40G/100G Networks & In‐Building Wireless Trends in the Market Jason Gonzalez – Technical Manager, Caribbean

AGENDA Design Considerations Fiber Optic Types T d ’ Today’s and Future Apps dF t A 40/100G Ethernet Support and parallel applications Connectivity Options DAS  In‐Building Wireless Conclusions

40G/100G Network Infrastructure

Initial Considerations: Design Factors MACs Availability (Intelligence)

Intelligence /  P/ Efficiency T / ff CostPre‐Term  Solutions

Factors

Intelligence / Keyed Security / Lock

1/10/40/100G Scalability (Pre‐Term)

Initial Considerations: Standards

Type

TIA/EIA‐942

EN 50173‐5

ISO 24764

Published

2005

2007

2009

Copper

Cat 6 recommended Cat 6 recommended

Class E Minimum Class E Minimum

Class EA Class E

Fiber

OM3 recommended OS1

OM3 recommended OS1

OM3 recommended  OS2

SFF (1‐2 fibers) MPO (> 2 fibers)

LC (1‐2 fibers)  MPO  (> 2 fibers)

Connector

Distributed Topology Switch

Panels / Shelves

Availability:  Connection Type • 3 connection schemes based on the networking  q p equipment location: Centralized • MDA (Switch) • EDA (Server) EDA (Server)

Local Impact

Distributed  Topology (Zone) Topology (Zone) • MDA (Switch) • HDA (Switch) HDA (Switch) • EDA (Server) Zone Impact

Direct  Connection • Top of Rack • MDA (Switch) MDA (Switch) • EDA (Switch,  Server)) Local Impact

Topologies: Communications Redundancyy Uptime Tier 1 Tier 2 Tier 3 Tier 3 Tier 4

Redundancia frente a CAPA 8: “80% of all unplanned downtime can  be attributed to people and  processes and only 20% is caused processes and only 20% is caused  by technology failures.”

Source – TIA‐942

Scalability:  Data Center Switch Port Media Mapping Data Center Switch Port Media Mapping MPO

SFP OM3/4

CAT6

Crehan Research Inc. Research Inc Oct 2010

CAT6A

Selection Process FO Technology

Multimode

Singlemode

Pre‐Terminated

Cable Features

I d Indoor

I d Indoor A Armored d

I d /O td Indoor/Outdoor

Hardware Features

Intelligent

/ Ultra High High / Ultra High

Color coded Color coded

Fiber Optic Solutions DMD Bandwidth 850/1300nm (MHz*km) (MHz km)

Distance Capability* 1/10 Gb/s

62.5um OM1

200/500 (OFL BW)

300/33m (850nm)

50um OM2

500/500

550/82m

50um LOMMF “OM2+”

950/500

800/150m (850nm)

50um LOMMF OM3

2000/500

1000/300m (850nm)

50um LOMMF OM4

4700/500

1100/550m ( ) (850nm)

Single-mode OS2

Not Spec’d

--/40km (1550nm)

* Distances are for a standard link with 2 connections.  Cross‐connects and  interconnects will increase the system loss and decrease allowable distance.  OM1  and OM2 fibers will not meet distance requirements for “typical” systems at higher  data rates.

Design:  Distance calculation

Design:  Manufacturer’s Performance Specifications p

40G/100G Ethernet over FO 40GbE PMDs 40GBASE‐SR4

4 Lanes @ 850 nm 4 Lanes @ 850 nm 100 m with OM3 150 m with OM4

40GBASE‐LR4

4 CWDM @ ~1310 nm  CWDM @ 1310  10 km with OS1/OS2

100GbE PMDs 100GBASE‐SR10

10 Lanes @ 850 nm 100 m with OM3 150 m with OM4

100GBASE‐LR4

4 WDM @ ~1310 nm   10 km with OS1/OS2

100GBASE‐ER4

4 WDM @ ~1310 nm   40 km with OS1/OS2

Standard Approval Announcement Standard Approval Announcement

MPO Connector • MPO = “multi‐fiber push on” – – – –

International standard = IEC‐61754‐7 te at o a sta da d C6 5 EIA/TIA‐604‐5 = FOCIS 5 4, 8, 12, 24, and 72 fiber options “Key UP”

• MTP® = “mechanical Transfer Push‐ On” – US Conec US Conec trademark  trademark •

“Standards‐compliant” = MPO & MTP are compatible 

• Multimode – Flat polish • Singlemode – Angle polish

Next Generation Technologies Support:  Parallel Transmission • • • •

More useful life, less change, more green Simple easy upgrade from Serial to Parallel 100 meters OM3 (some manufacturers offer extended distance like 140m) ( f ff d dd lk ) 150 meters OM4 (some manufacturers offer extended distance like 175m) Transmit Receive

Transmit

40G  Ethernet 100G  100G Ethernet Receive

Infrastructure:  TIA‐568C‐3 Polarity  It defines 3 methods:  Methods A, C – Design to mostly support 2 fiber applications (duplex) – Requires a special component to achieve polarity

 Method B – It supports both duplex and parallel transmission (MPO 12FO) – No special components needed

TIA‐568C‐3 Polarity Method A

Method A

“Key Up – Key Down” Non‐Standard compliant  Patch Cord (cross‐over) Special Patch Cord ‐

Upgrade to Parallel – Method A Type B Patch Cord (Key up – Key Up)

Cable

Fiber 12

PUSH

PULL

PUSH

Fiber 1 PULL

PULL

Fiber 1 PUSH

Rx1 Rx2 : : Tx2 Tx1

Key up to Key down mated connection

Patch Cord

Fiber 12

Special Patch Cord (Key up – Key Down) Patch Cord Patch Cord

PUSH

PULL

PUSH

Fiber 12

PULL

Fiber 12 PUSH

Fiber 1 PULL

Rx1 Rx2 : : Tx2 Tx1

Key up to Key down mated connection

Fiber 1

TIA‐568C‐3 Polarity Method C

Method  C Key up to Key up 1 2 3

Key down to Key up

4

Fiber 1

Fiber 1

6

PULL

PUS H

B

7

Fiber 12

Fiber 12

8

PUSH

5

PULL

Key up to Key up mated connectionto transceiver Fiber 1 Tx R Rx Fiber 2

9

Special Cable (crossed  pairs) Point‐to‐Point only

10

Special Cable (crossed pairs)

11 12

Key down to Key down (bottom view) 12 11 10

Key y up p to Key y down

9

Rx Tx

5 4 3 2 1

Fiber 2

B Fiber 1

P ULL

Fiber1 Fiber 1

6

PUSH

Key down to Key down mated connectionto transceiver (bottom view)

Fiber11

Fiber12 PULL

7

PUSH

8

Fiber 2

Upgrade to parallel – Method C

Upgrade:  1.

Change trunk cable  cable to a “B Type”  cable

2 2.

Patch P t h Cords C d “C” + “B”

3.

Add new “C  Trunk”

TIA‐568C‐3 Polarity Method B

Method B 1

Rx Tx

2

A‐to‐B patch cord

3

Aligned Key mated  connection

5

Fiber 1

Fiber 1 PULL

PUSH

I

PULL

6

PUSH

4

7

Fiber 12

8

Same Components

Fiber 12

9 10 11

It allows extensions It allos cross‐connections No Special Components

12

Keys up

Keys up

Same transitions Same transitions  w port positions transposed  (1 has become 12).

Tr nk Cable Trunk Cable

1 2

3

6

Fiber 1

PULL

PUSH

I

Aligned key mated  connection

Fiber 12 PUSH

5

PULL

4

7 8

A to B patch cord A‐to‐B patch cord Rx Tx

Fiber 12

Fiber 1

9 10 11 12

26

Method B ‐ Example 1

Rx Tx

2

3

Aligned‐key mated connection

5

PULL

I

PUSH

ALPHA

Fiber 12

Fiber 1

6

PUSH

4

PULL

A‐to‐B patch cord

7

Fiber 12

8

1‐2

Fiber 1

9 10

11

BETA

11‐12

A‐to‐B patch cord shown with a twist  to rotate keys down on right end  g

12

Keys up Same transitions  Same transitions; w port positions transposed (1  one installed keys up, has become 12). the other keys down. Keys down Keys up

Trunk Cable Trunk Cable shown with a twist to rotate key up on lower end on lower end

1 2

3

Aligned‐key Aligned‐key mated connection mated connection

4

Fiber 12 Fiber Fiber121 Fiber 1 PULL

I

PUSH

11‐12 BETA

Fiber 1 Fiber 12 Fiber 12

PUSH

6

PULL

5

7 8

Fiber 1 Fiber 12

Fiber 1 Fiber 12

9

A‐to‐B patch cord

1‐2

ALPHA

Rx Tx

10

11 12

Same Components It allows extensions It allows cross‐connections

Method B ‐ Example Rx Tx

11

2

MPO Connections

3

A‐to‐B A to B patch cord

4

10

8 7

I

I

7 8

9 10

B A

11 12

Module

A‐to‐B  A to B patch cord

9

5 6

Tx Rx

12

1

Trunk Cable

6 5

4 3 2 1

A B

Module

40G on Method B PULL

PUSH

PUSH

Fiber 12

Fiber 1 PUSH

PULL

Aligned key mated connection

Patch Cord

PULL

Aligned key mated connection @ transceiver Rx1 Fiber 12 Rx2 : : Fiber 1 Tx2 Tx1

Fiber 1

Fiber 12

No special components Key Up – Key Up

Aligned key mated connection mated connection

Patch Cord

Fiber 12

PULL

PULL

PUSH

Fiber 12

Fiber 1 PUSH

PUSH

PULL

Aligned key mated connection Rx1 @ transceiver Rx2 Fiber 12 : : Tx2 Fiber 1 Tx1

Trunk Cable

Fiber 1

Future‐Proof your Network

Access Access  Switch

Distribution Switch

Upgrade to 40G

CONCLUSIONS Polarity

Special Components

Key Up – Key Up Key Down Key Down

Migration

10/40/100G

12 / 24 FO 12 / 24 FO

Design & Installation

Extensions

Cross ‐ Connection

DAS In‐Building Wireless

Significant Improvement in Users Experience Total downloading Time

Data Transfer Rates GPRS

48 kbps

19.5 mins

EDGE

236 kbps

6 mins

UMTS

2 Mbps

2 mins

HSPA+ LTE 0.0

10.0 20.0

30.0 40.0

50.0 60.0

70.0 80.0

42 Mbps

40 secs

172 Mbps

7secs

90.0 100.0 (MB)

LTE offers a better Users experience compared to Other technologies

Source: huawei simulation

In‐Building Wireless ‐ Market Drivers • Commercial – Ubiquitous cellular coverage is now a basic expectation in‐building  Ubi i ll l i b i i i b ildi – ≈ 75% of mobile calls are originating or terminating indoors (Verizon 2009) – Higher frequency 3G/4G services make in‐building coverage more critical

• Public Safety – – – –

In building coverage taking on greater importance In‐building coverage taking on greater importance Migration to 700/800 MHz means less signal penetration Portable radios should support first‐responders within buildings New ordinances and building codes mandating coverage

Market Drivers – Public Safety •

In‐building coverage taking on greater importance due to 9/11  and other tragedies (Safecom Report) http://www.safecomprogram.gov/SAFECOM/library/technology/1165_inbuildingin tunneluser.htm http://www.safecomprogram.gov/NR/rdonlyres/265949B5‐5CC6‐4804‐88BA‐ F479309848AF/0/Long Island EMC pdf F479309848AF/0/Long_Island_EMC.pdf

 “The Fire Department of New York encountered substantial difficulties with its  land mobile radio system during the initial response efforts.”  “After After the collapse of the World Trade Center towers, the lack of in building  the collapse of the World Trade Center towers, the lack of in‐building wireless communications hindered building evacuation, search and rescue, and  damage assessment operations.”  “The Blackberry wireless messaging system remained operational and was used The Blackberry wireless messaging system remained operational and was used  by several public and private entities during the response and recovery  operation.”

Page 36

Market Drivers ‐ Problem Buildings g Types Of Buildings •

Corporate Offices (Fortune 1000)



Multi‐tenant High‐Rise Office Buildings li Hi h i Offi ildi

• • • • • • •

Universities Hospitals Manufacturing Facilities Manufacturing Facilities Upscale Hotels and High‐Rise Condos Casinos Stadiums Fed/Local Go ernment Facilities Fed/Local Government Facilities Deep Cavernous Buildings

Below Grade

High‐Rise Buildings

Below Grade

Market Drivers  Market Drivers ‐‐ Problem Buildings g Low E‐Glass Low E glass coatings work by  reflecting or absorbing IR light (heat  energy) This same coating also energy). This same coating also  reflects radio waves, causing  significant in‐building wireless  coverage problems.

Market Drivers – Market Segments Wireless Drivers in Healthcare  Police, Fire and EMS need their radios to work in almost  all areas of the hospital.  Although Although not a mission‐critical service, doctors, patients,  not a mission critical service doctors patients and visitors want their mobile phones to work  throughout the hospital  D Doctors, patients, and visitors rely on the Cellular/PCS  i d ii l h C ll l /PCS WAN network for data services   Family members need to communicate frequently via  cell phones from hospital rooms and waiting areas to  family and friends back home  Enhancing coverage of paging and the private 2‐way  radio network  Carriers may subsidize the cost of the DAS

Market Drivers – Market Segments Wireless Concerns in Healthcare Will cell phones interfere with medical/ICU equipment? Will cell phones interfere with medical/ICU equipment?  A DAS does not cause interference  A high‐powered cell phone (typically older generations) may cause interference when it is in  very close proximity (3 cm) to some medical equipment. l i it (3 ) t di l i t  The most common interferer is GSM networks, used by companies such as AT&T and T‐ Mobile.  Most cell phones transmit below 600‐milliwatt  A DAS actually lowers the chance of cell phone interference by reducing the amount of power  the cell phone uses  3/2007 Mayo Clinic Proceedings study found that "normal" cell phone use did not interact  with medical devices. “…the value of [cell phone] technology really outweighs the  disadvantages and we really couldn't find causes of concern to not change the policy,"   To play it safe, hospitals often prohibit cell phones in the ICU, surgery, neonatal intensive care  units, etc. 

DAS In‐Building Wireless Solution • • • •

Passive distribution on each floor with coax & antennas Active equipment amplifies and conditions all carrier and public safety signals Utili C Utilizes Coax   FO conversion and FO i d fiber backbone distribution system fib b kb di t ib ti t Dynamic system provides future‐proofing as frequency allocations change

Donor D Antenna Coax Cable Remotes SM Fiber Cable Master Unit Repeater

Carrier Base Station

Wall Organizer

½ inch Coax Cable

Indoor Antennas

DAS Wiring Design Simplicity Design Simplicity •

Goal ‐ Provide a “‐80dBm Coverage Blanket” – –

Omni antennas on a basic 100ft (30m) grid Perimeter antennas ≈20ft Perimeter antennas  20ft (6m) from walls (6m) from walls •

– –



Elevator 100ft 100f (30m)

If on external wall, utilize directional antenna

One antenna