy, M. S., Marcarini, J. C., Mantovani, M. S., and de Oliveira, D. P. (2009), “The Azo Dyes Disperse Red 1 and Disperse Orange 1 Increase the Micronuclei Frequencies in Human Lymphocytes and in HepG2 Cells,” Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 676(1-2), 83–86. Chin, S. S., Chiang, K., and Fane, A. G. (2006), “The Stability of Polymeric Membranes in a TiO2 Photocatalysis Process,” Journal of Membrane Science, 275(1-2), 202–211. Choi, J., Park, H., and Hoffmann, M. R. (2010), “Effects of Single Metal-ion Doping on the Visible-light Photoreactivity of TiO2 ,” The Journal of Physical Chemistry C, 114(2), 783– 792. Chong, M. N., Jin, B., Chow, C. W. K., and Saint, C. (2010), “Recent Developments in Photocatalytic Water Treatment Technology: A Review,” Water Research, 44(10), 2997–3027.

140

Bibliography Chong, M. N., Jin, B., Zhu, H. Y., Chow, C. W. K., and Saint, C. (2009a), “Application of H-titanate Nanofibers for Degradation of Congo Red in an Annular Slurry Photoreactor,” Chemical Engineering Journal, 150(1), 49–54. Chong, M. N., Lei, S., Jin, B., Saint, C., and Chow, C. W. K. (2009b), “Optimisation of an Annular Photoreactor Process for Degradation of Congo Red Using a Newly Synthesized Titania Impregnated Kaolinite Nano-photocatalyst,” Separation and Purification Technology, 67(3), 355–363. Comparelli, R., Fanizza, E., Curri, M. L., Cozzoli, P. D., Mascolo, G., and Agostiano, A. (2005), “UV-induced Photocatalytic Degradation of Azo Dyes by Organic-capped ZnO Nanocrystals Immobilized Onto Substrates,” Applied Catalysis B: Environmental, 60(1-2), 1–11. Couto, S. R. (2009), “Dye Removal by Immobilised Fungi,” Biotechnology Advances, 27(3), 227–235. Dhananjeyan, M. R., Kiwi, J., and Thampi, K. R. (2000), “Photocatalytic Performance of TiO and FeO Immobilized on Derivatized Polymer Films for Mineralisation of Pollutants,” Chemical Communications, 1443–1444. Diwald, O., Thompson, T. L., Goralski, E. G., Walck, S. D., and Yates, J. T. (2004), “The Effect of Nitrogen Ion Implantation on the Photoactivity of TiO2 Rutile Single Crystals,” The Journal of Physical Chemistry B, 108(1), 52–57. Dong, L., Cao, G., Ma, Y., Jia, X., Ye, G., and Guan, S. (2009), “Enhanced Photocatalytic Degradation Properties of Nitrogen-doped Titania Nanotube Arrays,” Transactions of Nonferrous Metals Society of China, 19(6), 1583–1587. Doong, R., Chang, S., Hung, Y., and Kao, I. (2007), “Preparation of Highly Ordered Titanium Dioxide Porous Films: Characterization and Photocatalytic Activity,” Separation and Purification Technology, 58(1), 192–199. Dos Santos, A. B. (2005), “Reductive Decolourisation of Dyes by Thermophilic Anaerobic Granular Sludge,” Ph.D. thesis, The Wageningen University, The Netherlands. 141

Bibliography Dozzi, M. V. (2011), “Improving the Photocatalytic Activity of TiO2 for Environmental Application: Effects of Doping and of Surface Modification,” Ph.D. thesis, The University of Milan, Italy. Dransfield, G. (2000), “Inorganic Sunscreens,” Radiation Protection Dosimetry, 91(1-3), 271– 273. Dutschke, A., Diegelmann, C., and Lobmann, P. (2003a), “Nucleation and Growth of TiO2 Thin Films on Modified Polystyrene Surfaces,” Chemistry of Materials, 15(18), 3501–3506. Dutschke, A., Diegelmann, C., and Lobmann, P. (2003b), “Preparation of TiO2 thin films on Polystyrene by Liquid Phase Deposition,” Journal of Materials Chemistry, 13, 1058–1063. Ebewele, R. O. (2000), Polymer Science and Technology, CRC Press LLC, New York. El-Rehim, H. A. A., El-Sayed, A. H., and Doaa, A. D. (2012), “Photo-catalytic Degradation of Metanil Yellow Dye Using TiO2 Immobilized Into Polyvinyl Alcohol/Acrylic Acid Microgels Prepared by Ionizing Radiation,” Reactive and Functional Polymers, 72(11), 823–831. Elfeky, S. A. and Al-Sherbini, A. A. (2011a), “Photo-oxidation of Rhodamine-6-G via TiO2 and Au/TiO2 -Bound Polythene Beads,” Journal of Nanomaterials, 2011(3), 391–396. Elfeky, S. A. and Al-Sherbini, A. A. (2011b), “Photocatalytic Decomposition of Trypan Blue Over Nanocomposite Thin Films,” Kinetics and Catalysis, 52(3), 391–396. EPA (1998), Handbook on Advanced Photochemical Oxidation Processes, Center for Environmental Research information, Washington, DC. EPA (2001), Handbook on Advanced Non-Photochemical Oxidation Process, Center for Environmental Research information, Washington, DC. Evgenidou, E., Fytianos, K., and Poulios, I. (2005), “Semiconductor-sensitized Photodegradation of Dichlorvos in Water Using TiO2 and ZnO as Catalysts,” Applied Catalysis B: Environmental, 59(1-2), 81–89.

142

Bibliography Fa, W., Guo, L., Wang, J., Guo, R., Zheng, Z., and Yang, F. (2013), “Solid-phase Photocatalytic Degradation of Polystyrene with TiO2 /Fe(St)3 as Catalyst,” Journal of Applied Polymer Science, 128(5), 2618–2622. Fa, W., Zan, L., Gong, C., Zhong, J., and Deng, K. (2008), “Solid-phase Photocatalytic Degradation of Polystyrene with TiO2 Modified by Iron (II) Phthalocyanine,” Applied Catalysis B: Environmental, 79(3), 216–223. Fabiyi, M. E. and Skelton, R. L. (2000), “Photocatalytic Mineralisation of Methylene Blue Using Buoyant TiO2 -coated Polystyrene Beads,” Journal of Photochemistry and Photobiology A: Chemistry, 132(1-2), 121–128. Ferraz, E. R. A., Umbuzeiro, G. A., Almeida, G., Oliveira, A. C., Chequer, F. M. D., Zanoni, M. V. B., Dorta, D. J., and Oliveira, D. P. (2011), “Differential Toxicity of Disperse Red 1 and Disperse Red 13 in the Ames Test, HepG2 Cytotoxicity Assay, and Daphnia Acute Toxicity Test,” Environmental Toxicology, 26(5), 489–497. Firmino, P. I. M., Silva, M. E. R., Cervantes, F. J., and Santos, A. B. D. (2010), “Colour Removal of Dyes from Synthetic and Real Textile Wastewaters in One- and Two-stage Anaerobic Systems,” Bioresource Technology, 101(20), 7773–7779. Fostier, A. H., Pereira, M. S. S., Rath, S., and Guimaraes, J. R. (2008), “Arsenic Removal from Water Employing Heterogeneous Photocatalysis with TiO2 Immobilized in PET Bottles,” Chemosphere, 72(2), 319–324. Fox, M. A. and Dulay, M. T. (1993), “Heterogeneous Photocatalysis,” Chemical Reviews, 93(1), 341–357. Fu, X., Clark, L. A., Zeltner, W. A., and Anderson, M. A. (1996), “Effects of Reaction Temperature and Water Vapor Content on the Heterogeneous Photocatalytic Oxidation of Ethylene,” Journal of Photochemistry and Photobiology A: Chemistry, 97(3), 181–186. Fujishima, A. and Honda, K. (1972), “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, 238, 37–38. 143

Bibliography Fujishima, A., Zhang, X., and Donald, A. T. (2008), “TiO2 Photocatalysis and Related Surface Phenomena,” Surface Science Reports, 63(12), 515–582. Gao, Y. and Liu, H. (2005), “Preparation and Catalytic Property Study of a Novel Kind of Suspended Photocatalyst of TiO2 -Activated Carbon Immobilized on Silicone Rubber Film,” Materials Chemistry and Physics, 92(2-3), 604–608. Gasparro, F. P., Mitchnick, M., and Nash, J. F. (1998), “A Review of Sunscreen Safety and Efficacy,” Photochemistry and Photobiology, 68(3), 243–256. Gaya, U. I. (2014), Heterogeneous Photocatalysis Using Inorganic Semiconductor Solids, Springer Netherlands. Gaya, U. I. and Abdullah, A. H. (2008), “Heterogeneous Photocatalytic Degradation of Organic Contaminants Over Titanium Dioxide: A Review of Fundamentals, Progress and Problems,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9(1), 1–12. Geuskens, G., Volant, D. B., Delaunois, G., Vinh, Q. L., Piret, W., and David, C. (1978a), “Photo-oxidation of Polymers-I: A Quantitative Study of the Chemical Reactions Resulting from Irradiation of Polystyrene at 253.7 nm in the Presence of Oxygen,” European Polymer Journal, 14(4), 291–297. Geuskens, G., Volant, D. B., Delaunois, G., Vinh, Q. L., Piret, W., and David, C. (1978b), “Photo-oxidation of Polymers-II: The Sensitized Decomposition of Hydroperoxides as the Main Path for Initiation of the Photo-oxidation of Polystyrene Irradiated at 253.7 nm,” European Polymer Journal, 14(4), 299–303. Glaze, W. H., Kang, J. W., and Chapin, D. H. (1987), “The Chemistry of Water Treatment Processes Involving Ozone, Hydrogen Peroxide and Ultraviolet Radiation,” Ozone: Science and Engineering, 9(4), 335–352. Gleick, P. H., (ed.) (1993), Water in Crisis: A Guide to the World’s Freshwater Resources, Oxford University Press.

144

Bibliography Gogate, P. R. and Pandit, A. B. (2004), “A Review of Imperative Technologies for Wastewater Treatment I: Oxidation Technologies at Ambient Conditions,” Advances in Environmental Research, 8(3-4), 501–551. Goldstein, J. (2003), Scanning Electron Microscopy and X-ray Microanalysis: Third Edition, Springer, US. Gouma, P. I. and Mills, M. J. (2001), “Anatase-to-Rutile Transformation in Titania Powders,” Journal of the American Ceramic Society, 84(3), 619–622. Gupta, A. K., Pal, A., and Sahoo, C. (2006), “Photocatalytic Degradation of a Mixture of Crystal Violet (Basic Violet 3) and Methyl Red Dye in Aqueous Suspensions Using Ag+ Doped TiO2 ,” Dyes and Pigments, 69(3), 224–232. Gupta, S. M. and Tripathi, M. (2011), “A Review of TiO2 Nanoparticles,” Chinese Science Journal, 56(16), 1639–1657. Hachem, C., Bocquillon, F., Zahraa, O., and Bouchy, M. (2001), “Decolourization of Textile Industry Wastewater by the Photocatalytic Degradation Process,” Dyes and Pigments, 49(2), 117–125. Hagen, J. (2006), Heterogeneous Catalysis: Fundamentals, Wiley-VCH Verlag GmbH & Co. KGaA. Han, F., Kambala, V. S. R., Srinivasan, M., Rajarathnam, D., and Naidu, R. (2009), “Tailored Titanium Dioxide Photocatalysts for the Degradation of Organic Dyes in Wastewater Treatment: A Review,” Applied Catalysis A: General, 359(1-2), 25–40. Han, H. and Bai, R. (2009), “Buoyant Photocatalyst with Greatly Enhanced Visible-Light Activity Prepared Through a Low Temperature Hydrothermal Method,” Industrial & Engineering Chemistry Research, 48(6), 2891–2898. Han, H. and Bai, R. (2010), “Highly Effective Buoyant Photocatalyst Prepared with a Novel layered-TiO2 on Polypropylene Fabric and the Degradation Performance for Methyl Orange Dye Under UV-vis and Vis Lights,” Separation and Purification Technology, 73, 142–150. 145

Bibliography Hao, O. J., Kim, H., and Chiang, P. C. (2000), “Decolorization of Wastewater,” Critical Reviews in Environmental Science and Technology, 30(4), 449–505. Hashimoto, K., Irie, H., and Fujishima, A. (2005), “TiO2 Photocatalysis: A Overview and Future Prospects,” Japanese Journal of Applied Physics, 44(12), 8269–8285. He, Y., Tilocca, A., Dulub, O., Selloni, A., and Diebold, U. (2009), “Local Ordering and Electronic Signatures of Submonolayer Water on Anatase TiO2 (101),” Nature Materials 8, 8(7), 585–589. Herrmann, J. (1999), “Heterogeneous Photocatalysis: Fundamentals and Applications to the Removal of Various Types of Aqueous Pollutants,” Catalysis Today, 53(1), 115–129. Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C., and Herrmann, J. M. (2001), “Photocatalytic Degradation Pathway of Methylene Blue in Water,” Applied Catalysis B: Environmental, 31(2), 145–157. Iketani, K., Sun, R., Toki, M., Hirota, K., and Yamaguchi, O. (2003), “Sol–gel-derived TiO2 /poly(dimethylsiloxane) Hybrid Films and Their Photocatalytic Activities,” Journal of Physics and Chemistry of Solids, 64(3), 507–513. Jiang, K., Kitamura, T., Yin, H., Ito, S., and Yanagida, S. (2002), “Dye-sensitized Solar Cells Using Brookite Nanoparticle TiO2 Films as Electrodes,” Chemistry Letters, 31(9), 872–873. Kasanen, J., Salstela, J., Suvanto, M., and Pakkanen, T. (2011a), “Photocatalytic Degradation of Methylene Blue in Water Solution by Multilayer TiO2 Coating on HDPE,” Applied Surface Science, 258(5), 1738–1743. Kasanen, J., Suvanto, M., and Pakkanen, T. T. (2011b), “Improved Adhesion of TiO2 -based Multilayer Coating on HDPE and Characterization of Photocatalysis,” Journal of Applied Polymer Science, 119(4), 2235–2245. Kayaalp, N., Ersahin, M. E., Ozgun, H., Koyuncu, I., and Kinaci, C. (2010), “A New Approach for Chemical Oxygen Demand (COD) Measurement at High Salinity and Low Organic Matter Samples,” Environmental Science Pollution Research, 17(9), 1547–1552. 146

Bibliography Khalil, L. B., Mourad, W. E., and Rophael, M. W. (1998), “Photocatalytic Reduction of Environmental Pollutant Cr(VI) Over Some Semiconductors Under UV/Visible Light Illumination,” Applied Catalysis B: Environmental, 17(3), 267–273. Khataee, A. and Kasiri, M. (2010), “Photocatalytic Degradation of Organic Dyes in the Presence of Nanostructured Titanium Dioxide: Influence of the Chemical Structure of Dyes,” Journal of Molecular Catalysis A: Chemical, 328(12), 8–26. Khataee, A. and Mansoori, G. A. (2012), Nanostructured Titanium Dioxide Materials: Properties, Preparation and Applications, World Scientific Publishing Co. Pte. Ltd., Singapore. Kirk-Othmer (2004), Encyclopedia of Chemical Technology, vol. 7, fifth edn., WileyInterscience. Konstantinou, I. K. and Albanis, T. A. (2004), “TiO2 -assisted Photocatalytic Degradation of Azo Dyes in Aqueous Solution: Kinetic and Mechanistic Investigations: A Review,” Applied Catalysis B: Environmental, 49(1), 1–14. Kosmulski, M. (2006), “pH-dependent Surface Charging and Points of Zero Charge: III. Update,” Journal of Colloid and Interface Science, 298(2), 730–741. Kulshreshtha, S. N. (1998), “A Global Outlook for Water Resources to the Year 2025,” Water Resources Management, 12(3), 167–184. Langlet, M., Kim, A., Audier, M., and Herrmann, J. M. (2002), “Sol-gel Preparation of Photocatalytic TiO2 Films on Polymer Substrates,” Journal of Sol-gel Science and Technology, 25(3), 223–234. Lawrence, J. B. and Weir, N. A. (1973), “Photodecomposition of Polystyrene on Long-wave Ultraviolet Irradiation: A Possible Mechanism of Initiation of Photooxidation,” Journal of Polymer Science Part A: Polymer Chemistry, 11(1), 105–118. Lee, C. S., Kim, J., Son, J. Y., Choi, W., and Kim, H. (2009), “Photocatalytic Functional Coatings of TiO2 Thin Films on Polymer Substrate by Plasma Enhanced Atomic Layer Deposition,” Applied Catalysis B: Environmental, 91(3-4), 628–633. 147

Bibliography Lee, J. W., Choi, S. P., Thiruvenkatachari, R., Shim, W. G., and Moon, H. (2006), “Submerged Microfiltration Membrane Coupled with Alum Coagulation/Powdered Activated Carbon Adsorption for Complete Decolorization of Reactive Dyes,” Water Research, 40(3), 435–444. Lei, P., Wang, F., Gao, X., Ding, Y., Zhang, S., Zhao, J., Liu, S., and Yang, M. (2012), “Immobilization of TiO2 Nanoparticles in Polymeric Substrates by Chemical Bonding for Multi-cycle Photodegradation of Organic Pollutants,” Journal of Hazardous Materials, 227-228, 185– 194. Li, J. G., Ishigaki, T., and Sun, X. (2007), “Anatase, Brookite, and Rutile Nanocrystals via Redox Reactions under Mild Hydrothermal Conditions: Phase-Selective Synthesis and Physicochemical Properties,” The Journal of Physical Chemistry C, 111(13), 4969–4976. Li, X., Wang, D., Cheng, G., Luo, Q., An, J., and Wang, Y. (2008), “Preparation of Polyanilinemodified TiO2 Nanoparticles and Their Photocatalytic Activity Under Visible Light Illumination,” Applied Catalysis B: Environmental, 81(3-4), 267–273. Linsebigler, A. L., Lu, G., and Yates, J. T. (1995), “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results,” Chemical Reviews, 95(3), 735–758. Magalhaes, F. and Lago, R. M. (2009), “Floating Photocatalysts Based on TiO2 Grafted on Expanded Polystyrene Beads for the Solar Degradation of Dyes,” Solar Energy, 83(9), 1521– 1526. Magalhaes, F., Moura, F. C. C., and Lago, R. M. (2011), “TiO2 /LDPE composites: A New Floating Photocatalyst for Solar Degradation of Organic Contaminants,” Desalination, 276(13), 266–271. Malato, S., Fernandez-Ibanez, P., Maldonado, M. I., Blanco, J., and Gernjak, W. (2009), “Decontamination and Disinfection of Water by Solar Photocatalysis: Recent Overview and Trends,” Catalysis Today, 147(1), 1–59. Mansour, H. B., Houas, I., Montassar, F., Ghedira, K., Barillier, D., Mosrati, R., and Ghedira, L. C. (2012), “Alteration of in vitro and Acute in vivo Toxicity of Textile Dyeing Wastewater 148

Bibliography after Chemical and Biological Remediation,” Environmental Science and Pollution Research, 19(7), 2634–2643. Marcucci, M., Nosenzo, G., Capannelli, G., Ciabatti, I., Corrieri, D., and Ciardelli, G. (2001), “Treatment and Reuse of Textile Effluents Based on New Ultrafiltration and Other Membrane Technologies,” Desalination, 138(1-3), 75–82. Maul, J., Frushour, B. G., Kontoff, J. R., Eichenauer, H., Ott, K. H., and Schade, C. (2000), Polystyrene and Styrene Copolymers, Wiley-VCH Verlag GmbH & Co. KGaA. Mestankova, H., Mailhot, G., Jirkovsky, J., Krysa, J., and Bolte, M. (2005), “Mechanistic Approach of the Combined (Iron-TiO2 ) Photocatalytic System for the Degradation of Pollutants in Aqueous Solution: An Attempt of Rationalisation,” Applied Catalysis B: Environmental, 57(4), 257–265. Metcalf and Eddy, I. (2003), Wastewater Engineering-treatment and Reuse, fourth edn., Tata McGraw-Hill. Mori, K. (2004), “Photo-functionalized Materials Using Nanoparticles: Photocatalysis,” Kona, 41, 750–756. Mounir, B., Pons, M. N., Zahraa, O., Yaacoubi, A., and Benhammou, A. (2007), “Discoloration of a Red Cationic Dye by Supported TiO2 Photocatalysis,” Journal of Hazardous Materials, 148(3), 513–520. Mukherjee, D. (2011), “Development of a Novel TiO2 -polymeric Film Photocatalyst for Water Purification both Under UV and Solar Illuminations,” Ph.D. thesis, The University of Western Ontario, Canada. Muradov, N. Z., T-Raissi, A., Muzzey, D., Painter, C. R., and Kemme, M. R. (1996), “Selective Photocatalytic Destruction of Airborne VOCs,” Solar Energy, 56(5), 445–453. Naskar, S., Pillay, S. A., and Chanda, M. (1998), “Photocatalytic Degradation of Organic Dyes in Aqueous Solution with TiO2 Nanoparticles Immobilized on Foamed Polyethylene Sheet,” Journal of Photochemistry and Photobiology A: Chemistry, 113(3), 257–264. 149

Bibliography Neppolian, B., Choi, H. C., Sakthivel, S., Arabindoo, B., and Murugesan, V. (2002), “Solar/UVinduced Photocatalytic Degradation of Three Commercial Textile Dyes,” Journal of Hazardous Materials, 89(2-3), 303–317. Ochuma, I. J., Fishwick, R. P., Wood, J., and Winterbottom, J. M. (2007), “Optimisation of Degradation Conditions of 1,8-diazabicyclo[5.4.0]undec-7-ene in Water and Reaction Kinetics Analysis Using a Cocurrent Downflow Contactor Photocatalytic Reactor,” Applied Catalysis B: Environmental, 73(3-4), 259–268. Ogugbue, J. C. and Sawidis, T. (2011), “Bioremediation and Detoxification of Synthetic Wastewater Containing Triarylmethane Dyes by Aeromonas hydrophila Isolated from Industrial Effluent,” Biotechnology Research International, 2011, 1–11. Ohno, T., Tanigawa, F., Fujihara, K., Izumi, S., and Matsumura, M. (1998), “Photocatalytic Oxidation of Water on TiO2 -coated WO3 Particles by Visible Light Using Iron(III) Ions as Electron Acceptor,” Journal of Photochemistry and Photobiology A: Chemistry, 118(1), 41– 44. Ohsawa, T., Lyubinetsky, I., Du, Y., Henderson, M. A., Shutthanandan, V., and Chambers, S. A. (2009), “Crystallographic Dependence of Visible-light Photoactivity in Epitaxial TiO2 -xNx Anatase and Rutile,” Physical Review B, 79(8), 085401–085407. Ollis, D. F. and Al-Ekabi, H., (eds.) (1993), Photocatalytic Purification and Treatment of Water and Air, Elsevier Science Ltd. Papp, J., Shen, H. S., Kershaw, R., Dwight, K., and Wold, A. (1993), “Titanium(IV) Oxide Photocatalysts with Palladium,” Chemistry of Materials, 5(3), 284–288. Park, J. H., Kim, S., and Bard, A. J. (2006), “Novel Carbon-Doped TiO2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting,” Nano Letters, 6(1), 24–28. Pelaez, M., Nolan, N. T., Pillai, S. C., Seery, M. K., Falaras, P., Kontos, A. G., Dunlop, P. S., Hamilton, J. W., Byrne, J. A., O’Shea, K., Entezari, M. H., and Dionysiou, D. D. (2012), “A Review on the Visible Light Active Titanium Dioxide Photocatalysts for Environmental Applications,” Applied Catalysis B: Environmental, 125, 331–349. 150

Bibliography Pettit, S. L. (2014), “Investigation of TiO2 and InVO4 -TiO2 Semiconductors for the Photocatalytic Degradation of Aqueous Organics,” Ph.D. thesis, University of South Florida, United States of America. Puma, G. L., Bono, A., Krishnaiah, D., and Collin, J. G. (2008), “Preparation of Titanium Dioxide Photocatalyst Loaded Onto Activated Carbon Support Using Chemical Vapor Deposition: A Review Paper,” Journal of Hazardous Materials, 157(2-3), 209–219. Rabek, J. F. and Ranby, B. (1974), “Studies on the Photooxidation Mechanism of Polymers. I. Photolysis and Photooxidation of Polystyrene,” Journal of Polymer Science Part A: Polymer Chemistry, 12(2), 273–294. Rajeshwar, K., Osugi, M. E., Chanmanee, W., Chenthamarakshan, C. R., Zanoni, M. V. B., Kajitvichyanukul, P., and Ayer, R. K. (2008), “Heterogeneous Photocatalytic Treatment of Organic Dyes in Air and Aqueous Media,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9(4), 171–192. Ranby, B. and Lucki, J. (1980), “New Aspects of Photodegradation and Photooxidation of PS,” Pure and Applied Chemistry, 52(2), 295–303. Rao, K. V. S., Lavedrine, B., and Boule, P. (2003), “Influence of Metallic Species on TiO2 for the Photocatalytic Degradation of Dyes and Dye Intermediates,” Journal of Photochemistry and Photobiology A: Chemistry, 154(2-3), 189–193. Riyas, S., Yasir, V. A., and Das, P. N. M. (2002), “Crystal Structure Transformation of TiO2 in Presence of Fe2 O3 and NiO in Air Atmosphere,” Bulletin of Materials Science, 25(4), 267–273. Rozzi, A., Antonelli, M., and Arcari, M. (1999), “Membrane Treatment of Secondary Textile Effluents for Direct Reuse,” Water Science and Technology, 40(4-5), 409–416. Rupa, A. V., Divakar, D., and Sivakumar, T. (2009), “Titania and Noble Metals Deposited Titania Catalysts in the Photodegradation of Tartazine,” Catalysis Letters, 132(1-2), 259–267.

151

Bibliography Sahoo, C., Gupta, A. K., and Pal, A. (2005), “Photocatalytic Degradation of Crystal Violet (C.I. Basic Violet 3) on Silver Ion Doped TiO2 ,” Dyes and Pigments, 66(3), 189–196. Sahoo, C., Gupta, A. K., and Pillai, I. M. S. (2012), “Photocatalytic Degradation of Methylene Blue Dye from Aqueous Solution Using Silver Ion-doped TiO2 and its Application to the Degradation of Real Textile Wastewater,” Journal of Environmental Science and Health, Part A, 47(10), 1428–1438. Sakthivel, S. and Kisch, H. (2003), “Daylight Photocatalysis by Carbon-modified Titanium Dioxide,” Angewandte Chemie International Edition, 42(40), 4908–4911. Saquib, M. and Muneer, M. (2003a), “Photocatalytic Degradation of Two Selected Textile Dye Derivatives, Eosine Yellowish and p-Rosaniline, in Aqueous Suspensions of Titanium Dioxide,” Journal of Environmental Science and Health, Part A, 38(11), 2581–2598. Saquib, M. and Muneer, M. (2003b), “TiO2 -mediated Photocatalytic Degradation of a Triphenylmethane Dye (gentian violet), in Aqueous Suspensions,” Dyes and Pigments, 56(1), 37– 49. Saupe, G. B., Zhao, Y., Bang, J., Yesu, N. R., Carballo, G., Ordonez, R., and Bubphamala, T. (2005), “Evaluation of a New Porous Titanium-niobium Mixed Oxide for Photocatalytic Water Decontamination,” Microchemical Journal, 81(1), 156–162. Sclafani, A. and Herrmann, J. M. (1998), “Influence of Metallic Silver and of Platinum-silver Bimetallic Deposits on the Photocatalytic Activity of Titania (anatase and rutile) in Organic and Aqueous Media,” Journal of Photochemistry and Photobiology A: Chemistry, 113(2), 181–188. Sen, S. and Demirer, G. N. (2003), “Anaerobic Treatment of Real Textile Wastewater with a Fluidized Bed Reactor,” Water Research, 37(8), 1868–1878. Serpone, N., Pichat, P., Pelizzetti, E., and Hidaka, H. (1995), “Exploiting the Interparticle Electron Transfer Process in the Photocatalysed Oxidation of Phenol, 2-Chlorophenol and Pentachlorophenol: Chemical Evidence for Electron and Hole Transfer Between Coupled Semiconductors,” Journal of Photochemistry and Photobiology A: Chemistry, 85(3), 247–255. 152

Bibliography Shan, A. Y., Ghazi, T. I. M., and Rashid, S. A. (2010), “Immobilisation of Titanium Dioxide Onto Supporting Materials in Heterogeneous Photocatalysis: A Review,” Applied Catalysis A: General, 389(1-2), 1–8. Shang, J., Chai, M., and Zhu, Y. (2003a), “Photocatalytic Degradation of Polystyrene Plastic under Fluorescent Light,” Environmental Science and Technology, 37(19), 4494–4499. Shang, J., Chai, M., and Zhu, Y. (2003b), “Solid-phase Photocatalytic Degradation of Polystyrene Plastic with TiO2 as Photocatalyst,” Journal of Solid State Chemistry, 174(1), 104–110. Sherrington, D. C. (1998), “Preparation, Structure and Morphology of Polymer Supports,” Chemical Communications, 2275–2286. Singh, S., Mahalingam, H., and Singh, P. K. (2013), “Polymer-supported Titanium Dioxide Photocatalysts for Environmental Remediation: A Review,” Applied Catalysis A: General, 462-463, 178–195. Singh, S., Singh, P. K., and Mahalingam, H. (2014), “Novel Floating Ag+ -Doped TiO2 /Polystyrene Photocatalysts for the Treatment of Dye Wastewater,” Industrial & Engineering Chemistry Research, 53(42), 16332–16340. Singh, S., Singh, P. K., and Mahalingam, H. (2015), “An Effective and Low-Cost TiO2 /Polystyrene Floating Photocatalyst for Environmental Remediation,” Journal of Materials and Environmental Science, 6(2), 349–358. Sivlim, T., Akkan, S., Altin, I., Koc, M., and Sokmen, M. (2012), “TiO2 Immobilized Biodegradable Polymer for Photocatalytic Removal of Chlorophenol,” Water Air and Soil Pollution, 223(7), 3955–3964. Sobana, N., Muruganadham, M., and Swaminathan, M. (2006), “Nano-Ag Particles Doped TiO2 for Efficient Photodegradation of Direct Azo Dyes,” Journal of Molecular Catalysis A: Chemical, 258(1-2), 124–132.

153

Bibliography Sokmen, M., Tatlidil, I., Breen, C., Clegg, F., Buruk, C. K., Sivlim, T., and Akkan, S. (2011), “A New Nano-TiO2 Immobilized Biodegradable Polymer with Self-cleaning Properties,” Journal of Hazardous Materials, 187(1-3), 199–205. Song, L., Qiu, R., Mo, Y., Zhang, D., Wei, H., and Xiong, Y. (2007), “Photodegradation of Phenol in a Polymer-modified TiO2 Semiconductor Particulate System Under the Irradiation of Visible Light,” Catalysis Communications, 8(3), 429–433. Sriwong, C. (2012), “Degradation of Indigo Carmine by TiO2 Immobilized on Natural Rubber Latex,” Ph.D. thesis, Prince of Songkla University, Thailand. Sriwong, C., Wongnawa, S., and Patarapaiboolchai, O. (2008), “Photocatalytic Activity of Rubber Sheet Impregnated with TiO2 Particles and its Recyclability,” Catalysis Communications, 9(2), 213–218. Sriwong, C., Wongnawa, S., and Patarapaiboolchai, O. (2012), “Rubber Sheet Strewn with TiO2 Particles: Photocatalytic Activity and Recyclability,” Journal of Environmental Sciences, 24(3), 464–472. Subramanian, V., Wolf, E., and Kamat, P. V. (2001), “Semiconductor-metal Composite Nanostructures. To What Extent Do Metal Nanoparticles Improve the Photocatalytic Activity of TiO2 Films?” The Journal of Physical Chemistry B, 105(46), 11439–11446. Surolia, P. K. (2009), “Reductive Decolourisation of Dyes by Thermophilic Anaerobic Granular Sludge,” Ph.D. thesis, Bhavnagar University, India. Suwanchawalit, C., Sriwong, C., and Wongnawa, S. (2010), “Recyclable Rubber Sheets Impregnated with Potassium Oxalate Doped TiO2 and Their Uses in Decolorization of Dye-polluted Waters,” International Journal of Environmental Research, 4(4), 615–628. Tariq, M. A., Faisal, M., Muneer, M., and Bahnemann, D. (2007), “Photochemical Reactions of a Few Selected Pesticide Derivatives and Other Priority Organic Pollutants in Aqueous Suspensions of Ttitanium Dioxide,” Journal of Molecular Catalysis A: Chemical, 265(1-2), 231–236. 154

Bibliography Tayade, R. J., Natarajan, T. S., and Bajaj, H. C. (2009), “Photocatalytic Degradation of Methylene Blue Dye Using Ultraviolet Light Emitting Diodes,” Industrial & Engineering Chemistry Research, 48(23), 10262–10267. Tennakone, K. and Kottegoda, I. R. M. (1996), “Photocatalytic Mineralization of Paraquat Dissolved in Water by TiO2 Supported on Polythene and Polypropylene Films,” Journal of Photochemistry and Photobiology A: Chemistry, 93(1), 79–81. Tennakone, K., Tilakaratne, C. T. K., and Kottegoda, I. R. M. (1995), “Photocatalytic Degradation of Organic Contaminants in Water with TiO2 Supported on Polythene Films,” Journal of Photochemistry and Photobiology A: Chemistry, 87(2), 177–179. Termtanun, M. (2013), “Photocatalytic Degradation of Pesticides Using TiO2 Nanoparticles,” Ph.D. thesis, University of Nottingham, United Kingdom. Toor, A. P., Verma, A., Jotshi, C. K., Bajpai, P. K., and Singh, V. (2006), “Photocatalytic Degradation of Direct Yellow 12 Dye Using UV/TiO2 in a Shallow Pond Slurry Reactor,” Dyes and Pigments, 68(1), 53–60. Uchida, H., Katoh, S., and Watanabe, M. (1998), “Photocatalytic Degradation of Trichlorobenzene Using Immobilized TiO2 Films Containing Poly(tetrafluoroethylene) and Platinum Metal Catalyst,” Electrochimica Acta, 43(14-15), 2111–2116. Umbuzeiro, G. A., Freeman, H. S., Warren, S. H., Oliveira, D. P., Terao, Y., Watanabe, T., and Claxton, L. D. (2005), “The Contribution of Azo Dyes to the Mutagenic Activity of the Cristais River,” Chemosphere, 60(1), 55–64. UN (2008), “The Millennium Development Goals Report,” Tech. rep., New York, URL http://mdgs.un.org/unsd/mdg/Resources/Static/Products/Progress2008/ MDG_Report_2008_En.pdf, last accessed 07 October 2014. UNEP (2002), Environmentally Sound Technologies for Wastewater and Stormwater Management: An International Sourcebook, IWA, London.

155

Bibliography UNEP (2010), “Sick Water? The Central Role of Wastewater Management in Sustainable Development. A Rapid Response Assessment,” Tech. rep., URL http://www.unep.org/pdf/ SickWater_screen.pdf, last accessed 07 October 2014. Velasquez, J., Valencia, S., Rios, L., Restrepo, G., and Marin, J. (2012), “Characterization and Photocatalytic Evaluation of Polypropylene and Polyethylene Pellets Coated with P25 TiO2 Using the Controlled-temperature Embedding Method,” Chemical Engineering Journal, 203, 398–405. Vinodgopal, K. and Kamat, P. V. (1992), “Photochemistry on Surfaces: Photodegradation of 1,3-Diphenylisobenzofuran Over Metal Oxide Particles,” The Journal of Physical Chemistry, 96(12), 5053–5059. Vinu, R. and Madras, G. (2010), “Environmental Remediation by Photocatalysis,” Journal of the Indian Institute of Science, 90(2), 189–230. Wang, C., Liu, C., Zheng, X., Chen, J., and Shen, T. (1998), “The Surface Chemistry of Hybrid Nanometer-sized Particles I. Photochemical Deposition of Gold on Ultrafine TiO2 Particles,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 131(1-3), 271–280. Wang, D. S., Zhang, J., Luo, Q., Li, X. Y., Duan, Y., and An, J. (2009), “Characterization and Photocatalytic Activity of Poly(3-hexylthiophene)-modified TiO2 for Degradation of Methyl Orange Under Visible Light,” Journal of Hazardous Materials, 169(1-3), 546–550. Wang, F. and Min, S. X. (2007), “TiO2 /Polyaniline Composites: An Efficient Photocatalyst for the Degradation of Methylene Blue Under Natural Light,” Chinese Chemical Letters, 18(10), 1273–1277. Weber, E. J. and Adams, R. L. (1995), “Chemical- and Sediment-Mediated Reduction of the Azo Dye Disperse Blue 79,” Environmental Science and Technology, 29(5), 1163–1170. Weir, N. A. (1978), “Reactions of Hydroxyl Radicals with Polystyrene,” European Polymer Journal, 14(1), 9–14.

156

Bibliography WHO (2002), “Reducing Risks, Promoting Healthy Life,” Tech. rep., France, URL http:// www.who.int/whr/2002/en/whr02_en.pdf, last accessed 05 October 2014. WHO and UNICEF (2000), “Global Water Supply and Sanitation Assessment 2000 Report,” Tech. rep., New York, URL http://www.who.int/water_sanitation_health/ monitoring/jmp2000.pdf, last accessed 07 October 2014. Wijetunga, S., Li, X. F., and Jian, C. (2010), “Effect of Organic Load on Decolourization of Textile Wastewater Containing Acid Dyes in Upflow Anaerobic Sludge Blanket Reactor,” Journal of Hazardous Materials, 177(1-3), 792–798. Wilcock, R. (1988), “Study of River Reaeration at Different Flow Rates,” Journal of Environmental Engineering, 114(1), 91–105. Wilke, K. and Breuer, H. D. (1999), “The Influence of Transition Metal Doping on the Physical and Photocatalytic Properties of Titania,” Journal of Photochemistry and Photobiology A: Chemistry, 121(1), 49–53. Wong, R. S. K., Feng, J., Hu, X., and Yue, P. L. (2004), “Discoloration and Mineralization of Non-biodegradable Azo Dye Orange II by Copper-doped TiO2 Nanocatalysts,” Journal of Environmental Science and Health, Part A, 39(10), 2583–2595. Wong, W. K. and Malati, M. A. (1986), “Doped TiO2 for Solar Energy Applications,” Solar Energy, 36(2), 163–168. Wu, C. H. and Chang, C. L. (2006), “Decolorization of Reactive Red 2 by Advanced Oxidation Processes: Comparative Studies of Homogeneous and Heterogeneous Systems,” Journal of Hazardous Materials, 128(2-3), 265–272. Wu, C. H., Chien, G. P. C., and Lee, W. S. (2004), “Photodegradation of Polychlorinated Dibenzo-p-dioxins: Comparison of Photocatalysts,” Journal of Hazardous Materials, 114(13), 191–197. Wunsch, J. R. (2000), Polystyrene-synthesis, Production and Applications, Rapra Technology Limited, United Kingdom. 157

Bibliography Yadav, L. (2005), Organic Spectroscopy, Springer. Yang, H., Zhu, S., and Pan, N. (2004), “Studying the Mechanisms of Titanium Dioxide as Ultraviolet-blocking Additive for Films and Fabrics by an Improved Scheme,” Journal of Applied Polymer Science, 92, 3201–3210. Yang, J. H., Han, Y. S., and Choy, J. H. (2006), “TiO2 Thin-films on Polymer Substrates and Their Photocatalytic Activity,” Thin Solid Films, 495(1-2), 266–271. Yang, P., Lu, C., Hua, N., and Du, Y. (2002), “Titanium Dioxide Nanoparticles Co-doped with Fe3+ and Eu3+ Ions for Photocatalysis,” Materials Letters, 57(4), 794–801. Yew, S. P., Tang, H. Y., and Sudesh, K. (2006), “Photocatalytic Activity and Biodegradation of Polyhydroxybutyrate Films Containing Titanium Dioxide,” Polymer Degradation Stability, 91(8), 1800–1807. Yonar, T. (2011), Advances in Treating Textile Effluent, InTech. Yu, C., Wu, R., Fu, Y., Dong, X., and Ma, H. (2012), “Preparation of Polyaniline Supported TiO2 Photocatalyst and its Photocatalytic Property,” Advanced Materials Research, 356-360, 524–528. Yu, J. C., Yu, J. G., Ho, W. K., Jiang, J. H., and Zhang, L. D. (2002), “Effects of F-doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders,” Chemistry of Materials, 14(9), 3808–3816. Zeng, H. C. (2011), “Preparation and Integration of Nanostructured Titanium Dioxide,” Current Opinion in Chemical Engineering, 1(1), 11–17. Zhiyong, Y., Laub, D., Bensimon, M., and Kiwi, J. (2008), “Flexible Polymer TiO2 Modified Film Photocatalysts Active in the Photodegradation of Azo-dyes in Solution,” Inorganica Chimica Acta, 361(3), 589–594. Zhiyong, Y., M., E., Mielczarski, J. A., Laub, D., Minsker, L. K., Renken, A., and Kiwi, J. (2006), “Stabilization Mechanism of TiO2 on Flexible Fluorocarbon Films as a Functional Photocatalyst,” Journal of Molecular Catalysis A: Chemical, 260(1-2), 227–234. 158

Bibliography Zhu, H., Wu, Y., Zhao, X., Wan, H., Yang, L., Hong, J., Yu, Q., Dong, L., Chen, Y., Jian, C., Wei, J., and Xu, P. (2006), “Influence of Impregnation Times on the Dispersion of CuO on Anatase,” Journal of Molecular Catalysis A: Chemical, 243(1), 24–30.

159