An international journal of inorganic chemistry

Take the global perspective An international journal of inorganic chemistry www.rsc.org/dalton Number 28  |  28 July 2008  |  Pages 3621–3760 Chemis...
Author: Janel Ella Bell
1 downloads 0 Views 648KB Size
Take the global perspective An international journal of inorganic chemistry www.rsc.org/dalton

Number 28  |  28 July 2008  |  Pages 3621–3760

Chemistry World, the award-winning monthly magazine from the Royal Society of Chemistry, has something for everyone with daily online news, articles on all aspects of the chemical sciences, job vacancies and award-winning columnists. >Rc^QTa!&E^[d\T#=d\QTa 

Named Best monthly and business professional magazine of the year at the 2006 PPA Magazine Awards, Chemistry World reflects the ubiquitous importance of the chemical sciences in the world today, providing a more complete picture and informed opinion on the issues that matter.

4]TaVhb_TRXP[

2P]RWT\XbcahZTT_ cWT[XVWcb^].

8BB= #&"&%#

#! =dR[TPab_aX]V $! 1dahX]VcWT_a^Q[T\ l l CWTUdcdaT^URPaQ^] CWT]TgcVT]TaPcX^]^U RP_cdaTP]Sbc^aPVT aTPRc^abd]eTX[TS

%! 2r(I)) wR2 (all data) GOF

12b 12a Compound

Table 6 Crystallographic data

Synthesis of 13e. A solution of 12e (21.6 mg, 0.0258 mmol) in C6 D6 (2.0 mL) was heated at 80 ◦ C for 8 h. After concentration in vacuo, 13e was obtained (20.5 mg, 0.0245 mmol, 95%) as a white solid. Colorless crystals of 13e suitable for the X-ray analysis were obtained by recrystallization from n-hexane/CH2 Cl2 . 190.0– 191.0 ◦ C. 1 H NMR (400 MHz, CDCl3 ): d 8.56–8.61 (m, 2 H, Ar–H), 7.73 (br s, 2 H, Ar–H), 7.66–7.71 (m, 4 H, Ar–H), 6.58 (d, 4 J H, P = 6.2 Hz, 2 H, Ar–H), 2.15 (s, 3 H, Ar-CH3 ), 2.00 (s, 6 H, Ar–CH3 ) ppm. 19 F NMR (376 MHz, CDCl3 ): d −77.0 (s, 6 F, CF2 CF 3 ), −79.7 (dd, 3 J F, F = 16.0 Hz, 5 J F, F = 8.6 Hz, 6 F, CF2 CF 3 ), −114.6 (dq, 2 J F, F = 284.6 Hz, 3 J F, F = 16.0 Hz, 2 F, CF 2 CF3 ), −115.9 (dd, 2 J F, F = 284.6 Hz, 4 J F, F = 33.2 Hz, 2 F, CF 2 CF3 ), −116.94 (d, 2 J F, F = 284.6 Hz, 1 F, CF 2 CF3 ), −116.97 (d, 2 J F, F = 284.6 Hz, 1 F, CF 2 CF3 ), −118.1 (ddq, 2 J F, F = 284.6 Hz, 4 J F, F = 33.2 Hz, 5 J F, F = 8.6 Hz, 2 F, CF 2 CF3 ) ppm. 31 P NMR (162 MHz, CDCl3 ): d −23.6 ppm. Anal. Found: C, 44.47; H, 1.96. Calc. for C31 H19 F20 O2 P: C, 44.62; H, 2.30%.

12d

Synthesis of 13d. A solution of 12d (12.1 mg, 0.0147 mmol) in C6 D6 (1.0 mL) was heated at 80 ◦ C for 8 h. After concentration in vacuo, 13d was obtained (11.8 mg, 0.0143 mmol, 97%) as a white solid. Colorless crystals of 13d suitable for the X-ray analysis were obtained by recrystallization from n-hexane–CH2 Cl2 . Mp 117.0– 117.8 ◦ C. 1 H NMR (400 MHz, CDCl3 ): d 8.68–8.72 (m, 2 H, Ar– H), 7.67–7.78 (m, 6 H, Ar–H), 7.38 (dd, 3 J H, P = 15.2 Hz, 3 J H, H = 8.8 Hz, 2 H, Ar–H), 6.69 (dd, 4 J H, P = 3.4 Hz, 3 J H, H = 8.8 Hz, 2 H, Ar–H), 3.73 (s, 3 H, Ar–OCH3 ) ppm. 19 F NMR (376 MHz, CDCl3 ): d −78.3 (s, 6 F, CF2 CF 3 ), −79.7 (dd, 3 J F, F = 19.7 Hz, 5 J F, F = 6.2 Hz, 6 F, CF2 CF 3 ), −116.7 (s, 2 F, CF 2 CF3 ), −116.8 (s, 2 F, CF 2 CF3 ), −116.8 (dq, 2 J F, F = 285.8 Hz, 3 J F, F = 19.7 Hz, 2 F, CF 2 CF3 ), −121.8 (dq, 2 J F, F = 285.8 Hz, 5 J F, F = 6.2 Hz, 2 F, CF 2 CF3 ) ppm. 31 P NMR (162 MHz, CDCl3 ): d −27.1 ppm. Anal. Found: C, 42.27; H, 1.46. Calc. for C29 H15 F20 O3 P: C, 42.35; H, 1.84%.

C28 H12 F21 O2 P 810.35 Triclinic P1¯ Colorless Plate 0.50 × 0.40 × 0.20 8.94800(10) 16.9750(3) 19.6870(4) 88.1130(10) 82.1650(10) 81.3020(10) 2928.09(9) 4 1.838 0.258 1600 Mo-Ka, 0.71073 173 +h, ±k, ±l 12473/0/937 0.0415 0.1196 1.076

12e·0.5CH3 CN

13d

Synthesis of 13c. A solution of 12c (11.8 mg, 0.0145 mmol) in C6 D6 (1.0 mL) was heated at 80 ◦ C for 8 h. After concentration in vacuo, 13c was obtained (11.4 mg, 0.0140 mmol, 96%) as a white solid. Mp 120.0–121.0 ◦ C. 1 H NMR (400 MHz, CDCl3 ): d 8.67– 8.72 (m, 2 H, Ar–H), 7.71–7.83 (m, 6 H, Ar–H), 7.37–7.45 (m, 2 H, Ar–H), 6.84–6.91 (m, 2 H, Ar–H) ppm. 19 F NMR (376 MHz, CDCl3 ): d −78.3 (s, 6 F, CF2 CF 3 ), −79.8 (dd, 3 J F, F = 19.7 Hz, 5 J F, F = 6.2 Hz, 6 F, CF2 CF 3 ), −110.2 to −110.3 (m, 1 F, Ar–F), −116.7 (s, 2 F, CF 2 CF3 ), −116.8 (s, 2 F, CF 2 CF3 ), −116.8 (dq, 2 J F, F = 285.8 Hz, 3 J F, F = 19.7 Hz, 2 F, CF 2 CF3 ), −121.8 (dq, 2 J F, F = 285.8 Hz, 5 J F, F = 6.2 Hz, 2 F, CF 2 CF3 ) ppm. 31 P NMR (162 MHz, CDCl3 ): d −27.7 ppm. Anal. Found: C, 41.37; H, 1.33. Calc. for C28 H12 F21 O2 P: C, 41.50; H, 1.49%.

C29 H12 F23 O2 P 860.36 Monoclinic P21 /c Colorless Plate 0.50 × 0.10 × 0.10 10.3050(3) 18.2210(6) 16.8820(4) 90 95.292(3) 90 3156.38(16) 4 1.810 0.254 1696 Mo-Ka, 0.71073 293 +h, +k, ±l 6824/0/497 0.1149 0.3878 1.109

13e

white solid. Mp 115.0–116.0 ◦ C. 1 H NMR (400 MHz, CDCl3 ): d 8.69–8.74 (m, 2 H, Ar–H), 7.71–7.84 (m, 6 H, Ar–H), 7.51 (dd, 3 J H, P = 15.4 Hz, 3 J H, H = 8.0 Hz, 2 H, Ar–H), 7.45 (dd, 4 J H, P = 7.6 Hz, 3 J H, H = 8.0 Hz, 2 H, Ar–H) ppm. 19 F NMR (376 MHz, CDCl3 ): d −63.5 (s, 3 F, Ar–CF3 ), −78.2 (s, 6 F, CF2 CF 3 ), −79.9 (dd, 3 J F, F = 19.7 Hz, 5 J F, F = 6.2 Hz, 6 F, CF2 CF 3 ), −116.7 (s, 2 F, CF 2 CF3 ), −116.8 (s, 2 F, CF 2 CF3 ), −116.8 (dq, 2 J F, F = 285.8 Hz, 3 J F, F = 19.7 Hz, 2 F, CF 2 CF3 ), −121.8 (dq, 2 J F, F = 285.8 Hz, 5 J F, F = 6.2 Hz, 2 F, CF 2 CF3 ) ppm. 31 P NMR (162 MHz, CDCl3 ): d −28.2 ppm. Anal. Found: C, 40.13; H, 1.07. Calc. for C29 H12 F23 O2 P: C, 40.49; H, 1.41%.

Dalton Trans., 2008, 3678–3687 | 3685

Single-crystal X-ray analyses of 12a, 12b, 12c, 12d, 12e, 13d and 13e Crystals suitable for the X-ray structural determination were mounted on a Mac Science DIP2030 imaging plate diffractometer and irradiated with graphite monochromated Mo-Ka radiation ˚ ) for the data collection. The unit cell parameters (k = 0.71073 A were determined by separately autoindexing several images in each data set using the DENZO program (MAC Science).23 For each data set, the rotation images were collected in 3◦ increments with a total rotation of 180◦ about the φ axis. The data were processed using SCALEPACK. The structure was solved by a direct method using the SHELXS-97 program.24 Refinement on F 2 was carried out using a full-matrix least-squares by the SHELXL-97 program.24 All non-hydrogen atoms were refined using the anisotropic thermal parameters. The hydrogen atoms were included in the refinement along with isotropic thermal parameters. The crystallographic data are summarized in Table 6. CCDC reference numbers 672351 (12a), 672352 (12b), 672353 (12c), 672354 (12d), 672355 (12e), 672356 (13d) and 672357 (13e). For crystallographic data in CIF or other electronic format see DOI: 10.1039/b802947d Kinetic measurements of the isomerization of 12 to 13 Samples (ca. 5 mg) in C6 D6 (0.6 mL) were sealed in an NMR tube under N2 . Kinetic measurements of the pseudorotation process were carried out using a JEOL EX-400 spectrometer by monitoring the 19 F NMR signals in a variable temperature mode, and the specified temperatures were maintained throughout each set of measurements (error within ±1 ◦ C). The observed temperatures were calibrated with the 19 F NMR chemical shift difference in the signals of neat 1,3-propanediol (high temperature region) and MeOH (low temperature region). The data were analyzed on the basis of the first-order kinetics using the following equation: ln (C 0 /C 12 ) = kT, in which C 0 = ratio of 12 at t = 0, C 12 = ratio of 12 at arbitrary intervals. Here C 0 = C 12 + C 13 , C 0 /C 12 = (C 12 + C 13 )/C 12 = 1 + C 13 /C 12 . The C 13 /C 12 ratio was monitored by the integration of the 19 F NMR signals of the trifluoromethyl group at 40–60 ◦ C. The rate constants and activation parameters for the stereomutation from 12 to 13 are shown in Tables 3–5.

Acknowledgements The authors are grateful to Central Glass Co., Ltd., for the generous gift of the p-bromobenzotrifluoride. This work was supported by two Grants-in-Aid for Scientific Research on Priority Areas (Nos. 14340199, 17350021) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References 1 (a) K.-y. Akiba, Chemistry of Hypervalent Compounds, Wiley-VCH, New York, 1999; (b) R. R. Holmes, Pentacoordinated Phosphorus Structure and Spectroscopy, ACS Monographs 175, 176, vol, I, II; American Chemical Society, Washington, DC, 1980; (c) D. E. C. Corbridge, Phosphorus: An Outline of Its Chemistry, Biochemistry, and Technology, Elsevier, Amsterdam, 4th edn, 1990, ch. 14, pp. 1233–1256; (d) R. Burgada and R. Setton, in The Chemistry of Organophosphorus Compounds, ed. F. R. Hartley, Wiley-Interscience, Chichester, UK, 1994, vol. 3, pp. 185–277.

3686 | Dalton Trans., 2008, 3678–3687

2 For the N-X-L designation, see: C. W. Perkins, J. C. Martin, A. J. Arduengo, W. Lau, A. Alegria and J. K. Kochi, J. Am. Chem. Soc., 1980, 102, 7753–7759. 3 (a) A. C. Hengge, Acc. Chem. Res., 2002, 35, 105–112, and references therein; (b) S. D. Lahiri, G. Zhang, D. Dunaway-Mariano and K. N. Allen, Science., 2003, 299, 2067–2071; (c) R. R. Holmes, Acc. Chem. Res., 2004, 37, 746–753; (d) F. H. Westheimer, Acc. Chem. Res., 1968, 1, 70–78; (e) G. R. J. Thatcher and R. Kluger, Adv. Phys. Org. Chem., 1989, 25, 99–265; (f) for recent mechanistic studies on phosphoryl ´ transfer reaction, see: C. S. Lopez, O. N. Faza, A. R. de Lera and D. M. York, Chem. Eur. J., 2005, 11, 2081–2093and references therein; (g) T. Uchimaru, M. Uebayasi, T. Hirose, S. Tsuzuki, A. Yliniemel¨a, K. Tanabe and K. Taira, J. Org. Chem., 1996, 61, 1599–1608. 4 (a) W. S. Wadsworth, Jr., Org. React., 1977, 25, 73–253; (b) J. I. G. Cadogan, Organophosphorus Reagents in Organic Synthesis, Academic Press, New York, 1979; (c) B. E. Maryanoff and A. B. Reitz, Chem. Rev., 1989, 89, 863–927; (d) S. E. Kelly, in Comprehensive Organic Synthesis, ed. B. M. Trost and I. Fleming, Pergamon Press, Oxford, 1991, vol. 1, pp. 730–817; (e) A. W. Johnson, Ylides and Imines of Phosphorus, Wiley-Interscience, New York, 1993; (f) E. Vedejs and M. J. Peterson, Top. Stereochem., 1994, 21, 1–157; (g) E. Vedejs and M. J. Peterson, Adv. Carbanion Chem., 1996, 2, 1–85. 5 (a) E. L. Muetterties, W. Mahler and R. Schmutzler, Inorg. Chem., 1963, 2, 613–618; (b) E. L. Muetterties, W. Mahler, K. J. Packer and R. Schmutzler, Inorg. Chem., 1964, 3, 1298–1303; (c) G. M. Whiteside and W. M. Bunting, J. Am. Chem. Soc., 1967, 89, 6801–6802; (d) G. M. Whiteside and H. L. Mitchell, J. Am. Chem. Soc., 1969, 91, 5384–5386. 6 (a) J. I. Musher, Angew. Chem., Int. Ed. Engl., 1969, 8, 54–68; (b) W. Kutzelnigg, Angew. Chem., Int. Ed. Engl., 1984, 23, 272–295. 7 (a) M. Nakamoto, S. Kojima, S. Matsukawa, Y. Yamamoto and K.-y. Akiba, J. Organomet. Chem., 2002, 643–644, 441–452; (b) S. Matsukawa, K. Kajiyama, S. Kojima, S.-y. Furuta, Y. Yamamoto and K.-y. Akiba, Angew. Chem., Int. Ed., 2002, 41, 4718–4722; (c) S. Trippett, Phosphorus Sulfur, 1976, 1, 89–98; (d) S. Trippett, S., Pure Appl. Chem., 1974, 40, 595–604; (e) G. Buono and J. R. Llinas, J. Am. Chem. Soc., 1981, 103, 4532–4540; (f) M. Eisenhut, H. L. Mitchell, D. D. Traficante, R. J. Kaufman, J. M. Deutch and G. M. Whitesides, J. Am. Chem. Soc., 1974, 96, 5385–5397; (g) C. G. Moreland, G. O. Doak, L. B. Littlefield, N. S. Walker, J. W. Gilje, R. W. Braun and A. H. Cowley, J. Am. Chem. Soc., 1976, 98, 2161–2165; (h) L. V. Griend and R. G. Cavell, Inorg. Chem., 1983, 22, 1817–1820; (i) S. Kumaraswamy, C. Muthiah and K. C. Kumara Swamy, J. Am. Chem. Soc., 2000, 122, 964–965; (j) P. Kommana, S. Kumaraswamy, J. J. Vittal and K. C. Kumara Swamy, Inorg. Chem., 2002, 41, 2356–2363; (k) P. Kommana, N. S. Kumar, J. J. Vittal, E. G. Jayasree, E. D. Jemmis and K. C. Kumara Swamy, Org. Lett., 2004, 6, 145–148. 8 (a) R. Hoffmann, J. M. Howell and E. L. Muetterties, J. Am. Chem. Soc., 1972, 94, 3047–3058; (b) R. S. McDowell and A. Streitwieser, Jr., J. Am. Chem. Soc., 1985, 107, 5849–5855; (c) J. A. Deiters, R. R. Holmes and J. M. Holmes, J. Am. Chem. Soc., 1988, 110, 7672–7681; (d) P. Wang, Y. Zhang, R. Glaser, A. E. Reed, P. v. R. Schleyer and A. Streitwieser, Jr., J. Am. Chem. Soc., 1991, 113, 55–64; (e) H. Wasada and K. Hirao, J. Am. Chem. Soc., 1992, 114, 16–27; (f) G. R. J. Thatcher and A. S. Campbell, J. Org. Chem., 1993, 58, 2272–2281; (g) P. Wang, Y. Zhang, R. Glaser, A. Streitwieser and P. v. R. Schleyer, J. Comput. Chem., 1993, 14, 522–529; (h) B. D. Wladkowski, M. Krauss and W. J. Stevens, J. Phys. Chem., 1995, 99, 4490–4500. 9 R. S. Berry, J. Chem. Phys., 1960, 32, 933–938. 10 (a) K. Mislow, Acc. Chem. Res., 1970, 3, 321–331; (b) E. L. Muetterties, Acc. Chem. Res., 1970, 3, 266–273; (c) I. Ugi, D. Marquarding, H. Klusacek, P. Gillespie and F. Ramirez, Acc. Chem. Res., 1971, 4, 288– 296; (d) P. Gillespie, P. Hoffman, H. Klusacek, D. Marquarding, S. Pfohl, F. Ramirez, E. A. Tsolis and I. Ugi, Angew. Chem., Int. Ed., 1971, 10, 687–715. 11 J. Moc and K. Morokuma, J. Am. Chem. Soc., 1995, 117, 11790–11797. 12 J. C. Martin, Science., 1983, 221, 509–514. 13 (a) S. Kojima, K. Kajiyama, M. Nakamoto and K.-y. Akiba, J. Am. Chem. Soc., 1996, 118, 12866–12867; (b) S. Kojima, K. Kajiyama, M. Nakamoto, S. Matsukawa and K.-y. Akiba, Eur. J. Org. Chem., 2006, 218–234. 14 (a) Some compounds, which violate the apicophilicity concept, were isolated. In these cases, some sort of steric constraints disallowed the regular configurations: J. Kobayashi, K. Goto and T. Kawashima, J. Am. Chem. Soc., 2001, 123, 3387–3388; (b) J. Kobayashi, K. Goto, T. Kawashima, M. W. Schmidt and S. Nagase, J. Am. Chem. Soc., 2002,

This journal is © The Royal Society of Chemistry 2008

124, 3703–3712; (c) S. Vollbrecht, A. Vollbrecht, J. Jeske, P. G. Jones, R. Schmutzler and W.-W. du Mont, Chem. Ber./Recl, 1997, 130, 819–822; (d) K. C. Kumara Swamy and N. S. Kumar, Acc. Chem. Res., 2006, 39, 324–333; (e) K. V. P. P. Kumar, N. S. Kumar and K. C. Kumara Swamy, New J. Chem., 2006, 30, 717–728; (f) A. Chandrasekaran, N. V. Timosheva and R. R. Holmes, Phosphorus, Sulfur, Silicon Relat. Elem., 2006, 181, 1493–1511; (g) N. S. Kumar, P. Kommana, J. J. Vittal and K. C. Kumara Swamy, J. Org. Chem., 2002, 67, 6653–6658. 15 (a) X.-D. Jiang, K.-i. Kakuda, S. Matsukawa, H. Yamamichi, S. Kojima and Y. Yamamoto, Chem. Asian J., 2007, 2, 314–323; (b) X.-D. Jiang, S. Matsukawa, H. Yamamichi and Y. Yamamoto, Heterocycles, 2007, 73, 805–824. 16 X.-D. Jiang, S. Matsukawa, H. Yamamichi and Y. Yamamoto, Inorg. Chem., 2007, 46, 5480–5482. 17 (a) K. Kajiyama, M. Yoshimune, M. Nakamoto, S. Matsukawa, S. Kojima and K.-y. Akiba, Org. Lett., 2001, 3, 1873–1875; (b) K.

This journal is © The Royal Society of Chemistry 2008

18 19 20 21 22 23 24

Kajiyama, M. Yoshimune, S. Kojima and K.-y. Akiba, Eur. J. Org. Chem., 2006, 2739–2746. S. Matsukawa, S. Kojima, K. Kajiyama, Y. Yamamoto, K.-y. Akiba, S. Re and S. Nagase, J. Am. Chem. Soc., 2002, 124, 13154–13170. T. Adachi, S. Matsukawa, M. Nakamoto, K. Kajiyama, S. Kojima, Y. Yamamoto, K.-y. Akiba, S. Re and S. Nagase, Inorg. Chem., 2006, 45, 7269–7277. C. Reichardt, in Solvents and Solvent Effects in Organic Chemistry, Wiley-VCH, Weinheim, 3rd edn, 2003, pp. 472–475. M. Charton, Prog. Phys. Org. Chem., 1981, 13, 119–251. For the proposed nomenclature system for optically active pentacoordinate molecules, see: J. C. Martin and T. M. Balthazor, J. Am. Chem. Soc., 1977, 99, 152–162. Z. Otwinowski and W. Minor, Methods Enzymol., 1997, 276, 307–326. ¨ ¨ G. M. Sheldrick, SHELX-97, University of Gottingen, Gottingen, Germany, 1997.

Dalton Trans., 2008, 3678–3687 | 3687