218A Notes : Basic Analysis of Analog Circuits

notes, M. Rodwell, copyrighted ECE145A / 218A Notes : Basic Analysis of Analog Circuits Mark Rodwell University of California, Santa Barbara rodwell...
Author: Kathlyn Holmes
0 downloads 0 Views 327KB Size
notes, M. Rodwell, copyrighted

ECE145A / 218A Notes : Basic Analysis of Analog Circuits Mark Rodwell University of California, Santa Barbara

[email protected] 805-893-3244, 805-893-3262 fax

Comment

notes, M. Rodwell, copyrighted

This (2009) is a transitional year: Next year 145abc will be reorganized, reorganized 145a: fundamentals (devices, analog & RF analysis, models) 145cb: RF systems at IC and system level This year: some students have taken 145c: already l d have h device d i models d l already know analog circuit analysis well some students have not must cover device models must review some circuit analysis methods These notes: shortened version (2009 only) of device models

Transistor Circuit Design

notes, M. Rodwell, copyrighted

This note set -reviews the basics -starts at the level of a first IC design course -moves very quickly

This will -establish establish a common terminology -accommodate capable students having minimal background in ICs.

notes, M. Rodwell, copyrighted

DC models d l DC bi bias analysis l i

Large-Signal Model For Bias Analysis Ib

notes, M. Rodwell, copyrighted

Ic

+ Vbe

-

Provided that Vce > 0, I c = I s exp(Vbe / VT ) and I b = I c / β , where VT = kT / q ...note that Vbe is specified internal to the emitter resistance Rex Th I e Rex drop The d is i significan i ifi t for f HBTs HBT operating ti att currentt densities d iti near that required for peak transistor bandwidth.

notes, M. Rodwell, copyrighted

DC Bias Example: Current Mirror

I ref

Ic2

Q2

Q1 I b 2 I b1

Rex 2

We have Vbe b 1 + I e1 ( Rex1 + Ree1 ) = Vbe b 2 + I e 2 ( Rex 2 + Ree 2 ) and Vbe1 = Vt ln( I c1 / I s1 ), Vbe 2 = Vt ln( I c 2 / I s 2 ) Assume that β >> 1, Ree 2 = 2 Ree1 & assume that AE1 = AE 2 ( AE is the emitter area). area) This implies Rex1 = Rex 2 / 2 , and I s1 = 2 I s 2 , from which we find I c 2 = I c1 / 2

Ree 2

Ie2

I e1

Rex1 Ree1

notes, M. Rodwell, copyrighted

Simpler DC Model for Bias Analysis Ib

Ib

Ic Vbe

Ic

Vbe

It is often sufficient in bias analysis to ignore the variation of Vbe b with I c and instead take Vbe b = Vbe b ,on = φ . Vbe,on depends d d upon currentt density d it and d technolog t h l y. Biased at current densities within ~ 10% of peak bandwidth bias, Vbe,on

⎧ 0.9 V Modern Si/SiGe HBTs ⎪ = φ ~ ⎨0.7 or 0.9 V InGaAs/InP HBTs ⎪ 1.4 V GaAs/GaInP HBTs ⎩

notes, M. Rodwell, copyrighted

Simple DC Bias Example Rc Ib2

Rb Q2

Ib11

Q1 Ree

-Vee

If we neglect the I b Rb drops, then Vb1 = Vb 2 = 0 Volts. Approximate Ve1 = Ve 2 = −φ ≅ −0.9 V (SiGe). I c1 + I c 2 = 2 I c1 = (−Vee − 0.9V ) / Ree I c1 = I c 2 = (−Vee − 0.9V ) / 2 Ree

notes, M. Rodwell, copyrighted

Efficiently Handling Base Currents In Bias Analysis If I b Rbdrop is singificant, one can solve simultaneous equations :

Rc Ib2

Rb

I c1 + I c 2 = 2 I c1 = ( −Vee − φ − I b1Rb ) / Ree where I b1 = I c1 / β ,

Q2

Q1 Ree

Q i k : find Quicker fi d by b iteration it ti : 1) solve I c1 = ( −Vee − φ ) / 2 Ree 2) solve I b1 ≅ I c1 / β

-Vee

3) use this value of I b to solve I c1 = ( −Vee − φ − I b1Rb ) / 2 Ree Works because any well - designed circuit has DC bias only weakly dependent upon β .

Ib1

notes, M. Rodwell, copyrighted

small-signal ll i l b baseband b d analysis l i

Hybrid-π Bipolar Transistor Model

notes, M. Rodwell, copyrighted

Ccbx B

Rbb

Ccbi

Rc

C

Rbe = β / g m

τ f = τb + τ c

Rbe Cbe,diff gmτ f Cje b diff =g

gm Vbee -jωτc

Vbe Rex E

Accurate model, but too detailed for quick hand analysis

Oversimplified Model for Quick Hand Analysis Cbe Rbe Ccb g mVbe B

Vbe

C

+

Rbe B

− E

g mVbe C

+

Vbe

notes, M. Rodwell, copyrighted

− E

In most high high-frequency frequency circuits circuits, the node impedance is low and Rce is therefore negligible. Neglecting Rbb in high-frequency high frequency analysis is a poor approximation but is nevertheless common in introductory treatments.

The "textbook" analyses which follow use this oversimplified model. These introductoryy treatments will later be refined.

notes, M. Rodwell, copyrighted

Common Emitter Stage: Basics 2) δVC = − RLeqq ⋅ δI C

RLeq

7) Rin ,T = δVb / δI b = β (re + Re ) 5) δI b = δI c / β 1) δI e ≅ δI c

+

4) δVbe = δI e / g m



3) δVe = RE ⋅ δI e 6) δVb = δI e ⋅ (re + Re ) = δI b ⋅ β (re + Re )

RE

8) δVout / δVin = δVout / δVB = − RLeq /(re + Re ) = − RLeq /( Re + 1 / g m ) Gain is - RLeq /( Re + 1 / g m ) ; Transistor Rin is β (re + RE )

notes, M. Rodwell, copyrighted

Emitter Follower Stage: Basics 6) Rin ,T = δVb / δI b = β (re + RLeq ) 4) δI b = δI c / β

1) δI e ≅ δI c

+

3) δVbe = δI e / g m



2) δVe = RLeq ⋅ δI e 5) δVb = δI e ⋅ (re + RLeqq ) = δI b ⋅ β (re + RLeqq )

RLeq

7) δVout / δVin = δVout / δVE = RLeq /(re + RLeq ) = RLeq /( RLeq + 1 / g m )

Gain is RLeq /( RLeq + 1 / g m ) ; Transistor Rin is β (re + RE )

notes, M. Rodwell, copyrighted

Common-Base Stage: Basics

2) δVout = RLeq ⋅ δI C

6) δVin = δI e ⋅ (re + Rb / β ) 7) Rin ,T = δVe / δI e = re + RB / β +

5) δVbe = δI e / g m − RB

1) δI e ≅ δI c RLeq

4) δVb = δI c ⋅ Rb / β 3) δI b = δI c / β 7) δVout / δVin = RLeq /(re + Rb / β ) Gain is RLeq /(re + Rb / β ) ; Transistor Rin is re + Rb / β

notes, M. Rodwell, copyrighted

Emitter Follower Output Impedance

ECE145C /218C notes, M. Rodwell, copyrighted

Common-Base Stage: Basics

2) δVout = RLeq ⋅ δI C

6) δVin = δI e ⋅ (re + Rb / β )

Rout ,emitter RB

Rout ,amp

7) Rin ,T = δVe / δI e = re + RB / β +

5) δVbe = δI e / g m − RB

4) δVb = δI c ⋅ Rb / β

1) δI e ≅ δI c RLeq

3) δI b = δI c / β

7) δVout / δVin = RLeq /(re + Rb / β )

REE

Gain is RLeq /(re + Rb / β ) ; Transistor Rin is re + Rb / β

E.F. output impedance is same problem as C.B. input impedance Rout ,emitter = re + RB / β = 1 / g m + RB / β

Rout ,amp = Rout ,emitter REE

notes, M. Rodwell, copyrighted

Including Bias Circuit Resistances

Rin , Amp = RB1 RB 2 RinT

Rgen

Vgen

RB1

RLeq = RC RL

RC

Rin ,T

Vin

RB1

Th are (trivially These (t i i ll ) added dd d in i parallel ll l with ith the th transisto t it r terminal impedances to determine the net circuit impedances. From which, Vin / Vgen = Rin ,amp /( Rin ,amp + Rgen ) , etc.

RL

notes, M. Rodwell, copyrighted

Baseband Analysis Of Multistage Circuits

For baseband analysis of multi-stage circuits, simply break into individual stages. Q1

Q2

Q3

Load impedance of the Nth stage includes the input impedance of the (N+1)th stage

Q4

Analysis is then trivial... trivial

Rin3

Rin2 Vin1

Q3

Q1 Vout1

Vout3 Q4

Q2 Rin3

Rin2

Rin4

Vout2

Vin2=V Vout1

Vout2=Vin3 Rin4

Vout3=Vin4

notes, M. Rodwell, copyrighted

small-signal ll i l b baseband b d analysis l i

High-Frequency Analysis: The General Problem Ccbx = 6.4 fF B

Rc = 6500 Ω Ccbi = 3.7 fF

Rbb = 49 Ω Vb'e

Rπ = 350 Ω

C

g mVb 'e

Cdiff = C je = 182 fF 38 fF

Rex = 4.3 Ω E B

Ccbx = 6.4 fF

Q2

Cdiff = C je = 182 fF 38 fF

Rc = 6500 Ω Ccbi = 3.7 fF

Rbb = 49 Ω Vb'e

Q1

notes, M. Rodwell, copyrighted

Rπ = 350 Ω

C

g mVb 'e Rex = 4.3 Ω

Vgen E

Analyzing frequency response is difficult: cannot separate stage-by-stage y accurate,, ggeneral,, tedious. Method #1: nodal analysis: Method #2: method of time constants: accurate, limited applicabilty, quick & intuitive

notes, M. Rodwell, copyrighted

N d l Analysis Nodal A l i

notes, M. Rodwell, copyrighted

Tutorial: Transfer Function Analysis: Nodal Analysis I Simple & very familiar example : common - emitter amplifier. Vout

Vin Rgen Vgen Rb

Vin

C L RL

B

Ccb

C

Vout

Rgen Vgen

E

Rb

Cbe Rbe

gmVbe

CL RL

notes, M. Rodwell, copyrighted

Tutorial: Transfer Function Analysis: Nodal Analysis II Reduced circuit :

Vin

Vout

( Ri = Rgen || Rbe || Rb ) Ii=Vgen/Rgen Cbe Ri

gmVbe CL RL

Step 1 : Write Nodal Equations from KCL

⎡Gi + sCbe + sCcb ⎢ g − sC m cb ⎣

− sCcb

⎤ ⎡ Vin ⎤ ⎡ I i ⎤ =⎢ ⎥ ⎥ ⎢ ⎥ GL + sCL + sCcb ⎦ ⎣Vout ⎦ ⎣ 0 ⎦

notes, M. Rodwell, copyrighted

Tutorial: Transfer Function Analysis: Nodal Analysis III Step 2 : Solve Nodal Equations : Vout / I in = N ( s ) / D ( s ) Gi + sCbe + sCcb N ( s) = g m − sCcb

1 = −( g m − sCcb ) 0

Gi + sCbe + sCcb D( s) = g m − sCcb

− sCcb GL + sCL + sCcb

D ( s ) = (Gi + sCbe + sCcb )(GL + sCL + sCcb ) − (g m − sCcb )(− sCcb ) Step 3 : Organize in powers of s D ( s ) = GiGL + s(GiCL + GiCcb + GLCbe + GLCcb + g mCcb + s 2 (CbeCL + CbeCcb + CcbCL + CcbCcb − CcbCcb )

notes, M. Rodwell, copyrighted

Tutorial: Transfer Function Analysis: Nodal Analysis IV Step 4 : Separate into dimensionless ratio - of - polynomials form, separating p g constants and g gains from the transfer function... Vout Vout N ( s) = = I in Vgen / Rgen D ( s ) − ( g m − sCcb ) = ⎛ GiGL + s(GiCL + GiCcbb + GLCbe b + GLCcb b + g mCcb b⎞ ⎜ ⎟ 2 ⎜ ⎟ + s ( C C + C C + C C ) be L be cb cb L ⎝ ⎠ − ( g m − sCcb ) Ri RL / Rggen Vout = Vgen ⎛1 + s( RLCL + RLCcb + RiCbe + RiCcb + g m Ri RLCcb ⎞ ⎟ ⎜ 2 ⎟ ⎜ + s ( C C + C C + C C ) R R be L be cb cb L i L ⎝ ⎠

notes, M. Rodwell, copyrighted

Tutorial: Transfer Function Analysis: Nodal Analysis V

Rin , Amp ( Rbe || Rb || Rgen ) Ri ( Rbe || Rb ) note that = = = Rggen Rggen ( Rbe || Rb ) + Rggen Rin , Ampp + Rggen so... ⎛ Rin , Amp ⎞ Vout ⎟(− g m RL ) =⎜ Vgen ⎜⎝ Rin , Amp + Rgen ⎟⎠ b1 − (1 − sC Ccb / g m ) × ⎛1 + s( RLCL + RLCcb + RiCbe + RiCcb + g m Ri RLCcb ) ⎞ ⎜ ⎟ 2 ⎜ ⎟ + s ( C C + C C + C C ) R R be L be cb cb L i L ⎝ ⎠

Vout ( s ) Vout ⇒ = Vgen ( s ) Vgen

mid − band

1 + b1s 1 + a1s + a2 s 2

a1

a2

notes, M. Rodwell, copyrighted

Tutorial: Transfer Function Analysis: Nodal Analysis VI Step 5 : Find the roots (poles & zeros) of the polynomial Vout ( s ) Vout = Vgen ( s ) Vgen

mid −band

1 + b1s Vout = 2 1 + a1s + a2 s Vgen

mid − band

1 + b1s (1 − s / s p1 )(1 − s / s p 2 )

what are efficient methods of finding the poles ?

notes, M. Rodwell, copyrighted

Finding Fi di Poles P l f from T Transfer f Functions F ti

Finding Poles and Zeros Ratio - of - Polynomial Form : Vout ( s ) Vout = Vgen ( s ) Vgen

at mid- band

2 1 + b s + b s + ... m 1 2 *s 1 + a1s + a2 s 2 + ...

Poles and Zeros : Vout ( s ) Vout = Vgen ( s ) Vgen

(1 − s / sz1 )(1 − s / sz1 )(1 − s / sz1 )... *s (1 − s / s p1 )(1 − s / s p1 )(1 − s / s p1 ))... m

at mid- band

notes, M. Rodwell, copyrighted

notes, M. Rodwell, copyrighted

Finding Poles: Complex Poles Vout 1 + b1s + b2 s 2 + ... =k Vgen 1 + a1s + a2 s 2 + a3s 3 If a3 / a2