Are there other worlds out there?

Nicolas Camille Flammarion Folie 1

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Are there other worlds out there?

Galileo Galilei; 1564 - 1642

Folie 2

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Instrumente und Technologien zur Planetenerkundung 1 Harald Michaelis, DLR-PF-PS Folie 3

EJSM- Jan. 18th 2010; ESTEC

Planetary Science

-

Technology

Die Entwicklung von neuen Technologien, Messverfahren und Instrumenten haben einen entscheidenden Einfluß auf den Erkenntnisgewinn Folie 4

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

DLR-Institute of Planetary Research, Berlin

Planetary Science & Sensor Design, Test & Calibration

Head: Prof. Tilman Spohn

Planetary Sensor Systems: Harald Michaelis Vortragstitel

5

Planetare Sensorsysteme

Design und Entwicklung von Instrumenten Entwurf von Bordsoftware; Tests, Kalibrierung

Folie 6

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Planetare Sensorsysteme Zusammenarbeit mit Industrie und wiss. Institutionen  eine Spezialisierung: optische Instrumente, Kameras

 Stichwort: Systemingenieur;  Stichwort: Projektingenieur;

Folie 7

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Planetare Sensorsysteme

Studiengänge: - Physik, Elektrotechnik- Elektronik,

- Informatik/Informationstechnik, - Technische Optik,

- Luft- und Raumfahrttechnik,

- Maschinenbau/Konstruktion,

- Technikerausbildung – Elektronik

Folie 8

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Instrumente und Technologien zur Planetenerkundung Einleitung Einteilung von Instrumenten Typische Payload einer Raumsonde Welche Technologien sind von Bedeutung Unterschiede zu erdgebundenen Instrumenten Umweltbedingungen Messaufgaben Aufbau und wesentliche Kenngrößen von Instrumenten Einfache Berechnungen Ablauf einer Instrumententwicklung Beispiele Ausblick

Folie 9

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Instrumente und Technologien zur Planetenerkundung Einteilung von Instrumenten Nach dem Wissenschaftsgebiet Nach der zu messenden Größe Nach der Instrumentkategorie Nach dem Spektralbereich Nach dem Abstand zum Meßobjekt

Folie 10

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Instrumente und Technologien zur Planetenerkundung Einteilung von Instrumenten Nach dem Abstand zum Meßobjekt in-situ Instrumente Remote Sensing Instrumente

Folie 11

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Methodische Grundlagen der Fernerkundung

Klassifizierung von Fernerkundungssystemen Systemtypen

aktive Systeme

.

abbildend (imaging)

Abbildender Radar

SLAR

Laseraltimeter

passive Systeme

nicht abbildend

sounding

Meßbereich

Leistung

Radaraltimeter

abbildend

nicht abbildend

reflektierte Solarst.

Scatterometer

Luftbildaufnahme

sounding

Therm. Eigenstrahl.

VIS/NIR Scannner

Thermal IR Scanner

Passive Mikrowellen Radiometer

SAR Folie 12

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Typische Payload einer Raumsonde Ocean Team Laser Altimeter

LA

Radio Science

RS

Ice Team Ice Penetrating Radar

IPR

Model payload is a proof-ofconcept example Other instruments may be viable

Chemistry Team Vis-IR Imaging Spectrometer

VIRIS

UV Spectrometer

UVS

Ion and Neutral Mass Spectrometer

INMS

11 model payload instruments [including radio science] Emphasizes Europe investigations

Geology Team Thermal Instrument

TI

Narrow Angle Camera

NAC

Wide Angle Camera and Medium Angle Camera

WAC + MAC

Fields an Particles Team Magnetometer

MAG

Particle and Plasma Instrument

PPI

Enables robust Jupiter system science Employs a cooperative, efficient teaming approach

Folie 13

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Technologies needed for Planetary Research :



Electronics



Optics



Mechanical Technologies



Thermal Technologies



Software (IT)

Folie 14

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Unterschiede zu erdgebundenen Instrumenten



Environment



Small mass and volume



Low power consumption



Low data rate



autonomy

Folie 15

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Umweltbedingungen The space environment is what makes a spaceborne instrument different than any on Earth  Mechanical shock and vibration Launch loads  Vacuum  Thermal  Radiation  Debris/micrometeorites

Folie 16

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Launch loads  Steady-state booster acceleration  Transient booster ignition / burn-out  Vibro-acustic loads, engine vibrations  Avoid resonance

 Shocks from separation events (stage / fairing separation) → Structural mathematical model is developed and verified by testing Folie 17

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Vacuum  Heat exchange is only radiative

Convection cannot be use for cooling (fan not useful for cooling)  Outgassing Materials evaporate at atomic level (No liquid lubricants, deposition on optical surfaces, shrinking of composites, etc.)

Folie 18

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Thermal environment Extremely high and low temperatures w/o convection Temperatures

Earth surface:

-90 °C / +14 °C / +60 °C

Sun:

+5500 °C

Deep space:

-269 °C

Planetary surface:

-200 °C / 450 °C

Folie 19

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Ionizing radiation & high-energy particles  Protons, Electrons and heavy ions trapped by planets’ magnetic field

 Solar energetic particles (solar storms and flares) and Cosmic radiation (high energy nuclei from within and from outside our galaxy)

Folie 20

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Ionizing radiation & high-energy particles

Effects  Reduce the operational capability of semiconductors (Solar Arrays & electronics)  Atom displacement and local ionization, which changes the potential and dielectric capabilities (Single Events, Latch-ups)  UV radiation damages surfaces, in particular instrument optics

Folie 21

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

EE2007 Mission Dose-Depth Curve by Mission Segment

- Copy from presentation ‘Characterization of Radiation Environments- Europa Orbiter’; Insoo Jun; June 2008; JPL Folie 22

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Instrumente und Technologien zur Planetenerkundung

Messaufgaben Radiometrische Messung Detektion lichtschwacher Objekte Spektrale Messung Hochauflösende räumliche und spektrale radiometrische Messung

Folie 23

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Instrumente und Technologien zur Planetenerkundung Messaufgaben Detektion lichtschwacher Objekte  hochempflindliches Radiometer (Detektor, Optik)

Folie 24

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Transit um HD209458

HD209458b: Umlaufzeit = 3.52 Tage Radius = 1.3 Jupiterradien

Masse = 0.63 MJupiter Dichte = 270-490 kg/m3 STARE:

Folie 25

(Charbonneau et al., 2000)

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Example: Detection of low light objects

Folie 26

EJSM- Jan. 18th 2010; ESTEC

Instrumente und Technologien zur Planetenerkundung Messaufgaben

Hochauflösende räumliche und spektrale radiometrische Messung  Multispektralkamera, abbildendes Spektrometer

Folie 27

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Olympus Mons Westabbruch

Folie 28

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Reflectance Spectrum

Folie 29

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Instrumente und Technologien zur Planetenerkundung Aufbau von Instrumenten & wesentliche Kenngrößen

Folie 30

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Architecture of Imaging Systems

Folie 31

EJSM- Jan. 18th 2010; ESTEC

HRSC Camera unit and Digital unit Designed for Mars-Express

Folie 32

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

HRSC/SRC Camera-Optics

Folie 33

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

HRSC: High Resolution Stereo Camera

Folie 34

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Data Flow in imaging systems

illumination

object

optics

optical filter

spectral sensitivity

sensor architecture

noise sources

signal processing

image compression

image storage

Data format. & Transmiss.

Folie 35

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Data Flow in imaging systems e.g. illumination device, optical calibration source, scanning mirror (object side), ...

Optical Support Equipment

CMD, HK

Detector Electronics: CLK Drivers, Signal Chain / ADC, Controller CCD / APS / IR array

Filter Reel / Prot. Cover

Camera Optics / Spectrograph

Detector (FPA)

Camera Head

Detector Electronics

CMD, HK

Imaging System

Mass Memory

Peripheral Equipment

Image Data Buffer

IPU / IME (Pre-Processing, Image Compression)

Telemetry (S/C)

Ground Station / User

CMD, HK

CMD, HK

e.g. deployable boom, movable platform, ...

Spacecraft / Lander / Carrier

Folie 36

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Instrumente und Technologien zur Planetenerkundung Typische Kenngrößen Spectral Range Spectral Resolution Dynamic Range (DR) Sensitivity Signal to Noise Ratio (SNR) Resolution (spatial)

Folie 37

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Instrumente und Technologien zur Planetenerkundung Typische Kenngrößen Spectral Range

Folie 38

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Instrumente und Technologien zur Planetenerkundung Typische Kenngrößen ‘Visible‘ Imaging Sensors are keyinstruments in many space based exploration missions‘ – Why? Stars and planets radiate a major part of their spectrum in the VIS/NIR Our brain is optimized for ‘image processing and interpretion‘

Folie 39

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Instrumente und Technologien zur Planetenerkundung Typische Kenngrößen Spectral Range

Folie 40

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Wavelength Coverage

Folie 41

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Instrumente und Technologien zur Planetenerkundung Typische Kenngrößen Spectral Resolution (R) (spectral resolving power) Beispiel:

= 1000nm; Δ=1nm  R= 1000

 R  Folie 42

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Instrumente und Technologien zur Planetenerkundung Typische Kenngrößen Beispiel Spectral Range and Resolution SR: 2-5μm

R=1500-2900

Folie 43

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Instrumente und Technologien zur Planetenerkundung Typische Kenngrößen Spectral Range Spectral Resolution Dynamic Range (DR) Signal to Noise Ratio (SNR) Sensitivity Spatial Resolution

Folie 44

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Instrumente und Technologien zur Planetenerkundung Typische Kenngrößen Dynamic Range:

S Max DR  S Min

z.B: SMax: 1V; SMin: 1μV DR= 1000 DRdB= 60dB

S Max DRdB  20 log( )dB S Min

Folie 45

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Instrumente und Technologien zur Planetenerkundung Typische Kenngrößen Signal to Noise Ratio (SNR)

z.B: S= 4000ph; QE: 0.4 Nreadout: 40e

S SNR  N SNR 

S m

 i

N 2i

SNR= 28

Folie 46

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Instrumente und Technologien zur Planetenerkundung Typische Kenngrößen SNR 

Signal to Noise Ratio (SNR)

S m

 i

z.B: S= 4000ph; QE: 0.4 Nreadout: 40e

SNR 

N 2i

4000 * 0.4 402  4000 * 0.4

SNR= 28

Folie 47

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Key Performance Parameters and key components

Noise: P(λ) Noise

S0 +N Noise

Noise is everywhere!

Folie 48

EJSM- Jan. 18th 2010; ESTEC

Key Performance Parameters and key components SNR: high signal output with low noise

Noise sources: -Object Background noise

- Proper filtering

-Stray light

-Proper baffling, surface quality, coatings

-Photon shot noise

-Limitation at high signal levels

-Detector readout noise (Nr)

-Limitation at low signal levels

-Thermal shot noise (Id)

-Detector material, cooling

-Pixel non-uniformity

-Calibration

-Electronics noise

-Art of engineering, design, grounding Folie 49

EJSM- Jan. 18th 2010; ESTEC

Key Performance Parameters and key components

Detector Noise Noise reduction is the only way if detectors sensitivity can not further increased

Folie 50

EJSM- Jan. 18th 2010; ESTEC

Performance and Design Requirements

but if we have weak signals

Nsys ~ SQRT(Nreset2 + Nread2 + Ndark2 + NADC2 + Noffschip2 )

Folie 51

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

KTC Noise THERMAL NOISE =

4k TBR

WHERE K = BOLTZMANN’S CONSTANT –23 = 1,38 x 10 T = ABSOLUTE TEMPERATURE (K) B = NOISE POWER BANDWIDTH (Hz) R = RESISTANCE (Ohms)

π 1 f3db  B= 2 4RC THERMAL NOISE =

kT C rms Volts kTC

= 1.6x10 -19 rms e = 400

C

-

rms e

-

Folie 52

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Instrumente und Technologien zur Planetenerkundung Typische Kenngrößen Spectral Range Spectral Resolution Dynamic Range (DR) Signal to Noise Ratio (SNR) Sensitivity Spatial Resolution

Folie 53

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Key Performance Parameters and key components

Sensor Sensitivity:  distinguish between point sources and extended sources For extended sources: (e.g. planetary observation): So  /4 *1/F#2 Ad Tint * ?P(ë) * ç (ë ) dë

P(λ) So So = π/4 * 1/F#2 Ad Tint *∫P(λ)* η (λ ) dλ.

Folie 54

EJSM- Jan. 18th 2010; ESTEC

Key Performance Parameters and key components Sensor Sensitivity (extended sources): So = P*π/4 Δλ η 1/F#2 Ad Tint.

η: quantum efficiency

Ad : Pixel area F#: f- number Tint: integration time With Ad= b2 (square pixel): So  = P*π/4 Δλ η 1/F#2 b2 Tint. Folie 55

EJSM- Jan. 18th 2010; ESTEC

Key Performance Parameters and key components Sensor Sensitivity (extended sources): How to increase the sensors output signal η:

Select a detector with best quantum efficiency

Ad :

Increase the pixel size

F#:

Increase the aperture ratio

Tint:

Increase the integration time

Folie 56

EJSM- Jan. 18th 2010; ESTEC

Instrumentelle Grundlagen der Fernerkundung

Fernerkundungssysteme Der Along-Track Scanner ( Pushbroom Scanner) IFOV pro Detektorpixel = 1mrad

Problem Integrationszeit:

Tint < Tdwell Die Dwell Time eines Pushbroom Scanners ist durch die Fluggeschwindigkeit relativ zum Boden bestimmt. Dwell Time =

Scannrichtung

Höhe = 10km

Bodenauflösung/ Bodengeschwindigkeit

Folie 57

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

. -

Sensitivity – SNR - Optimization

-F#

-Increase resources

-Pixel Size

-Increase resources

-Readout Noise

-Detector/Electronics Optimiz.

-Dark Current

-Detector/Material/- Cooling

-Quantum Efficiency

-Detector/coating- optimization

Folie 58

EJSM- Jan. 18th 2010; ESTEC

Detectors and key performance parameters 1. Quantum Efficiency - Interaction of the Si- lattice with „visible light‟- photons



MOScell

Gate SiO2

+ - generating of electron-hole pairs

- accumulation of the photoelectrons

Sisubstrate



Only a fraction of the light falling on the detector will actually be detected Folie 59

EJSM- Jan. 18th 2010; ESTEC

Front Illuminated CCDs

Photons

electrod e structur e

sensitive region

Silicon oxide

10-20 µm



1 pixel

Bulk silicon

Photons absorbed below the sensitive region will not form part of the signal 500 µm

Folie 60

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Front and Back Illuminated CCDs 100

BV (550nm) 90

BU (350nm)

BR DD (850nm)

80 70

BU2 (250nm)

60

BN (no coating)

50 40 30 20 10 0 150

250

350

450 550 650 Wellenlänge (nm)

750

850

950

1050

Quanteneffizienz von Back Illuminated CCDs und Deep Depletion CCDs (BR DD) mit verschiedenen Antireflexionsbeschichtungen bei –90°

Folie 61

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

High (spatial) Resolution Imaging

Die räumliche Auflösung ist die Fähigkeit zwei benachbarte Objekte eines Bildes voneinander zu unterscheiden. Es ist die minimale Distanz zwischen zwei Objekten, für welche die Bildobjekte unterschieden und separiert werden können. Folie 62

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

High (spatial) Resolution Imaging  Characteristics: Spatial Resolution depends on: 

-

Geometrical magnification Diameter of optics ‘Optical quality’: aberrations Platform stability Atmospheric turbulences Stray light Contrast ratio

Folie 63

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Optics: Typical Specification Procedure: -

Typical design Approach:

-

1. IFOV (pixel resolution) Definition

-

2. Choice of a detector (Pixel Size)

-

3. Calculate focal length

-

4. Select f# number (or the aperture of the optics) according to diffraction limit and/or SNR estimations

Folie 64

10

EJSM- Jan. 18th 2010; ESTEC

High (spatial) Resolution Imaging

Spatial Resolution depends on: Characteristics: -

Geometrical magnification Object at infinity Pixel (image) G P P g  f  IFOV f

G g Focal length (f)= IFOV/Pixel size

Beispiel : G  1m g  200km IFOV  5rad Folie 65

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

-



-

4. Select f# number (or the aperture of the optics) according to diffraction limit and/or SNR estimations

F#= f/D f: focal length D: Aperture of the Optics

Folie 66

EJSM- Jan. 18th 2010; ESTEC

Examples:

 F# is typical between 5 – 10!

Folie 67

EJSM- Jan. 18th 2010; ESTEC

Conceptional Design - Optics

F# is typical between 5 – 10! What does it mean from resolution point of view?

Folie 68

EJSM- Jan. 18th 2010; ESTEC

Conceptional Design - Optics

F/- Number and Pixel-Sampling

  2.44 *

Intensity



D  * f  2.44 *  * F # with

  800nm 1.22

1.22

2.44 * F#

n*

F #  10  * f  20m

Folie 69

EJSM- Jan. 18th 2010; ESTEC

Conceptional Design - Optics

F/- Number and Pixel-Sampling Pixelsize

Bdiff

+

or

Bdiff

=

Bdiff

Folie 70

EJSM- Jan. 18th 2010; ESTEC

Instrumentelle Grundlagen der Fernerkundung

Modulations-Übertragungs-Funktion (modulation transfer function MTF) Die Modulation m ist definiert als: m = (Imax - lmin) / (lmax + lmin) ≤ 1 Die MTF eines bildgebenden Systems ist definiert als Modulationsrate, die am Detektor produziert wird, zur Modulationsrate des Targets. Sie ist eine Funktion der Raumfrequenz. Sie kann für FE-Systeme und/oder getrennt für Subsysteme angegeben werden.

MTF

b a

Räumliche Frequenz q

MTF für typische Filme (a) geringe Auflösung, (b) hohe Auflösung.  Literaturhinweis: McKinney R. 0. Photographic materials and processing in, Salma C.C., ed Manual of photogrammetry, 4. Edition, eh. 6, p. 305-366, American Society of Folie 71 Photogrammetry, (1990) Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Instrumente der Fernerkundung

Kameras: Effekte des optischen Systems

Folie 72

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Optics Resolution and MTF MTFdiff (f) = 2/Pi * (arccos(f/fo) – (f/fo)* 1-(f/fo)2 . fo = 1/(F#) ; fo: spatial sampling frequency in line-pairs/mm

1

MTF of a diffraction limited optics

0 Fo in lp/mm

Folie 73

EJSM- Jan. 18th 2010; ESTEC

Instrumentelle Grundlagen der Fernerkundung

Bildgebende Systeme und ihre Eigenschaften: Räumliche Auflösung

Auflösungs- und Beobachtungstargets mit hohem Kontrast. Betrachten Sie das Bild (HCVorlage) aus 5 m Entfernung. Für A finden Sie den Set der dicht platziertesten Balken, die Sie auflösen können. Für B finden Sie die engste Linie, die Sie beobachten können.

Auflösungs- und Beobachtungstargets mit mittlerem Kontrast. Betrachten Sie das Bild aus 5 m Entfernung. Für A finden Sie den Set der dicht platziertesten Balken, die Sie auflösen können. Für B finden Sie die engste Linie, die Sie beobachten können. Vergleichen Sie mit dem Beispiel des hohen Kontrastes. Folie 74

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Optics Resolution and MTF MTFdiff (f) = 2/Pi * (arccos(f/fo) – (f/fo)* 1-(f/fo)2 . fo = 1/(F#)

At F/5...F/10:

The resolution of the optics is (in most cases) higher than the `Pixel-resolution´ 

The system resolution is pixel limited Dr.H. Michaelis Tel.:+49-30-67055 364, Fax:+49-30-67055 384 e-mail: [email protected]

Folie 75

EJSM- Jan. 18th 2010; ESTEC

Optics Resolution and MTF MTFdiff (f) = 2/Pi * (arccos(f/fo) – (f/fo)* 1-(f/fo)2 .

fo = 1/(F#)

1

0 Fo in lp/mm

Folie 76

EJSM- Jan. 18th 2010; ESTEC

Optics Resolution and MTF MTFdiff (f) = 2/Pi * (arccos(f/fo) – (f/fo)* 1-(f/fo)2 .

fo = 1/(F#)

1lp

Pixel

Folie 77

EJSM- Jan. 18th 2010; ESTEC

Optics Resolution and MTF MTFdiff (f) = 2/Pi * (arccos(f/fo) – (f/fo)* 1-(f/fo)2 .

fo = 1/(F#)

Dr.H. Michaelis Tel.:+49-30-67055 364, Fax:+49-30-67055 384 e-mail: [email protected]

Folie 78

EJSM- Jan. 18th 2010; ESTEC

Optics Resolution and MTF Example / Test campaign

1.

Moon image taken with

D: 100mm : f: 1000mm

F#: 10

Folie 79

EJSM- Jan. 18th 2010; ESTEC

Optics Resolution and MTF Example / Test campaign

95Her with SRC – 6.3”

2. Mars : 28.8.2003: F/10

Folie 80

EJSM- Jan. 18th 2010; ESTEC

Optics Resolution and MTF Example / Test campaign

2. Mars: 28.8.2003: F/20

Folie 81

EJSM- Jan. 18th 2010; ESTEC

Optics Resolution and MTF Example / Test campaign

2. Mars: 28.8.2003: F/40

20 Folie 82

EJSM- Jan. 18th 2010; ESTEC

Optics Resolution and MTF – large F#

The problem with F# > 10 is: - lower SNR What we can do:  High QE detectors  larger filter bandwidth  larger integration-time – e.g. by CCD-TDI operation

or motion compensation

Folie 83

EJSM- Jan. 18th 2010; ESTEC

Principle of APS-TDI

t1 t² t3 t4

vg

Folie 84

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Institut WP - Abteilung Sensortechnologie

Used Linear CCD, CCD Arrays and CMOS Detectors at DLR

5 years

Cassini-Huygens- DISR MPS; 512x512

Folie 85

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Large Focal Plane with CCD Proximity Electronics

9k x 7k CCD (Philips\DLR\Steward Observatory) Folie 86

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

5 * 12 k Linear CCD Arrays on a Focal Plate

Folie 87

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

MOSES MOSES 7888: Modular (CCD) Sensor Electronics

CCD TH7888

1024 x 1024pixel

Spectral range

250-1020 nm

Pixel size

14 microns

Readout Rate

1Mpixel/s

Exposure Time

1 ms – 60s

Resolution

14Bit

designed by: M. Tschentscher,

T. Behnke, H. Michaelis Folie 88

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

~ 750 mm 0.92 deg

The GAIA mission The ASTRO Focal Plane 600 mm 0.737 deg

ASM1 ASM2

AF1-11

Astro field #1

< 4 mm

< 1 mm

BBP

Astro field #2

AF CCDs: Cell size: 49 x 60 mm² Active area: 45 x 59 mm² (4500 x 1966 pixels) Pixel size: 10 x 30 µm² ASM and BBP CCDs: Cell size: 30 x 60 mm² Active area: 26 x 59 mm² (2600 x 1966 pixels) Pixel dimensions: 10 x 30 µm²

Folie 89

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

GAIA- Focal Plane Demonstrator

TDMD:

Folie 90

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Instrumente und Technologien zur Planetenerkundung

Ablauf einer Instrumententwicklung Beispiele – aktuelle Projekte

Folie 91

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Instrumente und Technologien zur Planetenerkundung Ablauf einer Instrumententwicklung 1. Analysis of Science Requirement and translation into instrument requirements 2. Phase- A: Conceptional Instrument Design 3. Phase-B: Preliminary Instrument Design: i/f- Definition, Breadboarding 4. Phase-C: Instrument Final Design, CDR, STM, EM 5. Phase-D: Flight Model Development

Folie 92

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Folie 93

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Deliverable Items for 2 different Model Approaches •Classic Qualification-Model Approach -> clear task sharing: qualification >< flight H/W -> early H/W design freeze -> refurbished EQM -> FS

STM Structural /Thermal Model

EQM Electrical Qualificatio n

FM

FS

Flight Model

Flight Spare

Model

•The Protoflight-Model Approach -> stressed by qualification model = flight H/W -> reduced costs (?)

STM Structural /Thermal Model

EM Electrical Model

PFM

Proto Flight Model

Folie 94

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Present Activities and Outlook

Folie 95

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Instrumente der Fernerkundung

Aktive Systeme: LASER Altimeter

Mars Orbiter Laser Altimeter (MOLA) Einsatz:

Mars Global Surveyor

Eigenschaften: Diodengepumter Laser als Transmitter, Nd: YAG Laser Wellenlänge 1064 nm, Pulsrate: 10 HZ, Energie: 48 mJ/Pulse LaserSpot: 0,4 mrad, Empfänger: Spiegel 50 cm parabolisch, FOV: 0,85 mrad Vertikale Präzision (shot-to-shot) 37,5 cm, Spotgröße am Boden 130m

Folie 96

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Instrumente der Fernerkundung

Aktive Systeme, MOLA

Folie 97

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

BELA- Overall Design - End 2009 Receiver

ELU

Transmitter

Folie 98

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Bepi Colombo Laser Altimeter (BELA) BepiColombo Laser Altimeter In Betrieb bei einer Oberflächenentfernung zwischen 400 und 1050 km (60% der Orbitdauer)

12 kg, 50 W 50 mJ Pulsenergie bei 10 Hz 1064 nm Laserwellenlänge 250 m Abstand der Messpunkte entlang der Flugrichtung 25 km Abstand der Messpunkte am Äquator quer zur Flugrichtung

Folie 99

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Subsysteme

Teleskop

Detektor Rangefinder Datenverarbeitung

Laserkopf

Laserelektronik

Powerkonverter

Folie 100

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Laser link budget

Folie 101

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Alignment

Millenium Dome

Receiver FOV

Laser spot

Folie 102

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Prinzip der Laseraltimetrie Erfassen der Oberflächentopographie eines Körpers

Methode: 1.

Aussenden eines Laserpulses und Start der “Stoppuhr”

2.

Der Laserpuls wird an der Oberfläche reflektiert

3.

Emfpangen des reflektierten Laserpulses

4.

Berechnung der Entfernung zur Oberfläche

Image credit: Thomas et al., 2007 Folie 103

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

BELA- DPU Electrical Design - End 2009

ELU- Housing

Test of Data Processing Module and RangeFinder Folie 104

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

From Science Requirements to Instrument Design – ExoMars PanCam Mission Environment: ESA‘s ExoMars Rover Mission (launch planned for 2018)

Folie 105

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

From Science Requirements to Instrument Design – ExoMars PanCam

Folie 106

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

From Science Requirements to Instrument Design – ExoMars PanCam Phase B1 Design: PanCam includes Two Wide Angle Cameras (WACs), 34° FoV, each eye equipped with a 12-positions filterwheel for stereo, multispectral observations A High Resolution Camera (HRC), 5° FoV, equipped with an on-chip RGB filter and an autofocus mechanism Arranged on a common Pan-Tilt Unit (PTU) on top of the ExoMars rover mast assembly Wide Angle Cameras (WACs): 34 FoV, 1024 x 1024 CCD, multispectral filter set (12 filters/eye) IFOV 580µrad/pixel horizontal =>1.2mm/pixel scale at 2m distance and 58mm/pixel scale at 100m Fixed focus (between 1.2m and infinity)

HRC

High Resolution Camera: 5° FoV, 1024 x 1024 CIS, RGB filter on-chip IFOV 83 µrad/pixel => pixel scale of 0.17mm/px at 2m distance and 8.3mm at 100m (magnification of a factor of ~7 compared to the WACs) Autofocus capability (between 0.9m and infinity) …arranged on a common pan-tilt unit on top of the rover mast WACs with Folie 107 Filterwheels Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

From Science Requirements to Instrument Design – ExoMars PanCam Field/Laboratory Tests of functional performance: AMASE (Arctic Mars Analogue Svalbard Expedition) in August 2008 and 2009 (Mission Simulation with PanCam as part of an ExoMars-representative instrument suite) ExoMars Rover Vision Test with Astrium UK in a Sandy Quarry, Bedfordshire, UK (PanCam integrated on the ExoMars Rover Chassis Breadboard ‚Bridget„) Two ‚Geological Blind Tests„ in the ‚Planetary Analogue Terrain„ Lab of the Space Robotics Group, Aberystwyth University, Wales

HRC, target 2

1.2

1

2

quartz

Target 1 Target 2 Target 3

0.8

HRC, target 1 0.6

1

0.4

3

quartz 0.2

HRC, target 3 0 400

WAC

600

800

goethite Folie 108

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

1000

ExoMars PanCam Field Testing (2)

A B

A A

1

B

JS02 BC CF BC

CT/CF

H2O

?

WAC

0.9 0.8

Reflectance

0.7

HRC

0.6 0.5 0.4 0.3

HRC

0.2 0.1

Absorption bands: CT = Carotenoids; CF = Chlorophyll a & b; BC = Bacteriochlorophyll.

0 400

500

600

700

800

Wavelength (nm)

Harald Michaelis; DLR-PS – EJSM

Pink Meeting

at

Orange Green Jan. 18-20 2010;

900

1000

Folie 109

White ESTEC

ExoMars PanCam Field Testing (3)

Bockfjorden, Troll Springs

HRC

WAC

Clearly visible patches of fossilized microbial mats

Spectrum consistent with carbonate. W/o any active biological pigmentation present, the detection of fossilized biomats is not possible

.

18x1 HRC mosaic Folie 110

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

AsteroidFinder Compact satellite based on DLR SSB design Quasi-Polar, Low-Earth, Sun-synchronous Orbit (650-700 km alt.) 25-cm wide-field optical telescope Spacecraft and telescope layout optimized for observations at small solar elongations (30 to 60 ) No consumables. Attitude control through reaction wheels and magnetic torquers for wheel de-saturation Folie 111

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Telescope configuration F.L.

760 mm

Aperture

>400 cm2

f ratio

3.4

CCD array

4 x 1024 x 1024

Pixel size

13 µm

Corrected field

1.40° radius

IFOV

3.5”/pix

Design drivers In-field and out-of-field straylight rejection Maximize aperture for the given envelope

Large FOV and excellent optical quality Thermal requirements Folie 112

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Future Missions: EJSM/JEO:

Launch: 2020

Arrival: 2026 Folie 113

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC

Thanks for your attention

Folie 114

Harald Michaelis; DLR-PS – EJSM Meeting at Jan. 18-20 2010; ESTEC