1 Vector Spaces 1-1 Vector Spaces

Algebra Math Notes โ€ข Study Guide Linear Algebra 1 Vector Spaces 1-1 Vector Spaces A vector space (or linear space) V over a field F is a set on wh...
Author: Lorena Sharp
20 downloads 2 Views 998KB Size
Algebra Math Notes โ€ข Study Guide

Linear Algebra 1

Vector Spaces

1-1

Vector Spaces A vector space (or linear space) V over a field F is a set on which the operations addition (+) and scalar multiplication, are defined so that for all ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐‘‰ and all ๐‘Ž, ๐‘ โˆˆ ๐น, 0. ๐‘ฅ + ๐‘ฆ and ๐‘Ž๐‘ฅ are unique elements in V. Closure 1. ๐‘ฅ + ๐‘ฆ = ๐‘ฆ + ๐‘ฅ Commutativity of Addition 2. Associativity of Addition ๐‘ฅ + ๐‘ฆ + ๐‘ง = ๐‘ฅ + (๐‘ฆ + ๐‘ง) 3. There exists 0 โˆˆ ๐‘‰ such that for every ๐‘ฅ โˆˆ ๐‘‰, ๐‘ฅ + 0 = ๐‘ฅ. Existence of Additive Identity (Zero Vector) 4. There exists an element โ€“ ๐‘ฅ such that ๐‘ฅ + โˆ’๐‘ฅ = 0. Existence of Additive Inverse 5. 1๐‘ฅ = ๐‘ฅ Multiplicative Identity 6. Associativity of Scalar ๐‘Ž๐‘ ๐‘ฅ = ๐‘Ž(๐‘๐‘ฅ) Multiplication 7. ๐‘Ž ๐‘ฅ + ๐‘ฆ = ๐‘Ž๐‘ฅ + ๐‘Ž๐‘ฆ Left Distributive Property 8. Right Distributive Property ๐‘Ž + ๐‘ ๐‘ฅ = ๐‘Ž๐‘ฅ + ๐‘๐‘ฅ Elements of F, V are scalars, vectors, respectively. F can be โ„, โ„‚, โ„ค/๐‘, etc. Examples: ๐น๐‘› ๐นโˆž ๐‘€๐‘š ร—๐‘› (๐น) or ๐น ๐‘š ร—๐‘› โ„ฑ(๐‘†, ๐น) ๐‘ƒ ๐น or ๐น[๐‘ฅ] ๐ถ ๐‘Ž, ๐‘ , ๐ถ โˆž

n-tuples with entries from F sequences with entries from F mxn matrices with entries from F functions from set S to F polynomials with coefficients from F continuous functions on ๐‘Ž, ๐‘ , (โˆ’โˆž, โˆž)

Cancellation Law for Vector Addition: If ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐‘‰ and ๐‘ฅ + ๐‘ง = ๐‘ฆ + ๐‘ง, then ๐‘ฅ = ๐‘ฆ. Corollary: 0 and -x are unique. For all ๐‘ฅ โˆˆ ๐‘‰, ๐‘Ž โˆˆ ๐น, ๏‚ท 0๐‘ฅ = 0 ๏‚ท ๐‘ฅ0 = 0 ๏‚ท โˆ’๐‘Ž ๐‘ฅ = โˆ’ ๐‘Ž๐‘ฅ = ๐‘Ž(โˆ’๐‘ฅ)

1-2

Subspaces A subset W of V over F is a subspace of V if W is a vector space over F with the operations of addition and scalar multiplication defined on V. ๐‘Š โŠ† ๐‘‰ is a subspace of V if and only if 1. ๐‘ฅ + ๐‘ฆ โˆˆ ๐‘Š whenever ๐‘ฅ โˆˆ ๐‘Š, ๐‘ฆ โˆˆ ๐‘Š. 2. ๐‘๐‘ฅ โˆˆ ๐‘Š whenever ๐‘ โˆˆ ๐น, ๐‘ฅ โˆˆ ๐‘Š. A subspace must contain 0.

Any intersection of subspaces of V is a subspace of V. If S1, S2 are nonempty subsets of V, their sum is ๐‘†1 + ๐‘†2 = {๐‘ฅ + ๐‘ฆ|๐‘ฅ โˆˆ ๐‘†1 , ๐‘ฆ โˆˆ ๐‘†2 }. V is the direct sum of W1 and W 2 (๐‘‰ = ๐‘Š1 โŠ• ๐‘Š2 ) if W 1 and W 2 are subspaces of V such that ๐‘Š1 โˆฉ ๐‘Š2 = {0} and ๐‘Š1 + ๐‘Š2 = ๐‘‰. Then each element in V can be written uniquely as ๐‘ค1 + ๐‘ค2 where ๐‘ค1 โˆˆ ๐‘Š1 , ๐‘ค2 โˆˆ ๐‘Š2 . ๐‘Š1 , ๐‘Š2 are complementary. ๐‘Š1 + ๐‘Š2 (๐‘Š1 โˆง ๐‘Š2 ) is the smallest subspace of V containing W 1 and W 2, i.e. any subspace containing W 1 and W 2 contains ๐‘Š1 + ๐‘Š2 . For a subspace W of V, ๐‘ฃ + ๐‘Š = {๐‘ฃ + ๐‘ค|๐‘ค โˆˆ ๐‘Š} is the coset of W containing v. ๏‚ท ๐‘ฃ1 + ๐‘Š = ๐‘ฃ2 + ๐‘Š iff ๐‘ฃ1 โˆ’ ๐‘ฃ2 โˆˆ ๐‘Š. ๏‚ท The collection of cosets ๐‘‰ ๐‘Š = {๐‘ฃ + ๐‘Š|๐‘ฃ โˆˆ ๐‘‰} is called the quotient (factor) space of V modulo W. It is a vector space with the operations o (๐‘ฃ1 + ๐‘Š) + ๐‘ฃ2 + ๐‘Š = ๐‘ฃ1 + ๐‘ฃ2 + ๐‘Š o ๐‘Ž ๐‘ฃ + ๐‘Š = ๐‘Ž๐‘ฃ + ๐‘Š

1-3

Linear Combinations and Dependence A vector ๐‘ฃ โˆˆ ๐‘‰ is a linear combination of vectors of ๐‘† โŠ† ๐‘‰ if there exist a finite number of vectors ๐‘ข1 , ๐‘ข2 , โ€ฆ ๐‘ข๐‘› โˆˆ ๐‘† and scalars ๐‘Ž1 , ๐‘Ž2 , โ€ฆ ๐‘Ž๐‘› โˆˆ ๐น such that ๐‘ฃ = ๐‘Ž1 ๐‘ข1 + โ‹ฏ + ๐‘Ž๐‘› ๐‘ข๐‘› . v is a linear combination of ๐‘ข1 , ๐‘ข2 , โ€ฆ ๐‘ข๐‘› . The span of S, span(S), is the set consisting of all linear combinations of the vectors in S. By definition, span ๐œ™ = {0}. S generates (spans) V if span(S)=V. The span of S is the smallest subspace containing S, i.e. any subspace of V containing S contains span(S). A subset ๐‘† โŠ† ๐‘‰ is linearly (in)dependent if there (do not) exist a finite number of distinct vectors ๐‘ข1 , ๐‘ข2 , โ€ฆ ๐‘ข๐‘› โˆˆ ๐‘† and scalars ๐‘Ž1 , ๐‘Ž2 , โ€ฆ ๐‘Ž๐‘› , not all 0, such that ๐‘Ž1 ๐‘ข1 + โ‹ฏ + ๐‘Ž๐‘› ๐‘ข๐‘› = 0. Let S be a linearly independent subset of V. For ๐‘ฃ โˆˆ ๐‘† โˆ’ ๐‘‰, ๐‘† โˆช {๐‘ฃ} is linearly dependent iff ๐‘ฃ โˆˆ span(๐‘†).

1-4

Bases and Dimension A (ordered) basis ฮฒ for V is a (ordered) linearly independent subset of V that generates V. Ex. ๐‘’1 = 1,0, โ€ฆ 0 , ๐‘’2 = 0,1, โ€ฆ 0 , โ€ฆ ๐‘’๐‘› = (0,0, โ€ฆ 1) is the standard ordered basis for ๐น ๐‘› . A subset ฮฒ of V is a basis for V iff each ๐‘ฃ โˆˆ ๐‘‰ can be uniquely expressed as a linear combination of vectors of ฮฒ. Any finite spanning set S for V can be reduced to a basis for V (i.e. some subset of S is a basis). Replacement Theorem: (Steinitz) Suppose V is generated by a set G with n vectors, and let L be a linearly independent subset of V with m vectors. Then ๐‘š โ‰ค ๐‘› and there exists a

subset H of G containing ๐‘› โˆ’ ๐‘š vectors such that ๐ฟ โˆช ๐ป generates V. Pf. Induct on m. Use induction hypothesis for {๐‘ฃ1 , โ€ฆ ๐‘ฃ๐‘š }; remove a ๐‘ข1 and replace by ๐‘ฃ๐‘š +1 . Corollaries: ๏‚ท If V has a finite basis, every basis for V contains the same number of vectors. The unique number of vectors in each basis is the dimension of V (dim(V)). ๏‚ท Suppose dim(V)=n. Any finite generating set/ linearly independent subset contains โ‰ฅn/โ‰คn elements, can be reduced/ extended to a basis, and if the set contains n elements, it is a basis. Subsets of V, dim(V)=n

Basis (n elements)

Linearly Independent Sets (โ‰คn elements)

Generating Sets (โ‰ฅn elements)

Let W be a subspace of a finite-dimensional vector space V. Then dim(W)โ‰คdim(V). If dim(W)=dim(V), then W=V. dim ๐‘Š1 + ๐‘Š2 = dim ๐‘Š1 + dim ๐‘Š2 โˆ’ dimโก (๐‘Š1 โˆฉ ๐‘Š2 ) dim ๐‘‰ = dim ๐‘Š + dimโก (๐‘‰ โˆ• ๐‘Š) The dimension of V/W is called the codimension of V in W.

1-5

Infinite-Dimensional Vector Spaces Let โ„ฑ be a family of sets. A member M of โ„ฑ is maximal with respect to set inclusion if M is contained in no member of โ„ฑ other than M. (โ„ฑ is partially ordered by โŠ†.) A collection of sets ๐’ž is a chain (nest, tower) if for each A, B in ๐’ž, either ๐ด โŠ† ๐ต or ๐ต โŠ† ๐ด. (โ„ฑ is totally ordered by โŠ†.) Maximal Principle: [equivalent to Axiom of Choice] If for each chain ๐’ž โŠ† โ„ฑ, there exists a member of โ„ฑ containing each member of ๐’ž, then โ„ฑ contains a maximal member. A maximal linearly independent subset of ๐‘† โŠ† ๐‘‰ is a subset B of S satisfying (a) B is linearly independent. (b) The only linearly independent subset of S containing B is B. Any basis is a maximal linearly independent subset, and a maximal linearly independent

subset of a generating set is a basis for V. Let S be a linearly independent subset of V. There exists a maximal linearly independent subset (basis) of V that contains S. Hence, every vector space has a basis. Pf. โ„ฑ = linearly independent subsets of V. For a chain ๐’ž, take the union of sets in ๐’ž, and apply the Maximal Principle. Every basis for a vector space has the same cardinality. Suppose ๐‘†1 โŠ† ๐‘†2 โŠ† ๐‘‰, S1 is linearly independent and S2 generates V. Then there exists a basis such that ๐‘†1 โŠ† ๐›ฝ โŠ† ๐‘†2 . Let ฮฒ be a basis for V, and S a linearly independent subset of V. There exists ๐‘†1 โŠ† ๐›ฝ so ๐‘† โˆช ๐‘†1 is a basis for V.

1-6

Modules A left/right R-module ๐‘… ๐‘€/๐‘€๐‘… over the ring R is an abelian group (M,+) with addition and scalar multiplication (๐‘… ร— ๐‘€ โ†’ ๐‘€ or ๐‘€ ร— ๐‘… โ†’ ๐‘€) defined so that for all ๐‘Ÿ, ๐‘  โˆˆ ๐‘… and ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘€, Left Right 1. Distributive ๐‘Ÿ ๐‘ฅ + ๐‘ฆ = ๐‘Ÿ๐‘ฅ + ๐‘Ÿ๐‘ฆ ๐‘ฅ + ๐‘ฆ ๐‘Ÿ = ๐‘ฅ๐‘Ÿ + ๐‘ฆ๐‘Ÿ 2. Distributive ๐‘Ÿ + ๐‘  ๐‘ฅ = ๐‘Ÿ๐‘ฅ + ๐‘ ๐‘ฅ ๐‘ฅ ๐‘Ÿ + ๐‘  = ๐‘ฅ๐‘Ÿ + ๐‘ฅ๐‘  3. Associative ๐‘ฅ๐‘Ÿ ๐‘  = ๐‘ฅ(๐‘Ÿ๐‘ ) ๐‘Ÿ ๐‘ ๐‘ฅ = ๐‘Ÿ๐‘  ๐‘ฅ 4. Identity 1๐‘ฅ = ๐‘ฅ ๐‘ฅ1 = ๐‘ฅ Modules are generalizations of vector spaces. All results for vector spaces hold except ones depending on division (existence of inverse in R). Again, a basis is a linearly independent set that generates the module. Note that if elements are linearly independent, it is not necessary that one element is a linear combination of the others, and bases do not always exist. A free module with n generators has a basis with n elements. V is finitely generated if it contains a finite subset spanning V. The rank is the size of the smallest generating set. Every basis for V (if it exists) contains the same number of elements.

1-7

Algebras A linear algebra over a field F is a vector space ๐’œ over F with multiplication of vectors defined so that for all ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐’œ, ๐‘ โˆˆ ๐น, 1. Associative ๐‘ฅ ๐‘ฆ๐‘ง = ๐‘ฅ๐‘ฆ ๐‘ง 2. Distributive ๐‘ฅ ๐‘ฆ + ๐‘ง = ๐‘ฅ๐‘ฆ + ๐‘ฅ๐‘ง, ๐‘ฅ + ๐‘ฆ ๐‘ง = ๐‘ฅ๐‘ง + ๐‘ฆ๐‘ง 3. ๐‘ ๐‘ฅ๐‘ฆ = ๐‘๐‘ฅ ๐‘ฆ = ๐‘ฅ(๐‘๐‘ฆ) If there is an element 1 โˆˆ ๐’œ so that 1๐‘ฅ = ๐‘ฅ1 = ๐‘ฅ, then 1 is the identity element. ๐’œ is commutative if ๐‘ฅ๐‘ฆ = ๐‘ฆ๐‘ฅ. Polynomials made from vectors (with multiplication defined as above), linear transformations, and ๐‘› ร— ๐‘› matrices (see Chapters 2-3) all form linear algebras.

2

Matrices

2-1

Matrices A ๐‘š ร— ๐‘› matrix has m rows and n columns arranged filled with entries from a field F (or ring R). ๐ด๐‘–๐‘— = ๐ด(๐‘–, ๐‘—) denotes the entry in the ith column and jth row of A. Addition and scalar multiplication is defined component-wise: ๐ด + ๐ต ๐‘–๐‘— = ๐ด๐‘–๐‘— + ๐ต๐‘–๐‘— ๐‘๐ด ๐‘–๐‘— = ๐‘๐ด๐‘–๐‘— The ๐‘› ร— ๐‘› matrix of all zeros is denoted ๐’ช๐‘› or just O.

2-2

Matrix Multiplication and Inverses Matrix product: Let A be a ๐‘š ร— ๐‘› and B be a ๐‘› ร— ๐‘ matrix. The product AB is the ๐‘š ร— ๐‘ matrix with entries ๐‘›

๐ด๐ต

๐‘–๐‘—

=

๐ด๐‘–๐‘˜ ๐ต๐‘˜๐‘— , 1 โ‰ค ๐‘– โ‰ค ๐‘š, 1 โ‰ค ๐‘— โ‰ค ๐‘ ๐‘˜=1

Interpretation of the product AB: 1. Row picture: Each row of A multiplies the whole matrix B. 2. Column picture: A is multiplied by each column of B. Each column of AB is a linear combination of the columns of A, with the coefficients of the linear combination being the entries in the column of B. 3. Row-column picture: (AB)ij is the dot product of row I of A and column j of B. 4. Column-row picture: Corresponding columns of A multiply corresponding rows of B and add to AB. Block multiplication: Matrices can be divided into a rectangular grid of smaller matrices, or blocks. If the cuts between columns of A match the cuts between rows of B, then you can multiply the matrices by replacing the entries in the product formula with blocks (entry i,j is replaced with block i,j, blocks being labeled the same way as entries). The identity matrix In is a nxn square matrix with ones down the diagonal, i.e. 1 if ๐‘– = ๐‘— ๐ผ๐‘› ๐‘–๐‘— = ๐›ฟ๐‘–๐‘— = 0 if ๐‘– โ‰  ๐‘— A is invertible if there exists a matrix A-1 such that ๐ด๐ดโˆ’1 = ๐ดโˆ’1 ๐ด = ๐ผ. The inverse is unique, and for square matrices, any inverse on one side is also an inverse on the other side. Properties of Matrix Multiplication (A is mxn): 1. ๐ด ๐ต + ๐ถ = ๐ด๐ต + ๐ด๐ถ Left distributive 2. Right distributive ๐ด + ๐ต ๐ถ = ๐ด๐ถ + ๐ต๐ถ 3. ๐ผ๐‘š ๐ด = ๐ด = ๐ด๐ผ๐‘› Left/ right identity 4. ๐ด ๐ต๐ถ = ๐ด๐ต ๐ถ Associative 5. ๐‘Ž ๐ด๐ต = ๐‘Ž๐ด ๐ต = ๐ด(๐‘Ž๐ต) 6. ๐ด๐ต โˆ’1 = ๐ต โˆ’1 ๐ดโˆ’1 (A, B invertible) ๐ด๐ต โ‰  ๐ต๐ด: Not commutative Note that any 2 polynomials of the same matrix commute. A nxn matrix A is either a zero divisor (there exist nonzero matrices B, C such that ๐ด๐ต = ๐ถ๐ด = ๐’ช) or it is invertible.

The Kronecker (tensor) product of pxq matrix A and rxs matrix B is ๐‘Ž11 ๐ต โ‹ฏ ๐‘Ž1๐‘ž ๐ต โ‹ฎ โ‹ฑ โ‹ฎ . If v and w are column vectors with q, s elements, ๐ดโจ‚๐ต = ๐‘Ž๐‘1 ๐ต โ‹ฏ ๐‘Ž๐‘๐‘ž ๐ต ๐ดโจ‚๐ต ๐‘ฃโจ‚๐‘ค = (๐ด๐‘ฃ)โจ‚(๐ต๐‘ค). Kronecker products give nice eigenvalue relations- for example the eigenvalues are the products of those of A and B. [AMM 107-6, 6/2000]

2-3

Other Operations, Classification The transpose of a mxn matrix A, At, is defined by ๐ด๐‘‡ ๐‘–๐‘— = ๐ด๐‘—๐‘– . The adjoint or Hermitian of a matrix A is its conjugate transpose: ๐ดโˆ— = ๐ด๐ป = ๐ด๐‘‡ Name Definition Properties ๐‘‡ Symmetric ๐ด=๐ด Self-adjoint/ Hermitian ๐ด = ๐ดโˆ— ๐‘ง โˆ— ๐ด๐‘ง is real for any complex z. Skew-symmetric โˆ’๐ด = ๐ด๐‘‡ Skew-self-adjoint/ Skew-Hermitian โˆ’๐ด = ๐ดโˆ— Upper triangular ๐ด๐‘–๐‘— = 0 for ๐‘– > ๐‘— Lower triangular ๐ด๐‘–๐‘— = 0 for ๐‘– < ๐‘— Diagonal ๐ด๐‘–๐‘— = 0 for ๐‘– โ‰  ๐‘— Properties of Transpose/ Adjoint 1. ๐ด๐ต ๐‘‡ = ๐ต ๐‘‡ ๐ด๐‘‡ , ๐ด๐ต โˆ— = ๐ต โˆ— ๐ดโˆ— (For more matrices, reverse the order.) 2. (๐ดโˆ’1 )๐‘‡ = ๐ด๐‘‡ โˆ’1 3. ๐ด๐‘ฅ ๐‘‡ ๐‘ฆ = ๐‘ฅ ๐‘‡ ๐ด๐‘‡ ๐‘ฆ = ๐‘ฅ ๐‘‡ (๐ด๐‘‡ ๐‘ฆ), ๐ด๐‘ฅ โˆ— ๐‘ฆ = ๐‘ฅ โˆ— ๐ดโˆ— ๐‘ฆ = ๐‘ฅ โˆ— (๐ดโˆ— ๐‘ฆ) 4. ๐ด๐‘‡ ๐ด is symmetric. The trace of a ๐‘› ร— ๐‘› matrix A is the sum of its diagonal entries: ๐‘›

tr ๐ด =

๐ด๐‘–๐‘– ๐‘–=1

The trace is a linear operator, and tr ๐ด๐ต = tr ๐ด tr(๐ต). The direct sum ๐ด โŠ• ๐ต of ๐‘š ร— ๐‘š and ๐‘› ร— ๐‘› matrices A and B is the ๐‘š + ๐‘› ร— (๐‘š + ๐‘›) ๐ด ๐‘‚ matrix C given by ๐ถ = , ๐‘‚ ๐ต ๐ด๐‘–๐‘— for 1 โ‰ค ๐‘–, ๐‘— โ‰ค ๐‘› ๐ถ๐‘–๐‘— = ๐ต๐‘–โˆ’๐‘š ,๐‘— โˆ’๐‘š for ๐‘š + 1 โ‰ค ๐‘–, ๐‘— โ‰ค ๐‘› + ๐‘š 0, else

3

Linear Transformations

3-1

Linear Transformations For vector spaces V and W over F, a function ๐‘‡: ๐‘‰ โ†’ ๐‘Š is a linear transformation (homomorphism) if for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‰ and ๐‘ โˆˆ ๐น, (a) ๐‘‡(๐‘ฅ + ๐‘ฆ) = ๐‘‡(๐‘ฅ) + ๐‘‡(๐‘ฆ) (b) ๐‘‡(๐‘๐‘ฅ) = ๐‘๐‘‡(๐‘ฅ) It suffices to verify ๐‘‡(๐‘๐‘ฅ + ๐‘ฆ) = ๐‘๐‘‡(๐‘ฅ) + ๐‘‡(๐‘ฆ). ๐‘‡(0) = 0 is automatic. ๐‘›

๐‘‡

๐‘›

๐‘Ž๐‘– ๐‘ฅ๐‘– = ๐‘–=1

๐‘Ž๐‘– ๐‘‡(๐‘ฅ๐‘– ) ๐‘–=1

Ex. Rotation, reflection, projection, rescaling, derivative, definite integral Identity Iv and zero transformation T0 An endomorphism (or linear operator) is a linear transformation from V into itself. T is invertible if it has an inverse T-1 satisfying ๐‘‡๐‘‡ โˆ’1 = ๐ผ๐‘Š , ๐‘‡ โˆ’1 ๐‘‡ = ๐ผ๐‘‰ . If T is invertible, V and W have the same dimension (possibly infinite). Vector spaces V and W are isomorphic if there exists a invertible linear transformation (an isomorphism, or automorphism if V=W) ๐‘‡: ๐‘‰ โ†’ ๐‘Š. If V and W are finite-dimensional, they are isomorphic iff dim(V)=dim(W). V is isomorphic to ๐น dim V . The space of all linear transformations โ„’ ๐‘‰, ๐‘Š = Hom(๐‘‰, ๐‘Š) from V to W is a vector space over F. The inverse of a linear transformation and the composite of two linear transformations are both linear transformations. The null space or kernel is the set of all vectors x in V such that T(x)=0. ๐‘ ๐‘‡ = {๐‘ฅ โˆˆ ๐‘‰|๐‘‡ ๐‘ฅ = 0} The range or image is the subset of W consisting of all images of vectors in V. ๐‘… ๐‘‡ = {๐‘‡(๐‘ฅ)|๐‘ฅ โˆˆ ๐‘‰} Both are subspaces. nullity(T) and rank(T) denote the dimensions of N(T) and R(T), respectively. If ๐›ฝ = {๐‘ฃ1 , ๐‘ฃ2 , โ€ฆ ๐‘ฃ๐‘› } is a basis for V, then ๐‘… ๐‘‡ = span({๐‘‡ ๐‘ฃ1 , ๐‘‡ ๐‘ฃ2 , โ€ฆ ๐‘‡(๐‘ฃ๐‘› )}). Dimension Theorem: If V is finite-dimensional, nullity(T)+rank(T)=dim(V). Pf. Extend a basis for N(T) to a basis for V by adding {๐‘ฃ๐‘˜+1 , โ€ฆ , ๐‘ฃ๐‘› }. Show {๐‘‡(๐‘ฃ๐‘˜+1 ), โ€ฆ , ๐‘‡(๐‘ฃ๐‘› )} is a basis for R(T) by using linearity and linear independence. T is one-to-one iff N(T)={0}. If V and W have equal finite dimension, the following are equivalent: (a) T is one-to-one. (b) T is onto. (c) rank(T)=dim(V) (a) and (b) imply T is invertible.

A linear transformation is uniquely determined by its action on a basis, i.e., if ๐›ฝ = {๐‘ฃ1 , ๐‘ฃ2 , โ€ฆ ๐‘ฃ๐‘› } is a basis for V and ๐‘ค1 , ๐‘ค2 , โ€ฆ ๐‘ค๐‘› โˆˆ ๐‘Š, there exists a unique linear transformation ๐‘‡: ๐‘‰ โ†’ ๐‘Š such that ๐‘‡ ๐‘ฃ๐‘– = ๐‘ค๐‘– , ๐‘– = 1,2, โ€ฆ ๐‘›. A subspace W of V is T-invariant if ๐‘‡(๐‘ฅ) โˆˆ ๐‘Š for every ๐‘ฅ โˆˆ ๐‘Š. TW denotes the restriction of T on W.

3-2

Matrix Representation of Linear Transformation Matrix Representation: Let ๐›ฝ = ๐‘ฃ1 , ๐‘ฃ2 , โ€ฆ ๐‘ฃ๐‘› be an ordered basis for V and ๐›พ = ๐‘ค1 , ๐‘ค2 , โ€ฆ ๐‘ค๐‘› be an ordered basis for W. For ๐‘ฅ โˆˆ ๐‘‰, define ๐‘Ž1 , ๐‘Ž2 , โ€ฆ ๐‘Ž๐‘› so that ๐‘›

๐‘ฅ= The coordinate vector of x relative to ฮฒ is

๐‘Ž๐‘– ๐‘ข๐‘– ๐‘–=1

๐‘Ž1 ๐‘Ž2 ๐œ™๐›ฝ ๐‘ฅ = ๐‘ฅ ๐›ฝ = โ‹ฎ ๐‘Ž๐‘› n Note ฯ•ฮฒ is an isomorphism from V to F . The ith coordinate is ๐‘“๐‘– ๐‘ฅ = ๐‘Ž๐‘– . Suppose ๐‘‡: ๐‘‰ โ†’ ๐‘Š is a linear transformation satisfying ๐‘š

๐‘‡ ๐‘ฃ๐‘— =

๐‘Ž๐‘–๐‘— ๐‘ค๐‘– for 1 โ‰ค ๐‘— โ‰ค ๐‘› ๐‘–=1

๐›พ

๐›พ

The matrix representation of T in ฮฒ and ฮณ is ๐ด = [๐‘‡]๐›ฝ = โ„ณ๐›ฝ (๐‘‡) with entries as defined above. (i.e. load the coordinate representation of ๐‘‡ ๐‘ฃ๐‘— into the jth column of A.) Properties of Linear Transformations (Composition) 1. ๐‘‡ ๐‘ˆ1 + ๐‘ˆ2 = ๐‘‡๐‘ˆ1 + ๐‘‡๐‘ˆ2 Left distributive 2. Right distributive ๐‘ˆ1 + ๐‘ˆ2 ๐‘‡ = ๐‘ˆ1 ๐‘‡ + ๐‘ˆ2 ๐‘‡ 3. ๐ผ๐‘‰ ๐‘‡ = ๐‘‡ = ๐‘‡๐ผ๐‘Š Left/ right identity 4. ๐‘† ๐‘‡๐‘ˆ = ๐‘†๐‘‡ ๐‘ˆ Associative (holds for any functions) 5. ๐‘Ž ๐‘‡๐‘ˆ = ๐‘Ž๐‘‡ ๐‘ˆ = ๐‘‡(๐‘Ž๐‘ˆ) 6. ๐‘‡๐‘ˆ โˆ’1 = ๐‘ˆ โˆ’1 ๐‘‡ โˆ’1 (T, U invertible) Linear transformations [over finite-dimensional vector spaces] can be viewed as leftmultiplication by matrices, so linear transformations under composition and their corresponding matrices under multiplication follow the same laws. This is a motivating factor for the definition of matrix multiplication. Facts about matrices, such as associativity of matrix multiplication, can be proved by using the fact that linear transformations are associative, or directly using matrices. Note: From now on, definitions applying to matrices can also apply to the linear transformations they are associated with, and vice versa. The left-multiplication transformation ๐ฟ๐ด : ๐น ๐‘› โ†’ ๐น ๐‘š is defined by ๐ฟ๐ด ๐‘ฅ = ๐ด๐‘ฅ (A is a mxn matrix). Relationships between linear transformations and their matrices: 1. To find the image of a vector ๐‘ข โˆˆ ๐‘‰ under T, multiply the matrix corresponding to T

๐›พ

๐›พ

on the left: ๐‘‡ ๐‘ข ๐›พ = [๐‘‡]๐›ฝ ๐‘ข ๐›ฝ i.e. ๐ฟ๐ด ๐œ™๐›ฝ = ๐œ™๐›พ ๐‘‡ where ๐ด = [๐‘‡]๐›ฝ . 2. Let V, W be finite-dimensional vector spaces with bases ฮฒ, ฮณ. The function ๐›พ ฮฆ: โ„’ ๐‘‰, ๐‘Š โ†’ ๐‘€๐‘š ร—๐‘› (๐น) defined by ฮฆ ๐‘‡ = [๐‘‡]๐›ฝ is an isomorphism. So, for linear transformations ๐‘ˆ, ๐‘‡: ๐‘‰ โ†’ ๐‘Š, ๐›พ ๐›พ ๐›พ a. [๐‘‡ + ๐‘ˆ]๐›ฝ = [๐‘‡]๐›ฝ + [๐‘ˆ]๐›ฝ ๐›พ ๐›พ b. [๐‘Ž๐‘‡]๐›ฝ = ๐‘Ž[๐‘‡]๐›ฝ for all scalars a. c. โ„’ ๐‘‰, ๐‘Š has dimension mn. 3. For vector spaces V, W, Z with bases ฮฑ, ฮฒ, ฮณ and linear transformations ๐‘‡: ๐‘‰ โ†’ ๐‘Š, ๐›ฝ ๐›พ ๐›พ ๐‘ˆ: ๐‘Š โ†’ ๐‘, [๐‘ˆ๐‘‡]๐›ผ = [๐‘ˆ]๐›ฝ [๐‘‡]๐›ผ . ๐›ฝ

๐›พ

๐›พ

4. T is invertible iff [๐‘‡]๐›ฝ is invertible. Then [๐‘‡ โˆ’1 ]๐›พ = ( ๐‘‡ ๐›ฝ )โˆ’1 .

3-3

Change of Coordinates Let ฮฒ and ฮณ be two ordered bases for finite-dimensional vector space V. The change of ๐›พ coordinate matrix (from ฮฒ-coordinates to ฮณ-coordinates) is ๐‘„ = [๐ผ๐‘‰ ]๐›ฝ . Write vector j of ฮฒ in terms of the vectors of ฮณ, take the coefficients and load them in the jth column of Q. (This is so (0,โ€ฆ1,โ€ฆ0) gets transformed into the jth column.) 1. ๐‘„ โˆ’1 changes ฮณ-coordinates into ฮฒ-coordinates. 2. ๐‘‡ ๐›พ = ๐‘„ ๐‘‡ ๐›ฝ ๐‘„ โˆ’1 Two nxn matrices are similar if there exists an invertible matrix Q such that ๐ต = ๐‘„ โˆ’1 ๐ด๐‘„. Similarity is an equivalence relation. Similar matrices are manifestations of the same linear transformation in different bases.

3-4

Dual Spaces A linear functional is a linear transformation from V to a field of scalars F. The dual space is the vector space of all linear functionals on V: ๐‘‰ โˆ— = โ„’(๐‘‰, ๐น). V** is the double dual. If V has ordered basis ๐›ฝ = {๐‘ฅ1 , ๐‘ฅ2 , โ€ฆ ๐‘ฅ๐‘› }, then ๐›ฝ โˆ— = ๐‘“1 , ๐‘“2 , โ€ฆ ๐‘“๐‘› (coordinate functionsโ€”the dual basis) is an ordered basis for V*, and for any ๐‘“ โˆˆ ๐‘‰ โˆ— , ๐‘›

๐‘“=

๐‘“ ๐‘ฅ๐‘– ๐‘“๐‘– ๐‘–=1

To find the coordinate representations of the vectors of the dual bases in terms of the standard coordinate functions: 1. Load the coordinate representations of the vectors in ฮฒ into the columns of W. 2. The desired representation are the rows of ๐‘Š โˆ’1 . 3. The two bases are biorthogonal. For an orthonormal basis (see section 5-5), the coordinate representations of the basis and dual bases are the same. Let V, W have ordered bases ฮฒ, ฮณ. For a linear transformation ๐‘‡: ๐‘‰ โ†’ ๐‘Š, define its transpose (or dual) ๐‘‡ ๐‘ก : ๐‘Š โˆ— โ†’ ๐‘‰ โˆ— by ๐‘‡ ๐‘ก g = g๐‘‡. Tt is a linear transformation satisfying ๐›ฝโˆ—

[๐‘‡ ๐‘ก ]๐›พ โˆ— =

๐‘‡

๐›พ ๐›ฝ

๐‘ก

.

Define ๐‘ฅ: ๐‘‰ โˆ— โ†’ ๐น by ๐‘ฅ f = f(๐‘ฅ), and ๐œ“: ๐‘‰ โ†’ ๐‘‰ โˆ—โˆ— by ๐œ“ ๐‘ฅ = ๐‘ฅ. (The input is a function; the output is a function evaluated at a fixed point.) If V is finite-dimensional, ฯˆ is an

isomorphism. Additionally, every ordered basis for V* is the dual basis for some basis for V. The annihilator of a subset S of V is a subspace of ๐‘‰ โˆ— : ๐‘† 0 = Ann(๐‘†) = {๐‘“ โˆˆ ๐‘‰ โˆ— |๐‘“ ๐‘ฅ = 0 โˆ€ ๐‘ฅ โˆˆ ๐‘†}

4

Systems of Linear Equations

4-1

Systems of Linear Equations The system of equations

๐‘Ž11 ๐‘ฅ1 + โ‹ฏ +๐‘Ž๐‘›1 ๐‘ฅ๐‘› = ๐‘1 โ‹ฎ ๐‘Ž๐‘š1 ๐‘ฅ1 + โ‹ฏ ๐‘Ž๐‘š๐‘› ๐‘ฅ๐‘› = ๐‘๐‘š ๐‘Ž11 โ‹ฏ ๐‘Ž๐‘›1 ๐‘1 โ‹ฑ โ‹ฎ and ๐‘ = โ‹ฎ . The can be written in matrix form as Ax=b, where ๐ด = โ‹ฎ ๐‘Ž๐‘š1 โ‹ฏ ๐‘Ž๐‘š๐‘› ๐‘๐‘š augmented matrix is ๐ด ๐‘ (the entries of b placed to the right of A). The system is consistent if it has solution(s). It is singular if it has zero or infinitely many solutions. If b=0, the system is homogeneous. 1. Row picture: Each equation gives a line/ plane/ hyperplane. They meet at the solution set. 2. Column picture: The columns of A combine (with the coefficients ๐‘ฅ1 , โ€ฆ ๐‘ฅ๐‘› ) to produce b.

4-2

Elimination There are three types of elementary row/ column operations: (1) Interchanging 2 rows/ columns (2) Multiplying any row/ column by a nonzero scalar (3) Adding any multiple of a row/ column to another row/ column An elementary matrix is the matrix obtained by performing an elementary operation on I n. Any two matrices related by elementary operations are (row/column-)equivalent. Performing an elementary row/ column operation is the same as multiplying by the corresponding elementary matrix on the left/ right. The inverse of an elementary matrix is an elementary matrix of the same type. When an elementary row operation is performed on an augmented matrix or the equation ๐ด๐‘ฅ = ๐‘, the solution set to the corresponding system of equations does not change. Gaussian elimination- Reduce a system of equations (line up the variables, the equations are the rows), a matrix, or an augmented matrix by using elementary row operations. Forward pass 1. Start with the first row. 2. Excluding all rows before the current row (row j), in the leftmost nonzero column (column k), make the entry in the current row nonzero by switching rows as necessary. (Type 1 operation) The pivot di is the first nonzero in the current row, the row that does the elimination. [Optional: divide the current row by the pivot to make the entry 1. (2)] 3. Make all numbers below the pivot zero. To make the entry a ik in the ith row 0, subtract row j times the multiplier ๐‘™๐‘–๐‘˜ = ๐‘Ž๐‘–๐‘˜ /๐‘‘๐‘– from row i. This corresponds to multiplication by a type 3 elementary matrix ๐‘€๐‘–๐‘˜ . 4. Move on to the next row, and repeat until only zero rows remain (or rows are exhausted). Backward pass (Back-substitution) 5. Work upward, beginning with the last nonzero row, and add multiples of each row to

the rows above to create zeros in the pivot column. When working with equations, this is essentially substituting the value of the variable into earlier equations. 6. Repeat for each preceding row except the first. A free variable is any variable corresponding to a column without a pivot. Free variables can be arbitrary, leading to infinitely many solutions. Express the solution in terms of free variables. If elimination produces a contradiction (in A|b, a row with only the last entry a nonzero, corresponding to 0=a), there is no solution. Gaussian elimination produces the reduced row echelon form of the matrix: (Forward/ backward pass accomplished 1, (2), 3/ 4.) 1. Any row containing a nonzero entry precedes any zero row. 2. The first nonzero entry in each row is 1. 3. It occurs in a column to the right of the first nonzero entry in the preceding row. 4. The first nonzero entry in each row is the only nonzero entry in its column. The reduced row echelon of a matrix is unique.

4-3

Factorization Elimination = Factorization Performing Gaussian elimination on a matrix A is equivalent to multiplying A by a sequence of elementary row matrices. If no row exchanges are made, ๐‘ˆ = ( ๐ธ๐‘–๐‘— )๐ด, so A can be factored in the form ๐ด=

๐ธ๐‘–๐‘—โˆ’1 ๐‘ˆ = ๐ฟ๐‘ˆ

where L is a lower triangular matrix with 1โ€™s on the diagonal and U is an upper triangular matrix (note the factors are in opposite order). Note ๐ธ๐‘–๐‘— and ๐ธ๐‘–๐‘—โˆ’1 differ only in the sign of entry (i,j), and the multipliers go directly into the entries of L. U can be factored into a diagonal matrix D containing the pivots and Uโ€™ an upper triangular matrix with 1โ€™s on the diagonal: ๐ด = ๐ฟ๐ท๐‘ˆโ€ฒ The first factorization corresponds to the forward pass, the second corresponds to completing the back substitution. If A is symmetric, ๐‘ˆ โ€ฒ = ๐ฟ๐‘‡ . Using ๐ด = ๐ฟ๐‘ˆ, ๐ฟ๐‘ˆ ๐‘ฅ = ๐ด๐‘ฅ = ๐‘ can be split into two triangular systems: 1. Solve ๐ฟ๐‘ = ๐‘ for c. 2. Solve ๐‘ˆ๐‘ฅ = ๐‘ for x. A permutation matrix P has the rows of I in any order; it switches rows. If row exchanges are required, doing row exchanges 1. in advance gives ๐‘ƒ๐ด = ๐ฟ๐‘ˆ. 2. after elimination gives ๐ด = ๐ฟ1 ๐‘ƒ1 ๐‘ˆ1 .

4-4

The Complete Solution to Ax=b, the Four Subspaces The rank of a matrix A is the rank of the linear transformation LA, and the number of pivots after elimination.

Properties: 1. Multiplying by invertible matrices does not change the rank of a matrix, so elementary row and column matrices are rank-preserving. 2. rank(At)=rank(A) 3. Ax=b is consistent iff rank(A)=rank(A|b). 4. Rank inequalities Linear transformations T, U Matrices A, B rank(TU) โ‰ค min(rank(T), rank(U)) rank(AB) โ‰ค min(rank(A), rank(B)) Four Fundamental Subspaces of A 1. The row space C(AT) is the subspace generated by rows of A, i.e. it consists of all linear combinations of rows of A. a. Eliminate to find the nonzero rows. These rows are a basis for the row space. 2. The column space C(A) is the subspace generated by columns of A. a. Eliminate to find the pivot columns. These columns of A (the original matrix) are a basis for the column space. The free columns are combinations of earlier columns, with the entries of F the coefficients. (See below) b. This gives a technique for extending a linearly independent set to a basis: Put the vectors in the set, then the vectors in a basis down the columns of A. 3. The nullspace N(A) consists of all solutions to ๐ด๐‘ฅ = 0. a. Finding the Nullspace (after elimination) i. Repeat for each free variable x: Set x=1 and all other free variables to 0, and solve the resultant system. This gives a special solution for each free variable. ii. The special solutions found in (1) generate the nullspace. b. Alternatively, the nullspace matrix (containing the special solutions in its โˆ’๐น ๐ผ ๐น columns) is ๐‘ = when the row reduced echelon form is ๐‘… = . If ๐ผ 0 0 columns are switched in R, corresponding rows are switched in N. 4. The left nullspace N(AT) consists of all solutions to ๐ด๐‘‡ ๐‘ฅ = 0 or ๐‘ฅ ๐‘‡ ๐ด = 0. Fundamental Theorem of Linear Algebra (Part 1): Dimensions of the Four Subspaces: A is mxn, rank(A)=r (If the field is complex, replace ๐ด๐‘‡ by ๐ดโˆ— .)

Row space ๐ถ ๐ด๐‘‡ โ€ข {๐ด๐‘‡ ๐‘ฆ} โ€ข Dimension r

Row rank = column rank

Column space ๐ถ(๐ด) โ€ข {๐ด๐‘ฅ} โ€ข Dimension r

๐น ๐‘š = ๐ถ(๐ด)โจ๐‘(๐ด๐‘‡ ) ๐น ๐‘› = ๐ถ ๐ด ๐‘‡ โจ๐‘(๐ด)

Nullspace ๐‘(๐ด) โ€ข {๐‘ฅ|๐ด๐‘ฅ = 0} โ€ข Dimension n-r

Left nullspace ๐‘(๐ด๐‘‡ ) โ€ข {๐‘ฆ|๐ด๐‘‡ ๐‘ฆ = 0} โ€ข Dimension m-r

The relationships between the dimensions can be shown using pivots or the dimension theorem. The Complete Solution to Ax=b 1. Find the nullspace N, i.e. solve Ax=0. 2. Find any particular solution xp to Ax=b (there may be no solution). Set free variables to 0. 3. The solution set is ๐‘ + ๐‘ฅ๐‘ ; i.e. all solutions are in the form ๐‘ฅ๐‘› + ๐‘ฅ๐‘ , where ๐‘ฅ๐‘› is in the nullspace and ๐‘ฅ๐‘ is a particular solution.

4-5

Inverse Matrices A is invertible iff it is square (nxn) and any one of the following is true: 1. ๐ด has rank n, i.e. ๐ด has n pivots. 2. ๐ด๐‘ฅ = ๐‘ has exactly 1 solution. 3. Its columns/ rows are a basis for ๐น ๐‘› . Gauss-Jordan Elimination: If A is an invertible nxn matrix, it is possible to transform (A|In) into (In|A-1) by elementary row operations. Follow the same steps as in Gaussian elimination, but on (A|In). If A is not invertible, then such transformation leads to a row whose first n entries are zeros.

5

Inner Product Spaces

5-1

Inner Products An inner product on a vector space V over F (โ„ or โ„‚) is a function that assigns each ordered pair (๐‘ฅ, ๐‘ฆ) โˆˆ ๐‘‰ a scalar ๐‘ฅ, ๐‘ฆ , such that for all ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐‘‰ and ๐‘ โˆˆ ๐น, 1. ๐‘ฅ + ๐‘ง, ๐‘ฆ = ๐‘ฅ, ๐‘ฆ + ๐‘ง, ๐‘ฆ 2. ๐‘๐‘ฅ, ๐‘ฆ = ๐‘ ๐‘ฅ, ๐‘ฆ (The inner product is linear in its first component.) 3. ๐‘ฅ, ๐‘ฆ = ๐‘ฆ, ๐‘ฅ (Hermitian) 4. ๐‘ฅ, ๐‘ฅ > 0 for ๐‘ฅ > 0. (Positive) V is called an inner product space, also an Euclidean/ unitary space if F is โ„/ โ„‚. The inner product is conjugate linear in the second component: 1. ๐‘ฅ, ๐‘ฆ + ๐‘ง = ๐‘ฅ, ๐‘ฆ + ๐‘ฅ, ๐‘ง 2. ๐‘๐‘ฅ, ๐‘ฆ = ๐‘ ๐‘ฅ, ๐‘ฆ If ๐‘ฅ, ๐‘ฆ = ๐‘ฅ, ๐‘ง for all ๐‘ฅ โˆˆ ๐‘‰ then ๐‘ฆ = ๐‘ง. The standard inner product (dot product) of ๐‘ฅ = (๐‘Ž1 , โ€ฆ , ๐‘Ž๐‘› ) and ๐‘ฆ = (๐‘1 , โ€ฆ , ๐‘๐‘› ) is ๐‘›

๐‘ฅ โ‹… ๐‘ฆ = ๐‘ฅ, ๐‘ฆ =

๐‘Ž๐‘– ๐‘๐‘– ๐‘–=1

The standard inner product for the space of continuous complex functions H on [0,2๐œ‹] is 1 2๐œ‹ ๐‘“, ๐‘” = ๐‘“ ๐‘ก ๐‘”(๐‘ก) ๐‘‘๐‘ก 2๐œ‹ 0 A norm of a vector space is a real-valued function โ‹… satisfying 1. ๐‘๐‘ฅ = ๐‘ ๐‘ฅ , ๐‘ โ‰ฅ 0 2. ๐‘ฅ โ‰ฅ 0, equality iff ๐‘ฅ = 0. 3. Triangle Inequality: ๐‘ฅ + ๐‘ฆ โ‰ค ๐‘ฅ + ๐‘ฆ The distance between two vectors x, y is ๐‘ฅ โˆ’ ๐‘ฆ . In an inner product space, the norm (length) of a vector is ๐‘ฅ = Cauchy-Schwarz Inequality: ๐‘ฅ, ๐‘ฆ โ‰ค ๐‘ฅ

5-2

๐‘ฅ, ๐‘ฅ .

๐‘ฆ

Orthogonality Two vectors are orthogonal (perpendicular) when their inner product is 0. A subset S is orthogonal if any two distinct vectors in S are orthogonal, orthonormal if additionally all vectors have length 1. Subspaces V and W are orthogonal if each ๐‘ฃ โˆˆ ๐‘‰ is orthogonal to each ๐‘ค โˆˆ ๐‘Š. The orthogonal complement ๐‘‰ โŠฅ (V perp) of V is the subspace containing all vectors orthogonal to V. (Warning: ๐‘‰ โŠฅโŠฅ = ๐‘‰ holds when V is finite-dimensional, not necessarily when V is infinite-dimensional.) When an orthonormal basis is chosen, every inner product on finite-dimensional V is similar to the standard inner product. The conditions effectively determine what the inner product has to be. Pythagorean Theorem: If x and y are orthogonal, ๐‘ฅ + ๐‘ฆ

2

= ๐‘ฅ

2

+ ๐‘ฆ

Fundamental Theorem of Linear Algebra (Part 2): The nullspace is the orthogonal complement of the row space. The left nullspace is the orthogonal complement of the column space.

2

.

5-3

Projections Take 1: Matrix and geometric viewpoint The [orthogonal] projection of ๐‘ onto ๐‘Ž is ๐‘, ๐‘Ž ๐‘โ‹…๐‘Ž ๐‘Žโˆ— ๐‘ ๐‘= ๐‘Ž = ๐‘Ž = ๐‘Ž ๐‘Ž 2 ๐‘Žโ‹…๐‘Ž ๐‘Žโˆ— ๐‘Ž ๐‘ฅ

The last two expressions are for (row) vectors in โ„‚๐‘› , using the dot product. (Note: this shows that ๐‘Ž โ‹… ๐‘ = ๐‘Ž ๐‘ cos ๐œƒ for 2 and 3 dimensions.) Let ๐‘† be a finite orthogonal basis. A vector y is the sum of its projections onto the vectors of S: ๐‘ฆ, ๐‘ฃ ๐‘ฆ= ๐‘ฃ ๐‘ฃ 2 ๐‘ฃโˆˆ๐‘†

Pf. Write y as a linear combination and take the inner product of y with a vector in the basis; use orthogonality to cancel all but one term. As a corollary, any orthogonal subset is linearly independent. To find the projection of ๐‘ onto a finite-dimensional subspace W, first find an orthonormal basis for W (see section 5-5), ๐›ฝ. The projection is ๐‘=

๐‘, ๐‘ฃ ๐‘ฃ ๐‘ฃโˆˆ๐›ฝ

and the error is ๐‘’ = ๐‘ โˆ’ ๐‘. ๐‘ is perpendicular to ๐‘’, and ๐‘ is the vector in W so that ๐‘ โˆ’ ๐‘ is minimal. (Proof uses Pythagorean theorem) Besselโ€™s Inequality: (ฮฒ a basis for a subspace) ๐‘ฃโˆˆ๐›ฝ

๐‘ฆ,๐‘ฃ 2 ๐‘ฃ 2

2

โ‰ค ๐‘ฆ

, equality iff ๐‘ฆ =

๐‘ฆ,๐‘ฃ ๐‘ฃโˆˆ๐›ฝ ๐‘ฃ 2

๐‘ฃ

If ๐›ฝ = ๐‘ฃ1 , โ€ฆ , ๐‘ฃ๐‘› is an orthonormal basis, then for any linear transformation T,

๐‘‡

๐›ฝ ๐‘–๐‘—

=

๐‘‡ ๐‘ฃ๐‘— , ๐‘ฃ๐‘– . Alternatively: Let W be a subspace of โ„‚๐‘š generated by the linearly independent set {๐‘Ž1 , โ€ฆ ๐‘Ž๐‘› }. Solving ๐ดโˆ— ๐‘ โˆ’ ๐ด๐‘ฅ = 0 โ‡’ ๐ดโˆ— ๐ด๐‘ฅ = ๐ดโˆ— ๐‘, the projection of ๐‘Ž onto W is ๐‘ = ๐ด๐‘ฅ = ๐ด ๐ดโˆ— ๐ด โˆ’1 ๐ดโˆ— ๐‘ ๐‘ƒ

where P is the projection matrix. In the special case that the set is orthonormal, ๐‘„๐‘ฅ โ‰ˆ ๐‘ โ‡’ ๐‘ฅ = ๐‘„ ๐‘‡ ๐‘, ๐‘ = ๐‘„๐‘„ ๐‘‡ ๐‘ ๐‘ƒ

A matrix P is a projection matrix iff ๐‘ƒ2 = ๐‘ƒ. Take 2: Linear transformation viewpoint If ๐‘‰ = ๐‘Š1 โŠ• ๐‘Š2 then the projection on W 1 along W 2 is defined by ๐‘‡ ๐‘ฅ = ๐‘ฅ1 when ๐‘ฅ = ๐‘ฅ1 + ๐‘ฅ2 ; ๐‘ฅ1 โˆˆ ๐‘Š1 , ๐‘ฅ2 โˆˆ ๐‘Š2 T is an orthogonal projection if ๐‘… ๐‘‡ โŠฅ = ๐‘(๐‘‡) and ๐‘ ๐‘‡ โŠฅ = ๐‘…(๐‘‡). A linear operator T is an orthogonal projection iff ๐‘‡ 2 = ๐‘‡ = ๐‘‡ โˆ— .

5-4

Minimal Solutions and Least Squares Approximations When ๐ด๐‘ฅ = ๐‘ is consistent, the minimal solution is the one with least absolute value.

1. There exists exactly one minimal solution s, and ๐‘  โˆˆ ๐ถ(๐ดโˆ— ). 2. s is the only solution to ๐ด๐‘ฅ = ๐‘ in ๐ถ(๐ดโˆ— ): ๐ด๐ดโˆ— ๐‘ข = ๐‘ โ‡’ ๐‘  = ๐ดโˆ— ๐‘ข = ๐ดโˆ— ๐ด๐ดโˆ—

โˆ’1

๐‘.

The least squares solution ๐‘ฅ makes ๐ธ = ๐ด๐‘ฅ โˆ’ ๐‘ 2 as small as possible. (Generally, ๐ด๐‘ฅ = ๐‘ is inconsistent.) Project b onto the column space of A. To find the real function in the form ๐‘ฆ(๐‘ก) =

๐‘š ๐‘–=1 ๐ถ๐‘– ๐‘“๐‘– (๐‘ก)

for fixed functions ๐‘“๐‘– that is closest to 2

the points ๐‘ก1 , ๐‘ฆ1 , โ€ฆ ๐‘ก๐‘› , ๐‘ฆ๐‘› , i.e. such that the error ๐‘’ = ๐‘›๐‘–=1 ๐‘’๐‘–2 = ๐‘›๐‘–=1 ๐‘ฆ๐‘– โˆ’ ๐‘ฆ ๐‘ก๐‘– is least, ๐‘ฆ1 let A be the matrix with ๐ด๐‘–๐‘— = ๐‘“๐‘– (๐‘ก๐‘— ), ๐‘ = โ‹ฎ . Then ๐ด๐‘ฅ = ๐‘ is equivalent to the system ๐‘ฆ๐‘› ๐‘ฆ ๐‘ก๐‘– = ๐‘ฆ๐‘– . Now find the projection of ๐‘ onto the columns of ๐ด, by multiplying by ๐ด๐‘‡ and solving ๐ด๐‘‡ ๐ด๐‘ฅ = ๐ด๐‘‡ ๐‘. Here, p is the values estimated by the best-fit curve and e gives the errors in the estimates. Ex. Linear functions ๐‘ฆ = ๐ถ + ๐ท๐‘ก: 1 ๐‘ก1 ๐‘› ๐‘ก๐‘– ๐ถ ๐‘ฆ๐‘– ๐ด = โ‹ฎ โ‹ฎ .The equation ๐ด๐‘‡ ๐ด๐‘ฅ = ๐ด๐‘‡ ๐‘ becomes = . 2 ๐‘ก๐‘– ๐‘ฆ๐‘– ๐ท ๐‘ก ๐‘ก ๐‘– ๐‘– 1 ๐‘ก๐‘› A has orthogonal columns when ๐‘ก๐‘– = 0. To produce orthogonal columns, shift the times by ๐‘ก +โ‹ฏ+๐‘ก ๐‘ฆ ๐‘ฆ ๐‘ก letting ๐‘‡๐‘– = ๐‘ก๐‘– โˆ’ ๐‘ก = ๐‘ก๐‘– โˆ’ 1 ๐‘› ๐‘› . Then ๐ด๐‘‡ ๐ด is diagonal and ๐ถ = ๐‘› ๐‘– , ๐ท = ๐‘ก๐‘– 2 ๐‘– . The least ๐‘–

squares line is ๐‘ฆ = ๐ถ + ๐ท(๐‘ก โˆ’ ๐‘ก). Row space ๐ถ ๐ด๐‘‡ โ€ข {๐ด๐‘‡ ๐‘ฆ} โ€ข Dimension r

Column space ๐ถ(๐ด) โ€ข {๐ด๐‘ฅ} โ€ข Dimension r

Least squares solution Minimal solution to ๐ด๐‘ฅ๐‘Ÿ = ๐‘ ๐‘ฅ๐‘Ÿ

๐ด๐‘ฅ๐‘Ÿ = ๐‘

๐ด+ ๐‘ = ๐‘ฅ๐‘Ÿ

๐‘ ๐‘

๐ด๐‘ฅ = ๐‘

๐ถ ๐ด

๐‘‡ โŠฅ

๐‘ฅ = ๐‘ฅ๐‘Ÿ + ๐‘ฅ๐‘›

= ๐‘(๐ด)

๐ด+ ๐‘ = ๐‘ฅ๐‘Ÿ

๐‘ =๐‘+๐‘’ ๐ถ(๐ด)

โŠฅ

= ๐‘(๐ด๐‘‡ )

๐ด๐‘ฅ๐‘› = 0 ๐‘ฅ๐‘› Nullspace ๐‘(๐ด) โ€ข {๐‘ฅ|๐ด๐‘ฅ = 0} โ€ข Dimension n-r

5-5

๐ด+ ๐‘’ = 0

๐‘’

Left nullspace ๐‘(๐ด๐‘‡ ) โ€ข {๐‘ฆ|๐ด๐‘‡ ๐‘ฆ = 0} โ€ข Dimension m-r

Orthogonal Bases Gram-Schmidt Orthogonalization Process: Let ๐‘† = ๐‘ฃ1 , โ€ฆ ๐‘ฃ๐‘› be a linearly independent subset of V. Define ๐‘†โ€ฒ = ๐‘ค1 , โ€ฆ ๐‘ค๐‘› by ๐‘ฃ1 = ๐‘ค1 and

๐‘˜โˆ’1

๐‘ฃ๐‘˜ = ๐‘ค๐‘˜ โˆ’ ๐‘— =1

๐‘ฆ, ๐‘ฃ๐‘— ๐‘ฃ๐‘—2

๐‘ฃ๐‘—

Then Sโ€™ is an orthogonal set having the same span as S. To make Sโ€™ orthonormal, divide every vector by its length. (It may be easier to subtract the projections of ๐‘ค๐‘™ on ๐‘ค๐‘˜ for all ๐‘™ > ๐‘˜ at step ๐‘˜, like in elimination.) Ex. Legendre polynomials

1

, 2

3

๐‘ฅ, 2

5 8

3๐‘ฅ 2 โˆ’ 1 , โ€ฆ are an orthonormal basis for โ„[๐‘ฅ]

(integration from -1 to 1). Factorization A=QR From ๐‘Ž1 , โ€ฆ ๐‘Ž๐‘› , Gram-Schmidt constructs orthonormal vectors ๐‘ž1 , โ€ฆ ๐‘ž๐‘› . Then ๐ด = ๐‘„๐‘… ๐‘ž1โˆ— ๐‘Ž1 ๐‘ž1โˆ— ๐‘Ž2 โ‹ฏ ๐‘ž1โˆ— ๐‘Ž๐‘› 0 ๐‘ž2โˆ— ๐‘Ž2 โ‹ฑ ๐‘ž2โˆ— ๐‘Ž๐‘› ๐‘Ž1 โ‹ฏ ๐‘Ž๐‘› = ๐‘ž1 โ‹ฏ ๐‘ž๐‘› โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฏ ๐‘ž๐‘›โˆ— ๐‘Ž๐‘› 0 0 Note R is upper triangular. Suppose ๐‘† = ๐‘ฃ1 , โ€ฆ ๐‘ฃ๐‘˜ is an orthonormal set in n-dimensional inner product space V. Then (a) S can be extended to an orthonormal basis {๐‘ฃ1 , โ€ฆ ๐‘ฃ๐‘› } for V. (b) If W=span(S), ๐‘†1 = {๐‘ฃ๐‘˜+1 , โ€ฆ ๐‘ฃ๐‘› } is an orthonormal basis for ๐‘Š โŠฅ . (c) Hence, ๐‘‰ = ๐‘Š โŠ• ๐‘Š โŠฅ and dim ๐‘‰ = dim ๐‘Š + dimโก (๐‘Š โŠฅ ).

5-6

Adjoints and Orthogonal Matrices Let V be a finite-dimensional inner product space over F, and let g: ๐‘‰ โ†’ ๐น be a linear transformation. The unique vector ๐‘ฆ โˆˆ ๐‘‰ such that g ๐‘ฅ, ๐‘ฆ = ๐‘ฅ, ๐‘ฆ for all ๐‘ฅ โˆˆ ๐‘‰ is given by ๐‘›

๐‘ฆ=

g(๐‘ฃ๐‘– )๐‘ฃ๐‘– ๐‘–=1

Let ๐‘‡: ๐‘‰ โ†’ ๐‘Š be a linear transformation, and ฮฒ and ฮณ be bases for inner product spaces V, ๐›ฝ W. Define the adjoint of T to be the linear transformation ๐‘‡ โˆ— : ๐‘Š โ†’ ๐‘‰ such that ๐‘‡ โˆ— ๐›พ = ๐›พ ( ๐‘‡ ๐›ฝ )โˆ—. (See section 2.3) Then ๐‘‡ โˆ— is the unique (linear) function such that ๐‘‡ ๐‘ฅ , ๐‘ฆ ๐‘Š = ๐‘ฅ, ๐‘‡ โˆ— ๐‘ฆ ๐‘‰ for all ๐‘ฅ โˆˆ ๐‘‰, ๐‘ฆ โˆˆ ๐‘Š and ๐‘ โˆˆ ๐น. A linear operator T on V is an isometry if ๐‘‡(๐‘ฅ) = ๐‘ฅ for all ๐‘ฅ โˆˆ ๐‘‰. If V is finitedimensional, T is orthogonal for V real and unitary for V complex. The corresponding matrix representations, as well as properties of T, are described below. Commutative property Normal ๐ด๐ด๐‘‡ = ๐ด๐‘‡ ๐ด Complex Normal ๐ด๐ดโˆ— = ๐ดโˆ— ๐ด Linear ๐‘‡๐‘ฃ, ๐‘‡๐‘ค = ๐‘‡ โˆ— ๐‘ฃ, ๐‘‡ โˆ— ๐‘ค Transformation ๐‘‡๐‘ฃ = ๐‘‡ โˆ— ๐‘ฅ Real

Inverse property Orthogonal ๐ด๐‘‡ ๐ด = ๐ผ Unitary ๐ดโˆ— ๐ด = ๐ผ ๐‘‡๐‘ฃ, ๐‘‡๐‘ค = ๐‘ฃ, ๐‘ค ๐‘‡๐‘ฃ = ๐‘ฃ (๐‘ˆ๐‘ฅ)๐‘‡ ๐‘ˆ๐‘ฆ = ๐‘ฅ ๐‘‡ ๐‘ฆ

Symmetry property Symmetric ๐ด๐‘‡ = ๐ด Self-adjoint/ Hermitian ๐ดโˆ— = ๐ด ๐‘‡๐‘ฃ, ๐‘ค = ๐‘ฃ, ๐‘‡๐‘ค

A real matrix ๐‘„ has orthonormal columns iff ๐‘„ ๐‘‡ ๐‘„ = ๐ผ. If ๐‘„ is square it is called an orthogonal matrix, and its inverse is its transpose. A complex matrix ๐‘ˆ has orthonormal columns iff ๐‘ˆ โˆ— ๐‘ˆ = ๐ผ. If ๐‘ˆ is square it is a unitary matrix, and its inverse is its adjoint. If ๐‘ˆ has orthonormal columns it leaves lengths unchanged ( ๐‘ˆ๐‘ฅ = ๐‘ฅ for every x) and preserves dot products (๐‘ˆ๐‘ฅ)๐‘‡ ๐‘ˆ๐‘ฆ = ๐‘ฅ ๐‘‡ ๐‘ฆ. ๐ดโˆ— ๐ด is invertible iff A has linearly independent columns. More generally, ๐ดโˆ— ๐ด has the same rank as A.

5-7

Geometry of Orthogonal Operators A rigid motion is a function ๐‘“: ๐‘‰ โ†’ ๐‘‰ satisfying ๐‘“ ๐‘ฅ โˆ’ ๐‘“(๐‘ฆ) = ๐‘ฅ โˆ’ ๐‘ฆ for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‰. Each rigid motion is the composition of a translation and an orthogonal operator. A (orthogonal) linear operator is a 1. rotation (around ๐‘Š โŠฅ ) if there exists a 2-dimensional subspace ๐‘Š โŠ† ๐‘‰ and an orthonormal basis ๐›ฝ = {๐‘ฅ1 , ๐‘ฅ2 } for W, and ๐œƒ such that ๐‘ฅ1 cos ๐œƒ sin ๐œƒ ๐‘ฅ1 ๐‘‡ ๐‘ฅ = . 2 โˆ’ sin ๐œƒ cos ๐œƒ ๐‘ฅ2 โŠฅ and ๐‘‡ ๐‘ฆ = ๐‘ฆ for ๐‘ฆ โˆˆ ๐‘Š . 2. reflection (about ๐‘Š โŠฅ ) if W is a one-dimensional subspace of V such that ๐‘‡ ๐‘ฅ = โˆ’๐‘ฅ for all ๐‘ฅ โˆˆ ๐‘Š and ๐‘‡ ๐‘ฆ = ๐‘ฆ for all ๐‘ฆ โˆˆ ๐‘Š โŠฅ . Structural Theorem for Orthogonal Operators: 1. Let T be an orthogonal operator on finite-dimensional real inner product space V. There exists a collection of pairwise orthogonal T-invariant subspaces {๐‘Š1 , โ€ฆ , ๐‘Š๐‘š } of V of dimension 1 or 2 such that ๐‘‰ = ๐‘Š1 โŠ• โ‹ฏ โŠ• ๐‘Š๐‘š . Each ๐‘‡๐‘Š๐‘– is a rotation or reflection; the number of reflections is even/ odd when det ๐‘‡ = 1/ det ๐‘‡ = โˆ’1. It is possible to choose the subspaces so there is 0 or 1 reflection. 2. If A is orthogonal there exists orthogonal Q such that ๐ผ๐‘ โˆ’๐ผ๐‘ž โˆ’1 ๐‘„๐‘‡๐‘„ = where p, q are the dimensions of N(T-I), N(T+I) ๐‘…๐œƒ1 โ‹ฑ ๐‘…๐œƒ๐‘› cos ๐œƒ โˆ’ sin ๐œƒ and ๐‘…๐œƒ = . sin ๐œƒ cos ๐œƒ Alternate method to factor QR: Q is a product of reflection matrices ๐ผ โˆ’ 2๐‘ข๐‘ข๐‘‡ and plane rotation matrices (Givens rotation) in the form (1s on diagonal. Shown are rows/ columns i, j). โ‹ฑ cosโก (๐œƒ) โˆ’sinโก (๐œƒ) ๐‘„๐‘–๐‘— = โ‹ฑ sinโก (๐œƒ) cosโก (๐œƒ) โ‹ฑ Multiply by ๐‘„๐‘–๐‘— to produce 0 in the (i,j) position, as in elimination. ๐‘„๐‘–๐‘— ๐ด = ๐‘… โ‡’ ๐ด =

๐‘„๐‘–๐‘—โˆ’1 ๐‘… ๐‘„

where the factors are reversed in the second product.

6

Determinants

6-1

Characterization The determinant (denoted ๐ด or detโก (๐ด)) is a function from the set of square matrices to the field F, satisfying the following conditions: 1. The determinant of the nxn identity matrix is 1, i.e. det ๐ผ = 1. 2. If two rows of A are equal, then det ๐ด = 0, i.e. the determinant is alternating. 3. The determinant is a linear function of each row separately, i.e. it is n-linear. That is, if ๐‘Ž1 , โ€ฆ ๐‘Ž๐‘› , ๐‘ข, ๐‘ฃ are rows with n elements, ๐‘Ž1 ๐‘Ž1 ๐‘Ž1 โ‹ฎ โ‹ฎ โ‹ฎ ๐‘Ž๐‘Ÿโˆ’1 ๐‘Ž๐‘Ÿโˆ’1 ๐‘Ž๐‘Ÿโˆ’1 ๐‘ข det ๐‘ข + ๐‘˜๐‘ฃ = det + ๐‘˜ detโก ๐‘ฃ ๐‘Ž๐‘Ÿ+1 ๐‘Ž๐‘Ÿ+1 ๐‘Ž๐‘Ÿ+1 โ‹ฎ โ‹ฎ โ‹ฎ ๐‘Ž ๐‘Ž ๐‘Ž๐‘› ๐‘› ๐‘› These properties completely characterize the determinant. 4. The determinant changes sign when two rows are exchanged. 5. Adding a multiple of one row to another row leaves det ๐ด unchanged. 6. A matrix with a row of zeros has det ๐ด = 0. 7. If A is triangular then det ๐ด = ๐‘Ž11 ๐‘Ž22 โ‹ฏ ๐‘Ž๐‘›๐‘› is the product of diagonal entries. 8. A is singular iff det ๐ด = 0. 9. det ๐ด๐ต = det ๐ด detโก (๐ต) ๐‘‡ 10. ๐ด has the same determinant as A. Therefore the preceding properties are true if โ€•rowโ€– is replaced by โ€•columnโ€–.

6-2

Calculation 1. The Big Formula: Use n-linearity and expand everything. det ๐ด =

sgn(๐œŽ)๐ด1,๐œŽ

1

๐ด2,๐œŽ

2

โ‹ฏ ๐ด๐‘› ,๐œŽ

๐‘›

๐œŽโˆˆ๐”–๐‘›

1, if ๐œŽ is even . โˆ’1, if ๐œŽ is odd 2. Cofactor Expansion: Recursive, useful with many zeros, perhaps with induction. (Row) where the sum is over all ๐‘›! permutations of {1,โ€ฆn} and sgn ๐œŽ =

๐‘›

det ๐ด = (Column)

๐‘›

๐‘Ž๐‘–๐‘— ๐ถ๐‘–๐‘— = ๐‘— =1

๐‘— =1

๐‘›

๐‘›

det ๐ด =

๐‘Ž๐‘–๐‘— ๐ถ๐‘–๐‘— = ๐‘–=1

๐‘–=1

๐‘Ž๐‘–๐‘— โˆ’1

๐‘–+๐‘—

det ๐‘€๐‘–๐‘—

๐‘Ž๐‘–๐‘— โˆ’1

๐‘–+๐‘—

det ๐‘€๐‘–๐‘—

where ๐‘€๐‘–๐‘— is A with the ith row and jth column removed. 3. Pivots: If the pivots are ๐‘‘1 , ๐‘‘2 , โ€ฆ ๐‘‘๐‘› , and ๐‘ƒ๐ด = ๐ฟ๐‘ˆ, (P a permutation matrix, L is lower triangular, U is upper triangular) det ๐ด = det ๐‘ƒ (๐‘‘1 ๐‘‘2 โ‹ฏ ๐‘‘๐‘› ) where det(P)=1/ -1 if P corresponds to an even/ odd permutation. a. Let ๐ด๐‘˜ denote the matrix consisting of the first k rows and columns of A. If

there are no row exchanges in elimination, det ๐ด๐‘˜ ๐‘‘๐‘˜ = det ๐ด๐‘˜โˆ’1 4. By Blocks: ๐ด ๐ต a. = A ๐ถ ๐‘‚ ๐ถ ๐ด ๐ต ๐ด ๐ต b. = = ๐ด ๐ท โˆ’ ๐ถ๐ดโˆ’1 ๐ต ๐ถ ๐ท ๐‘‚ ๐ท โˆ’ ๐ถ๐ดโˆ’1 ๐ต Tips and Tricks Vandermonde determinant (look at when the determinant is 0, gives factors of polynomial) 1 1 โ‹ฏ 1 ๐‘ฅ1 ๐‘ฅ2 โ‹ฏ ๐‘ฅ๐‘› = (๐‘ฅ๐‘– โˆ’ ๐‘ฅ๐‘— ) โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ ๐‘–>๐‘— ๐‘ฅ1๐‘› โˆ’1 ๐‘ฅ2๐‘› โˆ’1 โ‹ฏ ๐‘ฅ๐‘›๐‘› โˆ’1 Circulant Matrix (find eigenvectors, determinant is product of eigenvalues) ๐‘Ž0 ๐‘Ž1 โ‹ฏ ๐‘Ž๐‘›โˆ’1 ๐‘›โˆ’1 ๐‘›โˆ’1 2๐œ‹๐‘– ๐‘—๐‘˜ ๐‘Ž๐‘›โˆ’1 ๐‘Ž0 โ‹ฏ ๐‘Ž๐‘›โˆ’2 ๐‘› = ๐‘’ ๐‘Ž๐‘˜ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ ๐‘— =0 ๐‘˜=0 โ‹ฏ ๐‘Ž0 ๐‘Ž1 ๐‘Ž2 ๐‘Ž1 ๐‘ฅ โ‹ฏ ๐‘ฅ ๐‘› ๐‘ฅ ๐‘Ž2 โ‹ฏ ๐‘ฅ ๐‘Ž๐‘— โˆ’ ๐‘ฅ โ‹ฑ โ‹ฎ = ๐‘Ž1 โˆ’ ๐‘ฅ โ‹ฏ ๐‘Ž๐‘› โˆ’ ๐‘ฅ + ๐‘ฅ โ‹ฎ โ‹ฎ ๐‘–=1 ๐‘— โ‰ ๐‘– ๐‘ฅ ๐‘ฅ โ‹ฏ ๐‘Ž๐‘› 1 1 1 = ๐‘ฅ ๐‘Ž1 โˆ’ ๐‘ฅ โ‹ฏ ๐‘Ž๐‘› โˆ’ ๐‘ฅ + + โ‹ฏ+ ๐‘ฅ ๐‘Ž1 โˆ’ ๐‘ฅ ๐‘Ž๐‘› โˆ’ ๐‘ฅ For a real matrix A, det ๐ผ + ๐ด2 = det ๐ผ + ๐‘–๐ด 2 โ‰ฅ 0 If A has eigenvalues ๐œ†1 , โ€ฆ , ๐œ†๐‘› , then det ๐ด + ๐œ†๐ผ = ๐œ†1 + ๐œ† โ‹ฏ (๐œ†๐‘› + ๐œ†) In particular, if M has rank 1, det ๐ผ + ๐‘€ = 1 + tr ๐‘€

6-3

Properties and Applications Cramerโ€™s Rule: If A is a nxn matrix and det ๐ด โ‰  0 then ๐ด๐‘ฅ = ๐‘ has the unique solution given by detโก (๐ต๐‘– ) ๐‘ฅ๐‘– = ,1 โ‰ค ๐‘– โ‰ค ๐‘› detโก (๐ด) Where ๐ต๐‘– is A with the ith column replaced by b. Inverses: Let C be the cofactor matrix of A. Then ๐ดโˆ’1 =

๐ถ๐‘‡ detโก (๐ด)

The cross product of ๐‘ข = ๐‘ข1 , ๐‘ข2 , ๐‘ข3 and ๐‘ฃ = (๐‘ฃ1 , ๐‘ฃ2 , ๐‘ฃ3 ) is ๐‘– ๐‘— ๐‘˜ ๐‘ข ร— ๐‘ฃ = ๐‘ข1 ๐‘ข2 ๐‘ข3 ๐‘ฃ1 ๐‘ฃ2 ๐‘ฃ3 a vector perpendicular to u and v (direction determined by the right-hand rule) with length

๐‘ข

๐‘ฃ sin ๐œƒ .

Geometry:

๐‘ฅ1 ๐‘ฆ1 The area of a parallelogram with vertices sides ๐‘ฅ1 , ๐‘ฆ1 , ๐‘ฅ2 , ๐‘ฆ2 is ๐‘ฅ ๐‘ฆ . (Oriented areas 2 2 satisfy the same properties as determinants.) The area of a parallelepiped with sides ๐‘ข = ๐‘ข1 , ๐‘ข2 , ๐‘ข3 , ๐‘ฃ = (๐‘ฃ1 , ๐‘ฃ2 , ๐‘ฃ3 ), and ๐‘ข = ๐‘ค1 , ๐‘ค2 , ๐‘ค3 ๐‘ข1 ๐‘ข2 ๐‘ข3 is ๐‘ข ร— ๐‘ฃ โ‹… ๐‘ค = ๐‘ฃ1 ๐‘ฃ2 ๐‘ฃ3 ๐‘ค1 ๐‘ค2 ๐‘ค3 The Jacobian used to change coordinate systems in integrals is

๐œ•๐‘ฅ

๐œ•๐‘ฅ

๐œ•๐‘ฅ

๐œ•๐‘ข ๐œ•๐‘ฆ

๐œ•๐‘ฃ ๐œ•๐‘ฆ

๐œ•๐‘ค ๐œ•๐‘ฆ

๐œ•๐‘ข ๐œ•๐‘ง

๐œ•๐‘ฃ ๐œ•๐‘ง

๐œ•๐‘ค ๐œ•๐‘ง

๐œ•๐‘ข

๐œ•๐‘ฃ

๐œ•๐‘ค

.

7

Eigenvalues and Eigenvectors, Diagonalization

7-1

Eigenvalues and Eigenvectors Let T be a linear operator (or matrix) on V. A nonzero vector ๐‘ฃ โˆˆ ๐‘‰ is an (right) eigenvector of T if there exists a scalar ๐œ†, called the eigenvalue, such that ๐‘‡ ๐‘ฃ = ๐œ†๐‘ฃ. The eigenspace of ฮป is the set of all eigenvectors corresponding to ฮป: ๐ธ๐œ† = {๐‘ฅ โˆˆ ๐‘‰|๐‘‡ ๐‘ฅ = ๐œ†๐‘ฅ}. The characteristic polynomial of a matrix A is detโก (๐ด โˆ’ ๐œ†๐ผ). The zeros of the polynomial are the eigenvalues of A. For each eigenvalue solve ๐ด๐‘ฃ = ๐œ†๐‘ฃ to find linearly independent eigenvalues that span the eigenspace. Multiplicity of an eigenvalue ฮป: 1. Algebraic (๐œ‡๐‘Ž๐‘™๐‘” )- the multiplicity of the root ฮป in the characteristic polynomial of A. 2. Geometric (๐œ‡๐‘”๐‘’๐‘œ๐‘š )- the dimension of the eigenspace of ฮป. 1 โ‰ค dim ๐ธ๐œ† โ‰ค ๐œ‡๐‘Ž๐‘™๐‘” (๐œ†). dim ๐ธ๐œ† = dim ๐‘ ๐ด โˆ’ ๐œ†๐ผ = ๐‘› โˆ’ rank(๐ด โˆ’ ๐œ†๐ผ). For real matrices, complex eigenvalues come in conjugate pairs. The product of the eigenvalues (counted by algebraic multiplicity) equals detโก (๐ด). The sum of the eigenvalues equals the trace of A. An eigenvalue of 0 implies that A is singular. Spectral Mapping Theorem: Let A be a nxn matrix with eigenvalues ๐œ†1 , โ€ฆ , ๐œ†๐‘› (not necessarily distinct, counted according to algebraic multiplicity), and P be a polynomial. Then the eigenvalues of ๐‘ƒ(๐ด) are ๐‘ƒ ๐œ†1 , โ€ฆ , ๐‘ƒ ๐œ†๐‘› . Gerschgorinโ€™s Disk Theorem: Every eigenvalue of A is strictly in a circle in the complex plane centered at some diagonal entry ๐ด๐‘–๐‘– with radius ๐‘Ÿ๐‘– = ๐‘— โ‰ ๐‘– ๐‘Ž๐‘–๐‘— (because ๐œ† โˆ’ ๐ด๐‘–๐‘– ๐‘ฅ๐‘– = ๐‘— โ‰ ๐‘– ๐‘Ž๐‘–๐‘— ๐‘ฅ๐‘— ). Perron-Frobenius Theorem: Any square matrix with positive entries has a unique eigenvector with positive entries (up to multiplication by a positive factor), and the corresponding eigenvalue has multiplicity one and has strictly greater absolute value than any other eigenvalue. Generalization: Holds for any irreducible matrix with nonnegative entries, i.e. there is no reordering of rows and columns that makes it block upper triangular. A left eigenvalue of A satisfies ๐‘ฃ ๐‘‡ ๐ด = ๐œ†๐‘ฃ instead. Biorthogonality says that any right eigenvector of A associated with ฮป is orthogonal to all left eigenvectors of A associated with eigenvalues other than ฮป.

7-2

Invariant and T-Cyclic Subspaces The subspace ๐ถ๐‘ฅ = ๐‘(๐‘ฅ; ๐‘‡) = ๐‘Š = span( ๐‘ฅ. ๐‘‡ ๐‘ฅ , ๐‘‡ 2 ๐‘ฅ , โ€ฆ ) is the T-cyclic subspace generated by x. W is the smallest T-invariant subspace containing x. 1. If W is a T-invariant subspace, the characteristic polynomial of TW divides that of T. 2. If k=dim(W) then ๐›ฝ๐‘ฅ = {๐‘ฅ, ๐‘‡ ๐‘ฅ , โ€ฆ , ๐‘‡ ๐‘˜โˆ’1 ๐‘ฅ } is a basis for W, called the T-cyclic basis

generated by x. If ๐‘˜๐‘–=0 ๐‘Ž๐‘– ๐‘‡ ๐‘– (๐‘ฅ) = 0 with ๐‘Ž๐‘˜ = 1, the characteristic polynomial of TW is โˆ’1 ๐‘˜ ๐‘˜๐‘–=0 ๐‘Ž๐‘– ๐‘ก ๐‘– . 3. If ๐‘‰ = ๐‘Š1 โจ๐‘Š2 โ‹ฏ ๐‘Š๐‘˜ , each ๐‘Š๐‘– is a T-invariant subspace, and the characteristic polynomial of ๐‘‡๐‘Š๐‘– is ๐‘“๐‘– (๐‘ก), then the characteristic polynomial of T is ๐‘˜๐‘–=1 ๐‘“๐‘– (๐‘ก). Cayley-Hamilton Theorem: A satisfies its own characteristic equation: if ๐‘“(๐‘ก) is the characteristic polynomial of A, then ๐‘“ ๐ด = ๐’ช.

7-3

Triangulation A matrix is triangulable if it is similar to an upper triangular matrix. (Schur) A matrix is triangulable iff the characteristic polynomial splits over F. A real/ complex matrix A is unitarily/ orthogonally equivalent to a real/ complex upper triangular matrix. (i.e. ๐ด = ๐‘„๐‘‡๐‘„ โˆ’1 , Q is orthogonal/ unitary) Pf. T=LA has an eigenvalue iff T* has. Induct on dimension n. Choose an eigenvector z of T*, and apply the induction hypothesis to the T-invariant subspace span ๐‘ง โŠฅ .

7-4

Diagonalization T is diagonalizable if there exists an ordered basis ๐›ฝ for V such that ๐‘‡ ๐›ฝ is diagonal. A is diagonalizable if there exists an invertible matrix S such that ๐‘† โˆ’1 ๐ด๐‘† = ฮ› is a diagonal matrix. Let ๐œ†1 , โ€ฆ , ๐œ†๐‘˜ be the eigenvalues of A. Let ๐‘†๐‘– be a linearly independent subset of ๐ธ๐œ† ๐‘– for 1 โ‰ค ๐‘– โ‰ค ๐‘˜. Then ๐‘†๐‘– is linearly independent. (Loosely, eigenvectors corresponding to different eigenvalues are linearly independent.) T is diagonalizable iff both of the following are true: 1. The characteristic polynomial of T splits (into linear factors). 2. For each eigenvalue, the algebraic and geometric multiplicities are equal. Hence there are n linearly independent eigenvectors T is diagonalizable iff V is the direct sum of eigenspaces of T. To diagonalize A, put the ๐‘› linearly independent eigenvectors into the columns of A. Put the corresponding eigenvalues into the diagonal entries of ฮ›. Then ๐ด = ๐‘†ฮ›๐‘† โˆ’1 or ๐‘„๐ท๐‘„ โˆ’1 For a linear transformation, this corresponds to ๐›ฝ ๐›พ ๐‘‡๐›ฝ= ๐ผ๐›พ ๐‘‡๐›พ ๐ผ๐›ฝ Simultaneous Triangulation and Diagonalization Commuting matrices share eigenvectors, i.e. given that A and B can be diagonalized, there exists a matrix S that is an eigenvector matrix for both of them iff ๐ด๐ต = ๐ต๐ด. Regardless, AB and BA have the same set of eigenvalues, with the same multiplicities. More generally, let ๐”‰ be a commuting family of triangulable/ diagonalizable linear operators on V. There exists an ordered basis for V such that every operator in ๐”‰ is simultaneously represented by a triangular/ diagonal matrix in that basis.

7-5

Normal Matrices (For review see 5-6)

A nxn [real] symmetric matrix: 1. Has only real eigenvalues. 2. Has eigenvalues that can be chosen to be orthonormal. (๐‘† = ๐‘„, ๐‘„ โˆ’1 = ๐‘„ ๐‘‡ ) (See below.) 3. Has n linearly independent eigenvectors so can be diagonalized. 4. The number of positive/ negative eigenvalues equals the number of positive/ negative pivots. For real/ complex finite-dimensional inner product spaces, T is symmetric/ normal iff there exists an orthonormal basis for V consisting of eigenvectors of T. Spectral Theorem (Linear Transformations) Suppose T is a normal linear operator (๐‘‡ โˆ— ๐‘‡ = ๐‘‡๐‘‡ โˆ— ) on a finite-dimensional real/ complex inner product space V with distinct eigenvalues ๐œ†1 , โ€ฆ , ๐œ†๐‘› (its spectrum). Let ๐‘Š๐‘– be the eigenspace of T corresponding to ๐œ†๐‘– and ๐‘‡๐‘– the orthogonal projection of ๐‘‰ on ๐‘Š๐‘– . 1. T is diagonalizable and ๐‘‰ = ๐‘Š1 โŠ• โ‹ฏ โŠ• ๐‘Š๐‘› . 2. ๐‘Š๐‘– is orthogonal to the direct sum of ๐‘Š๐‘— with ๐‘— โ‰  ๐‘–. 3. There is an orthonormal basis of eigenvectors. 4. Resolution of the identity operator: ๐ผ = ๐‘‡1 + โ‹ฏ + ๐‘‡๐‘› 5. Spectral decomposition: ๐‘‡ = ๐œ†1 ๐‘‡1 + โ‹ฏ + ๐œ†๐‘˜ ๐‘‡๐‘› Pf. The triangular matrix in the proof of Schurโ€™s Theorem is actually diagonal. 1. If ๐ด๐‘ฅ = ๐œ†๐‘ฅ then ๐ดโˆ— ๐‘ฅ = ๐œ†๐‘ฅ. 2. W is T-invariant iff ๐‘Š โŠฅ is ๐‘‡ โˆ— -invariant. 3. Take a eigenvector v; let ๐‘Š = span ๐‘ฃ . From (1) v is an eigenvector of ๐‘‡ โˆ— ; from (2) ๐‘Š โŠฅ is T-invariant. 4. Write ๐‘‰ = ๐‘Š โŠ• ๐‘Š โŠฅ . Use induction hypothesis on ๐‘Š โŠฅ . (Matrices) Let A be a normal matrix (๐ดโˆ— ๐ด = ๐ด๐ดโˆ— ). Then A is diagonalizable with an orthonormal basis of eigenvectors: ๐ด = ๐‘ˆฮ›๐‘ˆ โˆ— where ฮ› is diagonal and U in unitary. Type of Matrix Hermitian (Self-adjoint)

Condition ๐ดโˆ— = ๐ด

Unitary

๐ดโˆ— ๐ด = ๐ผ

Symmetric (real)

๐ด๐‘‡ = ๐ด

Orthogonal (real)

๐ด๐‘‡ ๐ด = ๐ผ

Factorization ๐ด = ๐‘ˆฮ›๐‘ˆ โˆ’1 U unitary, ฮ› real diagonal Real eigenvalues (because ๐œ†๐‘ฃ โˆ— ๐‘ฃ = ๐‘ฃ โˆ— ๐ด๐‘ฃ = ๐œ†๐‘ฃ โˆ— ๐‘ฃ) ๐ด = ๐‘ˆฮ›๐‘ˆ โˆ’1 U unitary, ฮ› diagonal Eigenvalues have absolute value 1 ๐ด = ๐‘„ฮ›๐‘„โˆ’1 Q orthogonal, ฮ› real diagonal Real eigenvalues ๐ด = ๐‘„ฮ›๐‘„โˆ’1 Q unitary, ฮ› diagonal Eigenvalues have absolute value 1

7-6

Positive Definite Matrices and Operators A real matrix A is positive (semi)definite if ๐‘ฅ โˆ— ๐ด๐‘ฅ > 0 (๐‘ฅ โˆ— ๐ด๐‘ฅ โ‰ฅ 0) for every nonzero vector x. A linear operator T on a finite-dimensional inner product space is positive (semi)definite if T is self-adjoint and ๐‘‡ ๐‘ฅ , ๐‘ฅ > 0 ( ๐‘‡ ๐‘ฅ , ๐‘ฅ โ‰ฅ 0) for all ๐‘ฅ โ‰  0. The following are equivalent: 1. A is positive definite. 2. All eigenvalues are positive. 3. All upper left determinants are positive. 4. All pivots are positive. Every positive definite matrix factors into ๐ด = ๐ฟ๐ท๐‘ˆ โ€ฒ = ๐ฟ๐ท๐ฟ๐‘‡ with positive pivots in D. The Cholesky factorization is ๐ด= ๐ฟ ๐ท ๐ฟ ๐ท

7-7

๐‘‡

Singular Value Decomposition Every ๐‘š ร— ๐‘› matrix A has a singular value decomposition in the form ๐ด๐‘‰ = ๐‘ˆฮฃ โ‡’ ๐ด = ๐‘ˆฮฃ๐‘‰ โˆ’1 = ๐‘ˆฮฃ๐‘‰ โˆ— ๐œŽ1 where U and V are unitary matrices and ๐›ด = is diagonal. The singular values โ‹ฑ ๐œŽ๐‘› ๐œŽ1 , โ€ฆ ๐œŽ๐‘Ÿ (๐œŽ๐‘˜ = 0 for ๐‘˜ > ๐‘Ÿ = rank(๐ด)) are positive and are in decreasing order, with zeros at the end (not considered singular values). If A corresponds to the linear transformation ๐‘‡: ๐‘‰ โ†’ ๐‘Š, then this says there are orthonormal bases ๐›ฝ = {๐‘ฃ1 , โ€ฆ , ๐‘ฃ๐‘› } and ๐›พ = {๐‘ข1 , โ€ฆ , ๐‘ข๐‘š } such that ๐œŽ ๐‘ข if 1 โ‰ค ๐‘– โ‰ค ๐‘Ÿ ๐‘‡ ๐‘ฃ๐‘– = ๐‘– ๐‘– 0 if ๐‘– > ๐‘Ÿ Letting ๐›ฝ โ€ฒ , ๐›พโ€ฒ be the standard ordered bases for V, W, ๐›ฝโ€ฒ ๐›พโ€ฒ ๐›พโ€ฒ ๐›พ ๐ด๐‘‰ = ๐‘ˆฮฃ โ‡” ๐‘‡ ๐›ฝ โ€ฒ ๐ผ ๐›ฝ = ๐ผ ๐›พ ๐‘‡ ๐›ฝ Orthogonal elements in the basis are sent to orthogonal elements; the singular values give the factors the lengths are multiplied by. To find the SVD: 1. Diagonalize ๐ดโˆ— ๐ด, choosing orthonormal eigenvectors. The eigenvalues are the squares of the singular values and the eigenvector matrix is V. ๐œŽ12 ๐ดโˆ— ๐ด = ๐‘‰ฮฃ 2 ๐‘‰ โˆ— = ๐‘‰ ๐‘‰โˆ— โ‹ฑ ๐œŽ๐‘›2 2. Similarly, ๐ด๐ดโˆ— = ๐‘ˆฮฃ 2 ๐‘ˆ โˆ— If V and the singular values have already been found, the columns of U are just the images of ๐‘ฃ1 , โ€ฆ , ๐‘ฃ๐‘› under left multiplication by A: ๐‘ข๐‘– = ๐ด๐‘ฃ๐‘– , unless this gives 0. 3. If A is a mxn matrix: a. The first r columns of V generate the row space of A. b. The last n-r columns generate the nullspace of A. c. The first r columns of U generate the column space of A. d. The last m-r columns of U generate the left nullspace of A.

The pseudoinverse of a matrix A is the matrix ๐ด+ such that for ๐‘ฆ โˆˆ ๐ถ(๐ด), ๐ด+๐‘ฆ is the vector x in the row space such that ๐ด๐‘ฅ = ๐‘ฆ, and for ๐‘ฆ โˆˆ ๐‘(๐ด๐‘‡ ), ๐ด+๐‘ฆ = 0. For a linear transformation, replace ๐ถ(๐ด) with ๐‘…(๐‘‡) and ๐‘(๐ด๐‘‡ ) with ๐‘… ๐‘‡ โŠฅ . In other words, 1. ๐ด๐ด+ is the projection matrix onto the column space of A. 2. ๐ด+๐ด is the projection matrix onto the row space of A. Finding the pseudoinverse:

๐œŽ1โˆ’1

๐ด+ = ๐‘‰ฮฃ +๐‘ˆ โˆ— = ๐‘‰

โ‹ฑ

๐œŽ๐‘Ÿโˆ’1

๐‘ˆโˆ—

The shortest least squares solution to ๐ด๐‘ฅ = ๐‘ is ๐‘ฅ + = ๐ด+๐‘. See Section 5-4 for a picture. The polar decomposition of a complex (real) matrix A is ๐ด = ๐‘„๐ป where Q is unitary (orthogonal) and H is semi-positive definite Hermitian (symmetric). Use the SVD: ๐ด = ๐‘ˆ๐‘‰ โˆ— (๐‘‰ฮฃ๐‘‰ โˆ— ) If A is invertible, Q is positive definite and the decomposition is unique.

Summary Type of matrix Real symmetric Orthogonal Skew-symmetric Self-adjoint Positive definite

Eigenvalues Real Absolute value 1 (Pure) Imaginary Real Positive

Eigenvectors (can be chosenโ€ฆ)

Orthogonal

8

Canonical Forms A canonical form is a standard way of presenting and grouping linear transformations or matrices. Matrices sharing the same canonical form are similar; each canonical form determines an equivalence class. Similar matrices shareโ€ฆ ๏‚ท Eigenvalues ๏‚ท Trace and determinant ๏‚ท Rank ๏‚ท Number of independent eigenvectors ๏‚ท Jordan/ Rational canonical form

8-1

Decomposition Theorems A minimal polynomial of T is the (unique) monic polynomial ๐‘(๐‘ก) of least positive degree such that ๐‘ ๐‘‡ = ๐‘‡0 . If ๐‘” ๐‘‡ = ๐‘‡0 then ๐‘ ๐‘ก |๐‘”(๐‘ก); in particular, ๐‘(๐‘ก) divides the characteristic polynomial of T. Let W be an invariant subspace for T and let ๐‘ฅ โˆˆ ๐‘‰. The T-conductor (โ€•T-stufferโ€–) of x into W is the set ๐‘†๐‘‡ (๐‘ฅ; ๐‘Š) which consists of all polynomials g over F such that (๐‘” ๐‘‡ )(๐‘ฅ) โˆˆ ๐‘Š. (It may also refer to the monic polynomial of least degree satisfying the condition.) If ๐‘Š = {0}, T is called the T-annihilator of x, i.e. it is the (unique) monic polynomial ๐‘(๐‘ก) of least degree for which ๐‘ ๐‘‡ ๐‘ฅ = 0. The T-conductor/ annihilator divides any other polynomial with the same property. The T-annihilator ๐‘ ๐‘ก is the minimal polynomial of TW, where W is the T-cyclic subspace generated by x. The characteristic polynomial and minimal polynomial of TW are equal or negatives. Let L be a linear operator on V, and W a subspace of V. W is T-admissible if 1. W is invariant under T. 2. If ๐‘“ ๐‘‡ ๐‘ฅ โˆˆ ๐‘Š, there exists ๐‘ฆ โˆˆ ๐‘Š such that ๐‘“ ๐‘‡ (๐‘ฅ) = ๐‘“ ๐‘‡ (๐‘ฆ). Let T be a linear operator on finite-dimensional V. Primary Decomposition Theorem (leads to Jordan form): Suppose the minimal polynomial of T is ๐‘˜

๐‘๐‘– ๐‘Ÿ ๐‘–

๐‘ ๐‘ก = ๐‘–=1

where ๐‘๐‘– are distinct irreducible monic polynomials and ๐‘Ÿ๐‘– are positive integers. Let ๐‘Š๐‘– be the null space of ๐‘๐‘– ๐‘‡ ๐‘Ÿ ๐‘– . Then 1. ๐‘‰ = ๐‘Š1 โŠ• โ‹ฏ โŠ• ๐‘Š๐‘˜ . 2. Each ๐‘Š๐‘– is invariant under T. ๐‘Ÿ 3. The minimal polynomial of ๐‘‡๐‘Š๐‘– is ๐‘๐‘– ๐‘– . ๐‘ Pf. Let ๐‘“๐‘– = ๐‘Ÿ ๐‘– . Find ๐‘”๐‘– so that ๐‘›๐‘–=1 ๐‘“๐‘– ๐‘”๐‘– = 1. ๐ธ๐‘– = ๐‘“๐‘– ๐‘‡ ๐‘”๐‘– (๐‘‡) is the projection onto ๐‘Š๐‘– . ๐‘๐‘–

Cyclic Decomposition Theorem (leads to rational canonical form): Let T be a linear operator on finite-dimensional V and ๐‘Š0 (often taken to be {0}) a proper Tadmissible subspace of V. There exist nonzero ๐‘ฅ1 , โ€ฆ ๐‘ฅ๐‘Ÿ with (unique) T-annihilators ๐‘1 , โ€ฆ , ๐‘๐‘Ÿ , called invariant factors such that

1. ๐‘‰ = ๐‘Š0 โŠ• ๐‘ ๐‘ฅ1 ; ๐‘‡ โŠ• โ‹ฏ โŠ• ๐‘(๐‘ฅ๐‘Ÿ ; ๐‘‡) 2. ๐‘๐‘˜ |๐‘๐‘˜โˆ’1 for 2 โ‰ค ๐‘˜ โ‰ค ๐‘Ÿ. Pf. 1. There exist nonzero vectors ๐›ฝ1 , โ€ฆ , ๐›ฝ๐‘Ÿ in V such that a. ๐‘‰ = ๐‘Š0 + ๐‘ ๐›ฝ1 ; ๐‘‡ + โ‹ฏ + ๐‘ ๐›ฝ๐‘Ÿ ; ๐‘‡ b. If 1 โ‰ค ๐‘˜ โ‰ค ๐‘Ÿ and ๐‘Š๐‘˜ = ๐‘Š0 + ๐‘ ๐›ฝ1 ; ๐‘‡ + โ‹ฏ + ๐‘(๐›ฝ๐‘˜ ; ๐‘‡) then ๐‘๐‘˜ has maximum degree among all T-conductors into ๐‘Š๐‘˜โˆ’1 . 2. Let ๐‘“ = ๐‘ (๐›ฝ; ๐‘Š๐‘˜โˆ’1 ). If ๐‘“ ๐‘‡ (๐›ฝ) = ๐›ฝ0 + 1โ‰ค๐‘–