Amplifier Classes. by Manfred Thumm and Werner Wiesbeck. Forschungszentrum Karlsruhe in der Helmholtz - Gemeinschaft

Amplifier Classes by Manfred Thumm and Werner Wiesbeck Forschungszentrum Karlsruhe in der Helmholtz - Gemeinschaft Universität Karlsruhe (TH) Resea...
Author: Josef Esser
11 downloads 0 Views 771KB Size
Amplifier Classes

by Manfred Thumm and Werner Wiesbeck

Forschungszentrum Karlsruhe in der Helmholtz - Gemeinschaft

Universität Karlsruhe (TH) Research University•founded 1825

Amplifier Characteristics ID mA

1200

ID

D

1000

800

UDS

G

600

U DS

UGS

400

S

200

U GS V

-5 -4 -3

-2 -1

2

Institut für Hochfrequenztechnik IHE und Elektronik

Amplifier Classes, General Characteristics ILast

I max Class-A Bias-Point Load Current Iload

I max / 2 ideal

real

Control Voltage Vcontrol

Vcontrol (normalized) -0.25

0

0.25

0.5 0.75

1

1.25

3

Institut für Hochfrequenztechnik IHE und Elektronik

Classical Amplifier Classes A, AB, B, C Iload

I max

Ideal I max / 2

Vcontrol -0.25

Class-C

0

0.25

0.5

0.75

1

1.25

Class-AB

Class-B Bias-Point

Class-A Bias-Point 4

Institut für Hochfrequenztechnik IHE und Elektronik

Amplifier Classes Conduction Angle Vcontrol

Class-A

1

Class-AB

Class-B

Class-C

0.5 0 time Conduction angle

Iload



π...2π

π

0...π

IMax Imax/2 0

time

Institut für Hochfrequenztechnik IHE und Elektronik

5

Comparison of Amplifier Classes

Ruhestrom Bias point USteuer Relative Leistung zu Class-A Betrieb - Bei Vollaust. - Bei -3dB Anst. Mittlerer Strom - Ohne Signal - Bei Vollausst. - Bei -3dB Anst Wirkungsgrad - Bei Vollausst. - Bei -3dB Anst. Linearität Geeignet für Modulationen:

Class-A hoch 0.5

Class-AB mittel 0.25

Class-B fast Null 0

Class-C kein -0.5

0 dB - 3 dB

+0.2 dB -2 dB

0 dB - 3 dB

-0.6 dB -6 dB

0.5 Imax " "

ca. 0.25 Imax 0.37 Imax 0.3 Imax

gerade eben 0 0.3 Imax 0.2 Imax

0 0.25 Imax 0.12 Imax

78% 55% schlecht FM/PM

85% 45% extrem schlecht nur FM/PM z.B. GMSK in GSM

50% 70% 25% 52% sehr gut mittel QAM, Digitale Hochstufige Modulationen mit digitale Modulawenig Stufen tionsverfahren z.B. 8-PSK in GSM z.B. 64QAM in LTE

Ungefähre Angaben, schwanken in der Realität 6

Institut für Hochfrequenztechnik IHE und Elektronik

Harmonics Amplitudes of Amplifier Classes Fundamental (1st Harmonic)

0.5

DC from Class-B increasing of 3rd Harmonic

Amplitude Imax=1

from Cripps [1] 2nd

3rd

4th 5th

0

Conduction Angle 2π

Class-A

π

Class-AB

Class-B

0

Class-C 7

Institut für Hochfrequenztechnik IHE und Elektronik

Amplifier Classes: Filtering of Fundamental Frequency Voltage Supply (+27V)

IDrain LRF-Choke

Output Signal Drain

CDC-Block

Gate

UIn

C

R

Source

C

L

UOut

R

UGate

Negative Gate Voltage (-1...5V)

High-Q Resonance Ground Circuit at Fundamental 8

Institut für Hochfrequenztechnik IHE und Elektronik

Highly Efficient Amplifier Classes - D, E, F, S  Amplifiing Element operates in Switching Mode  States:  Device is fully switched – Current through device is maximal but Voltage at device is zero – There is no loss power!  Device is fully open – Voltage at device is maximal – but Current through device is zero – There is again no loss power!  Highly Efficient Operating Mode:  Classes are different by their termination (complex load) of the harmonics  More complicated amplifier architectures are necessary to amplify modulations with amplitude variations  Very high efficiency also for small signal operation of the amplifier (good back-off efficiency) 9

Institut für Hochfrequenztechnik IHE und Elektronik

Class-E Example

IEEE WAMI, Florida, 2004

Ideal topology

Topology with realistic Si-LDMOS

Institut für Hochfrequenztechnik IHE und Elektronik

10

Class-S Example - Functional Principle+

Input

Output Bandpass Delta Sigma Modulator

Switching Amplifier

Filter

11

Institut für Hochfrequenztechnik IHE und Elektronik

Class-S Amplifier Architecture Overview final stage switch mode amplifier

Clocking=[1.3...4] x RF carrier

Supply

Driver+Level Shifter antiphase signals Delta Sigma Modulator CT→ RFIC DT → FPGA/DSP

Reconstruction filter 1 bit

1 bit CT: RF input analogue DT: Baseband input digital

CT=Continous Time DT=Discrete Time

S

No Isolator! (directional line)

1 bit

G Noise-Shaping Filter H(z)

D

RF output (analog)

Simultaneous reconfiguration of digital and analogue filter

Switch mode - theoretical peak efficiency can reach 100% !

(78% on Class-AB) 12

Institut für Hochfrequenztechnik IHE und Elektronik

Efficiency projection for Crest factor reduced UMTS Signal

Amplifier Efficiency Roadmap We want to get here Next step

Class-S

Envelope Tracking

We are here SiC/GaN

Predistorte d Class-AB

Year

Source: Max Solondz

GaN device technology enables new architectures! 13

Institut für Hochfrequenztechnik IHE und Elektronik

Efficiency Evolution Overview for Single Band Amplifiers Today 2007

Mid Term 2008

Future 2011

>50 %

PA-Concepts + DPD (Final Stage Only!) Estimations done for single-band application. 45 %

Class-S Concept

40 %

33 %

Envelope Tracking-Concept Doherty-Concept

Class-AB

achievable performance currently under investigation!

DC Versorgung

in parallel required: enhancement and concept related optimization of linearisation algorithms

Institut für Hochfrequenztechnik IHE und Elektronik

14

Literature 1) Cripps Steve C, RF Power Amplifiers for Wireless Communications, Artech House, 1999, ISBN 0 89006 989 1 2) Kenington Peter B, High Linearity RF Amplifier Design, Artech House, Boston, London, 2000, ISBN 58053 143 1 3) Tri T. Ha, Solid State Microwave Amplifier Design, Krieger Publishing, Florida, 1991 4) Scott Kee, Ichiro Aoki, Ali Hajimiri, David Rutledge, The New Class E/F Family of ZVS (zero voltage) Switching Amplifiers, IEEE MTT 5) Thomas Johnson, Shawn P. Stapleton, RF Class-D Amplification With Bandpass Sigma– Delta Modulator Drive Signals, IEEE Trans. Circuit and Systems, Dec 2006

15

Institut für Hochfrequenztechnik IHE und Elektronik

Suggest Documents