A Comparison of Caloric and Protein Restriction in Drosophila melanogaster

                  A  Comparison  of  Caloric  and  Protein  Restriction  in  Drosophila  melanogaster                                                ...
Author: Dominick Grant
4 downloads 0 Views 3MB Size
                  A  Comparison  of  Caloric  and  Protein  Restriction  in  Drosophila  melanogaster                                                                   Sebastien  Deveau   STEM  Research  Project   Massachusetts  Academy  of  Math  and  Science   December  3,  2012  

Caloric  and  Protein  Restriction     1   Abstract...........................................................................................................................................................2   Introduction..................................................................................................................................................3   Literature  Review.......................................................................................................................................4   Methodology..............................................................................................................................................14   Results..........................................................................................................................................................16   Data  Analysis  and  Discussion.............................................................................................................19   Conclusions.................................................................................................................................................20   Limitations  and  Assumptions.............................................................................................................21   Applications  and  Future  Experiments............................................................................................22   Literature  Cited.........................................................................................................................................23   Acknowledgements.................................................................................................................................24  

Caloric  and  Protein  Restriction     2   Abstract   The   relationship   between   caloric   restriction   and   the   longevity   of   invertebrates   has   been   shown   to   be   inversely   proportional.   However,   the   relationship  between  protein  restriction  and  longevity  has  not  yet  been  extensively   studied.   It   has   been   hypothesized   that   Drosophila   melanogaster   cultured   with   restricted   protein   will   have   a   longer   lifespan   than   those   cultured   with   restricted   calories.   The   fruit   flies   were   separated   into   vials,   in   which   half   were   kept   at   a   constant  caloric  content  through  the  addition  of  sugar.  The  other  half  did  maintain  a   constant   caloric   content   but   did   have   analogous   dietary   nutrition   otherwise.   The   flies   were   then   allowed   to   reproduce   in   their   specified   media.   After   the   eggs   were   laid,   the   parental   generation   was   removed   and   the   F1   developed   into   the   imago   stage.   At   this   point,   the   flies   were   separated   by   gender   and   allowed   to   complete   their   life.   Their   longevity   was   measured   by   the   number   of   days   the   flies   survived   from   the   day   of   separation   to   the   day   of   death.   Because   the   diets   were   shown   to   produce  a  higher  longevity,  and  because  Drosophila  melanogaster  are  purported  to   be  good  models  of  human  physiology,  speculations  can  be  made  about  future  areas   of  research  in  humans.    

 

Caloric  and  Protein  Restriction     3   Introduction    

Scientists   have   used   Drosophila   melanogaster,   or   the   common   fruit   fly,   in  

research  experiments  for  many  years.  Due  to  their  ease  of  use,  similarity  to  humans,   simplicity,   and   invertebrate   nature,   they   pose   a   large   role   in   the   evolution   of   scientific  discovery.  An  older  area  of  research  deals  with  the  diets  of  the  Drosophila   melanogaster  and  the  best  way  to  culture  them.  Scientists  conducted  experiments  of   this  nature  to  show  that  results  from  Drosophila  melanogaster  can  be  extrapolated   to  mice  and  other  vertebrates.        

Calorie   restriction   has   been   an   area   of   interest   over   the   years   regarding  

Drosophila   and   the   increase   of   their   lifespan.     This   phenomenon   also   relates   to   humans   because   more   and   more   people   are   struggling   with   dietary   issues.     The   main  concern  that  people  face  when  dealing  with  diets  is  whether  or  not  it  is  more   beneficial   to   consume   fewer   calories   or   consume   more   or   less   of   the   right   nutrients.      

In   Drosophila   melanogaster,   this   experiment   is   extremely   easy   to   perform  

because  one  of  the  main  food  ingredients  that  they  consume  and  need  is  yeast.    By   comparing   environments   with   varied   amounts   of   yeast   but   a   constant   caloric   content   against   environments   with   varied   amounts   of   yeast   but   not   a   constant   caloric  content,  it  is  possible  to  end  this  confusion  and  finally  say  which  diet  is  best   for   longevity.     Because   of   their   purported   similarity   to   humans,   an   experiment   regarding   the   benefits   of   caloric   restriction   versus   the   benefits   of   nutrient   restriction   performed   on   Drosophila   melanogaster   may   suggest   some   areas   for   human  research.        

 

Caloric  and  Protein  Restriction     4   Biology  of  Drosophila  melanogaster   For  years,  scientists  have  studied  in  Drosophila  melanogaster  because  of  their   ease   of   use,   basic   genetic   structure,   and   similarity   to   humans.   Drosophila,   or   fruit   flies,  are  very  useful  models  for  studying  human  genetics.  However,  their  use  is  not   just   limited   to   genetic   research.   The   flies   are   also   good   models   for   many   other   humanlike   qualities.   This   allows   them   to   help   to   extrapolate   possible   human   reactions,  which  allow  for  experiments  to  be  performed  on  humans  safely.  Some  of   these   experimental   areas   include   a   shared   pathway   of   intercellular   signaling,   tumor   formation,   developmental   patterning,   learning   and   behavior,   metastasis,   neuronal   degeneration,  and  the  effect  of  drugs  on  behavior  and  neurotransmitters  (Wixon  et   al.,  2000).     There   are   four   main   stages   to   the   development   of   Drosophila:   the   egg,   the   larvae,   the   pupa,   and   the   adult.   The   larvae   also   undergo   three   different   stages,   or   instars,   that   start   during   the   early   phase   of   the   larvae   stage   and   are   signified   by   a   molting  process.  The  length  that  the  Drosophila  remain  in  each  of  the  primary  stages   is   temperature   reliant.   At   a   temperature   of   twenty   degrees   Celsius,   the   Drosophila     maturate   from   the   egg   to   larval   stage   in   approximately   eight   days   while   the   pupal   stage  is  nearly  6.3  days  long.  During  the  larval  stage,  the   Drosophila  melanogaster  is   the   most   active   until   the   third   instar,   or   final   molting   period.   During   this   period,   the   fruit   fly   removes   itself   from   the   food   and   climbs   the   side   of   the   test   tube   in   preparation   for   the   pupal   stage.   Due   to   the   high   activity   of   the   insects   during   this   stage,  the  food  media  that  they  are  raised  on  becomes  littered  with  many  channels   and   ruts.   From   this   stage,   it   is   easiest   to   discern   whether   or   not   the   developing  

Caloric  and  Protein  Restriction     5   generation  will  be  successful  based  on  their  inclination  to  consume  the  food  media   (Demerec,  1967).   A   crucial   focus   point   when   working   with   Drosophila   melanogaster   is   food   restriction,  which  can  lead  to  greater  longevity  and  an  overall  decrease  in  morality   in  many  different  types  of  life  forms.  Food  restriction  extends  the  lifespan  of  many   different   organisms,   and   mammals   are   not   an   exception.   Experiments   regarding   dietary   restriction   (DR),   performed   by   scientists,   have   also   been   shown   to   reduce   age-­‐related  damage,  which  allows  the  organism  to  be  in  a  younger  state  for  a  longer   amount   of   time   (Chapman   and   Partridge,   1996,   Chippindale   et   al.,   1993,  and  Partridge  et  al.,  1987).  This  has  led  to  the  theory  that  DR  could  reduce  the   rate  at  which  life  forms  age.  Studies  regarding  mortality  have  helped  to  support  this   idea   because   typically   when   any   being   ages,   their   mortality   rate   increases   almost   exponentially;   therefore,   lifespan   can   either   be   extended   because   of   a   lowered   starting   rate   of   mortality   or   a   reduction   to   the   level   of   increase   in   mortality.     In   Drosophila  melanogaster,   DR   has   a   severe   affect   and   the   rate   of   mortality   changes   quickly   between   the   control   and   DR   values   with   a   simple   change   in   their   nutritional   regime.   Therefore,   DR   does   not   affect   the   rate   at   which   the   fly   ages   (Partridge   et   al.,   2005).                

Table  1.  Lifespan  increase,  recorded  over  the  years,  due  to  a  37%  dietary  restriction   in  Drosophila  melanogaster  (Partridge  et  al.,  2005).    

Caloric  and  Protein  Restriction     6   An  important  feature  about  the  adult  Drosophila  melanogaster  is  the  ease  of   distinguishing  the  males  and  females.  There  are  several  external  features  to  look  for   in  their  shape  and  overall  appearance  that  allow  for  determining  gender,  including   the  pointed  abdomen  of  the  female,  the  dark  markings  in  the  abdomens  that  vary  for   sex,   and   the   number   of   segments   in   the   abdomen.   This   is   extremely   important   because   the   male   and   female   Drosophila   vary   greatly   in   their   responses   to   experimental   behavior.   It   is   also   exceedingly   important   to   have   both   male   and   female   fruit   flies   together   in   an   environment;   otherwise,   all   of   the   eggs   that   the   females   lay   will   be   sterile,   and   there   will   be   no   progeny   (A.   Consilvio,   personal   communication,  October  2012).   Culturing  Drosophila  melanogaster   Drosophila  rely  on  fermenting  fruits  as  their  main  food  source  as  well  as  their   primary  breeding  grounds,  and  as  such  they  can  survive  on  almost  any  aging  fruit  or   fermenting   medium.   The   main   components   that   are   necessary   in   any   culture   medium,  however,  are  sugar,  yeast,  and  agar.  Without  the  sugar,  the  yeast  will  not   grow;  without  the  yeast,  the  larvae  will  not  survive;  and  without  a  solid  consistency,   the  medium  will  simply  fall  out  of  the  test  tube  during  the  removal  process.       Temperature  plays  a  key  role  in  the  longevity  of  the  Drosophila  melanogaster   because  they  are  exothermic  organisms.  As  noted  above,  in  a  temperature  of  twenty   degrees   Celsius,   it   takes   the   flies   eight   days   to   move   from   the   egg-­‐larval   stage   to   the   pupa   stage,   and   it   takes   6.3   days   to   move   from   the   pupa   to   imago   stage.     In   a   temperature  of  25  degrees,  on  the  other  hand,  it  takes  the  flies  approximately  five   days  to  move  from  the  egg-­‐larval  stage  to  the  pupa  stage,  and  4.2  days  to  move  from  

Caloric  and  Protein  Restriction     7   the   pupa   stage   to   the   imago   stage.   In   total,   the   difference   between   the   growth   periods   is   nearly   five   days   where   the   cycle   can   be   completed   in   ten   days   at   25   degrees  and  in  fifteen  days  at  twenty  degrees.  Moreover,  the  flies  should  not  be  kept   at  temperatures  far  below  twenty  degrees  or  far  higher  than  25  degrees.  When  kept   at  low  temperatures  the  life  cycle  takes  too  long  to  be  of  use,  the  larval  stage  takes   57   days   to   complete   at   ten   degrees,   and   at   higher   temperatures,   such   as   30   degrees,   the  flies  are  susceptible  to  becoming  sterile  (Demerec,  1967).     Previous  Studies  on  Yeast  Consumption  and  Longevity   Multiple  studies  in  this  area  have  focused  on  the  yeast  content  of  the  media   of   the   Drosophila  melanogaster;   however,   the   way   in   which   the   experiments   were   performed   produced   vague   results.   Countless   experiments   have   shown   that   Drosophila   grow   better   if   provided   a   food   source   that   has   yeast;   however,   the   larval   stage   of   Drosophila,   which   has   been   largely   ignored   in   past   experiments,   benefits   from   the   presence   of   yeast   the   most   out   of   all   the   other   stages   of   the   life   cycle.   Numerous   experiments   were   done   to   understand   this   relationship   between   the   Drosophila  melanogaster  and  yeast  (Northrop,  1917).                  

Table  2.  Number  of  flies  produced  with  varying  diets  of  yeast,  banana,  casein,  and   sugar  (Northrop,  1917).  

Caloric  and  Protein  Restriction     8   A  summary  of  the  data  in  table  2  demonstrates  that  without  the  addition  of   yeast  the  flies  were  unable  to  produce  a  second  generation.  Additional  experiments   were  also  undergone  to  learn  the  appropriate  amount  of  yeast  needed  to  allow  the   flies   to   hatch   from   egg   to   pupa   in   the   least   amount   of   time.   Additionally,   the   experiment   measured   the   resulting   time   taken   for   them   to   continue   on   the   cycle   from   the   pupa   stage   and   on   to   the   imago   stage.   The   results   concluded   that   the   appropriate   amount   of   yeast   is   about   one   half   the   amount   of   banana,   or   the   main   food  source,  by  mass  measured  in  grams.   To   determine   why   the   yeast   was   so   important   to   longevity   the   scientists   also   developed   experiments   to   test   what   exactly   it   was   that   the   Drosophila   needed   to   survive.  Using  the  liver,  kidney,  and  pancreas  of  a  dog  and  the  liver  of  a  mouse  the   biologists   made   a   food   medium   that   could   actually   sustain   the   flies.   Although   this   media   did   not   sustain   the   flies   as   well   as   the   traditional   yeast   enriched   one,   the   diet   did  show  that  the  substance  in  yeast,  which  is  needed  for  the  flies’  development,  is   also  found  in  this  mixture  of  tissues  (Northrop,  1917).     Previous  Studies  on  Caloric  Content  and  Longevity   Multiple   studies   in   this   area   have   focused   on   the   caloric   content   of   the   media   of  the  Drosophila  melanogaster;  however,  the  experiments  performed  do  not  cover   all   of   the   aspects   of   caloric   content.     It   was   discovered   that   not   only   does   food   restriction   prolong   life,   but   caloric   restriction,   an   aspect   of   food   restriction,   also   results  in  a  greater  life  span.  The  commonly  recorded  effects  of  calorie  restriction,   or   CR,   are   a   decrease   in   body   temperature,   insulin   levels,   blood   glucose,   body   fat,   and  overall  weight  (Guarente  &  Picard,  2005).    

Caloric  and  Protein  Restriction     9    

The   idea   that   animals   under   the   influence   of   CR   undergo   a   decrease   in  

metabolic   rate   was   the   originally   accepted   belief   about   CRs;   however,   further   research   upon   the   subject   matter   found   that   this   was   a   myth.   In   C.   elegans   and   budding   yeast   (Saccharomyces  cerevisiae),   it   was   shown   that   the   metabolisms   of   the   organisms   actually   sped   up   while   placed   on   a   CR   diet,   contrary   to   the   previous   findings.   This   diet   has   also   exhibited   an   ability   to   stall   diseases   or   prevent   their   overall  appearance  in  the  future  (Guarente  &  Picard,  2005).     In  Drosophila  specifically,  the  dilution  of  yeast  has  been  shown  to  prolong  the   average   lifespan.   The   introduction   of   the   diet   to   Drosophila   demonstrates   that   CR   will  only  affect  the  short-­‐term  uncertainty  of  life,  not  their  long-­‐term  wellbeing.  This   shows   that   either   the   CR   sets   the   amount   of   damage   needed   to   cause   death   to   a   higher  amount,  or  that  it  causes  a  damage  reversal  in  the  body  of  the  fly  (Guarente  &   Picard,  2005).   In   another   experiment   performed   by   Mair   and   his   colleagues,   it   was   shown   that  calorie  restriction  has  an  unusual  effect  on  Drosophila   melanogaster.  When  the   flies   were   put   on   the   diet   their   morality   decreased   significantly;   however,   shortly   after  they  were  removed  from  the  diet  the  mortality  of  the  flies  began  to  resemble   that   of   the   control   group.   It   was   also   shown   that   the   flies   that   were   put   on   the   CR   diet  had  approximately  the  same  lower  morality  all  around,  without  regard  to  time   of  placement.  Whether  the  flies  were  put  on  the  diet  for  the  entirety  of  their  lives,  or   if   they   were   put   on   the   diet   near   the   end   of   their   lives,   their   morality   still   decreased   by  the  same  amount  (Mair,  Goymer,  Pletcher,  &  Partridge,  2003).    

Caloric  and  Protein  Restriction    10  

  Figure  1.  Male  mortality  rates  based  on  varying  diets.  In  figure  1A  the  mortality  rate  of  flies  with  a  diet  restriction  is  compared   to  that  of  those  that  have  a  full  diet.  After  eighteen  days,  a  portion  of  the  fully  fed  flies  were  moved  to  the  diet  restriction  and   shortly  after  their  mortality  rates  dropped  down  to  m atch  that  of  those  already  on  the  restrictive  diet.  In  figure  1B  the  mortality   rate  of  flies  with  a  diet  restriction  is  compared  to  that  of  those  that  have  a  full  diet.  After  eighteen  days,  a  portion  of  the  dietary   restricted   flies   were  moved   to  a  full  diet  and   shortly   after   their   mortality  rates   rose  to   match   that   of   the   fully   fed   flies   (Mair,   Goymer,  Pletcher,  &  Partridge,  2003).    

Research  Proposal   Researchable  question:   How  do  culture  media  with  varying  protein  concentrations  affect  Drosophila   lifespan  versus  culture  media  with  varying  caloric  concentrations?   Hypothesis:   Drosophila   cultured   on   media   with   caloric   or   protein   restriction   will   have   extended   lifespans,   and   flies   cultured   on   protein-­‐restricted   media   will   live   longer   than  flies  cultured  on  caloric  restricted  media.   Procedure:   To   test   how   yeast   and   caloric   diets   affect   the   longevity   of   Drosophila   there   will   be   many   different   environments   created   for   the   fruit   flies.   The   base   environment   will   comprise   55.059   grams   of   water,   0.952941   grams   of   yeast,   0.550588   grams   of   soy   flour,   4.02353   grams   of   yellow   cornmeal,   about   0.317647   grams   of   agar,   4.235   grams   of   light   corn   syrup,   0.265412   grams   of   mold   inhibitor,  

Caloric  and  Protein  Restriction    11   and   0.521394   grams   of   sugar   (Leora,   2011).   The   environments   are   made   up   of   a   control  media  that  will  contain  regular  the  previously  stated  amounts,  two  control   media   without   any   yeast,   two   variable   media   with   30%   higher   yeast   content,   and   two  variable  media  with  30%  lower  yeast  content.  In  one  set  of  these  environments,   caloric  content  will  remain  constant  through  the  addition  or  subtraction  of  sugar;  in   the   other   set   of   environments,   the   sugar   content   will   remain   constant.   The   media   were   created   using   a   standard   250mL   beaker.   Each   of   the   ingredients   was   then   measured   out   to   two   times   their   original   recipe   in   a   standard   plastic   cup.   The   soy   flour,  baker’s  yeast,  light  corn  syrup,  and  sugar  were  then  combined  in  a  single  cup   with   18   grams   of   water   and   stirred   continuously   until   all   clumps   were   removed.   Afterwards,   the   yellow   cornmeal,   agar,   and   mold   inhibitor   were   combined   into   a   single   solo   cup   with   28   grams   of   water   and   were   stirred   continuously   until   all   clumps  were  removed.  The  beaker  was  then  filled  with  20  grams  of  water  and  was   placed  on  the  stove  inside  a  pot,  to  evenly  distribute  heat,  until  it  boiled.  Once  the   water   began   to   boil,   the   yellow   cornmeal   mixture   was   added   to   the   boiling   water   and  was  continuously  stirred  until  the  combined  mixture  began  to  boil  again.  Upon   second   boil,   the   soy   flour   mixture   was   added   and   was   continuously   stirred   until   it   began  to  boil.  The  mixture  was  then  allowed  to  boil  with  continuous  stirring  for  10   minutes   and   was   then   separated   equally   into   three   vials.   This   process   was   repeated   for   all   seven   separate   environments.   The   flies   will   then   be   allowed   to   mature   into   their   imago   stage   and   will   be   separated   by   sex.   After   the   flies   are   separated,   their   reaction   times   will   be   recorded   by   a   simple   test   during   which   the   vial   is   tapped   repeatedly   to   move   the   flies   to   the   bottom   of   the   vial.   Once   the   flies   are   at   the  

Caloric  and  Protein  Restriction    12   bottom  of  the  vial,  their  reaction  time  will  be  measured  by  the  amount  of  time  taken   for   the   final   fly   to   reach   the   top   of   the   vial   due   to   geotaxis.   This   process   shall   be   repeated  each  day  for  two  weeks  and  the  reaction  time  of  the  control  will  be  tested   against   the   variable   environments.   Viability   of   diet   will   be   assessed   through   the   lowest   reaction   time.   The   controls   of   the   experiment,   aside   from   those   mentioned   above,  included  fly  strain  and  temperature.      

 

Caloric  and  Protein  Restriction    13   Methodology   To   test   how   yeast   and   caloric   diets   affect   the   longevity   of   Drosophila   many   different   environments   were   constructed   for   the   fruit   flies.   The   base   environment   comprised   110   grams   of   water   (tap   water,   H2O),   two   grams   of   baker’s   yeast   (Saccharomyces  cerevisiae,   store   brand),   one   gram   of   soy   flour   (store   brand),   eight   grams  of  yellow  cornmeal  (store  brand),  about  0.3  grams  of  agar  (purchased  from   Carolina  Biological),  eight  grams  of  light  corn  syrup  (store  brand),  0.3  grams  of  mold   inhibitor   (purchased   from   Flinn),   and   one   gram   of   sugar   (store   brand,   C12H22O11)   following   the   methodology   of   Leora   (2011).   The   environments   were   made   up   of   a   control   media   that   contained   the   previously   stated   amounts   of   ingredients,   two   control  media  without  any  yeast,  two  variable  media  with  30%  higher  yeast  content,   and   two   variable   media   with   30%   lower   yeast   content.   In   one   set   of   these   environments,   caloric   content   was   kept   constant   through   the   addition   or   subtraction   of   the   sugar.   In   the   other   set   of   environments,   the   sugar   content   remained  constant.  The  media  were  created  using  a  standard  250mL  beaker.  Each  of   the   ingredients   was   then   measured   out   to   two   times   their   original   recipe   in   a   standard  8.89  centimeter  plastic  cup.  The  soy  flour,  baker’s  yeast,  light  corn  syrup,   and  sugar  were  then  combined  in  a  single  cup  with  18  grams  of  water  and  stirred   continuously   until   all   clumps   were   removed.   Afterwards,   the   yellow   cornmeal,   agar,   and  mold  inhibitor  were  combined  into  a  single  plastic  cup  with  28  grams  of  water   and  were  stirred  continuously  until  all  clumps  were  removed.  The  beaker  was  then   filled   with   20   grams   of   water   and   was   placed   on   the   stove   inside   a   small   pan   to   evenly   distribute   heat   until   it   boiled.   Once   the   water   began   to   boil,   the   yellow  

Caloric  and  Protein  Restriction    14   cornmeal  mixture  was  added  to  the  boiling  water  and  was  continuously  stirred  until   the  combined  mixture  began  to  boil  again  (see  figure  2).  Upon  second  boil,  the  soy   flour   mixture   was   added   and   was   continuously   stirred   until   it   began   to   boil.   The   mixture  was  then  allowed  to  boil  with  continuous  stirring  for  10  minutes  and  was   then   separated   equally   into   three   vials   (see   figure   3).   This   process   was   repeated   for   all  seven  separate  environments.  Five  to  ten  flies  of  each  gender  were  placed  in  each   vial  and  were  allowed  to  reproduce.  The  parental  generation  was  then  flipped  into  a   new   vial,   of   the   same   type   of   environment,   after   four   days.   The   eggs   left   in   the   original   vials   were   then   allowed   to   mature   into   their   imago   stage   and   were   separated   by   sex   into   vials   of   control   media   (see   figure   4).     After   the   flies   were   separated,   they   were   left   alone   to   complete   their   life   cycle.   Viability   of   diet   was   assessed   through   the   length   of   the   life   of   the   fly.   The   controls   of   the   experiment,   aside   from   those   mentioned   above,   included   fly   strain   (wild   type   Drosophila   melanogaster)  and  temperature  (27  degrees  Celsius).    

Caloric  and  Protein  Restriction    15    

 

Figure  2.  Production  of  media  for  D.  melanogaster.  The   media   must   be   allowed   to   boil   over   a   stove   with   the   correct   ingredients   and   constant   stirring   to   avoid   burning.  

Figure   3.   Media   for   D.   melanogaster   poured   into   vials.   After   being   cooked,   the   media   is   then   poured   into  three  separate  vials  and  is  labeled  according  to   the  type  of  m edia.  

Figure  4.  Drosophila  separated  by  sex.  After  the  flies  reach  the  imago  stage,   they  are   all   separated  by  sex  into   control   medias.  Each   vial  is  labeled  with   the  date  of  transfer,  type  of  media  the  flies  were  cultured  in,  and  gender.    

Caloric  and  Protein  Restriction    16   Results  

Table  3.  The  number  of  flies  living  per  day  of  female  Drosophila.  

Lifespan  

The  Effects  of  Dietary  Restriction  on  Drosophila  (Alive,  Females).  

Days  

Control  

30%  less   with   controlled   calories  

30%  less  

30%  more   with   controlled   calories  

30%  more  

1  

72  

13  

44  

41  

28  

2  

72  

13  

44  

41  

28  

3  

72  

13  

44  

41  

28  

4  

70  

13  

44  

41  

28  

5  

70  

13  

44  

41  

28  

6  

65  

12  

43  

41  

23  

7  

62  

12  

43  

41  

23  

8  

54  

12  

41  

38  

23  

9  

40  

11  

35  

38  

13  

10  

35  

9  

33  

37  

7  

11  

29  

8  

22  

29  

4  

12  

16  

7  

16  

25  

3  

   

 

   

 

Caloric  and  Protein  Restriction    17    

Percent  of  female  D.  melanogaster  alive  

1.2  

 

1   Control   0.8   30%  less  yeast  with   controlled  calories  

0.6  

30%  less  yeast   0.4  

30%  more  yeast  with   controlled  calories   30%  more  yeast  

0.2  

0   1  

2  

3  

4  

5   6  

7   8  

9   10   11   12  

Days   Figure  5.  Graph  of  the  percent  of  alive  female  D.  melanogaster  in  response  to  each  diet.  The  above  shows  that   the  diet  with  30%  more  yeast  was  detrimental  to  the  lifespan  of  the  fruit  flies.  It  also  shows  that  the  diets   with  the  highest  lifespan  were  those  that  were  restricted  or  supplemented  with  a  constant  caloric  content.  

Caloric  and  Protein  Restriction    18   Table  4.  The  amount  of  flies  living  per  day  of  m ale  Drosophila.  

Lifespan  

The  Effects  of  Dietary  Restriction  on  Drosophila  (Alive,  Males).  

Days  

Control  

30%  less   with   controlled   calories  

30%  less  

30%  more   with   controlled   calories  

30%  more  

1  

80  

21  

37  

36  

34  

2  

80  

21  

37  

36  

34  

3  

80  

21  

37  

36  

34  

4  

80  

21  

35  

35  

34  

5  

73  

21  

35  

35  

34  

6  

73  

21  

35  

35  

34  

7  

64  

21  

33  

35  

34  

8  

54  

17  

32  

30  

31  

9  

34  

17  

31  

29  

30  

10  

21  

17  

22  

23  

28  

11  

10  

15  

21  

21  

25  

12  

10  

13  

17  

20  

17  

 

 

Caloric  and  Protein  Restriction    19    

Percent  of  male  D.  melanogaster  alive  

1.2  

 

1   Control  

0.8  

30%  less  yeast  with   controlled  calories  

0.6  

30%  less  yeast   0.4  

30%  more  yeast  with   controlled  calories  

0.2  

30%  more  yeast  

0   1  

2  

3  

4  

5  

6  

7  

8  

9   10   11   12  

Days   Figure  6.  Graph  of  the  percent  of  m ale  D.  melanogaster  alive  in  response  to  each  diet.  The  above  shows  that   the  control  group  seemed  to  have  the  shortest  lifespan  while  all  other  diets  seemed  to  prolong  lifespan.  

Viability  of  D.  melanogaster   90  

Number  of  Progeny  

80   70   60   50   Male  

40  

Female  

30   20   10   0   Control  

30%  more  

30%  more   with  control  

30%  less   30%  less  with   control  

Figure   7.   The   number   of   progeny   in   each   type   of   vial   of   Drosophila   medium.   This   graph   shows   that   the   control  group  had  the  most  progeny  compared  to  all  the  other  diets.  

Caloric  and  Protein  Restriction    20   Data  Analysis  and  Discussion   Based  on  the  trends  in  the  data,  nutritional  variances  in  the  media  do  affect   the   longevity   of   Drosophila   melanogaster.   In   the   population   of   males,   only   twelve   percent  survived  after  a  period  of  twelve  days  while  each  other  diet  had  a  survival   rate  above  45  percent.  These  results  were  found  to  be  significant  at  an  alpha  of  0.05   because   the   chi-­‐square   value   was   calculated   to   be   55.2521   with   three   degrees   of   freedom.  This  means  that  because  55.2521  is  greater  than  2.366,  the  expected  chi-­‐ square   for   three   degrees   of   freedom,   it   is   safe   to   reject   the   null   hypothesis   that   type   of   diet   does   not   affect   the   lifespan   of   D.  melanogaster;   however,   the   results   of   this   test   may   be   inconclusive   because   more   than   twenty   percent   of   the   expected   cells   were  below  a  count  of  five.     The  females,  on  the  other  hand,  exhibited  exceedingly  different  results.  Based   on   the   data,   the   diet   with   30   percent   more   yeast   was   the   least   beneficial   with   a   survival   rate   of   eleven   percent.   The   control   group,   however,   had   the   next   lowest   survival   rate   of   22   percent.   Each   of   the   other   diets   had   a   survival   rate   above   36   percent.   These   results   were   shown   to   be   significant   at   an   alpha   of   0.05;   however,   this   is   much   less   significant   than   that   of   the   males.   The   resulting   chi-­‐square   value   was  12.061  with  three  degrees  of  freedom;  therefore,  because  12.061  is  greater  than   2.366   it   is   significant   at   the   0.05   level.   The   caveat   regarding   the   conclusiveness   of   the   data   must   be   applied   here   as   well   because   25   percent   of   the   expected   cells   were   below  a  count  of  five.     The   flies   that   were   cultivated   in   the   media   with   an   absence   of   yeast   did   hatch;  however,  the  time  spent  in  the  egg  stage  was  nearly  two  times  greater  than  

Caloric  and  Protein  Restriction    21   those   in   all   other   environments.   Unfortunately,   these   flies   did   not   hatch   in   time   to   produce  viable  results.      

 

Caloric  and  Protein  Restriction    22   Conclusions    

The   data   partially   supported   the   original   hypothesis   because   it   was   shown  

that  there  is  a  relationship  between  the  lifespan  of  Drosophila  and  the  supplied  diets   that   is   possibly   statistically   significant.   The   data   suggested   that   there   might   be   a   difference   in   the   way   diets   affect   the   longevity   of   different   genders.   The   data   for   the   male   fruit   flies   suggested   that   any   type   of   diet,   reduced   or   supplemented,   would   increase   their   overall   lifetime.   The   data   for   the   female   flies,   on   the   contrary,   proposed   that   diets   with   supplementation   or   reduction   in   yeast   with   a   controlled   amount  of  calories  would  be  more  beneficial  than  those  without  a  caloric  control.  In   one   case   where   calories   were   not   controlled,   the   diet   was   even   shown   to   be   detrimental   to   the   lifespan   of   the   female   flies.   These   results   cannot   effectively   be   extrapolated   to   humans;   however,   aspects   of   these   results   pose   possible   areas   of   research  for  human  development.    

 

Caloric  and  Protein  Restriction    23   Limitations  and  Assumptions    

Some   of   the   limitations   of   experimentation   were   the   time   and   monetary  

constraints,   which   allowed   for   fewer   trials   than   desired   as   well   as   the   inability   to   test   the   yeast   absent   vials   of   flies,   and   scale   and   timing   limitations,   which   allowed   for   less   precision   than   preferred.   Along   with   these   restrictions   were   several   assumptions   including   that   all   equipment   used   was   properly   working,   Drosophila   melanogaster  raised   in   captivity   are   representative   of   those   raised   in   the   wild,   the   physiology   of   fruit   flies   is   indeed   similar   to   that   of   human   physiology,   and   the   control  group  is  representative  of  the  population  of  Drosophila  melanogaster.      

Some  possible  sources  of  error  include  minute  differences  in  growth  media,  

slight  differences  in  media  consistency  due  to  variations  in  the  water  content  of  the   media  and  how  much  evaporated,  the  measurement  of  the  reaction  time  measured   by   counting   the   number   of   flies   that   did   not   reach   the   top   of   the   vial   in   the   five   second   interval,   the   possible   damage   to   nervous   system   due   to   the   use   of   FlyNap,   and  the  accuracy  of  the  standard  stop  watch  app  on  an  Iphone.    

 

Caloric  and  Protein  Restriction    24   Applications  and  Future  Experiments   The  overlaying  applications  of  the  project  are  based  on  the  ability  to   suggest   directions   for   future   experiments.   At   this   time,   it   is   impossible   to   experiment   on   humans   directly,   thus   Drosophila  melanogaster  were   used   as   physiological   models.   The   main   idea   behind   the   project   was   to   determine   which   type   of   diet   would   be   more   beneficial   to   undergo,   in   reference   to   lifespan,   a   reduction   in   calories,   a   reduction  in  protein,  or  both.     There   are   many   possible   extensions   to   this   project   including   testing   the   viability   of   other   dietary   concerns   such   as   fats   and   experimenting   on   vertebrate   such   as   mice.   By   experimenting   on   vertebrate   that   are   more   similar   to   humans   physiologically,   it   becomes   easier   to   extrapolate   possible   correlations   between   dietary  intake  and  reaction  time  near  death  (ultimately  longevity).  Another  area  of   research   that   would   be   beneficial   to   study   would   be   the   use   of   the   information   obtained   to   repel   Drosophila   from   plant   species.   Because   it   was   found   that   any   change   in   diet   reduced   the   number   of   progeny,   a   spray   could   be   developed   with   trace  amounts  of  protein  to  reduce  the  deterioration  of  plant  life.  (G.  Stoltz,  personal   communication,   February   2013).   In   extensions   of   this   project,   results   would   be   much  more  conclusive  due  to  the  experience  gained  and  due  to  the  removal  of  high   school   student   restrictions.   If   it   were   possible   to   replicate   this   experiment,   the   number  of  trials  would  be  increased,  humidity  would  be  controlled,  number  of  flies   in  each  vial  would  be  increased,  devices  used  would  be  more  precise,  the  media  and   fly   environments   would   be   set   up   much   earlier,   and   the   media   would   be   slightly   more   consistent.   New   work   in   the   field   of   protein   versus   caloric   restriction   opens  

Caloric  and  Protein  Restriction    25   the  door  to  many  experiments  to  extend  and  understand  lifespan.    The  eventual  goal   of   this   project   is   to   be   able   to   aid   in   the   overwhelming   problem   of   obesity   in   the   world   and   also   to   understand   what   types   of   dietary   restriction   allow   for   the   healthiest  and  ultimately  longest  lives.    

 

Caloric  and  Protein  Restriction    26   Literature  Cited   Chapman,  T.,  &  Partridge,  L.  (1996).  Female  fitness  in  Drosophila  melanogaster:  an   Interaction  between  the  effect  of  nutrition  and  of  encounter  rate  with  males.   Biological  Sciences,  263(1371),  755-­‐759.  Retrieved  December  17,  2012,  from   http://rspb.royalsocietypublishing.org     Chippindale,  A.,  Leroi,  S.,  Kim,  A.,  &  Rose,  M.  (1993).  Phenotypic  plasticity  and   selection  in  Drosophila  life-­‐history  evolution.  i.  nutrition  and  the  cost  of   reproduction.  Evolutionary  Biology,  6(2),  171-­‐193.  Retrieved  December  17,   2012,  from  www-­‐scopus-­‐com     Demerec,  M.,  &  Kaufmann,  B.  P.  (1957).  Drosophila  guide.  Washington:  Carnegie   Institution  of  Washington.     Guarente,  L.,  &  Picard,  F.  (2005).  Calorie  restriction-­‐-­‐the  sir2  connection.  Cell,   120(4),  473-­‐482.  Retrieved  from  http://www.sciencedirect.com     Loera,  J.  (2011,  May  20).  Current  bloomington  recipe  for  drosophila  media.  Retrieved   from  http://flystocks.bio.indiana.edu/Fly_Work/media-­‐ recipes/bloomfood.htm     Mair,  W.,  Goymer,  P.,  Pletcher,  S.,  &  Partridge,  L.  (2003).  Demography  of  dietary   restriction  and  death  in  Drosophila.  Science,  301,  1731-­‐1733.  Retrieved   November  15,  2012,  from  http://www.sciencemag.org     Northrop,  J.  (1917).  The  role  of  yeast  in  the  nutrition  of  an  insect  (drosophila).   Biological  Chemistry,  30,  181-­‐187.  Retrieved  November  14,  2012,  from   http://www.jbc.org     Partridge,  L.,  Green,  A.,  &  Fowler,  K.  (1987).  Effects  of  egg-­‐production  and  of   exposure  to  males  on  female  survival  in  Drosophila  melanogaster.  Insect   Physiology,  33(10),  745–749.  Retrieved  December  17,  2012,  from   www.sciencedirect.com     Partridge,  L.,  Pletcher,  S.,  &  Mair,  W.  (2005).  Dietary  restriction,  mortality   trajectories,  risk  and  damage.  Mechanisms  of  Ageing  and  Development,  126,   35-­‐41.  Retrieved  November  15,  2012,  from  http://www.sciencedirect.com     Wixon,  J.,  &  O'Kane,  C.  (2000).  Featured  organism  Drosophila  melanogaster.  Yeast,   17,  146-­‐153.  Retrieved  November  15,  2012,  from   http://www.ncbi.nlm.nih.gov      

Caloric  and  Protein  Restriction    27   Acknowledgments    

The   author   wishes   to   thank   his   parents   for   their   ongoing   support,   from  

providing   moral   support   to   laboratory   space.   Annabel   Consilvio   was   also   a   great   help   to   the   author   because   of   the   hands   on   experience   she   was   able   to   pass   on   regarding  basic  culturing  needs  for  Drosophila.  The  author  would  also  like  to  thank   Dr.   Sumner   for   providing   help   in   experimental   design   ideas.   She   also   provided   an   answer  to  any  questions  asked  and  overall  aid  in  the  creation  of  this  paper.    

Suggest Documents