Analysis of Different Timpani Playing Techniques

      Analysis  of  Different  Timpani  Playing   Techniques         Andraž  Poljanec       Seminar  Thesis       University  of  Music  and  ...
Author: Tamsyn Caldwell
2 downloads 0 Views 5MB Size
   

 

Analysis  of  Different  Timpani  Playing   Techniques      

 

Andraž  Poljanec      

Seminar  Thesis       University  of  Music  and  Performing  Arts  Vienna,     Institute  13/3     November  2012–June  2013    

Superviser:     Ao.   U niv.   P rof.   D r.   M atthias   A .   B ertsch    

 

   

  Introduction  ......................................................................................................................................  3   Background  Aspects  of  the  Instrument  and  Playing  Techniques  ...................................  4   Drums  history  and  classification  .............................................................................................................  4   Vibration  Modes  .....................................................................................................................................  4   Playing  Styles  –  Grips  ..............................................................................................................................  7   Articulation  .............................................................................................................................................  7   Timpani  Mallets  ......................................................................................................................................  8   Experiments  ......................................................................................................................................  9   High-­‐speed  Video  Recording  of  Different  Playing  Techniques  ...............................................................  9   Results  and  Interpretation  of  Video  Recordings  ...................................................................................  13   Sound  Recordings  .................................................................................................................................  21   Sound  Analyses,  Results  and  Interpretation  .........................................................................................  22   Electromyographical  Measurements  ....................................................................................................  26   Conclusion  .......................................................................................................................................  26   References  .......................................................................................................................................  27  

   

 

Introduction   The   sound   of   timpani   is   primarily   defined   by   the   type   and   material   of   the   instrument   and   through  the  playing  style  of  the  musician.  While  there  is  many  knowledge  and  research  on   the   instrument,   e.g.   the   vibration   characteristics   of   timpani   heads,   there   is   still   a   lack   of   scientific   research   on   the   playing   technique.   The   acoustic   and   physiological   aspects   of   the   process  striking  the  timpani  are  focused  in  this  work.   The   research   idea   was   to   confirm   whether   a   timpanist   can   perform   different   sounds   on   timpani  exploring  different  techniques/playing  styles  or  grips  and  different  strokes  to  change   the   degree   of   articulation.   Different   mallets   were   used,   also   different   head   tensions   and   dynamics.  Strokes  were  first  filmed  in  high-­‐speed  to  get  slow  motion  recordings  for  analysis   (Figure  1),  then  sound  recordings  of  different  strokes  were  made.     In   addition   to   sound   recordings   electromyography   measurements   (EMG)   were   made   to   discover  the  tension  of  muscles  on  timpanist's  arm,  shoulder  and  chest  while  playing  (Figure   2).  These  physiological  measurements  provided  insights  to  modern  analysis  techniques.  Data   acquisition  has  been  stored  and  analysis  can  lead  to  additional  research  paper.  

 

   

Figure  1.  High-­‐speed  video  analysis.  

Figure  2.  EMG  study.  

Background  Aspects  of  the  Instrument  and  Playing  Techniques   Drums  history  and  classification   Drums   are   known   as   the   oldest   musical   instruments.   They   were   evolving   with   human   race   and  always  played  very  important  role  in  every  musical  culture.  We  don't  know  exactly  when   and  where  the  first  membrane  drum  was  made,  but  some  ancient  drums  are  at  least  5000   years  old  (Fletcher  and  Rossing  1998,  583).   Timpani   are   of   Arabian   origin.   They   were   originally   quite   small,   introduced   to   Europe   they   were  called  nakers  (from  the  Arabic  Naqqareh)  (Forsyth  1982,  41).  Timpani  came  to  western   Europe  in  14th–15th  century  as  cavalry  instruments;  they  were  played  on  horseback  in  pairs.   Following   eastern   custom,   they   were   paired   with   the   trumpet.   In   the   seventeenth   century   timpani  found  their  way  indoors,  joining  the  orchestra  along  with  trumpets,  horns  and  oboes   (Beck  1995,  201–202).   In  general,  modern  drums  can  be  divided  into  two    groups:  those  that  convey  a  strong  sense   of  pitch  (e.g.  timpani)  and  those  that  do  not  (Fletcher  and  Rossing  1998,  583).   As  vibrating  systems,  drums  can  be  divided  into  three  groups:   • • •

those   consisting   of   a   single   membrane   coupled   to   an   enclosed   air   cavity   (e.g.   timpani),   those  consisting  of  a  single  membrane  open  to  the  air  on  both  sides  (e.g.  tom-­‐tom,   bongos,  conga),   those   consisting   of   two   membranes   coupled   by   an   enclosed   air   cavity   (e.g.   snare   drum,  base  drum)  (Fletcher  and  Rossing  1998,  583).  

This  thesis  focuses  on  the  timpani  and  hence  the  first  group  of  drums.  

Vibration  Modes   The  essential  element  of  every  drum  is  a  membrane,  which  is  stretched  over  a  frame.  The   impact  of  the  striking  mallet  causes  a  vibration  of  the  membrane.  In  contrast  to  the  string   which   is   one-­‐dimensional   vibrator,   the   membrane   is   a   two-­‐dimensional   vibrator   (its   thickness   is   negligible)   (Campbell   and   Greated   1987,   411).   Non   vibrating   points   on   a   vibrating   string   are   called   nods   and   their   two-­‐dimensional   equivalents   are   nodal   lines   –   points   on   the   membrane   which   remains   at   rest   during   the   vibration.   For   a   circular   membrane  of  uniform  thickness  and  tension,  the  nodal  lines  are  either  diametral  lines  (m)   passing  through  the  centre  of  the  head,  or  circles  concentric  with  the  frame  (n)  (Campbell   and  Greated  1987,  412).      

  Figure  3  (Ravnikar  1999,  60).     Figure  3  shows  25  mode  patterns  of  an  ideal  membrane  with  numbers  of  nodal  diameters   and   nodal   circles   in   brackets.   The   first   mode   with   no   nodal   diameters   and   only   one   nodal   circle  (the  rim)  is  (0,  1)  mode  and  so  on.    

 

Figure  4.  Three-­‐dimensional  presentation  of  modes  (0,  1),  (1,  1),  (2,  1),  (3,  1)  (Bertsch  2001).     The   mode   frequencies   of   an   ideal   circular   membrane   were   first   calculated   already   in   19th   century   (by   Lord   Rayleigh   in   1877).   If   the   properties   of   the   membrane   are   known,   the   frequency   of   particular   mode   of   a   circular   membrane   (m,   n)   can   be   calculated   by   the   next   formula  (Campbell  and  Greated  1987,  413):   𝑓!" =

1 𝑇 ∙ 𝑗   2𝜋𝑟 𝜌 !" !

!"

where  𝑟  [𝑚]  is  radius  of  the  membrane,  𝑇  [!]  is  its  tension,  𝜌  [!! ]  surface  density  and  𝑗!"  is   a  value  given  by  Bessel’s  function  (depending  on  the  number  of  nodal  diameters  –  m  –  and   circles  –  n  –  in  the  pattern)  as  seen  from  the  next  Table  1:  

  m

0

1

2

3

4

5

n

1

2,404

3,832

5,135

6,379

7,586

8,780

2

5,520

7,016

8,417

9,760 11,064 12,339

3

8,654 10,173 11,620 13,017 14,373 15,700

4

11,792 13,323 14,796 16,224 17,616 18,982

5

14,931 16,470 17,960 19,410 20,827 22,220 Table  1  (Rayleigh  1945,  vol.  1,  330).  

As   seen   from   the   upper   formula   the   frequency   is   inversely   proportional   to   the   radius,   so   doubling   the   radius   of   a   membrane   will   halve   the   frequency   (the   pitch   will   drop   by   an   octave).  Besides  the  frequency  is  proportional  to  the  square  root  of  the  tension,  so  in  order   to   raise   the   pitch   by   an   octave,   the   tension   must   be   increased   fourfold   (Campbell   and   Greated  1987,  413).   For   an   example   we   can   count   out   the   frequency   of   the   first   mode   (0,   1)   for   the   ideal   !"

undamped   circular   membrane   of   radius   0,325   𝑚,   with   surface   density   0,26   !! ,   under   a   !

tension  of  3216,2    !,  depending  on  the  value  𝑗!"  from  Table  1:   𝑓!,! =

2,404 3216,2  𝑘𝑔  𝑚  𝑚! 1     = 131     = 131  𝐻𝑧   2𝜋 ∙ 0,325  𝑚 0,26  𝑘𝑔  𝑚  𝑠 ! 𝑠

This  is  the  frequency  of  C3.  If  we  continue  counting  for  some  more  modes  (applying  values   of  𝑗!"  from  Table  1)  we  would  get  this  series  of  pitches,  assuming  a  first  mode  pitch  of  C3:  

  Figure  5  (Campbell  and  Greated  1987,  412).   It  is  obvious  that  the  normal  modes  of  an  ideal  circular  membrane  have  frequencies  which   are   strongly   inharmonic.   Such   a   sound   lacks   any   definite   sense   of   pitch   (Campbell   and   Greated  1987,  410–411).  

So   how   can   timpani   produce   a   definable   pitch?   It   was   founded   out   that   the   bowl,   head   stiffness   and   the   surrounding   air   mass   coaxes   certain   inharmonic   frequencies   into   an   ordered   set   of   partials   (typically   the   fifth,   sixth,   octave,   tenth   and   twelfth),   making   the   timpani   a   pitched   percussion   instrument.   The   mass   of   air   inside   and   outside   of   the   bowl   accentuates   the   lower   partials.   On   the   other   hand   the   tension   on   the   drumhead   emphasizes   the  upper  partials  (the  fifth  and  above).  The  bowl  separates  the  upper  and  lower  parts  of  the   head,  decreases  the  decay  of  the  partials  and  accentuates  the  principal  frequency  (Schweizer   2010,  6).   Studies  were  made  also  about  the  influence  of  the  air  volume  in  the  kettle  and  the  influence   on  the  membrane  material.  Significant  differences  were  found  between  synthetic  skins,  goat   skin  and  calf  skin.  Another  studies  were  focused  on  the  clarity  of  pitches  on  timpani.  It  was   founded   that   the   sound   of   a   calf   skin   head   is   clearer   than   that   of   synthetic   membranes   (Bertsch  2001,  3).  

Playing  Styles  –  Grips   Playing   style   includes   the   grip   in   the   first   place,   very   important   are   also   the   arm   motion,   the   amount  of  upper  body  put  into  a  stroke  and  standing  or  sitting  position.   The   French   style   means   the   mallet   between   the   first   joint   of   the   index   finger   and   the   pad   of   the   thumb.   Playing   with   thumbs   up   and   remaining   fingers   widely   cupped   around   the   handle   butt   allows   the   timpanist   to   bounce   the   stick   quickly   and   to   get   a   bright   sound   from   the   head.  The  French  style  is  usually/historically  played  in  standing  position  or  in  higher  sitting   position.  In  the  German  style  the  handle  is  gripped  between  the  first  joint  of  the  thumb  and   much  higher  along  the  index  finger,  the  other  fingers  are  wrapped  lightly  around  the  stick.   Playing   with   palms   down   creates   darker   sound.   The   American   style   is   known   as   a   hybrid   between  French  and  German  –  gripping  more  in  the  French  manner  but  with  other  fingers   wrapped  around  the  handle  and  playing  palms  down.  Mallets  are  held  more  firmly,  but  the   strong   wrist   motion   assures   great   bouncing   effect   (Schweizer   2010,   14–16).   The   Austrian   grip  is  a  modification  of  the  German  one  with  more  thumb  pad  on  the  shaft  and  the  index   finger  slightly  more  wrapped  around.   This  thesis  focuses  on  French  style  compared  to  American  style  in  some  cases.    

Articulation   For   the   short   and   bright   staccato   sound   the   mallet   is   usually   gripped   between   the   thumb   and   first   two   remaining   fingers,   the   wrist   helps   to   achieve   quick   bouncing   effect.   We   get   the   legato  sound  by  gripping  the  mallet  much  more  loosely  between  the  thumb  and  the  index  

finger   only.   The   mallet   remains   on   the   head   slightly   longer   and   produces   wider   sound   (Schweizer  2010,  28–29).    

Timpani  Mallets   Very  different  mallets  are  used  to  bring  out  a  variety  of  sound  and  articulation  from  legato   to  staccato  and  from  dark  to  bright.  According  to  material  of  the  handle  and  the  head  of  the   stick  the  weight  changes  a  lot.  Lighter  mallets  produce  a  brighter  sound  with  fewer  audible   lower   partials   and   emphasized   upper   and   nonharmonic   partials,   heavier   wooden   mallets   with  wooden  heads  bring  out  the  fundamental  and  lower  partials  (Schweizer  2010,  9–11).    

 

Experiments   High-­‐speed  Video  Recording  of  Different  Playing  Techniques    

To   analyse   the   contact   between   the   mallet   and   the   timpani   head   the   high-­‐speed   camera   Vision   PHANTOM   V12.1   was   used.   Slow   motion   recordings   were   filmed   in   high-­‐speed   with   2000,   4000   and   8000   images   per   second.   Table   1   shows   the   relationship   between   normal   movie  speed  and  different  slow  motions.  We  get  slow  motion  by  filming  with  more  images   per  second  as  usual,  then  we  perform  the  movie  with  normal  speed.       normal  movie   slow  motion   slow  motion   slow  motion   slow  motion   slow  motion  

30  images/s   100  images/s   1000  images/s   2000  images/s   4000  images/s   8000  images/s    

1  s  =  1  s   1  s  =  3,34  s   1  s  =  33,34  s   1  s  =  1  min  6,67  s   1  s  =  2  min  13,34  s   1  s  =  4  min  26,67  s  

Table  2.  The  relationship  between  normal  movie  speed  and  different  slow  motions.  

  Figure  6.  26''  Slingerland  timpano.  

Slow   motion   recordings   were   done   with   26''   Slingerland   timpano   (Figure   6)   with   Remo   Weatherking   Renaissance   head,   applying   different   playing   styles   or   grips   (French   and   American),   different   strokes   (staccato,   legato),   dynamics   forte   and   piano,   different   skin   tensions  (A2,  C3,  F3)  and  different  mallets  (Figure  7,  Table  3).  

  Figure  7.  Timpani  mallets  used  in  experiments.       working  mark  

BFS(oft)  

BFM(medium)  

BFH(ard)  

WWF  

WW0  

handle   head  cover  material   core  material   head  diameter  [mm]   core  diameter  [mm]   mallet  weight  [g]  

Bamboo   Felt   cork   35,75  (big)   24,05   26  

Bamboo   Felt   cork   27,24  (medium)   19,97   26  

Bamboo   Felt   cork   19,40  (small)   16,02   27  

Wood   thin  Felt   wood   18,59  (small)   17,20   51  

Wood   no  cover   wood   22,70   22,70   54  

 

Table  3.  The  composition  of  five  different  mallets  used  in  the  experiments.      

         

The  order  of  video  high-­‐speed  recordings  is  presented  in  Table  4.  Each  stroke  was  repeated   several  times  with  damping  between  them.   Grip  

stroke   French   legato   French   legato   French   legato   French   stacc.   French   legato   French   stacc.   French   legato   French   legato   American   legato   French   stacc.   French   legato   French   stacc.   French   legato   French   stacc.   French   stacc.   French   stacc.   French   stacc.   French   stacc.   French   stacc.  

dynamic   tone   mallet   rec.  speed   forte  roll   C3   BFS   2000   forte  roll   C3   WWF   4000   forte  roll   C3   BFM   4000   forte   C3   BFM   4000   forte   C3   BFM   4000   piano   C3   BFM   2000   piano   C3   BFM   2000   forte   C3   BFM   2000   forte   C3   BFM   2000   forte   F3   BFM   8000   forte   F3   BFM   8000   forte   F3   BFH   2000   forte   F3   BFH   2000   forte   F3   WWF   2000   forte   F3   WW0   2000   forte   A2   BFS   4000   forte   A2   BFH   4000   forte   F3   BFS   4000   forte   F3   BFH   4000  

  Table  4.  The  order  of  recordings  (last  column  presents  the  recording  speed  as  the  number  of  pictures   per  second).  

 

Figure  8.  The  high-­‐speed  camera  Vision  PHANTOM  V12.1  and  technical  information.      

 

Results  and  Interpretation  of  Video  Recordings    

Mallet   Motion   Grip,  Articulation,  Dynamic,  Tone,   Contact  Time   Duration   Mallet   Duration[ms]   (Horiz.-­‐Horiz.)   [ms]  

     

Wrist  Motion   Duration  [ms]  

French,  stacc.,  forte,  C3,  BFM  

24,225  

6,000  

145,500  

 

French,  legato,  forte,  C3,  BFM  

30,000  

6,450  

214,575  

 

French,  stacc.,  piano,  C3,  BFM  

36,000  

8,550  

141,450  

French,  legato,  piano,  C3,  BFM  

40,500  

7,950  

147,750  

French,  legato,  forte,  C3,  BFM  

56,100  

   

563,100  

 

American,  legato,  forte,  C3,  BFM  

50,550  

   

390,450  

 

French,  stacc.,  forte,  F3,  BFH  

28,500  

4,950  

183,000  

French,  legato,  forte,  F3,  BFH  

30,000  

5,550  

511,800  

French,  stacc.,  forte,  F3,  WWF  

30,600  

4,950  

161,250  

French,  stacc.,  forte,  F3,  WW0  

27,000  

5,100  

161,850  

 

     

Table  5  shows  following  durations  needed  for  the  analyses  of  playing  techniques:   • • •

the  duration  of  mallet  motion  between  two  horizontal  positions  before  and  after  the   stoke,     the  duration  of  mallet-­‐skin  contact,     the  duration  of  wrist  motion.  

Duration  of  the  mallet  motion   The   second   column   of   Table   5   (mallet   motion   duration)   shows   how   much   time   (in   milliseconds)   a   mallet   needs   from   the   first   horizontal   position   to   the   next   one   after   the   stroke.  As  seen  from  Table  5  the  mallet  playing  staccato  stroke  has  obviously  higher  speed   than   legato   because   less   time   is   needed   from   the   first   horizontal   position   to   the   next   one   after   the   stroke.   Higher   speed   of   the   mallet   impacts   on   the   sound,   as   seen   from   sound   recording  analyses  in  the  next  chapter.     The  motion  of  mallet  is  presented  by  the  following  figures.  On  Figures  9a–d  the  mallet  BFM   (described   in   Table   3   and   seen   in   Figure   7)   is   gripped   in   the   French   manner   and   for   the   staccato  forte  sound  (described  on  the  page  7  –  two  fingers  besides  the  thumb  are  holding   the  mallet).    

  Figure  9a.  Horizontal  position  before  the  contact  with  membrane.  

  Figure  9b.  Beginning  of  the  contact.  

  Figure  9c.  End  of  the  contact.  

  Figure  9d.  Horizontal  position  after  the  contact.  

On  Figures  10a–d  the  mallet  BFM  (described  in  Table  3  and  seen  in  Figure  7)  is  gripped  in  the   French  manner  and  for  the  legato  forte  sound  (described  on  the  page  7  –  the  mallet  is  held   between  the  thumb  and  the  index  finger).  

  Figure  10a.  Horizontal  position  before  the  contact  with  the  membrane.  

  Figure  10b.  Beginning  of  the  contact.  

  Figure  10c.  End  of  the  contact.  

  Figure  10d.  Horizontal  position  after  the  contact.  

Comparison  between  American  and  French  grip  shows  higher  speed  of  the  mallet  using  the   American  grip.  The  sound  recording  analyses  in  the  next  chapter  confirm  this.   On  Figures  11a–c  the  mallet  BFM  (described  in  Table  3  and  seen  in  Figure  7)  is  gripped  in  the   American  manner  and  for  the  legato  forte  sound  (described  on  the  page  7  –  playing  palms   down  and  with  fingers  wrapped  around  the  handle).      

  Figure  11a.  Horizontal  position  before  the  contact  with  the  membrane.  

  Figure  11b.  The  contact  with  the  membrane.  

  Figure  11c.  Horizontal  position  after  the  contact.  

Duration  of  the  mallet-­‐skin  contact   Regarding  the  contact  time  duration  (the  third  column  of  Table  5)  the  staccato  stroke  has   slightly  shorter  time  compared  to  legato  stroke  which  is  expected.  There  is  an  exception  in   the   case   of   piano   dynamic,   where   the   contact   time   of   staccato   was   0,6   millisecond   longer   than  legato  stroke.  At  the  first  glance  this  is  a  surprise  considering  that  a  timpanist  is  trying   to  play  staccato  with  the  shortest  time  contact  possible.  But  we  must  not  forget  the  staccato   stroke   speed   is   higher   than   legato   so   the   mallet   penetrates   deeper   into   membrane   which   could  longer  the  contact  time.  

  Figure  12.  The  mallet-­‐skin  contact  is  certainly  longer  with  soft  mallet.    

The  wrist  motion   Regarding   the   wrist   motion   (the   fourth   column   of   Table   5)   it   is   obviously   that   the   wrist   is   moving  longer  playing  legato,  but  the  difference  is  big  only  in  forte  dynamic.  If  we  compare   French  and  American  grip  the  wrist  is  longer  in  motion  using  the  French  one.     The   wrist   motion   is   presented   by   the   following   figures.   On   Figures   13a–c   the   mallet   BFM   (described   in   Table   3   and   seen   in   Figure   7)   is   gripped   in   the   French   manner   and   for   the   staccato  forte  sound  (described  on  the  page  7  –  two  fingers  besides  the  thumb  are  holding   the  mallet).  

  Figure  13a.  Beginning  of  the  wrist  motion.  

  Figure  13b.  The  lowest  point  of  the  wrist  motion.  

  Figure  13c.  End  of  the  wrist  motion.  

On  Figures  14a–c  the  mallet  BFM  (described  in  Table  3  and  seen  in  Figure  7)  is  gripped  in  the   French  manner  and  for  the  legato  forte  sound  (described  on  the  page  7  –  the  mallet  is  held   between  the  thumb  and  the  index  finger).  

  Figure  14a.  Beginning  of  the  wrist  motion.  

  Figure  14b.  The  lowest  point  of  the  wrist  motion.  

  Figure  14c.  End  of  the  wrist  motion.  

On  Figures  15a–c  the  mallet  BFM  (described  in  Table  3  and  seen  in  Figure  7)  is  gripped  in  the   American  manner  and  for  the  legato  forte  sound  (described  on  the  page  7  –  playing  palms   down  and  with  fingers  wrapped  around  the  handle).  

  Figure  15a.  Beginning  of  the  wrist  motion.  

  Figure  15b.  The  lowest  point  of  the  wrist  motion.  

  Figure  15c.  End  of  the  wrist  motion.  

The  tension  of  membrane   Increasing   the   tension   of   membrane   from   C3   to   F3   (as   seen   from   the   first   and   the   third   column  of  Table  5)  decreases  the  mallet-­‐skin  contact  time  which  is  expected  and  also  agrees   with  the  study  of  Wagner  on  snare  drum  (Wagner  2006,  35).  

Sound  Recordings   Next   part   of   experimental   work   was   sound   recording.   Small   omnidirectional   lavalier   microphone   AKG   C   577   WR   was   set   15   cm   above   the   timpani   head,   the   recording   order   was   the   same   as   in   case   with   high-­‐speed   camera.   Each   stroke   was   repeated   five   times   with   dampening  in-­‐between.  

  Figure  16.  Microphone  was  set  15  cm  above  the  membrane.  

   

 

Sound  Analyses,  Results  and  Interpretation   For   sound   analyses   spectrograms   of   the   Audacity   programme   were   used.   Spectrogram   properties  were  set  for  the  frequency  0–2500  Hz  and  for  loudness  20–75  dB.  Spectrogram   shows   the   spectrum   of   the   sound   with   lines   which   differ   in   colour   and   length.   The   strongest   frequencies  of  the  sound  spectrum  are  coloured  white  and  weaker  ones  red,  violet  and  blue.   Line's  length  shows  how  long  the  partials  resist.   The   biggest   difference   in   sound   spectrum   is   seen   between   wooden   and   felt   mallets.   The   sound  produced  with  a  hard  (wooden)  mallet  has  wider  spectrum  –  that  means  more  higher   partials.  So  hard  mallets  would  produce  brighter  sound.    t  [s]  

  f  [kHz]          Figure  17.  Spectrogram  of  the  timpani  sound  played  with  soft  felt  mallet  (F3,  stacc.,  BFS).  

   t  [s]  

  f  [kHz]        Figure  18.  Spectrogram  of  the  timpani  sound  played  with  wooden  mallet  (F3,  stacc.,  WW0).  

  Similar   difference   is   seen   between   staccato   and   legato   articulation.   Staccato   stroke   produces  the  sound  with  more  higher  partials.        t  [s]  

  f  [kHz]          Figure  19.  Spectrogram  of  the  timpani  sound  produced  by  legato  stroke  (F3,  leg.,  BFM).  

   t  [s]  

  f  [kHz]          Figure  20.  Spectrogram  of  the  sound  produced  by  staccato  stroke  (F3,  stacc.,  BFM).  

There   is   also   a   difference   between   the   sound   produced   by   French   or   American   stoke.   The   American  one  produces  larger  sound  spectrum  with  higher  overtones  which  decay  later.      t  [s]      

  f  [kHz]          Figure  21.  Spectrograme  of  the  sound  produced  by  French  legato  stroke  (C3,  leg.,  BFM).  

   t  [s]  

  f  [kHz]          Figure  22.  Spectrograme  of  the  sound  produced  by  American  legato  stroke  (C3,  leg.,  BFM).  

   

 

Electromyographical  Measurements   Together   with   sound   recordings   the   physiological   electromyographical   measurements   with   Schuhfried  Biofeedback  Xpert  2000  system  were  made.  The  EMG  setup  for  all  three  modules   was:  sensitivity  0–250  μV,  measurement  range  100–200  Hz.     Electromyography   (EMG)   is   a   technique   for   evaluating   and   recording   the   electrical   activity   produced   by   skeletal   muscles.   EMG   is   performed   using   an   instrument   called   an   electromyograph,   to   produce   a   record   called   an   electromyogram.   An   electromyograph   detects   the   electrical   potential   generated   by   muscle   cells   when   these   cells   are   electrically   or   neurologically  activated.  The  signals  can  be  analysed  to  discover  human  movements,  in  this   case  the  arm  motions.   Electrodes   were   fixed   on   six   muscles:   Flexor   Pollicis   Brevis,   Wrist   extensor   group,   Biceps,   shoulder  Deltoid,  chest  Pectoralis  Major  and  shoulder  Upper  Trapezius.   Data   Acquisition   has   been   stored   and   analysis   can   lead   to   additional   research   paper.   Results   are  not  included  in  this  seminar  paper.  

Conclusion   This   thesis   describes   experiments   with   audio-­‐visual   recordings   of   timpani,   played   with   two   different   grips,   two   different   articulations,   using   different   mallets   and   varying   tensions   of   membrane.     High-­‐speed  video  analysis  show  different  velocities  of  the  mallet  depending  on  which  type  of   stroke   and   grip   are   used.   Staccato   stroke   and   American   grip   have   higher   speed   of   the   mallet   compared  to  legato  stroke  and  French  grip.  The  impact  on  the  sound  is  seen  from  the  sound   recording   analyses.   Staccato   stroke   has   generally   slightly   shorter   mallet-­‐skin   contact   time.   Comparing  staccato  and  legato  stroke  there  is  a  big  difference  regarding  the  wrist  motion,   which   is   much   longer   when   playing   legato   or   using   French   grip.   Increasing   the   tension   of   membrane  decreases  the  mallet-­‐skin  contact  time.             Different  spectrograms  of  recorded  sounds  prove  that  the  tone  colour  actually  differs,  so  a   timpanist   should   be   aware   that   not   only   changing   mallets   but   also   applying   different   techniques  (grips,  articulation  strokes)  could  differ  the  tone  colour  according  to  the  musical   context  or  wishing  to  blend  with  the  orchestra  as  much  as  possible.  Sometimes  there  is  no   time  to  change  mallets  while  playing,  so  different  grips  serve  very  well  to  get  a  proper  tone   colour.        

 

References    

Beck,  J.  H.  1995.  Encyclopedia  of  percussion.  New  York,  London:  Garland  publ.     Bertsch,  Matthias.  2001.  Vibration  patterns  and  sound  analysis  of  the  Viennese  timpani.   ISMA,  Perugia.     Campbell,  Murray,  and  Clive  Greated.  1987.  The  Musician's  Guide  to  Acoustics.  Schrimer   Books.     Fletcher,  Neville  H.,  and  Thomas  D.  Rossing.  1998.  The  Physics  of  Musical  Instruments.  New   York:  Springer-­‐Verlag,  2nd  edition.     Forsyth,  Cecil.  1982.  Orchestration.  New  York:  Dover  Publications  (1st  ed.  1914,  London:   Macmillan)   Hall,  Donald  E.  1991.  Musical  Acoustics.  Belmont,  California:  Brooks/Cole  Publishing   Company,  2nd  edition.     Ravnikar,  Bruno.  1999.  Osnove  glasbene  akustike  in  informatike.  Ljubljana:  DZS.     Rayleigh,  John  W.  S.  1945.  The  Theory  of  Sound.  New  York:  Dover  Publications,  2nd  edition.   Schweizer,  Steven  L.  2010.  Timpani  Tone  and  the  Interpretation  of  Baroque  and  Classical   Music.  New  York:  Oxford  University  Press.     Wagner,  Andreas.  2006.  Analysis  of  Drumbeats  –  Interaction  between  Drummer,  Drumstick   and  Instrument.  Master's  Thesis.  Stockholm:  The  Royal  Institute  of  Technology.             Contact:  Andraž  Poljanec     Slovenia-­‐  Ljubljana   email:  andraz_poljanec1@t-­‐2.net  

Suggest Documents